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Abstract In this paper, we will give an Enneper-type representation for spacelike and
timelike minimal surfaces in the Lorentz–Minkowski space L3, using the complex and the
paracomplex analysis (respectively). Then, we exhibit various examples of minimal surfaces
in L

3 constructed via the Enneper representation formula that it is equivalent to the Weier-
strass representation obtained by Kobayashi (for spacelike immersions) and by Konderak
(for the timelike ones).
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Mathematics Subject Classification 53A10 · 53C41 · 53C42

1 Introduction

The Weierstrass representation formula for minimal surfaces in R
3 is a powerful tool

to construct examples and to prove general properties of such surfaces, since it gives a
parametrization of minimal surfaces by holomorphic data. In [12] the authors described a
generalWeierstrass representation formula for simply connected immersed minimal surfaces
in an arbitrary Riemannian manifold. The partial differential equations involved are, in gen-
eral, too complicated to find explicit solutions. However, for particular ambient 3-manifolds,
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such as the Heisenberg group, the hyperbolic space and the product of the hyperbolic plane
with R, the equations become simpler and the formula can be used to construct examples of
conformal minimal immersions (see [7,12]).

In [2], Andrade introduces a new method to obtain minimal surfaces in the Euclidean 3-
space which is equivalent to the classical Weierstrass representation and, also, he proves that
any immersedminimal surfaces inR3 can be obtained using it. Thismethod has the advantage
of computational simplicity, with respect to the Weierstrass representation formula, and it
allows to construct a conformal minimal immersion ψ : Ω ⊂ C → C×R, from a harmonic
function h : Ω → R, provided that we choose holomorphic complex-valued functions L , P
on the simply connected domain Ω such that Lz Pz = (hz)2. The immersion results in
ψ(z) = (L(z) − P(z), h(z)), and it is called Enneper immersion associated to h. Besides,
the image ψ(Ω) is called an Enneper graph of h.

Some extensions of the Enneper-type representation in others ambient spaces are given
in [4,13]. The aim of this paper is to discuss an Enneper-type representation for minimal
surfaces in the Lorentz–Minkowski space L3, i.e. the affine three spaceR3 endowed with the
Lorentzian metric

g = dx21 + dx22 − dx23 .

In the space L3 a Weierstrass representation type theorem was proved by Kobayashi for
spacelike minimal immersions (see [6]), and by Konderak for the case of timelike minimal
surfaces (see [8]). The results of Konderak have been generalized by Lawn in [9]. Recently,
these theorems were extended for immersed minimal surfaces in Riemannian and Lorentzian
three-dimensional manifolds by Lira et al. (see [10]).

The paper is organized as follows. In Sect. 2 we recall some basics facts of Lorentzian
calculus, which plays the role of complex calculus in the classical case, for timelike minimal
surfaces. Section 3 is devoted to present a Weierstrass type representation for minimal sur-
faces in the three-dimensional Lorentz–Minkowski space.Wewill treat the cases of spacelike
and timelike minimal surfaces (given in [6,8], respectively) in an unified approach (see The-
orem 2). In Sects. 4 and 5 we give an Enneper-type representation for spacelike and timelike
minimal surfaces in L

3, using the complex and the paracomplex analysis, respectively (see
Theorems 3, 5). Besides, we show that any spacelike (respectively, timelike) minimal sur-
face in L3 can be, locally, rendered as the Enneper graph of a real-valued harmonic function
defined on a (para)complex domain (see Theorems 4, 6). In addition, we use these results to
provide a description of the spacelike (respectively, timelike) helicoids and catenoids given
in [1,6] in terms of their (para)complex Enneper data. Finally, in Sect. 6 we use the Enneper-
type representation to construct new interesting examples of minimal surfaces in L

3 and,
also, we explain how to produce new minimal surfaces starting from the Enneper data of
known minimal surfaces.

2 The algebra L of the paracomplex numbers

In [8], the author uses paracomplex analysis to prove a Weierstrass representation formula
for timelike minimal surfaces immersed in the space L3. We recall that the algebra of para-
complex (or Lorentz) numbers is the algebra

L = {a + τ b | a, b ∈ R},
where τ is an imaginary unit with τ 2 = 1. The two internal operations are the obvious ones.
We define the conjugation in L as a + τ b := a − τ b and the L-norm of z = a + τ b ∈ L
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Enneper representation of minimal surfaces in the three… 23

is defined by |z| = |z z| 12 = |a2 − b2| 12 . The algebra L admits the set of zero divisors
K = {a ± τ a : a �= 0}. If z /∈ K ∪ {0}, then it is invertible with inverse z−1 = z̄/(zz̄). We
observe that L is isomorphic to the algebra R⊕R via the map Φ(a + τ b) = (a + b, a − b)
and the inverse of this isomorphism is given by Φ−1(a, b) = (1/2) [(a + b) + τ(a − b)].
Also, L can be canonically endowed with an indefinite metric by

〈z, w〉 = Re (z w̄), z, w ∈ L.

In the following, we introduce the notion of the differentiability over Lorentz numbers and
some properties (look [5] for more details).

Definition 1 Let Ω ⊆ L be an open set1 and z0 ∈ Ω . The L-derivative of a function
f : Ω → L at z0 is defined by

f ′(z0) := lim
z→z0

z−z0∈L\K∪{0}

f (z) − f (z0)

z − z0
, (1)

if the limit exists. If f ′(z0) exists, we will say that f is L-differentiable at z0. When f is
L-differentiable at all points of Ω we say that f is L-holomorphic in Ω .

Remark 1 The condition of L-differentiability is much less restrictive that the usual com-
plex differentiability. For example, L-differentiability at z0 does not imply continuity at z0.
However, L-differentiability in an open setΩ ⊂ L implies usual differentiability inΩ . Also,
we point out that there exist L-differentiable functions of any class of usual differentiability
(see [5]).

Introducing the paracomplex operators:

∂

∂z
= 1

2

(
∂

∂u
+ τ

∂

∂v

)
,

∂

∂ z̄
= 1

2

(
∂

∂u
− τ

∂

∂v

)
,

where z = u+τ v, we can give a necessary and sufficient condition for theL-differentiability
of a function f in some open set.

Theorem 1 Let a, b : Ω → L be C1 functions in an open set Ω ⊂ L. Then the function
f (u, v) = a(u, v) + τ b(u, v), u + τv ∈ Ω , is L-holomorphic in Ω if and only if

∂ f

∂ z̄
= 0 (2)

is satisfied at all point of Ω .

Observe that the condition (2) is equivalent to the para-Cauchy–Riemann equations

au = bv, av = bu

and, in this case, we have that

f ′(z) = au(u, v) + τ bu(u, v) = bv(u, v) + τ av(u, v)

= 1

2

( ∂

∂u
+ τ

∂

∂v

)
( f ).

1 The set L has a natural topology since it’s a two-dimensional real vector space.
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24 A. A. Cintra, I. I. Onnis

Remark 2 If f is a L-differentiable function, from the para-Cauchy–Riemann equations we
have that

fz = 2(Re f )z = 2τ(Im f )z . (3)

We finish this part by considering the following result which will be useful later.

Proposition 1 Let h : Ω → R be a function defined in the simply connected open set
Ω ⊂ K. Then,

h(z) − h(z0) = 2Re
∫ z

z0
hz(z) dz,

where the integration is performed in paths contained in Ω from z0 to z.

Proof As h is a real-valued function, we have that
∫ z
z0
hz̄ dz̄ = ∫ z

z0
hz dz. Therefore,

h(z) − h(z0) =
∫ z

z0
hz dz +

∫ z

z0
hz̄ dz̄ = 2Re

∫ z

z0
hz(z) dz.

�
2.1 Some elementary functions over the Lorentz numbers

In the following, we shall write functions of the Lorentz variable z = u+τv in the “sans serif
style” to distinguish theme from the respective complex classical functions whose domain is
contained in C. In [5] the authors define the exponential function

exp(z) := eu (cosh v + τ sinh v), z ∈ L.

Putting u = 0, we obtain

exp(τ v) = cosh v + τ sinh v, exp(−τ v) = cosh v − τ sinh v

and

cosh v = exp(τv) + exp(−τv)

2
, sinh v = exp(τv) − exp(−τv)

2τ
.

These expressions may be used to continue hyperbolic cosine and sine as L-holomorphic
functions in the whole set L setting

cosh(z) := exp(τ z) + exp(−τ z)

2
, sinh(z) := exp(τ z) − exp(−τ z)

2τ
,

for all z ∈ L. It is easy to check the following formulas

cosh(z) = cosh u cosh v + τ sinh u sinh v,

sinh(z) = sinh u cosh v + τ cosh u sinh v.
(4)

We observe that

exp(τ z) = cosh(z) + τ sinh(z)

and sinh′(z) = cosh(z), cosh′(z) = sinh(z), for all z ∈ L. Also,

cosh(τ z) = cosh(z), sinh(τ z) = τ sinh(z), z ∈ L. (5)
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Enneper representation of minimal surfaces in the three… 25

Extending (5) to circular trigonometric functions and applying the usual angle addition for-
mulas, we define

sin(z) := sin u cos v + τ cos u sin v,

cos(z) := cos u cos v − τ sin u sin v, z ∈ L.
(6)

These functions are L-differentiables in L, and they satisfy the same differentiation formulas
which hold for real and complex variables.

3 The Weierstrass representation formula in L
3

We will denote by K either the complex numbers C or the paracomplex numbers L, and by
Ω ⊂ K an open set. Given a smooth immersion ψ : Ω ⊂ K → L

3, we endow Ω with
the induced metric ds2 = ψ∗g, that makes ψ an isometric immersion. We will say that ψ

is spacelike if ds2 is a Riemannian metric, and that ψ is timelike if the induced metric is a
Lorentzian metric.

We observe that in the Lorentzian case, we can endow Ω with paracomplex isothermic
coordinates and, as in theRiemannian case, they are locally described byparacomplex isother-
mic charts with conformal changes of coordinates (see [14]). Let z = u + i v (respectively,
z = u + τ v) be a complex (respectively, paracomplex) isothermal coordinate in Ω , so that

ds2
( ∂

∂u
,

∂

∂u

)
= ε ds2

( ∂

∂v
,

∂

∂v

)
, ds2

( ∂

∂u
,

∂

∂v

)
= 0,

where ε = 1 (respectively, ε = −1). It follows that there exists a positive functionλ : Ω → R

such that the induced metric is given by ds2 = λ (du2 + ε dv2), where

λ = g(ψu, ψu) + εg(ψv, ψv)

2
= 2 g(ψz, ψz̄). (7)

Observe that the Beltrami–Laplace operator (with respect to ds2) is given by:

� = 1

λ

( ∂

∂u

∂

∂u
+ ε

∂

∂v

∂

∂v

)
= 4

λ

∂

∂ z̄

∂

∂z
. (8)

Also, denoting by N the unit normal vector field along ψ , which is timelike (respectively,
spacelike) if ψ is a spacelike (respectively, timelike) immersion (i.e. g(N , N ) = −ε), it

results that �ψ = −ε
−→
H , where

−→
H = H N is the mean curvature vector of ψ (i.e. the

trace of the second fundamental form with respect to the first fundamental). In particular, the
immersion ψ is minimal (i.e. H ≡ 0 ) if and only if the coordinate functions ψ j , j = 1, 2, 3,
are harmonic functions, or equivalently (∂ψ j/∂z), j = 1, 2, 3, are K-differentiable.

In the following, we state the Weierstarss representation type theorem for spacelike
(respectively, timelike) minimal immersions in L

3, that was proved by Kobayashi in [6]
(respectively, by Konderak in [8]), in a unified version.

Theorem 2 (Weierstrass representation) Let ψ : Ω ⊂ K → L
3 be a smooth conformal

minimal spacelike (respectively, timelike) immersion. Then, the (para) complex tangent vector
defined by

φ(z) := ∂ψ

∂z

∣∣∣∣
ψ(z)

=
3∑

i=1

φi
∂

∂xi
,
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26 A. A. Cintra, I. I. Onnis

satisfies the following conditions:

(i) φ1 φ1 + φ2 φ2 − φ3 φ3 �= 0,
(ii) φ2

1 + φ2
2 − φ2

3 = 0,

(iii)
∂φ j

∂ z̄
= 0, j = 1, 2, 3,

where
∂

∂z
and

∂

∂ z̄
are the (para)complex operators.

Conversely, if Ω ⊂ K is a simply connected domain and φ j : Ω → K, j = 1, 2, 3, are
(para)complex functions satisfying the conditions above, then the map

ψ = 2Re
∫ z

z0
φ dz, (9)

is a well-defined conformal spacelike (respectively, timelike) minimal immersion in L3 (here,
z0 is an arbitrary fixed point of Ω and the integral is along any curve joining z0 to z).2

Remark 3 The first condition of Theorem 2 ensures that ψ is an immersion (see (7)), the
second one that ψ is conformal, and the third one that ψ is minimal.

4 Enneper-type spacelike minimal immersions in L
3

In this section and in the successive, we prove an Enneper-type representation formula for
spacelike and timelike (respectively) minimal surfaces immersed in the three-dimensional
Lorentz–Minkowski space. Our approach considers the complex numbers for the spacelike
immersions, and the algebra of the Lorentz numbers (described in Sect. 2) for the timelike
ones.

We start by considering the conformal spacelike minimal immersion given by:

ψ(z) =
(
u + u3

3
− u v2,−v − v3

3
+ v u2, v2 − u2

)
, z ∈ Ω,

where Ω = {z ∈ C | |z| �= 1}, called Enneper immersion of 1st kind (see [7]). Writing

ψ(z) =
(
z̄ + z3

3
,−Re (z2)

)
, z ∈ Ω,

and putting

h(z) = −Re
(
z2

)
, L(z) = z3

3
, P(z) = z, z ∈ Ω,

we observe that L , P : Ω → C are holomorphic functions and h is a harmonic real-valued
function such that (hz)2 = Lz Pz . Also, we have that |Lz | − |Pz | = |z|2 − 1 �= 0, z ∈ Ω .

In this context, we prove theorem below and, also, Theorem 4.

Theorem 3 Let h : Ω → R be a harmonic function in the simply connected domainΩ ⊂ C

and L , P : Ω → C two holomorphic functions such that the following conditions are
satisfied:

(hz)
2 = Lz Pz (10)

2 The K-differentiability ensures that the 1-forms φ j dz, j = 1, 2, 3, do not have real periods in Ω .
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Enneper representation of minimal surfaces in the three… 27

and
|Lz | − |Pz | �= 0. (11)

Then, the map ψ : Ω → C×R, given by ψ(z) = (L(z) + P(z), h(z)), defines a conformal
spacelike minimal immersion into L

3.

Proof Let us consider the three complex-valued functions on Ω given by:

φ1 = Lz + Pz
2

, φ2 = i (Pz − Lz)

2
, φ3 = hz .

As Lz = (φ1 + i φ2) and Pz = (φ1 − i φ2), from (10) it results that

φ2
1 + φ2

2 − φ2
3 = (φ1 + i φ2) (φ1 − i φ2) − φ2

3 = Lz Pz − (hz)
2 = 0.

Also, from (10) and (11), we obtain that

2 (φ1 φ1 + φ2 φ2 − φ3 φ3) = |Lz |2 + |Pz |2 − 2 |hz |2
= (|Lz | − |Pz |)2 > 0.

(12)

We now observe that, since h is a harmonic function (i.e. huu + hvv = 0), we have that φ3

is holomorphic (see Sect. 3). Moreover, the holomorphicity of L and P implies that the real
and imaginary parts of L and P are harmonic functions and we can write

φ1 = ∂Re(L + P)

∂z
, φ2 = ∂Im(L − P)

∂z
.

Therefore, (φ1)z = 0 = (φ2)z and, from Theorem 2, we conclude that

ψ(z) = 2
(
Re

∫
φ1(z) dz + i Re

∫
φ2(z) dz,Re

∫
φ3(z) dz

)

= (L(z) + P(z), h(z))

is a conformal spacelike minimal immersion into L
3. �

In analogy to the Euclidean 3-space (see [2]), we shall call the immersion ψ = (L + P, h)

an Enneper spacelike immersion associated to h, its image an Enneper graph of h and
DC

ψ = (Lz, Pz, hz) the Enneper complex data of ψ .
We shall now illustrate Theorem 3 with some known examples of spacelike minimal

immersions in L
3. Specifically, we will consider the natural analogues (spacelike) surfaces

in L
3 to the classical catenoid and helicoid.

Example 1 (Spacelike catenoid of 1st kind) Set Ω = {z ∈ C : |z| > 1}. Let L , P : Ω → C

be the holomorphic functions defined by

L(z) = z

2
, P(z) = − 1

2 z
,

and h(z) = Re (ln z), that is a harmonic function in Ω . We observe that condition (10) is
satisfied and, also,

|Lz | − |Pz | = |z|2 − 1

2 |z|2 �= 0, z ∈ Ω.

Then, from Theorem 3, the corresponding spacelike minimal immersion is given by:

ψ(z) =
(1
2

(
z − 1

z

)
,Re (ln z)

)
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28 A. A. Cintra, I. I. Onnis

and it represents the catenoid of 1st kind (also called elliptic catenoid) described in [7].
Introducing polar coordinates z = r ei θ , we can write

ψ(r, θ) = (sinh(ln r) cos θ, sinh(ln r) sin θ, ln r), r > 1,

so x21 + x22 = sinh2 x3, with x3 > 0.

Example 2 (Spacelike helicoid of 1st kind) Now, we describe the conjugate surface of the
elliptic catenoid, which image in R

3 is an open subset of the classical minimal helicoid,
x1 cos x3 + x2 sin x3 = 0. For this, we consider Ω = {z ∈ C : |z| > 1}, the holomorphic
functions

L(z) = i z

2
, P(z) = − i

2 z
, z ∈ Ω,

and the harmonic function h(z) = Im (ln z), defined in Ω . As

hz(z) = − i

2 z
, Lz(z) = i

2
, Pz(z) = i

2 z2
,

it results that

Lz Pz = h2z , |Lz | − |Pz | = |z|2 − 1

2 |z|2 �= 0, z ∈ Ω.

Therefore, from Theorem 3, the corresponding spacelike minimal immersion is given by:

ψ(z) =
( i

2

(1
z

+ z
)
, Im (ln z)

)

and it represents the helicoid of 1st kind given in [7]. Using polar coordinates z = r ei θ , we
get

ψ(r, θ) = (− cosh(ln r) sin θ, cosh(ln r) cos θ, θ), r > 1.

In the next theorem, we will show that any spacelike minimal surface in the Lorentz–
Minkowski 3-space can be rendered as the Enneper graph of a harmonic function.

Theorem 4 Let ψ̃ : M2 → L
3 ≡ C × R be a minimal immersion of a spacelike surface

M in L
3. Then, there exists a simply connected domain Ω ⊂ C and a harmonic function

h : Ω ⊂ C → R such that the immersed minimal surface ψ̃(M) is an Enneper graph of h.

Proof Suppose that the minimal immersion is given by ψ̃ = (ψ̃1 + i ψ̃2, ψ̃3). Since M is a
spacelikeminimal surface it cannot be compact (on the contrary, ψ̃ would be a harmonic func-
tion on a compact Riemannian surface, hence constant) so, from the Koebe’s Uniformization
theorem, it results that its covering space Ω is either the complex plane C or the open unit
complex disc.

We denote by π : Ω → M the universal covering of M and by ψ : Ω → L
3 the lift of

ψ̃ , i.e. ψ = ψ̃ ◦ π . As ψ is a conformal minimal immersion, it follows that

0 = (ψ1)
2
z + (ψ2)

2
z − (ψ3)

2
z

= [(ψ1)z + i (ψ2)z] [(ψ1)z − i (ψ2)z] − (ψ3)
2
z

(13)
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Enneper representation of minimal surfaces in the three… 29

and, also, (ψi )z , i = 1, 2, 3, are holomorphic. Fixed a point z0 ∈ Ω , Eq. (13) suggests to
define the following functions:

L(z) =
∫ z

z0
[(ψ1)z + i (ψ2)z] dz,

P(z) =
∫ z

z0
[(ψ1)z − i (ψ2)z] dz.

(14)

SinceΩ is a simply connected domain and the integrand functions are holomorphic, the above
integrals do not depend on the path from z0 to z, so L and P are well-defined holomorphic
functions. We shall prove that ψ(z) = (L(z) + P(z), h(z)), where h(z) := ψ3(z) is a
harmonic function (because (ψ3)zz = 0). For this, we note that

L(z) + P(z) =
∫ z

z0
[(ψ1)z + i (ψ2)z] dz +

∫ z

z0
[(ψ1)z + i (ψ2)z] dz

=
∫ z

z0
dψ1 + i

∫ z

z0
dψ2 = ψ1(z) + i ψ2(z),

where, in the last equality, we have assumed (without loss of generality) that ψ(z0) =
(0, 0, 0). Besides, we observe that Eq. (13) can be written as

Lz Pz − (hz)
2 = 0, (15)

that is the condition (10) of Theorem 3. Finally, to prove that ψ is an Enneper immersion
associated to the harmonic function h, it remains to verify Eq. (11). As

(ψ1)z = Lz + Pz
2

, (ψ2)z = i (Pz − Lz)

2
,

taking into account (15), we have that

0 < 2 g(ψz, ψz) = |Lz |2 + |Pz |2 − 2 |hz |2 = (|Lz | − |Pz |)2.

because of ψ is an immersion. This completes the proof. �

Using Theorem 4, we have determined the Enneper data of the spacelike catenoids and
helicoids described in [1,6] and we have collected them in the Tables 1 and 2, respec-
tively. Before, we observe that in [6] the elliptic catenoid (respectively, hyperbolic catenoid,
parabolic catenoid) is called catenoid of first kind (respectively, catenoid of second kind,
Enneper surface of second kind).3

In Sect. 6.2wewill use the Tables 1 and 2 to construct new interesting examples ofminimal
surfaces in L

3.

3 In Table 1 we have considered the parabolic catenoid parametrized by (see [6]):

ψ(u, v) =
(
u − uv2 + u3

3
, −2uv, −u − uv2 + u3

3

)
, u �= 0.
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30 A. A. Cintra, I. I. Onnis

Table 1 Enneper data for spacelike catenoids in L
3

Lz Pz hz Spacelike surface Type of catenoid

1

2

1

2z2
− 1

2z
x21 + x22 = (sinh x3)2 Elliptic

1 + cos z

2

1 − cos z

2
− sin z

2
x23 − x22 = (cos x1)2 Hyperbolic

cosh z − 1

2

cosh z + 1

2

sinh z

2
x23 − x21 = (cos x2)2 Hyperbolic

(1 − z)2

2

(1 + z)2

2

z2 − 1

2
12(x21 + x22 − x23 ) = (x1 − x3)

4 Parabolic

Table 2 Enneper data for spacelike helicoids in L
3

Lz Pz hz Spacelike surface Type of helicoid

i

2

i

2z2
− i

2z
x1 = −x2 tan x3 Of 1st kind

cos z + 1

2

cos z − 1

2
− i sin z

2
x3 = x1 tanh x2 Of 2nd kind

i (1 − z)2

2

i (1 + z)2

2

i (z2 − 1)

2
x2 = (x1 − x3)

2

6
+ x3 + x1

x3 − x1
Parabolic

5 Enneper-type timelike minimal immersions in L
3

Now let us establish the analogue result to Theorem 3 for timelike minimal immersions in
L
3. We start considering the Lorentzian Enneper immersion given by Konderak in [8]:

ψ(z) =
(
u2 + v2, u − u3

3
− u v2, v + v3

3
+ v u2

)
, z ∈ Ω,

where Ω = {z ∈ L | 1 + z z �= 0}, that can be written as

ψ(z) =
(
Re (z2), z − z3

3

)
, z ∈ Ω.

Observe that, putting

h(z) = Re (z2), L(z) = z, P(z) = z3

3
, z ∈ Ω,

we have that L , P : Ω → L are L-differentiable and h is a harmonic real-valued function
(i.e. huu − hvv = 0) such that (hz)2 = Lz Pz . Also,

2hz hz + Lz Lz + Pz Pz = (1 + z z)2 > 0, z ∈ Ω.

In this regard we prove the following theorem.

Theorem 5 Let h : Ω → R be a harmonic function in the simply connected domain Ω ⊂ L

and L , P : Ω → L two L-differentiable functions such that the following conditions are
satisfied:

(hz)
2 = Lz Pz (16)
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and
2 hz hz + Lz Lz + Pz Pz �= 0. (17)

Then, the map ψ : Ω → R× L, given by ψ(z) = (h(z), L(z) − P(z)), defines a conformal
timelike minimal immersion into L

3.

Remark 4 If hz(z) /∈ K ∪ {0}, for all z ∈ Ω , the condition (17) is equivalent to

Pz /∈ K ∪ {0} and hz hz + Lz Lz �= 0.

In fact, using (16), we can write

2 hz hz + Lz Lz + Pz Pz = Pz Pz
(
1 + Lz Lz

hz hz

)2
.

Proof Let define three paracomplex valued functions on Ω:

φ1 = hz, φ2 = Lz − Pz
2

, φ3 = τ (Lz + Pz)

2
.

As Lz = φ2 + τ φ3 and Pz = −φ2 + τ φ3, from (16) and (17), it results that

φ2
1 + φ2

2 − φ2
3 = φ2

1 + (φ2 + τ φ3) (φ2 − τ φ3) = h2z − Lz Pz = 0

and

2
(
φ1 φ1 + φ2 φ2 − φ3 φ3

) = 2hz hz + Lz Lz + Pz Pz �= 0.

We observe that, since h is a harmonic function (i.e. huu − hvv = 0), the function φ1

is L-differentiable. Moreover, the L-differentiability of L and P implies that the real and
imaginary parts of L and P are harmonic functions and, using (3), we can write

φ2 = ∂Re(L − P)

∂z
, φ3 = ∂Im(L + P)

∂z
.

Consequently, (φ2)z = 0 = (φ3)z and, from Theorem 2 and taking into account the Propo-
sition 1, we conclude that

ψ(z) = 2
(
Re

∫
φ1(z) dz,Re

∫
φ2(z) dz + τ Re

∫
φ3(z) dz

)

= (h(z), L(z) − P(z))

is a conformal timelike minimal immersion into L3. �
We will call ψ = (h, L − P) an Enneper timelike immersion associated to h and DL

ψ =
(Lz, Pz, hz) the Enneper paracomplex data of ψ .

We are going to illustrate Theorem 5 through some known examples of timelike minimal
immersions into L

3. We will use the formulas given in Sect. 2.1 (see [5], for more details).

Example 3 (Lorentzian catenoid) Let L , P : L → L be the L-differentiable functions
defined by:

L(z) = cosh z − sinh z
2

, P(z) = −cosh z + sinh z
2

,

and h(z) = u, that is a harmonic function in L. It is easy to check that Lz Pz = (hz)2 and,
also,

2hz hz + Lz Lz + Pz Pz = cosh2 u > 0, z ∈ L.
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Then, from Theorem 5, the corresponding timelike minimal immersion is given by

ψ(z) = (u,Re (cosh z) − τ Im (sinh z))

= (u, cosh u cosh v,− cosh u sinh v),

and it represents the Lorentzian catenoid (see [8]).

Example 4 (Lorentzian helicoid) In this example, we give the Enneper functions for the
timelike helicoid described in [8]. We consider in Ω = {z ∈ L | u �= 0} the L-differentiable
functions given by:

L(z) = sinh z − cosh z
2

, P(z) = cosh z + sinh z
2

and the harmonic function h(z) = −v. As Lz = −L , Pz = P and hz = −τ/2, the
condition (16) is satisfied. Also,

2hz hz + Lz Lz + Pz Pz = sinh2 u > 0, z ∈ Ω.

Then, from Theorem 5, we obtain that the map

ψ(z) = (−v,−Re (cosh z) + τ Im (sinh z))

= (−v,− cosh u cosh v, cosh u sinh v)

defines a conformal timelike minimal immersion (in a simply connected subset of Ω) and it
is the parametrization of the Lorentzian helicoid given in [8].

Now, we will show that any simply connected timelike minimal surfaces in the Lorentz–
Minkowski 3-space can be represented as the Enneper graph of a harmonic function. More
precisely, we have the following:

Theorem 6 LetM2 a timelike minimal surface in L3, given by the immersionψ : Ω → L
3,

whereΩ ⊂ L is a simply connected domain. Then, there exists a harmonic function h : Ω ⊂
L → R such that the immersed minimal surface M is an Enneper graph of h.

Proof In terms of proper null coordinates x, y onΩ (see [14]), ds2 = 2Fdx dy, with F > 0,
and the minimality of ψ gives m = g(ψxy, N ) = 0. Therefore, as g(ψxy, ψx ) = 0 =
g(ψxy, ψy) by E = G = 0, it results that ψxy = 0. Thus, introducing in Ω the paracomplex
isothermal coordinate z = u+τ v, where u = x+ y, v = x− y, we have thatψuu −ψvv = 0
and, so,

∂(ψi )z

∂z
= 0, i = 1, 2, 3. (18)

The conformality of ψ implies the equation

0 = (ψ1)
2
z + (ψ2)

2
z − (ψ3)

2
z

= (ψ1)
2
z + [(ψ2)z + τ (ψ3)z] [(ψ2)z − τ (ψ3)z],

(19)

that suggests to define the following functions:

L(z) =
∫ z

z0
[(ψ2)z + τ (ψ3)z] dz,

P(z) = −
∫ z

z0
[(ψ2)z − τ (ψ3)z] dz,

(20)
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Table 3 Enneper data for Lorentzian catenoids in L
3

Lz Pz hz Timelike surface Type of catenoid

τ (1 + cos z)
2

τ (1 − cos z)
2

− sinz
2

x21 + x22 = (cos x3)2 Elliptic

sinh z − cosh z
2

− sinh z + coshz
2

1

2
x22 − x23 = (cosh x1)2 Hyp. of 1st kind

τ cosh z + 1

2

τ cosh z − 1

2

τ sinhz
2

x23 − x21 = (sinh x2)2 Hyp. of 2nd kind

− τ(z + 1)2

2
− τ(z − 1)2

2

1 − z2

2

12(x23 − x21 − x22 )

= (x1 − x3)
4

Parabolic

where z0 ∈ Ω is a fixed point. Since Ω is a simply connected domain in L, Eq. (18) ensures
that the integrals in (20) do not depend on the path from z0 to z. So L and P are well-
defined L-holomorphic functions. We shall prove that ψ(z) = (h(z), L(z) − P(z)), where
h(z) := ψ1(z) is a harmonic function (see (18)). For this, we have

L(z) − P(z) =
∫ z

z0
[(ψ2)z + τ (ψ3)z] dz +

∫ z

z0
[(ψ2)z + τ (ψ3)z] dz

=
∫ z

z0
dψ2 + τ

∫ z

z0
dψ3 = ψ2(z) + τ ψ3(z),

where, in the last equality, we have assumed (without loss of generality) that ψ(z0) =
(0, 0, 0). Finally, we observe that (19) can be written as

Lz Pz − (hz)
2 = 0, (21)

that is the condition (16) of Theorem 5. Therefore, using that

(ψ2)z = Lz − Pz
2

, (ψ3)z = τ (Lz + Pz)

2
,

we get

0 �= 2 g(ψz, ψz) = 2hz hz + Lz Lz + Pz Pz,

because of ψ is an immersion. This finishes the proof. �

Now, we will use Theorem 6 to provide a description of the timelike catenoids and helicoids
given in [3,8] in terms of their paracomplex Enneper data (see Tables 3, 4). In the last section,
we will employ these tables to determine new interesting examples of minimal surfaces in
L
3.

6 Construction of new minimal surfaces in L
3

This section is devoted to the construction of minimal immersions in L
3 starting from the

Enneper data and using Theorems 3 and 5. Also, we explain how to produce new examples
of minimal surfaces starting from the Enneper data of others minimal surfaces in L3.
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Table 4 Enneper data for Lorentzian helicoids in L
3

Lz Pz hz Timelike surface Type of helicoid

(1 + τ sin z)
2

(1 − τ sin z)
2

cos z
2

x2 = x1 tan x3 Of 1st kind

(cosh z − sinh z)
2

(cosh z + sinh z)
2

− τ

2
x3 = x2 tanh x1 Of 2nd kind

cosh z + τ

2

cosh z − τ

2

sinh z
2

x3 = x1 tanh x2 Of 2nd kind

τ(cosh z + sinh z)
2

τ(cosh z − sinh z)
2

τ

2
x2 = x3 tanh x1 Of 3rd kind

τ(cosh z + 1)

2

τ(cosh z − 1)

2

τ sinh z
2

x1 = x3 tanh x2 Of 3rd kind

(z + 1)2

2

(z − 1)2

2

τ(z2 − 1)

2

x2 = (x1 − x3)
2

6

+ x3 + x1
x3 − x1

Parabolic

6.1 Surfaces containing the involute of a circle as a pregeodesic

First of all, we remember that a circle in L3 is the orbit of a point out of a straight line � under
a group of rotations in L

3 that leave � pointwise fixed (see [11]). Depending on the causal
character of �, there are (after an isometry of the ambient) three types of circles: Euclidean
circles in planes parallel to the x1x2-plane, Euclidean hyperbolas in planes parallel to the
x2x3-plane and Euclidean parabolas in planes parallel to the plane x2 = x3.

Example 5 Let us consider the Enneper data

DC

ψ =
( z (1 − cosh z)

2
,− z (1 + cosh z)

2
,− z sinh z

2

)
,

defined for all z ∈ C, with u �= 0. Applying Theorem 3 we obtain the spacelike minimal
surface given by:

ψ(z) = (cosh u (cos v + v sin v) − u cos v sinh u, uv,

sinh u (cos v + v sin v) − u cos v cosh u).

We observe that this surface contains the spacelike curve

ψ(u, 0) = (cosh u − u sinh u, 0, sinh u − u cosh u), u �= 0,

as a planar pregeodesic (see Fig. 1) and, thanks to the results proved in [1], it is the only
minimal surface in L

3 which has this property. Also, the u-coordinate curve is the involute
of the timelike circle α(u) = (cosh u, 0, sinh u), with u �= 0.

Example 6 Choosing the paracomplex Enneper data

DL

ψ =
(τ z (1 − cosh z)

2
,−τ z (1 + cosh z)

2
,− z sinh z

2

)
,

defined for all z ∈ L, with u �= 0, and using Theorem 5, we obtain the timelike minimal
immersion given by:

ψ(z) = (cosh v (sinh u − u cosh u) − v sinh v sinh u, uv,

cosh v (cosh u − u sinh u) − v cosh u sinh v).
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Fig. 1 Minimal surfaces inL3 containing the involute of the circles x21−x23 = 1, x23−x21 = 1 and x21+x22 = 1
(respectively) as planar pregeodesics

This immersion is the only (see [3]) minimal immersion in L
3 that contains the timelike

curve

ψ(u, 0) = (sinh u − u cosh u, 0, cosh u − u sinh u), u �= 0,

as a planar pregeodesic (see Fig. 1). This curve is the involute of the spacelike circle α(u) =
(sinh u, 0, cosh u), with u �= 0.

Example 7 In this example, we take the Enneper data

DL

ψ =
( z (1 + τ sin z)

2
,
z (1 − τ sin z)

2
,
z cos z

2

)
,

defined for all z ∈ L, with v �= 0. From Theorem 5 we get the timelike minimal surface
parametrized by:

ψ(z) = ( cos u (cos v + v sin v) + u cos v sin u,

cos u (sin v − v cos v) + u sin v sin u, uv).

Note that this surface is the (only) minimal surface in L
3 that contains the spacelike curve

ψ(0, v) = (cos v + v sin v, sin v − v cos v, 0), v �= 0,

as a planar pregeodesic (see Fig. 1). This curve is the involute of the spacelike circle α(v) =
(cos v, sin v, 0), with v �= 0.

6.2 Minimal surfaces in L
3 obtained from others

We start this section observing that if DK

ψ = (Lz, Pz, hz) are the Enneper data of a given

spacelike (respectively, timelike) minimal immersion ψ in L
3 (defined in the simply con-

nected domainΩ ⊂ K) and f : Ω → K is aK-differentiable function so that f (z) f (z) �= 0
in Ω , then

f DK

ψ = ( f Lz, f Pz, f hz)

are Enneper data of a new spacelike (respectively, timelike) minimal surface in L3. We note
that this surface is the Enneper graph of the harmonic function h1 : Ω ⊂ K → R defined
by:
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Fig. 2 Timelike Catalan surface
of 1st kind

h1(z) = h1(z0) + 2Re
∫ z

z0
f (z) hz(z) dz.

Also, the Enneper minimal immersion associated to h1 is given by:

ψ1 =
{

(L1 + P1, h1), K = C,

(h1, L1 − P1), K = L,
(22)

where

L1(z) :=
∫ z

z0
f (z) Lz(z) dz, P1(z) :=

∫ z

z0
f (z) Pz(z) dz, (23)

are well-defined K-holomorphic functions in Ω .
In the following, we will use this observation and the Enneper data of the tables given in

Sects. 4 and 5 to construct some examples of minimal surfaces in L3.

Example 8 (Timelike Catalan surface of 1st kind) We consider the Enneper data of the
timelike helicoid of first kind (see Table 4) and we choose the paracomplex function f (z) =
2 sin z, with (u, v) such that 0 < | sin u| �= | sin v|. Then, using (23), the timelike minimal
surface obtained from the new Enneper paracomplex data:

DL

ψ = (sin z (1 + τ sin z), sin z (1 − τ sin z), sin z cos z)

is parametrized by:

ψ(u, v) =
(

− cos(2u) cos(2v)

2
, v − cos(2u) sin(2v)

2
, 2 sin u sin v

)
.

We observe that this surface has the notable property of containing an arc of the spacelike
cycloid given by ψ(0, v), v �= 0, as a planar pregeodesic (see Fig. 2). So, we call it timelike
Catalan surface of the first kind and we point out that in [1] Alías et al. construct a spacelike
Catalan surface via the Börling problem.

Example 9 (Timelike Catalan surface of 2nd kind) In this example, we start from the Enneper
data of the timelike helicoid of third kind (see Table 4), that are defined for all z ∈ L, and we
consider the new Enneper paracomplex data:

DL

ψ = (τ sinh z (cosh z + 1), τ sinh z (cosh z − 1), (sinh z)2),

with z ∈ L such that zz �= 0. In this case, from (23) we obtain the timelike surface
parametrized by:
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Fig. 3 Timelike Catalan surface
of 2nd kind

ψ(u, v) =
(cosh(2v) sinh(2u)

2
− u, 2 sinh u sinh v,

cosh(2u) cosh(2v) − 1

2

)
,

that contains an arc of the timelike cycloid ψ(u, 0), u �= 0, as a planar pregeodesic (see
Fig. 3). We call it timelike Catalan surface of the second kind.

Example 10 Starting from the Enneper data of the spacelike hyperbolic catenoid (see the
Table 1) and choosing the complex function f (z) = 2 cos z, with u ∈ (−π/2, π/2), we
obtain the new Enneper complex data:

DC

ψ = (cos z (1 + cos z), cos z (1 − cos z),− sin z cos z).

From (22) and (23), the associated spacelike minimal immersion is given by

ψ(u, v) =
(
2 sin u cosh v, v + cos(2u) sinh(2v)

2
,
cos(2u) cosh(2v) − 1

2

)
,

with u ∈ (−π/2, π/2), and it intersects orthogonally the plane x2 = 0 along the spacelike
parabola

ψ(u, 0) = (2 sin u, 0,−(sin u)2), u ∈ (−π/2, π/2).

Then, this curve is a planar pregeodesic of the surface (see Fig. 4).

Fig. 4 Spacelike minimal
surface in L

3 containing a
parabola as a pregeodesic

123



38 A. A. Cintra, I. I. Onnis

6.3 A special family of minimal surfaces in L
3

Next we are going to produce a family of Lorentzian minimal surfaces in L
3 whose origins

are rooted in the Example 8, given in the previous section. Inspired by this example, we
consider n ∈ Z, n > 1, and the family of paracomplex Enneper data given by:

DL

ψn
=

(
sin z (1 + τ sin (nz)), sin z (1 − τ sin (nz)), sin z cos (nz)

)
.

In this case, using (22) and (23), we obtain the following family of timelike minimal surfaces

ψn(u, v) =
(
cos[(n − 1)u] cos[(n − 1)v]

n − 1
− cos[(n + 1)u] cos[(n + 1)v]

n + 1
,

cos[(n − 1)u] sin[(n − 1)v]
n − 1

− cos[(n + 1)u] sin[(n + 1)v]
n + 1

,

2 sin u sin v

)
,

,

where u ∈ (−π/4n, π/4n) and v ∈ (π/4n, 3π/4n). Given n ∈ Z, n > 1, we have that
ψn(u, v) is the only minimal immersion into L

3 containing the spacelike curve αn(v) :=
ψn(0, v), as a planar pregeodesic. If we consider the change of parameter t = (n − 1) v, we
have that

αn(t) =
(

cos t

n − 1
− cos

( n+1
n−1 t

)
n + 1

,
sin t

n − 1
− sin

( n+1
n−1 t

)
n + 1

, 0

)
,

that is an epicycloid traced by a point on a circle of radius r = 1/(n+1)which rolls externally
on a circle of radius R = 2/(n2 − 1). We observe that if n = 2, then R = 2r , therefore the
curve α2 is an arc of a nephroid. Also, if n = 3 we have that R = r and, then, the curve α3

is an arc of a cardioid (Fig. 5).

Remark 5 We point out that the pictures of this paper are with respect to the flat Euclidean
metric in R

3.

Fig. 5 Timelike minimal surfaces in L
3 containing a nephroid, a cardioid and the epicycloid for n = 5

(respectively) as a pregeodesic
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