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1 Introduction

In 1990 Ohnita (cf. [13]) gave a series of homogeneous minimal 2-spheres {d)n,a } of constant
curvature in quaternionic projective spaces HP" and conjectured that {qﬁn,a} exhaust all
proper minimal isometric immersions of S in HP”. Recently, we get a classification theorem
of linearly full unramified conformal minimal immersions of constant curvature from S to
H P2 (cf. [8]), which verifies that in the case n = 2, {¢n,a} exhaust all linearly full unramified
minimal isometric immersions of constant curvature from SZ to HPZ2. In [10], we determine
all conformal minimal immersions of 2-spheres in HP" with parallel second fundamental
form (implies that it is of constant curvature). In this paper, we determine all homogeneous
(stronger than the condition of unramified with constant curvature) minimal 2-spheres in
HP" (see Theorem 5.5) and solve completely Ohnita’s conjecture for n odd. Indeed, in this
case, we find homogeneous minimal 2-spheres not in the series {(j)n,a } When 7 is even, the
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series {¢n,a} gives all homogeneous minimal 2-spheres, but it is unknown whether there are
any proper non-homogeneous minimal isometric immersions.

In this paper we mainly combine the methods of harmonic sequences and moving frames
to study homogeneous harmonic maps from $2 to HP”".

Our arrangement is as follows.

In the second section of this paper, firstly we give the definition of quaternionic projective
space HP" as the totally geodesic submanifold in G (2, 2n+-2), then we give some fundamen-
tal results concerning G (k, N) from the viewpoint of harmonic sequences by moving frames,
and at last we give some brief description of Veronese sequence and the rigidity theorem in
CPN. In the third section, we simply introduce homogeneous harmonic maps from S to
G (k, N) and give an important property. In the fourth section, we determine all reducible har-
monic maps of constant curvature from S to HLP", which represent the homogeneous ones
completely. In the last section, we determine all irreducible homogeneous harmonic maps
from $2 to HP" by mathematical induction. Finally we obtain the classification Theorem 5.5.

2 Preliminaries

Forany N = 1,2,..., let {,) denote the standard Hermitian inner product on CN defined
by (z, w) = z1w1 + --- + zvwy Where z = (z1, ..., zv)T, w = (wy, ..., wy)T € CV
and ~ denotes complex conjugation. Let H denote the division ring of quaternions. Let j
be a unit quaternion with j> = —1. Then we have an identification of C? with H given by
making (a, b) € C? correspond to a + bj € H; letn € {1, 2, ...}, we have a corresponding
identification of C?"*2 with H"*!. For any a + bj € H, the left multiplication by j is given
by j(a + bj) = —b + @j; the conjugation is given by a + bj = a@ — bj; and the positive
definite inner product is given by (x, y)ig = Re(xy) for any x, y € H.

Let J : C?*+2 — C?"*+2 be the conjugate linear map given by left multiplication by j,
ie.,

Jz1, 22, o 2oty 2an42) T = (=22, 21, - oo —Zont2, Z2nt1)
Then J?> = —id where id denotes the identity map on C>"*2. In fact, for any v € C?"*+2,
Jv=Jyv,
. 0-—1 0-1
where Jj, 41 :dzag{(l 0) <1 O)}
n+1

Let G(2, 2n+2) denote the Grassmann manifold of all complex 2-dimensional subspaces
of C2"*2 with its standard Kiihler structure. The quaternionic projective spaces HP” are the
set of all one-dimensional quaternionic subspaces of H"*!. Throughout the above we shall
regard HLP" as the totally geodesic submanifold of G(2, 2n + 2) given by

HP" ={VeG2,2n+2):JV =V}.

Let Sp(n + 1) = {g € GL(n+ 1; H), g*g = I,,+1} be the symplectic isometry group of
HP". The explicit description is that the following diagram commutes:
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Spn+1) — s U@n+2)

ml ﬂzl
HP" —2 5 G2,2n1+2)

where i1, ip are inclusions and 1, 77 are projections, and i1(g) = E,for1 <a,b <n+1

2a—1 __ ja 2a—1 _ ¢
Ey_y = Ay Ey =By,

2a  _ pa 2a __ 3¢
E2b71 =B ’ EZb - Ah’

where A = (A%), B = (Bf) € My41(C), g = A+ Bj € Sp(n + 1);

m(g)=g-[(1,0,...,0)T]eHP";
1,0,0,...,0\"
nE)=E-| (0 o) [€G@2n+2)

T
. _ . _ . 215 225 ---» 22n+1> 22n+2
5] ([(Zl +22J, ooy Z2n+1 +Zzn+2J)T]) = |:( gy ) ) i| .

—22, 215 -5 — 22042, Z2n+1

Here we consider G(2, 2n + 2) as the set of all Hermitian orthogonal projections from
C2"+2 onto 2-dimensional complex subspaces, i.e.,

GQ2,2n+2) = {p € Mays2(O)|¢* = ¢, 9" = ¢, trp = 2}.

Lett : G(2,2n +2) — U(2n + 2) be the Cartan embedding, which is defined by t(¢) =
2¢ — I € U(2n + 2). We take the bi-invariant metric ds%/ Qnt2) = étrww* on U(2n + 2);
then the metric on G (2, 2n + 2) induced by t is given by

1
2
dsG.on42) = Frdede,

where w is the Maurer—Cartan form of U (2n + 2).
Then the metric induced by i5 is twice as much as the standard metric of constant Q-sectional
curvature 4 on HP".
Thus we regard the harmonic map from S to HP” as the one from S2 to G (2, 2n + 2).
For any g € Sp(n + 1), the action of g on HP" induces an action of E on CP?**!, where
E € U(2n 4 2) which commutes with J. Then

Spn+1)={EeU@n+2), EoJ=JoE} = {EeU(2n+2), EJoET = ,m}.

In the following, we deal with the symplectic isometry of HP”" through the corresponding
symplectic isometry of C P2+,
Next, we simply introduce harmonic maps and harmonic sequences in G (k, N) (cf. [4],
[5]) and calculate some corresponding geometric quantities.
Let M be a simply connected domain in the unit sphere S and let (z,Z) be complex
coordinates on M. We take the metric ds,zw = dzdz on M. Denote
d d

8:7, 5: -
0z 9z
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We consider the complex Grassmann manifold G (k, N) as the set of Hermitian orthogonal
projections from CV onto a k-dimensional subspace in CV. Then ¢ : > — G(k, N) is a
Hermitian orthogonal projection onto a k-dimensional subbundle ¢ of the trivial bundle
CN = M x CV given by setting the fiber of patx, ¢ . equal to ¢ (x) for all x € M. For any

two orthogonal subbundles ¢, ¥ of CV, define vector bundle morphisms over any coordinate
chart, and A;b v A” by 1@ — Y iscalled the d’- and 9”-second fundamental forms of ¢
ing @y by A 1//(v) = 1y (0V), A” s = 7y (dv) for v € C*(¢) . Here my, denotes
orthogonal pI‘OJeCthtl onto ¥ and C°°(¢) denotes the vector space of smooth sections of
¢. Although these morphisms are only defined on coordinate charts, all the constructions
we will do involve their images which are globally defined independent of choice of local
coordinate. In particular A’ =A Ag = A;;’ oL A1 called the second fundamental forms

of Q in QN .
Let¢ : §2 — G(k, N) be a smooth harmonic map. Then from ¢ two harmonic sequences
(cf. [4]) are derived as follows:

b9

A¢0 A/ A:botfl Aéﬁa

b=0,— 9, —>—>9a—> Q2.1
A// A// A// A//
@ - ¢ ¢

9:90_%971_)'... _“;r'gia_‘;..., (2.2)

where Qa = IﬂA;a_, and ?_a = IimAg_w+1 are harmonic subbundles of CV (i.e., represent
harmonic maps), respectively, « = 1,2, .. ..
We assume that ¢ is a linearly full harmonic map from S? to G (k, N); here linearly full
means that ¢ cannot be contained in any proper trivial subbundle C"* of CN (m < N). We
know that several consecutive harmonic maps in (2.1) are not mutually orthogonal generally.
So it is meaningful to define the isotropy order of ¢ (cf. [4], §3A) to be the greatest integer
r such that Qi 1 9/' Vi, j € Zwith0 < |i — j| <r;if r = o0, then ¢ is said to be strongly
isotropic. Now we consider a special harmonic sequence.

Suppose that ¢ : S> — G (k, N) is a linearly full harmonic map having isotropy order at
least 2. Then ¢ belongs to the following harmonic sequence:

A A" A " Al Al Al
b G- bpy— Ay
00y Ly <—¢9 9—%91&... g, =20,

2.3)

where foro = —a9+1,..., 80— 1, %71, Qa, ?‘Hl are mutually orthogonal.

Denote ky, = rank?a (¢ = —ag, ..., Bo)-

For the harmonic sequence (2.3) we choose the unit vectors {...,e_j,ej,...} of cN

such that ey, ..., ey, locally span subbundle ¢, ko4 .4k 1+1> - - s Chot...+hy_i+k, lOCally

span subbundle Qa (@ = 1,...,B0), e—1,...,e_x_, locally span subbundle Q_],

€ k_y——kgs1—1s--- ande_y_,_ ...k, locally span subbundle% (¢ =-=2,...,—agp).

Let Wy = (ey, ..., eky) be an (N X ko)-matrix, Wy = (€xg+..4kgo1+1s - - - » Chot.cAke1 +ka )

bean (N x ky)-matrix forae =1, ..., pandlet W_; = (e_1,...,e—_,) bean (N x k_1)-

matrix, Wy = (e |~ —kyy1—1s -+ s €k |—.—kys1—ko) D€ aN (N X kg)-matrix for o =

—2,...,—agp. Since d) ¢ qb | are mutually orthogonal, we can extend

{Wa 1, Wa, W1} mto the local umtary frame with respect to ¢,. Then we have

¢a = Wy W&ka (2-4)
WiWo = Dtysige WiWasr1 =0, WiWa_y =0. 2.5)
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Classification of homogeneous minimal immersions from s2... 2217

By (2.5), a straightforward computation shows

3Wa: a+IQ +Wa\pa7 (26)
Wy = —Wo 18| — WoWg, '

where Q4 isa (kqy+1 X ko)-matrix and W, isa (ky X ky)-matrix fora = —ap+1, ..., Bo—1.
It is very evident that integrability conditions for (2.6) are

IQy = Wi, Qo — QY
Wy + WS = Q5 Qy + WIW, — Qu1Q5 | — YWk,
From (2.6) we have A;}a (Wy) = Wey194 and A;;LYH (Wag1) = =Wy QZ, which implies

2
2 |4y, (W)
=sup ———
|Wel?

.

:Wae?awith Wy #0

o

[tr(A:ﬁ (Wa))(Ay, (We))* .
up o o : Wo € ¢ with Wo #0

W, W
= tr(Q2,Q})
2
‘A¢a+l
2 2
Set Ly = tr( Q) = ‘Agpa - ‘A;;w . Then the metric induced by ¢y is given by
= (Lg-1 + Lo)dzdz. (2.7)
The Laplacian A, and the curvature K,, of ds2 are given by
4 - 2 -
Ny =———00, Ky=——"""""-00l0og(Ly—1+ Ly). 2.8)
o Lo 1+ Ly o Lo+ Ly g( a—1 ) (

In particular, let ¥ : 2 — CP" be a linearly full harmonic map. Eells and Wood’s result
(cf. [6]) shows that the following sequence in CPY is uniquely determined by v

Ay AL AL Ay A
0(_1/,(1\/) .l_;l/,zﬂm_’»..iﬁﬂx\”—ﬂo, (2.9)

for some i = 0,1,..., N, and here Ay, A’j denote A:;,w)’ A:/,<N>’ respectively, (j =
0

j
0,...,N).
Let fO(N) be a holomorphic section of ﬂg\' ) ie.,d fO(N) =0, and let fl.(N) be a local section
of ﬂl(N ) such that

N N)L N
FN = g L)

fori =1, ..., N. Then we have some formulas as follows (cf. [3]):
of M = N +atog| VPN, i=0,. N -1, (2.10)
" = M N =1, N, 2.11)
dalog | M2 =1 1™ (2.12)
99logl™ = 1) — 2™ ™ =0, N -1, (2.13)

where [N = | £ N 12/ £ fori = 0,... N and 1) =1V = 0.

@ Springer



2218 J. Fei, L. He

For convenience, we denote ﬂN) = ﬂ?N) fori =0,1,...,N.
In the following, we give a definition of the unramified harmonic map as follows:

Definition 2.1 If det(2, Q:;)dzkﬂf+l dzhet! # 0 everywhere on $% in (2.3) for some
o = —apg+ 1,...,60 — 1, we say that ¢, : $2 - G (ky, N) is unramified. If
det(2, Q2 )dzke+1dzke+1 £ 0 everywhere on 2 in (2.3) foreacha = —ag + 1, ..., fo — 1,
we say that the harmonic sequence (2.3) is totally unramified. In this case we also say that
each map ¢, in (2.3) is totally unramified.

Here dzketidzhert = %(dzkﬁf+1 ® dzket! 4 dzket! @ dzk‘”') and the quantity
det(L2y QZ)dzkHle"““ is independent of choice of local coordinate. In the case k = 1,
the above definition is in accordance with that in §3 of [3].

Now recall ([4], §3A) that a harmonic map ¢ : $? — Gk, N) in (2.1) (resp. (2.2)) is
said to be d'-irreducible (resp. d”-irreducible) if rank ¢=rank ¢ | (resp. rank ¢=rank ¢ )
and 9’-reducible (resp. 8" -reducible) otherwise. We assume that ¢, in (2.3) is 8’-irreducible,
then | det Q,|2dzk dz* is a well-defined invariant and has only isolated zeros on $2. Under
this condition, it can be checked that (cf. [11])

99 1og|det Q2)? = La—1 — 2Ly + Lot 1, (2.14)

which is in accordance with (2.13) in the case k = 1. Furthermore if ¢, is d’-irreducible
and unramified, then | det Qg |*dz*« dz* is a well-defined invariant and has no zeros on S2.
It follows from (2.14) that (cf. [11])

Sa—1 — 280 + a1 = —2kq, (2.15)

where 8, = ﬁ fs2 LadZ Adz.

At last, we review the rigidity theorem of conformal minimal immersions with constant
curvature from S? to CPV.
The Veronese sequence. Let f(N) (f, Os-vvs f,',N)T foreachi = 0,..., N. Let f; , be
given fori, p =0, 1, ..., N as follows

. i! i k 4 —k
fip = (1+zz)”/< )z" Z( 1)( >< L )(zz). (2.16)

Such a map ¢l.(N) = f.(N) : §2 — CPV is a conformal minimal immersion with constant

) given by

o™M\" i —i+1)
2 TG+ DN =)

Such a harmonic sequence ¢(N), . ¢>(N) §2 — CPV is called the Veronese sequence.

We always denote it by O(N), o Vli,N) - §2  CPN,

Bolton et al. proved that (cf. [3]) if i is a linearly full conformal minimal 2-sphere of
constant curvature immersed in CP ", then, up to a holomorphic isometry of CPY, v is an
element of the Veronese sequence (i.e., a Veronese surface).

4
curvature g5 and constant Kihler angle 6;
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Classification of homogeneous minimal immersions from s2... 2219

3 Homogeneous harmonic maps from S%2to G(k, N)

An immersion ¢ : 2 — G (k, N) is said to be homogeneous, if for any two points p, g € §2
there exist an isometry o of S2 and a holomorphic isometry u of G (k, N) such thato (p) = ¢
and the following diagram communicates

2 —% ., Gk N)

o] il
2 G N,
ie.,

poo =uodg. (3.1

Here we can identify o (resp. u) with an element of SU (2) (resp. U (N)) (cf. [7]). All such
u form a subgroup G of U(N) and G acts transitively on ¢ (S?). It is known that such 2-
spheres in G (k, N) have constant curvature, but they are non-minimal in general. Let the
complex coordinate z on S> ~ CP! be given by two complex variables zo and zj, i.e.,
z2=1[(z0,20)T1 = [(I, %)T] (for computation convenience z = ) and let

SU@) = {gz (Z _ab>;a,be<c, la)* + |b|* = 1}. (3.2)
Then o is given by
o(z) = gz = [(@zo0 + bz1, — bzo+az)’1. (3.3)

In particular, if ¢ is harmonic and satisfies (3.1), then it is called a homogeneous harmonic
map from S? to G (k, N). In the following we give a property of homogeneous harmonic map.

Lemma 3.1 Let ¢ : S> — G(k, N) be a homogeneous harmonic map that belongs to the
harmonic sequence (2.3), then for each « = —ay, ..., Bo the harmonic map ¢, : $? -
G (ky, N) is homogeneous. This time the harmonic sequence (2.3) is said to be a homogeneous
harmonic sequence.

Proof Since ¢y in (2.3) is homogeneous, it follows from (3.1) that

$000 = 1o . (3.4)
Set¢, = span{ey, ..., ek}, whereey, . .., e, are unit orthogonal vectors of CV. Then from
¢, = A;)o@o) wegetp = span{vgo41. . .., Ukgk, }: foreachi =1, ko, vey4i is given
by
ko
Vkgri = e — »_ (Dei, eg) e, (3.5)

s=1

since there may exist some i such that v,1; = 0, we exclude all zero vectors, so here k1 < ko.
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2220 J. Fei, L. He

Setu € U(N). By (3.5) a straightforward computation shows

ko ko
d(ue;) — Z (3(ue;), es) es = (Que; + ude;) — Z (Jue; +ude;, ey) e

s=1 s=1

ko (3.6)
=u <8el~ — Z (de;, es) es>

s=1

= Ui,
which implies
A;)O(u °9,) =qu;50@0) =uod,. 3.7
On the other hand, from (3.3) ¢9 0 0 = ¢g(w), where w = %. Since 8{% = %%%—’;,
then
A:#o@o 00) = A:ﬁo@o) oo =¢ oo. (3.8)
It follows from (3.4), (3.7) and (3.8) that
$, 00 =uocg, (3.9)
which verifies that ¢; is homogeneous.
The other cases of ¢, are similar to the above. Thus we get the conclusion. O

In the case k = 1, Veronese sequence is the standard homogeneous harmonic sequence in
CPN=1(cf. [2]). Inthe case k = 2, if ¢ is a homogeneous harmonic map from S2 to HP",
then u is an element of Sp(n + 1) C U(2n + 2) in (3.1).

4 Reducible homogeneous harmonic maps from S? to HP"

Let¢ : S — HP" be alinearly full harmonic map of isotropy order r. If ¢ has finite isotropy
order, then r = 25 for 1 < s < n by ([1], Proposition 3.2 and Lemma 3.10); if ¢ is strongly
isotropic, then r = co. If ¢ : S — HP" is a reducible linearly full harmonic map, then by
([1], Proposition 3.7) we know that ¢ is a quaternionic mixed pair or a quaternionic Frenet
pair.

Definition 4.1 ([1])

1. Amap ¢ : M — HP" is called a quaternionic mixed pair if ¢ = f & Jf where

f: M — CP?"*! s holomorphic and G'(f) L J f. Here G'(f) = ImA';.

2. Amap¢ : M — HP" is called a quaternionic Frenet pair if ¢ = G(rfl)'(h) ® G (h)
for some integer r, with 1 < r < n + 1 and holomorphic map # : M — CP?'*! with
G@=D(h) = Jh. Here GOh) =h, GV (h) = G'(GE~D(n)).

In the following we discuss these two types in the case of constant curvature.
If ¢ is a linearly full quaternionic Frenet pair, then

by = 10740 @ 10750, wn
where f (()2”“), o f %”:1” : §2 — CP?¥*! is a harmonic sequence with the linearly full

totally J-isotropic map i(()ZlH»l).
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Classification of homogeneous minimal immersions from s2... 2221

Firstly we recall ([1], §3) that a full holomorphic map f(z"“) §? — C P! satistying

i;i'fll) =Jf (()2’“‘1) is said to be rotally J-isotropic; this generates a harmonic sequence

Aé)/ A6 A 2n A/2H+l
0 <0 ﬁ)znﬂ) Lo f(2n+l) f(2n+1) N fg'fll) 28l
From the harmonic sequence, fz(r%'rlrl)i =] f.(z”H) for all i so that:
(2n+1) (2n+1)
lj =l - Zj 4.2)
and set Jf(Z”“) = 12n+1f2(n+J1rl) , then
|f(2n+1) @n+1) @n+1)
2 + n+
|'L'2n+l| T 2nt) o 2’ ij " = Dn+1- jf2n+1 —j (43)
| 2n+1 |
. |f(2n+l)‘2
where T,41-; = (= 1)/ 12,41 ‘f%g;;‘l) foreach j =0,...,2n+ 1.
2n+1 /
Obviously ¢o belongs to the following harmonic sequence (cf [4])
ety A A enen A <2n+1) @nt1) 42041
<~ f§ o p D g fG AR )

4.4
Then we give the following proposition without proof:

Proposition 4.2 ([9], Proposition 3.1) Let ¢g : S> — HP" be a linearly full quaternionic
Frenet pair of constant curvature K. Denote the isotropy order of ¢o by r. Then Ky =
r = 00, and up to a symplectic isometry of HP",

_ 2n+1 @n+1)
¢, =UVI TV oUuy

_2
nn+2)’

for some U € Goyin = {U ceU@Rn+2), UW, 1 UT = ,M},

where Wy, 11 = antidiag{(? _(1)> R <(1) _(1)>}

n+1

Remark 4.3 Since both L(,ZHH) and fo;rl) are Veronese surfaces in CP2"+1 It is easy
to check that such ¢ is SU(2)-equivalent, so ¢p is homogeneous. Thus all linearly full
homogeneous quaternionic Frenet pairs are given by Proposition 4.2.

If ¢y is a linearly full quaternionic mixed pair, then
b, =rI" @I, (4.5)

where f(m) §2 — CP™ € CP¥*! (n < m < 2n + 1) is holomorphic and f(’") 1 Jf(m)
Obv10usly ¢o belongs to the following harmonic sequence

/r

0 (M_’” Jf(m) A&l) a1 Jf(m) P 0, — f(m) ’”*‘ Fom A_;’; 0, (4.6)
—m
where A’}; represents A”fw,) foreachi =1,...,m.

So the induced metric by ¢y is given by
dsg = 210" dzdz, “.7)

where lém) dzdz is the induced metric by the map i (()’").
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2222 J. Fei, L. He

Then we prove

Proposition 4.4 Let ¢g : S — HP" be a linearly full homogeneous quaternionic mixed
pair. Denote the isotropy order and Gaussian curvature of ¢o by r and K, respectively. Then
up to a symplectic isometry of HLP", ¢ belongs to one of the following minimal immersions.

1. ¢9 = UK(()Q"H) ® Uﬂéznrfll)for some U € Gopyp, where Ko =

2. ¢o =V with Ko = 2, r = o0;

3. n=2t+1(t > 0)and ¢y = [(¢0,0,...,¢07n)T],f0rq1 =0,....t,qgp=t+1,...,n,
0,91, P0,q, are given by

¢0q1 l qu + (- l)ql)\ / 1 Zn qu’ ¢0q2 /1—|k|2 l Z¢12

where X is a complex parameter satisfying 0 < |A|> < land Koy = 2, r =n — 1.

2 .
g T =20

Proof Let ¢ : S — HP" be a linearly full quaternionic mixed pair. Since ¢y is homoge-
neous, we know that there exists a matrix u € Sp(n + 1) C SU(2n + 2) such that

o f™ = f™ oo, (4.8)
By (4.7) we get that Ko = %, and up to a holomorphic isometry of C P?"*1, i(()m)
is a Veronese surface. We can choose a complex coordinate z on C = $2\ {pr} so that

fo(m) =U Vo(m), where U € U(2n +2) and Vo(m) has the standard expression given in (2.16)
(adding zeros to Vo(m) such that Vo(m) € C?"*+2), A straightforward computation shows

D, *
Vi oo (z0, 21) = ( o *> V™ (z0, z1), 4.9)

where

[ m—1 1 i 1—k - .

(7)

(4.10)
Then we have

_ D D
U uuvg™ (zo, 11)=< ! Dj) Vo™ zo. 21). @.11)

. o . . . —T
By differentiating with respect to zo in the above formula, the matrices U uU and

Dm+1 D,
O Dy

is not full in C2"*2_ 5o the two above matrixes are not identical. But the matrix U uU is still
the type of the following matrix, i.e.,

> have the same effect on all derivatives of Vo(m) (z0, z1). Generally, Vo(m) (z0» 21)

77T o7 Dmy1 *
U uU = ( 0 *) 4.12)
Since U e U(2n+2)and u € Sp(n+ 1) C SU(2n + 2), we get
—T D, o
UuU=(""F , 4.13
" ( 0 C2n+1—m> ( )

where Dy, € U(m + 1) and Copi1—y € URn + 1 — m).
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Classification of homogeneous minimal immersions from s2... 2223

Set UT J,41U = W. Then
wl = —w, W*w =1, 4.14)

where [ is the identity matrix.
Since u € Sp(n + 1), from (4.13) we have

Dm+l 0 7 i Dm+1 o
— | W=W . 4.15
o C2n+lfm> ( o C2n+lfm ( )

Wi W2

Set W =
© <W21 Wa

) with Wi = (wi)o<k 1<m- Then (4.10) and (4.15) yield

(4.16)

Win—j,j = (=" Jwop, j=0,...,m
wi =0, k+1#m

Case I . r is finite. It follows from the harmonic sequence (4.6) that m > r + 1. Thus for
each 1 <« < r, we have Lgm) 1] Lg”), which are equivalent to the following equations

T T _—
tr (VOEWVO(’"’ UTJ,,.HU) —0oir (Voﬁ””vo(”” W) —0,a=1,....r (417
hold.

(m)y,m)T Vit O .
Set V"'V, = < 0 0) with Vi; = (vij)0§i,,/§m’ then

AT IRNTA M=\ it jtk—azk
AR (i)<j>zk:( b <a—k>< k )Z zt. 4.18)

Since r is finite, we know wy,, # 0. From (4.16) and (4.18), we get
T— T__
i (VA Ve W) =0, o (Vv W) £ 0, (4.19)
which implies that f ﬁn’”jl is perpendicular to J L(}m), but L(;") is not perpendicular to J f (()m)

by (4.17).
Hence we have

m=r+1. (4.20)
Let r = 2s. It follows from (4.16) that
Wit = wmoWsy1- (4.21)
Then the corresponding W is given by
w7 _ [ wWmoWs+1 Wia
W= , 4.22
( Wai sz) (422)

where Woiisa 2n + 1 —m) x (m + 1)-matrix.
Define a set

Gw 2 {U cU@n+2), uwuT = ,,H}.
For a given W, the following can be easily checked

(i) VAe Sp(n+1), U e Gy, we have that AU € Gy;
(i) YU, VeGy, IA=UV* e Spn+1)st.U =AV.
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In the following, in order to get the explicit expression of ¢g, we discuss W, respectively, by
the two cases that n is an even or odd.

Casel.l.nis aneven,ie.,n =2t (t > 0).
In this case, since m > n,i.e.,m+ 1 > 2n+ 1 —m, then from (4.14) and (4.22) we know

Wh =0, ie.,
_ Wi O
W= ( 0 sz) , (4.23)

where Wo e U(2n + 1 — m).
Now we claim that m = 2n + 1 (s = n). Otherwise if m < 2n + 1, then s < n, and for
any given W, we can choose proper U € Gw such that JU Vo(m) =-U V,,(f"), and then up to

Sp(n+1),
b= UK(()m) eUVY.

Obviously ¢ has image in HP?® , so it is not linearly full. It contradicts our assumption that
¢o is linearly full.
Furthermore we get Ko = ﬁ W = W, 41 and Gw = G2,+2. Then the proof of Proposition
4.2(see ([9], Proposition 3.1)) gives that up to Sp(n + 1),
(2n+1) (2n+1)
?0 = UZO " @ UZZanH ’
where U € Go,42.

Obviously it belongs to case (1) with Ko r =12n.

_ 2
=+l
Casel.2. nisanodd,ie.,n=2t+1( > 0).

In this case, if m > n, then by the same discussion as

Case 1.1, we conclude that m = 2n + 1, and up to Sp(n + 1), the corresponding ¢ belongs
to case (1) with Ko = ﬁ, r=2n.
If m = n, then the corresponding Wa; in (4.22) is a (n + 1) x (n + 1)-matrix. If |w,q|> = 0,
then Wi = O, which implies f,flm) 1J fo(m), S0 ¢ is strongly isotropic. It contradicts our
assumption that the isotropy order r is finite. If |w,o|> = 1, then the corresponding ¢y is not
linearly full.

Now we assume 0 < |wpo|?> < 1. Denote w,o by A. Then we get the type of W =
UTJ,41U € U@2n +2) as follows:

0 0 0 0 (—D"a Wipt2 - WI2p42
0 0 0 (=D 0 W22ttt W22n42
0 0 0 0 :
W _ 0 (—l)lk 0 0 0 Wn,n+2 s Wn2n+2
A 0 0 0 0 Wptlnd2 - Watl2n42 |
—Wlpt2 —W2p42  —Wppt2 —Waptl a2 0 C Wng2,2n42
—W1,2n4+2 —W2.20+42 * 0 —Wn2n+2 —Wn+1,2n42 —Wn422n42 *° 0
(4.24)
where 0 < |A|? < 1.
From WUT = UTJ,,H, the corresponding U = [el, €2, ...,em41, ezn+2]T satisfy
eza:WEQ(xfl, a=1,...,n+1, (4.25)

where ¢; are unit column vectors in C2"12,
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Generally, suppose {eq, €2, ..., €24—3, €20—2 = Werg_3) (a > 2) are mutually orthogo-
nal, we choose a unit column vector ez 1 €C2'+2 such that{e;, €2, . . ., €24—3, €20—2, €201}
are mutually orthogonal. Set ep, = Wep—1, then

T T T
(€20, e20—1) = €30 W eaq1 = —tr(ezg—1€54_1W) =0,
and forany 2 < 8 < «,
T T T A
(e2a. e2p-3) = €2y | W' e2p-3 = —e3 | Werp—3 = —3, 12252

= —(e2—1. €2p-2) =0,

(eza, 62,872> = ezTa,leW?wfa = 62Ta71?2ﬂ73 = (eZafly €2ﬂ73> =0.

Thus {e1, ea, ..., e24—3, €20—2, €20—1, €24} are mutually orthogonal.
Without loss of generality, in this case for p =0, ..., t we choose
T
epr1=10,...,0,1,0,...,0] , (4.26)
N ——
P

then the corresponding ez, is given by

T
erpr2=Werpr1 = [0,...,0,(=DPA,0,...,0, —Wpiing2, o) —Wpi1 2m42
———
n—p
4.27)
Observing (4.26) and (4.27), we find {eq, e2, ..., €241, €242} are mutually orthogonal.
Nextforqg =t + 1, ..., n we successively choose
€2g+1
T

=lo,....0 /1_‘A|2’0’_._’0’(_1)H—QM ”_’(_1)"—4M
———

VI—2 NiE

q
(4.28)
then the corresponding ez, 12 is given by
T
eq2=10,...,0,% . (4.29)
— —
n+1

From (4.26)-(4.29) we obtain the type of the corresponding U ; furthermore, we have

T
uv® = ..., <n>z1’,(—1)1’k ( " )z”*”,...,\/1—|x|2 (")zq,o,... ,
P n—p q

(4.30)
where p =0,...,tandg =t+1,...,n.
So the corresponding ¢ belongs to case (3) with Ko = 2 r=n—1.

n’

Case I1. r = oo. In this case, it follows from ([9], Proposition 3.2) that up to Sp(n + 1),

¢ =0V @ JUV)
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with Ko = % for some U € Go,42.
For convenience, we choose

10---0 0 0 0 0
00---0 0 0 0 (=1°
01---0 0 0 0 0
00---0 0 0 (-D! 0

U= Dol : : .. : : € Gonsa.
00---0 0 (=D"'... 0 0
00---1 0 0o - 0 0
00---0(=1)" 0 - 0 0

A straightforward calculation shows
Uy =[1.0.v22,0,....2",0)7],
JUvr = [(0, 1,0, ﬁz,...,o,z”)r],
which implies

do = [(1, ﬁz,...,z")T] : 52 — CP" — HP".

Hence, in this case, up to Sp(n + 1), ¢y is the composition of VO(”) with the totally geodesic
inclusion of CP" in HP" and belongs to case (2) with Ko = % r = 00.
In summary we get the conclusion. O

Remark 4.5 We conjecture that all linearly full quaternionic mixed pairs of constant curvature
are given by Proposition 4.4.

5 Irreducible homogeneous harmonic maps from S2 to HP”"

Now, we consider the irreducible harmonic maps ¢ : S> — HP" of isotropy order r. In the
following we consider the two cases of finite isotropy order or strongly isotropic.

At first we consider the case of finite isotropy order, i.e.,r =2s (s = 1,...,n —1). Here
we exclude the case of s = n, as if r = 2n, then the corresponding ¢ is reducible by ([1],
Lemma 3.10). We state the following lemma by ([1], Theorem 4.7):

Lemma 5.1 ([1]) Let ¢ : §> — HP" be an irreducible harmonic map of finite isotropy
order r, where r = 2s (s = 1,...,n — 1). Then there is a unique sequence of harmonic
maps ¢' 2 82— G2,2n+2) (i =0,1,...,2) wherel =1, ...,n — s such that

(i) 90 = ig") @ Jig") for some holomorphic map L()m) : 82 > CP" Cc CP™H (n <
m < 2n + 1) satisfying iﬁ,'") LIS for1 < p < 20425 but 12’” L IfI for
p=20+2s+1, that is, ¢° is a quaternionic mixed pair of isotropy order 21 + 2s;

(ii) ¢* = ¢;

(iii) fork = 0,1,...,1 — 1, **1 is obtained from $** by forward replacement of some
holomorphic subbundle of 92]( not equal to the image of the first §'-return map of ¢>*.
Then the inverse of this transformation is given by ([1],Proposition 4.6(a)) and is given
by backward replacement of the image of the first 8" -return map;
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(iv) fork = 0,1,...,1 — 1, ¢**2 is obtained from ¢**' by backward replacement of
éz- N QZk'H where B . is the unique holomorphic subbundle of 92’”'1 not equal to the

image of the first 8'-return map of >+ such that Im(A;bz,(H lg,) L IB,. Infact, it is

the operation in ([1],Proposition 4.5(b)) with ﬂl‘ ¢2k+1 equal to the antiholomorphic
subbundle B in ([1],Proposition 4.5(b)). Then the inverse of this transformation is given
by ([1],Proposition 4.5(a)) and is given by forward replacement of the image of the first
d'-return map.
Furthermore,
(v) fork =0,1,...,1—1, ¢>2k 1S S HP"isa quaternionic harmonic map;
i) fork=0,1,...,1—1, p**1: 82 — G(2,2n +2) satisfies G (p*+') = Jp*+1;
(vii) fori =0,1,...,2l, the isotropy order of ¢' is 2l + 25 — i.

Let ¢ : S> — HP” be a linearly full irreducible homogeneous harmonic map of finite
isotropy order. By Lemma 5.1 we know the construction of harmonic maps is reversible.
Then fori =0, 1, ..., 2] — 1 the corresponding harmonic map ¢’ is obtained by the direct
sum of two line bundles of the harmonic maps in the harmonic sequence of ¢'*!. They are
all homogeneous. Moreover each harmonic map in the harmonic sequence generated by ¢’
is also homogeneous by Lemma 3.1. In the following we use Lemma 5.1 to determine all
irreducible homogeneous harmonic maps ¢ of finite isotropy order.

In (i) of Lemma 5.1 ¢° belongs to the harmonic sequence as follows:

//

A" 0 A;n— A;n
an f(m) (_¢0 Ay f(m) _;i}(n’") — 0, (5.1

AJm f('”) Aoy
where 90 = £ @ JfU™. In fact we findm = 2n 4+ 1 (2l + 25 = 2n) orm = n =
2t + 1 (2 4 25 = n — 1) by Proposition 4.4. At this time the isotropy order of ¢ is m — 1.
By (iii) of Lemma 5.1 and (5.1), there exists a local section Vo = xo f, O | fo ™ Such
that V, is an antiholomorphic subbundle of 90, and ¢! is obtained from ¢° by forward

replacement of LJJ- ie.,
o' =Voe [, (52)

where xg is a smooth function on $? expect at some isolated points, and here V, denotes the
line bundle generated by Vj.
Since V , is an antiholomorphic subbundle of QO, then we get 40 (3 Vo) € V), which implies
the equation

dx0 + xod log | f V2 = 0 (5.3)

holds.
Then ¢! with isotropy order m — 2 belongs to the harmonic sequence as follows:
Al oy A a0 Bty A

R VA s 2 f<'"><—¢ — ¢! —>f<m> A
54)

where ¢) = J¢' and ¢| = o'

Since ¢6 ishomogeneous, it has constant curvature. Next we compute the geometric quantities

of ¢} to determine its explicit expression. We choose the following orthogonal unit vectors

in C2n+2

JVO Jf(m) VO f(m) f(m) Jf(m)
ol ¢ BTy 4T )’ )’
WA | Y I s | 1f2

(5.5)
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and extend them into the local unitary frame with respect to ¢é‘
Set Wy = (e, e2), Wi = (e3, e4), W2 = (e5), W_1 = (e_1), then by (2.6) we get

o M) o 0 LA™ o 0( ) 56
0= (MO 0) ’ 1= < lfl(m)l) ) Na—] = _‘fz(m)| ’ (5.6)
LA
%0 —x0d log | £ 2 A" 2 2 (m) )2
where Ao = T ol H0= 0=~ with [Vo|* = (Ixol” + DI fy I~

A straightforward computation shows

1

detQ|?dz2dZ? = ———— 1M 19" d22dZ2, 5.7
ersl (o + 120 57)
Lo = Aoho + 1ofEo + fofo. (5.8)
Ly=L=1". (5.9)

. 1 2 . . _ . . 1

We claim that TP has no zeros on S-. Otherwise if z = z¢ is a zero point of TP
then rank Qol;—,, = 1 by (5.6), which implies that qb(% is not homogeneous. It is a contradic-
tion.

So |detQ|*dz2dzZ> # 0 everywhere on S2. It follows from (2.15) that
81— 280+ 6-1 = —4, (5.10)

_ 1 = —
where 8, = P Js2 LadZ Adz (@ = —1,0, 1).
Since all harmonic maps in the harmonic sequence (5.4) have constant curvature, then we
can choose a complex coordinate z on C = §2\ {pr} so that the induced metric dsqz51 =

0
(Lo + L_1)dzdz by ¢} is given by

42, = M =2 4z 5.11)
0T (A +z2 '
and from ([3], §3) we get
m @+ Dm—1) m) N
li —W, 8i —(l+1)(m_l), l—O,...,m_l. (512)
It follows from (5.9) and (5.12) that
61
L =———. 5.13
T Uxr 61
Analyzing (5.11) and (5.13), we find fori = —1,0, 1,
8
= —. 5.14
(1 +z7)? ©-19
Using (5.7), (5.9), (5.10), (5.12), (5.14) and (2.14), we obtain
99 log(|xo> + 1) = 0. (5.15)

It follows from (5.7) that |xg|? + 1 is globally defined on C and has a positive constant limit
c1 as z — o0. Thus from (5.15)
Ixol* = ¢1 — L. (5.16)
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In view of (5.3) we have 3(To| £\"|%) = 0, which implies

_ h(z) h(z)
_ _ , 5.17
X0 |f0(m)|2 (1 + Zz)m ( )

where /(z) is a holomorphic function on C.
It follows from (5.16) and (5.17) that

h@)* = (c1 — D+ 22)*". (5.18)

Now we claim that ¢y = 1. Otherwise if ¢; # 1, then the holomorphic function 4 (z) includes
the factor such as (1 + zz), which is impossible. So xo = 0 and

o' =Jfme rim. (5.19)

By (iv) of Lemma 5.1, (5.4) and (5.19), there exists a local section V = y; f; m 4y o ()
such that 8 In d)l = V is an antiholomorphic subbundle of d)l and ¢? is obtained from qbl
by backward replacement of V, i.e.,

P’ =XolX, (5.20)

where X = A ") and y; is a smooth function on S expect at some

f('">|2 " - f(’"’|2
isolated points.

By the properties of the harmonic sequence (5.4), we know 7 1)1 (V) = JX, which implies
y1 = 0 by a straightforward computation. So

¢ =" SIS (5.21)
Then ¢2 with isotropy order m — 3 belongs to the harmonic sequence as follows:
A" A" A A
Al e #2 2 8 AL W
0 P o ¢ T gp R g [ S 0 (52

where ¢2 ¢>2 (,/>2 fg") &) iém) and ?2_1 = J?%
Now we prove

Proposition 5.2 Let ¢ : S — HP" be a linearly full irreducible homogeneous harmonic
map of finite isotropy order r with constant curvature K. Then up to a symplectic isometry
of HP", ¢ is one of the following:

(1) Forsomep=1,...,n—1,¢ = UV(Z"H) @ UVgirfll)p with some U € G412, where

_ 2
K = penti—pzntr ' = 2n —2p;

(2) n =2t +1 (@ > 0) and for some p = 1,....t — 1, ¢ = [(¢p,0,...,¢p,n)T],f0r
q=0,....t, p=t+1,....n ¢p4, Opq, are given by

bpagr = l(qnl) Z(_l)k <pq_lk> (Vl —k‘Il) (qu+k_pfk+(—1)q1+pXZp_kZ”_ql_kj) i
T ¢1—|k|2,/ zqz P30 1)"( ° )(”‘k‘”)@ak,

. P 2 . 2
wherle A ;s a complex parameter satisfying 0 < |[A|° < 1 and K = o "
n—1-2p.
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Proof InLemma 5.1 we add the condition of homogeneous. Forany 0 < k < 5= 3 we prove

GHH = @ f g = fm @y pm (5.23)

Tkt £ L k41 Lk+1
hold by induction on k. If k = 0, then

o' =IfmM e ¢r =M el (5.24)
hold by (5.19) and (5.21).
Assume now that the assertionis correct for0, . .., k—1. Consider the case of k (k < ’”T_3).

By induction hypotheses we have
¥ = L(("” a] Lﬁ’”% (5.25)

Then ¢* with isotropy order m — 1 — 2k (> 4) belongs to the harmonic sequence as follows:

A// A// A/ A/ A
A & k ¢ ¢21< ¢2k ¢2k Al A
Jm . 0 2k 0 2k . k—1 (m) 2k+1 . m
0 «~— <—qb <—?0 — 9] — f2k+1 — 0,
(5.26)
2k 2k _ 2% _ 7 +(m) (m) 2% _ Y2k
where 4) =¢~, fora =1,. k, o~ = Jikia ® f and Q_a = Jo~.

By (iii) of Lemma 5.1 and (5.26), there exists a local section VOZk = Xk fk(m) +Jf k(m) such
that %k is an antiholomorphic subbundle of ¢2k, and ¢2¥t1 is obtained from ¢3¢ by forward
replacement of (VZk)J- N ¢2k JVk e,

¢2k+1 V2k @ Z2k7 (5.27)

where V3¢ = T (2L (BJK%") ie, V= fkl(m) Jf(m) + fk+], X is a smooth function on
$2 expect at some isolated points, and here VZk denotes a line bundle consists of V2
Since V(z)k is an antiholomorphic subbundle of ¢2k then we get g (3 VZI‘ ) € Vzg, which
implies the equation

dxi + xd log | F™M 2 = (5.28)

holds.
In fact ¢2**! with isotropy order m — 2 — 2k (> 3) belongs to the harmonic sequence as
follows:

A" A A/

A”m A ¢1 ¢1 Al A’ Ar/n
LS. W O T Y

(5.29)
2k+1 2k+1 42k+1 2k+1 — 2k+1 — w2k 2k

where ¢> =J¢ ¢> = ¢ ,and fora = 1,...,k, ¢ =Wyoe V.,
PP = J¢2 ! with Wt = (vHhn ¢2k, VE, = n@zk)L(av 2k, but Vil =150

Since ¢2k+1 is homogeneous, it has constant curvature; moreover, all the harmonic maps
in the harmonic sequence (5.29) are homogeneous and have constant curvature. Next we
compute the geometric quantities of the corresponding harmonic maps to determine their
explicit expressions. We choose the following unit vectors in C**+2

JVIZk JVOZk VOZk V]Zk
e = ey = ez = €4 = —5
1 |V12k\’ 2 |V02k|’ 3 \V2k|’ 4 |V2]‘\’
w2k v,
03 = [ Catd = Wzk Jfora=1,... k, (5.30)
(m)
Sok1
€245 = b,
[ far1
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Set Wy = (€20+1, €2042), fora =0, 1, ...,k + 1, and W12 = expy5, W1 = JWs.

Since foreacha =0, 1, ..., k the harmonic map ¢§k+l is irreducible and the isotropy order
> 3, then Wy_1, Wy, Wy are orthogonal and it is suitable to extend them into the local
unitary frame with respect to ¢§k+1. By (2.6) we get

%+1 _ [P0 to
Q2+ — <0 MO), (5.31)

WP PP am = log |2
\V2k||V2k\ > 10 = ‘Xk|2+1
(m 2 m (m m

DA™ R and [V = b P12+ LA P

k+1
A straightforward computation shows

where Lo = o = — with |V02k|2 = (|x)? +

m my\ 2
lder Q1 2dz?dZ? = (W) dz?dz?, (5.32)
L2k+1 _ L2k+l’ (5.33)
LE =150 (5.34)
For each ¢« = 0, 1, ..., k the harmonic map ¢§k+1 is irreducible and homogeneous, so

|det 2, |2dz2d22 # 0 everywhere on S2. 1t follows from (2.15) that

Sikjil _ 255k+1 + 52/3:1 = 4, (5.35)

where 85! = St — [0 LI Az A dz (@ = 0.1, k).
Since all the harmonic maps in the harmonic sequence (5.29) have constant curvature, then

we can choose a complex coordinate z on C = SZ\ {pt} such that fora =0, 1,..., k+ 1
the induced metric dséz,(+1 = (Likfll + L2+ dzdz by ¢2k+! is given by

82k+l 52k

dsy = 22 dzdz, 5.36
¢at ! (1+z2)? -39
and from ([3], §3) we get
1 .

f”=g%%%?ﬁ,$m=a+nm—n,i=Qn”m—L (5.37)

It follows from (5.34) and (5.37) that

s2k+1

2kt Okl (5.38)

17 (14292

Analyzing (5.35), (5.36) and (5.38), we find fora = —1,0, 1, ...k,

2t 82k+1
S E— 5.39
* (14 z7)2 .39
Using (5.32), (5.33), (5.35), (5.37), (5.39)and (2.14), we obtain
_ k k4 Dlxxl2 4+ k+ D(m —k
93 log [ (m—k+ )ka|2+( + D(m )] 0. (5.40)
[xx =+ 1
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k(m—k+1)|xg |+ (k+1) m—k)
[xx|2+1
as z — 00. Thus from (5.40)

k(m —k + D|xi|> + (k + DH(m — k)

Since is globally defined on C and has a positive constant limit ¢

=cj. 5.41
P 1 (541)
It follows from k(m — k + 1) # (k + 1)(m — k) that
bl =, (5.42)
where c is a constant. -~
In view of (5.28) we have a(X¢| £"”|%) = 0, which implies
h h
wo= ed) M (5.43)
g A4z
where /1 (z) is a holomorphic function on C.
It follows from (5.42) and (5.43) that
(@) = (1 + 22", (5.44)

Now we claim that ¢ = 0. Otherwise if ¢ # 0, then the holomorphic function £ (z) includes
the factor such as (1 + zz), which is impossible. So x; = 0 and

2k+1 f(m) fl(:-n|-)1 (5.45)

By (iv) of Lemma 5.1, (5.29) and (5.45), there exists a local section Y2+l — V41 fk(fi
Jf, ™ such that ,BJ- N ¢2k+1 V21 is an antiholomorphic subbundle of ¢2k+1 and ¢2k+2
is obtained from ¢2k+1 by backward replacement of V**! ie.,

?2k+2 — XZk—H @JXZI(—H, (5.46)

where X2+ — ‘f<m)‘z f/ff-'f I;(k':)llz Jf(m) and yi4 1 is a smooth function on S? expect at
k

some isolated points. -~
By the properties of the harmonic sequence (5.29) we know T (g2k+1y1 (0 V2t = gx 2T
which implies y;4+1 = 0 by a straightforward computation. So

2k+2 __ r(m) (m)
oM = 1 @ If. (547

and the isotropy order of $***2 is m — 3 — 2k (> 2).

Hence it verifies (5.23) by (5.45) and (5.47).

In fact in the harmonic sequence (5.1), @0 only belongs to case (1) or (3) of Proposition
4.4 by Proposition 4.4. Thus the conclusion follows from (5.23). O

At last we consider the case of strongly isotropic. Let ¢ : S — HP" be a linearly full
irreducible strongly isotropic harmonic map, then ¢ must belong to the following harmonic
sequence:

A" /’0 " A A A ’
= (a1 %0 9% = 9§ Yot1
O(_(_¢O “«— (_¢0:¢_)_)¢0_)¢0 — ...—>0
I« 20 S —u LToa+1 ?

(5.48)
where for 8 = 1,...,99/3:J92 andforﬂ:1,...,a,rankgg=2;f0rﬁ=ot+1,...,

rank@% =0orl.
We give a corresponding Lemma as follows.
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Lemma 5.3 Let ¢ : S — HP" be a linearly full irreducible strongly isotropic harmonic
map, then from ¢ by 2a — 1 steps of proper forward or backward replacements, we get the
harmonic map $2*~' : 82 — G (2, 2n + 2), which is strongly isotropic and belongs to the
following harmonic sequence:

" A// A/
A A ¢201—l ¢2a—l ¢2a—1 Al A Al
Jm o Js (m) —1 2a—1 0 20—1 0 (m) s m—1 (m) m
0 «~— <—va <~ 9_1 <~ 90 — fv — —>fn — 0,

(5.49)
where %a—l — ¢2a—1, 927011—1 — J?Za—l with fi(m)’in(m) . §2 ., cpm c CP2+! gnd

A’} denotes A” o (i=0,...,m).

Furthermore, let B be the holomorphic line subbundle of ¢20‘ ! defined by Ker A’ g1 Let
&% be obtained from $**~1 by backward replacement of o = ﬁl 92"‘ U Then ¢>* is

quaternionic. Moreover, ™ isa quaternionic mixed pair or a quaternionic Frenet pair.

Proof In the harmonic sequence (5.48), if rank 92 = 1, let y be the holomorphic line
subbundle of ¢0 defined by Ker A’ 60

of Z N Qg belongs to the following harmonic sequences

then d)CLI obtained from ¢0 by backward replacement

A" A A" A A Ay
o, P (-1 9 %0 b2 Po—1 #
1 1 1
O<«— (_(z) <« (_¢ _)..._)¢ 1_)¢ _)..._)0’

(5.50)

where for g = 1""’91—}‘3 :JQ;_I and for g :0,...,a—1,rank?}3 =2for=qa,...,
rank 9}} =1

Reusing the above methods we will get the wanted harmonic sequence (5.49) from (5.50) by
20 — 2 steps of backward replacements.

If rank qbo | = = 0, let y be any holomorphic line subbundle of ¢>0 then qbo =y @&y
using ([1], Lemma 4.1) we get a new harmonic sequence which is Just (5.50). Slmllarly we
can get (5.49).

The rest follows from ([8], Lemma 3.3). ]

Let ¢ : S> — HP” be an irreducible strongly isotropic homogeneous harmonic map,
then from Lemma 5.3 we know the corresponding harmonic map ¢2¢ is also homogeneous
and strongly isotropic. Through Proposition 4.2 and 4.4 we get ¢ is given by

20 _ £(@2n+1) (2n+1) 20 _ (n) (n)
P =L@ f o = [V @S, (5.51)

where f,l(2”+1) = UV,l(zn'H) and fo(”) = UVO(”) with U € Go,42.
In the following we discuss the above two cases, respectively, to prove the following
Proposition.

Proposition 5.4 Let ¢ : S> — HP” be a linearly full irreducible strongly isotropic homo-
geneous harmonic map with constant curvature K. Then up to a symplectic isometry of HP",
forsomep=1,..., [%], ¢ is given by

—_ym
o=V,

with K = 2# Here [Q] denotes the maximal integer which is not more than %.
p(n—p)+n 2 2
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Proof Casel. ¢** = f ;2”“) @ iﬁ:’;’l). Obviously ¢>* belongs to the harmonic sequence
(4.4). In (5.49) we choose a local section V = x, f”(2n+1) + f,fi"lﬂ) such that

20—1 2n+1)
P =ve feuh, (5.52)

where x,, is a smooth function on $2 expect at some isolated points and x,, # 0.
This time $2*~! belongs to the harmonic sequence as follows:

Ay, Al Qn+1) A;;(Z)MI 201 A;(z) ! 20—1 A/l L2 ]) +3 Adupl
n— n+ o— o— n+ "
0 - L 9 — 9 fn+% — 0
(5.53)
where ¢2a 1 _ J¢2a 1 and ¢2a 1 ¢20(—1
Since A/, - (g = f<2"+1> then we get by (5.52)
T(gayt V) = f2ED, (5.54)
which is equivalent to the equation
3xy — x2 + x,d log 1*" D =0, (5.55)
hold. From (5.53) we choose a local unitary frame with respect to ¢g"‘71 in C2"*2 as follows:
Qn+1) @n+1)
_Jv I/ _ v _
L=y = U(zﬁ-l)l 3=y, 4= ‘fénﬂu
G 2 f(2n+]) n+2 (5.56)
g1 = "g,fﬁrl) e (;}Jr]“) fora =3,...,n+1.
|fufa 1 i1l
Set Wy = (e, e2), Wi = (e3, es), W2 = (e5), W_1 = (es), then by (2.6) we get
0
X0 to) ( LA -
Q = Q=028 ) Q= ] (5.57)
<MO 0 If,fi;])\ (=D~ ! (2n+1)
[fula
0%, =1V 2D b £ Tl £
where Ao = |V\2 , o = W, no = — 4

with [V 2 = (Jx, |2 + l(zn—H))lf(zn—H)l2 andt; (i =n,n+ 1,n+ 2) is given by (4.3).
A straightforward computation shows

4

|detQo|*dz2dz% = %zﬁ’jl)z@””d 2422, (5.58)
(xnl* + I )

Ly=L_y=12%". (5.59)

Since qbg"‘*l is irreducible and homogeneous, so |d et |?dz2dz? # 0 everywhere on S2. 1t
follows from (2.15) that
8_1—280+ 68 = —4, (5.60)

s J LidZ Adz (= =1,0, 1),
Since all the harmonic maps in the harmonic sequence (5.53) have constant curvature, then
we can choose a complex coordinate z on C = S2\ {pt} such that the induced metric
dsy201 = (L-1 + Lo)dzdZ by ¢2* " is given by

where §; =

ds?, = dzdz, (5.61)
9

(14 z7)2
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and from ([3], §3) we get
jersn_ G+ D@nt 1= i)
' (1427)2

It follows from (5.59) and (5.62) that

;8= nD@n+1-i), i=0,....2n.  (5.62)

51

L7] = m. (5.63)
Analyzing (5.61) and (5.63) we find fori = —1,0, 1,
3
i = 7(1 v (5.64)
Using (5.58), (5.59), (5.60), (5.62), (5.64) and (2.14), we obtain
9l0g| — 2| g (5.65)
g 2+ l]an-ﬁ-l) =U. .
Since I\zli% is globally defined on C and has a positive constant limit ¢; as z — 0.
Xn n
Thus from (5.65)
> (5.66)
PNV |
n
It follows from (5.62) and (5.66) that
Xy = — (5.67)
I+zz

where c is a constant.

In view of (5.55) and (5.67) we have ¢ = 0. Then x,, = 0, which contradicts the fact that
xn # 0. So this case does not occur.

Case II. QZ"‘ =f (()”) ®Jf g’). It follows from the proof of Proposition 5.2 that for k =
1,....,n—1,¢* s given by

2—=2k __ r(n) (n)
¢ = f g™, (5.68)
where fk(") = UVk(") with U € Gy,42 and the corresponding constant curvature K =
2
2k(n—k)+n " .
Hence we get the conclusion. O

By Proposition 4.2, 4.4, 5.2 and 5.4, we obtain a classification of homogeneous minimal
2-spheres in quaternionic projective space HP" as follows:

Theorem 5.5 Let ¢ : S> — HP" be a linearly full homogeneous harmonic map of isotropy
order r with constant curvature K. Then up to a symplectic isometry of HLP", ¢ is one of the
following:

(1) Forsome p=0,1,...,n, ¢ is given by

2n+1
¢ =UvIV ouyviil U e Gonga

. 2 2 .
WlthK:mandr:%z—Zp(K:m, r=+oowhenp:n),
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(2) Forsome p=0,1,..., [%], ¢ is given by
—ym
o=V,

. _ 2 _ .
with K = W andr = —+00;

(3) n=2041(@>0)andforsomep=0,1,....t —1,¢ = [(¢p,o,...,¢p,,,)T],for
q=0,....t,p=t+1,....n ¢pq, &pg are given by

Do = \/@Z(_l)k <p¢]_l k) (n —kCIl> (Zq1+k—pzk+(_1)q1+pXZp—an—q1—kj> ,
k
_ — e " ).e-p k[ 42 n—q\, _i
i (ALLae> RN G

where A is a complex parameter satisfying 0 < |L|> < 1 and K = W, r o=
n—1-2p.

Remark 5.6 (a) Case (1) is just the series of SU (2)-equivariant minimal 2-spheres in HP"
given by ([13], Proposition 7.1).

(b) Case (2) is contained in totally geodesic submanifold CP" C HP”. In this case, since
there exists a Sp(n) matrix which transforms Kg’) into Kf,'? P then X;,n) and Xf:? p are
congruent in HP”" (but they are not congruent in CP"). So here we omit the cases of
p>[5]

(c) Case (3) is not totally geodesic and exists only when # is odd. In this case, for some
p=t,...,2t (=n—1), ¢is given by

— £ (n)
9=r eIy,

where f,g") =U V;") and U is given by (4.26)-(4.29).

A straightforward computation shows that these ¢ are homogeneous but non-minimal
in HHP". So we obtain the conclusion that a homogeneous 2-sphere in HP" may be
non-minimal.

Theorem 5.5 gives all homogeneous minimal 2-spheres in HP” and shows that they
contain those given by ([13], Proposition 7.1.), even more than those in the case of n is odd.
Of course a natural problem that how to decide all homogeneous (non-minimal) 2-sphere in
HP" deserves further consideration.
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