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Abstract It is well known that the Euclidean space (Rn, 〈, 〉), the n-sphere Sn(c) of constant
curvature c are examples of spaces admitting many conformal vector fields, and therefore
conformal vector fields are used in obtaining characterizations of these spaces. In this paper,
we use nontrivial conformal vector fields on a compact and connected Riemannian manifold
to characterize the sphere Sn(c). Also, we use a nontrivial conformal vector field on a com-
plete and connected Riemannian manifold and find characterizations for a Euclidean space
(Rn, 〈, 〉) and the sphere Sn(c).

Keywords Conformal vector fields · Ricci curvature · Scalar curvature · Obata’s theorem ·
Laplace operator
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1 Introduction

Characterizations of spaces, the Euclidean space Rn , the Euclidean sphere Sn , and the com-
plex projective space CPn , are important topics in differential geometry and are considered
by several authors (cf. [2–17,20,21]). In most of these characterizations, generally a confor-
mal vector field plays an important role. Conformal vector fields are not only important in
obtaining characterizations of spaces but also have an important role in the general theory of
Relativity as well as in Mechanics.
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Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said to be a
conformal vector field if its flow consists of conformal transformations or equivalently if
there exists a smooth function f on M (called the potential function of the conformal vector
field ξ ) that satisfies £ξ g = 2 f g, where £ξ g is the Lie derivative of g with respect ξ . We say
that ξ is a nontrivial conformal vector field if it is a non-Killing vector field (ξ is a Killing
vector field if the potential function f = 0 or equivalently the flow of ξ consists of isometries
of the Riemannian manifold). If in addition ξ is a closed vector field (or is a gradient of a
smooth function), then ξ is said to be a closed conformal vector field (or a gradient conformal
vector field). If ξ is a gradient conformal vector field with ξ = ∇ρ for a smooth function
ρ on the Riemannian manifold (M, g), then we get the Poisson equation �ρ = n f , thus
the geometry of gradient conformal vector field on a Riemannian manifold is related to the
Poisson equation on the Riemannian manifold (M, g). The role of differential equations in
studying the geometry of a Riemannian manifold was initiated by the work of Obata (cf.
[14–16]). A highly celebrated result of Obata is related to characterizing sphere Sn(c) by
second-order differential equations, and this result, consisting in a necessary and sufficient
condition for an n-dimensional complete and connected Riemannian manifold (M, g) to be
isometric to the n-sphere Sn(c), is that there exists a non-constant smooth function f on M
that satisfies the differential equation H f = −cfg, where H f is the Hessian of the smooth
function f and c is a positive constant. Similarly, Tashiro [21] has shown that the Euclidean
spaces Rn are characterized by the differential equation H f = cg, (see also [18]).

There aremany gradient conformal vector fields on the n-dimensional sphere Sn(c) (cf. [1,
4,12–15]). If N is the unit normal vector field on Sn(c), in the Euclidean space Rn+1 with
Euclidean metric 〈, 〉, then for any nonzero constant vector field Z on the Euclidean space
Rn+1 its restriction to Sn(c) can be expressed as Z = ξ + f N , where f = 〈Z , N 〉 is a
smooth function and ξ is a vector field on Sn(c). Then it is straightforward to show that ξ is
a gradient conformal vector field on Sn(c) with potential function −√

c f . This conformal
vector field satisfies �ξ = −cξ . The Euclidean space (Rn, 〈, 〉) provides many examples of
conformal vector fields, a trivial example being the position vector field ξ , which is a gradient
conformal vector field. On a complex Euclidean space (Cn, 〈, 〉) (Euclidean complex space
form) with standard complex structure J , the vector field ξ = ψ + Jψ , where ψ is the
position vector field, is a conformal vector field that is not closed. Similarly, on the Euclidean
space (Rn, 〈, 〉) with Euclidean coordinates x1, . . . , xn , the vector field

ξ = ψ −
〈
ψ,

∂

∂xi

〉
∂

∂x j
+

〈
ψ,

∂

∂x j

〉
∂

∂xi
,

where i, j are two fixed indices with i �= j , is a conformal vector field that is, not closed. We
note that this conformal vector field ξ on the Euclidean space (Rn, 〈, 〉) is being introduced
for the first time. All these conformal vector fields on the Euclidean spaces satisfy �ξ = 0.

Note that the scalar curvature of the Riemannian manifold being constant (or the man-
ifold is an Einstein manifold) gives a good combination with the presence of a conformal
vector field in studying the geometry of a Riemannian manifold, in particular, in getting the
characterizations of spheres using conformal vector fields. However, if the scalar curvature
of the Riemannian manifold is not a constant, then one faces difficulties and we do not find
many results in the literature studying the geometry of Riemannianmanifolds of non-constant
scalar curvature admitting a conformal vector field.

The n-sphere Sn(c) admits a conformal vector field that is also an eigenvector of the
Laplace operator � with eigenvalue c; this raises the question “Is a compact and connected
Riemannian manifold (M, g), which admits a nontrivial conformal vector field ξ satisfying
�ξ = −λξ for a constant λ > 0 together with some restrictions on its Ricci curvatures,
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necessarily isometric to a n-sphere?” In this paper, we answer this question by proving that
if the Ricci curvatures of a compact and connected n-dimensional Riemannian manifold
(M, g) lie in the interval [λ, n−1(n − 2)λ1 + λ], where λ > 0 is a constant and λ1 being the
first nonzero eigenvalue of the Laplace operator � acting on smooth functions on M , and it
admits a nontrivial conformal vector field ξ satisfying �ξ = −λξ and the scalar curvature
S is constant along the integral curves of ξ , then M is isometric to Sn(λ) (cf. Theorem 3.1).

Given a conformal vector field ξ on a Riemannian manifold (M, g) that is not closed, the
differential of smooth 1-form η dual to ξ defines a skew symmetric (1, 1) tensor field ϕ on M ,
we say the conformal vector field ξ is a null conformal vector field if ξ annihilates ϕ. We use
a nontrivial null conformal vector field on a complete and connected Riemannian manifold
(M, g) with some restrictions on the scalar curvature to find another characterization of the
sphere Sn(c) as well as of the Euclidean space (Rn, 〈, 〉) (cf. Theorem 3.2).

2 Preliminaries

Let (M, g) be an n-dimensional Riemannianmanifold with Lie algebraX(M) of smooth vec-
tor fields on M . Using Koszul’s formula (cf. [1,3,17]), we immediately obtain the following
for a vector field ξ on M

2g(∇X ξ, Y ) = (
£ξ g

)
(X, Y ) + dη(X, Y ), X, Y ∈ X(M),

where η is the 1-formdual to ξ that is, η(X) = g(X, ξ), X ∈ X(M). Define a skew symmetric
tensor field ϕ of type (1, 1) on M by

dη(X, Y ) = 2g(ϕX, Y ), X, Y ∈ X(M).

Then for a conformal vector field ξ on a Riemannian manifold with potential function f ,
using above equation, we get

∇X ξ = f X + ϕX, X ∈ X(M). (2.1)

For a conformal vector field ξ , the skew symmetric tensor field ϕ in the above equation is
called the associate tensor fieldof the conformal vector field ξ .

We shall denote by � the Laplace operator acting on smooth functions on M and by
λ1 the first nonzero eigenvalue of the Laplace operator �. For a smooth function h on
the Riemannian manifold (M, g), we denote by ∇h the gradient of h and by Ah the Hes-
sian operator Ah :X(M) → X(M) defined by Ah(X) = ∇X∇h and the Hessian Hh by
Hh(X, Y ) = g(Ah X, Y ), X, Y ∈ X(M). On an n-dimensional compact Riemannian man-
ifold (M, g) that admits a conformal vector field ξ , using the skew symmetry of the tensor
field ϕ and Eq. (2.1), we get div ξ = n f and consequently, we have∫

M

f = 0. (2.2)

The above equation implies ∫
M

‖∇ f ‖2 ≥ λ1

∫
M

f 2, (2.3)

with equality holding if and only if � f = −λ1 f . Note that the smooth 2-form given by
g(ϕX, Y ) is closed and therefore, we have

g ((∇ϕ)(X, Y ), Z) + g ((∇ϕ)(Y, Z), X) + g ((∇ϕ)(Z , X), Y ) = 0, (2.4)
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2138 S. Deshmukh

where covariant derivative (∇ϕ)(X, Y ) = ∇XϕY − ϕ(∇XY ), X, Y ∈ X(M). Moreover, if
we compute the curvature tensor field R(X, Y )ξ using Eq. (2.1), then we get

R(X, Y )ξ = X ( f )Y − Y ( f )X + (∇ϕ)(X, Y ) − (∇ϕ)(Y, X).

Using the above identity in Eq. (2.4) and the skew symmetry of the tensor field ϕ, we get

g (R(X, Y )ξ + Y ( f )X − X ( f )Y, Z) + g ((∇ϕ)(Z , X), Y ) = 0,

that is,

−g (R(Z , ξ)X, Y ) + Y ( f )g(X, Z) − X ( f )g(Y, Z) + g ((∇ϕ)(Z , X), Y ) = 0,

where we used the identity R(X, Y ; ξ, Z) = R(ξ, Z; X, Y ) = −R(Z , ξ ; X, Y ). Hence, we
get

(∇ϕ)(Z , X) = R(Z , ξ)X + X ( f )Z − g(X, Z)∇ f,

that is,
(∇ϕ)(X, Y ) = R(X, ξ)Y + Y ( f )X − g(X, Y )∇ f, X, Y ∈ X(M). (2.5)

Recall that the Ricci operator Q is a symmetric (1, 1)-tensor field that is defined by

g(QX, Y ) = Ric(X, Y ), X, Y ∈ X(M),

where Ric is the Ricci tensor of the Riemannian manifold. Choosing a local orthonormal
frame {e1, . . . , en} on M , and using

Q(X) =
∑

R(X, ei )ei

in Eq. (2.5), we compute ∑
(∇ϕ)(ei , ei ) = −Q(ξ) − (n − 1)∇ f. (2.6)

The scalar curvature of the Riemannian manifold (M, g) is the smooth function S = TrQ,
we have the following for the gradient of the scalar curvature S (cf. [1,3])

1

2
∇S =

∑
(∇Q)(ei , ei ). (2.7)

Garcia-Rio andAl-Solamy [8] have initiated the studyof theLaplace operator�:X(M) →
X(M), on a Riemannian manifold (M, g) defined by

�X =
n∑

i=1

(
∇ei ∇ei X − ∇∇ei ei

X
)

,

where {e1, . . . , en} is a local orthonormal frame on M . This operator is self-adjoint elliptic
operator with respect to the inner product 〈, 〉 on XC (M) the set of compactly supported
vector fields in X(M), defined by

〈X, Y 〉 =
∫
M

g(X, Y ), X, Y ∈ XC (M).

A vector field X is said to be an eigenvector of the Laplace operator � if there is a constant
μ such that �X = −μX . On a compact Riemannian manifold (M, g), using the properties
of � with respect to the inner product 〈, 〉, it is easy to conclude that the eigenvalue μ ≥ 0.
For example consider the n-sphere Sn(c) of constant curvature c as a hypersurface of the
Euclidean space Rn+1 with unit normal vector field N and take a constant vector field Z on
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Rn+1, which can be expressed as Z = ξ + f N , where ξ is the tangential component of Z to
Sn(c) and f = 〈Z , N 〉 is the smooth function on Sn(c), 〈, 〉 being the Euclidean metric on
Rn+1. Then it is easy to show that �ξ = −cξ .

We state the following useful lemmas:

Lemma 2.1 [11]Let ξ be a conformal vector field on an n-dimensional compact Riemannian
manifold (M, g) with potential function f . Then∫

M

g(∇ f, ξ) = −n
∫
M

f 2

where ∇ f is the gradient of the function f .

Lemma 2.2 [12] Let (M, g) be a Riemannian manifold and f be a smooth function defined
on M. Then the Hessian operator A f satisfies∑ (∇A f

)
(ei , ei ) = Q(∇ f ) + ∇(� f ),

where {e1, . . . , en} is a local orthonormal frame, � is the Laplace operator on M and(∇A f
)
(X, Y ) = ∇X A f (Y ) − A f (∇XY ), X, Y ∈ X(M).

Lemma 2.3 (Bochner’s Formula) [1,12] Let (M, g) be a compact Riemannian manifold and
f be a smooth function defined on M. Then∫

M

(
(Ric(∇ f,∇ f ) + ∥∥A f

∥∥2 − (� f )2
)

= 0.

3 Characterization of the spheres and Euclidean spaces

Given a conformal vector field ξ on a Riemannian manifold (M, g) with potential function
f , and dual 1-form η we say that ξ is a null conformal vector field if

dη(ξ, X) = 0, X ∈ X(M),

that is, if ξ is a null conformal vector field, then we have ϕ(ξ) = 0. In this section, we study
the geometry of an n-dimensional Riemannian manifold (M, g) that admits a nontrivial
conformal vector field ξ satisfying �ξ = −λξ for a constant λ > 0 as well as the geometry
of Riemannian manifold (M, g) that admits a nontrivial null conformal vector field. If the
conformal vector field ξ satisfies �ξ = −λξ , then using Eq. (2.1), we get

�ξ = ∇ f +
∑

(∇ϕ)(ei , ei ) = −λξ, (3.1)

which in view of Eq. (2.6), gives

Q(ξ) = λξ − (n − 2)∇ f. (3.2)

Now we prove the following result.

Theorem 3.1 An n-dimensional (n ≥ 3) compact and connected Riemannian manifold
(M, g) with scalar curvature S, first nonzero eigenvalue λ1 and Ricci curvatures lying in the
interval [λ, n−1(n − 2)λ1 + λ] for a constant λ > 0 admits a nontrivial conformal vector
field ξ such that the scalar curvature is constant along the integral curves of ξ , satisfying
�ξ = −λξ , if and only if it is isometric to the sphere Sn(λ).
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2140 S. Deshmukh

Proof Suppose (M, g) is an n-dimensional compact connected Riemannian manifold that
admits a nontrivial conformal vector field ξ with potential function f satisfying �ξ = −λξ

and ξ(S) = 0. Then taking the divergence in Eq. (3.2), we get

fS = nλ f − (n − 2)� f,

which gives

� f = − S − nλ

n − 2
f. (3.3)

Integrating by parts the above equation multiplied by f and using the inequality (2.3), we
arrive at

1

n − 2

∫
M

((n − 2)λ1 + nλ − S) f 2 ≤ 0.

Since the Ricci curvatures of M lie in the interval [λ, n−1(n − 2)λ1 + λ], we have S ≤
(n − 2)λ1 + nλ and thus the above inequality gives

f 2((n − 2)λ1 + nλ − S) = 0.

However, on connected M , the choice f = 0 will give that the conformal vector field ξ is
Killing, which is contrary to our assumption that ξ is a nontrivial conformal vector field.
Hence the above equation gives that S = (n − 2)λ1 + nλ = a constant, and Eq. (3.2) gives

� f = −λ1 f and consequently,
∫
M

‖∇ f ‖2 = λ1

∫
M

f 2 (3.4)

Next, on using Eqs. (2.6) and (3.1), we have

div (ϕ(∇ f )) = −g
(
∇ f,

∑
(∇ϕ)(ei , ei )

)
= ‖∇ f ‖2 + λξ( f ),

which on integration together with Lemma 2.1, gives∫
M

‖∇ f ‖2 = nλ

∫
M

f 2.

Comparing the above equation with Eq. (3.4), we get λ1 = nλ and consequently, that the
Ricci curvatures satisfy Ric ≤ (n − 1)λ. Also using Eqs. (2.1) and (3.1), we compute

div(ϕ(ξ)) = −‖ϕ‖2 − g
(
ξ,

∑
(∇ϕ)(ei , ei )

)
= −‖ϕ‖2 + λ ‖ξ‖2 + ξ( f ),

which on integrating and using Lemma 2.1, gives∫
M

‖ϕ‖2 =
∫
M

(
λ ‖ξ‖2 − n f 2

)
. (3.5)

Also, using Eq. (2.1), � f = −λ1 f and the Lemma (2.2), we compute

div
(
A f ξ

) = f � f + g
(
ξ,

∑
(∇A f )(ei , ei )

)
= f � f + Ric(∇ f, ξ) − λ1ξ( f ),

which on integrating by parts gives∫
M

Ric(∇ f, ξ) =
∫
M

(‖∇ f ‖2 − nλ1 f
2) = −n(n − 1)λ

∫
M

f 2, (3.6)
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where we used Eq. (3.4) and λ1 = nλ. Also, we use Eqs. (3.4), (3.5) and Lemma 2.1, to
compute ∫

M

‖∇ f + λξ‖2 =
∫
M

(‖∇ f ‖2 + λ2 ‖ξ‖2 + 2λξ( f )
)

=
∫
M

(
nλ f 2 + λ2 ‖ξ‖2 − 2nλ f 2

) = λ

∫
M

‖ϕ‖2 (3.7)

Finally, using Eqs. (3.6) and (3.7), λ1 = nλ and Lemma 2.3, we have∫
M

(
Ric (∇ f + λξ,∇ f + λξ) − λ ‖∇ f + λξ‖2) =

∫
M

(
(� f )2 − ∥∥A f

∥∥2 − n(n − 1)λ2 f 2
)

=
∫
M

(
1

n
(� f )2 − ∥∥A f

∥∥2) .

Using Ric ≥ λ and the Schwartz inequality
∥∥A f

∥∥2 ≥ 1
n (� f )2, in the above equation, we

conclude the equality
∥∥A f

∥∥2 = 1
n (� f )2 and it holds if and only if

A f = � f

n
I = −λ f I,

where the potential function f is non-constant owing to the fact that ξ is nontrivial conformal
vector field and Eq. (2.2); and the constant λ > 0. Thus, the above equation gives Obata’s
differential equation (cf. [15]) and hence M is isometric to Sn(λ).

The converse is trivial as the unit sphere Sn(λ) admits a nontrivial conformal vector field ξ

induced by a nonzero constant vector field on the Euclidean space Rn that satisfies�ξ = −λξ

(see paragraph before Lemma 2.1) and all the requirements of the statement.
In the rest of this section, we study the impact of the presence of a nontrivial null conformal

vector field ξ on the geometry of a complete connected Riemannian manifold (M, g). Let ξ
be a null conformal vector field on a Riemannian manifold (M, g). Then taking X = Y = ξ

in Eq. (2.5) and using Eq. (2.1), we get

ξ( f )ξ = ‖ξ‖2 ∇ f,

that is, vector fields ∇ f and ξ are parallel. Hence, there exists a smooth function ρ on M
such that

∇ f = ρξ. (3.8)

We call this smooth function ρ associated with a null conformal vector field ξ the connecting
function of the null conformal vector field ξ . The Eq. (3.8) is used in [8] to characterize
ϕ-analytic conformal vector fields. Thus, we see that a null conformal vector field ξ is a
ϕ-analytic vector field.

Finally, we use a null conformal vector field ξ with connecting function ρ to obtain the
following characterization of the Euclidean space (Rn, 〈, 〉) and the sphere Sn(c).
Theorem 3.2 An n-dimensional (n ≥ 3) complete and connected Riemannian manifold
(M, g) with nonnegative scalar curvature S admits a nontrivial null conformal vector field
ξ with connecting function ρ such that the function S + 2(n − 1)ρ is a constant along the
integral curves of ξ , if and only if it is either isometric the Euclidean space (Rn, 〈, 〉) or
isometric to the sphere Sn(λ).
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2142 S. Deshmukh

Proof Let ξ be a nontrivial null conformal vector field on an n-dimensional Riemannianman-
ifold (M, g) with potential function f and the connecting function ρ. Then taking covariant
derivative with respect to X ∈ X(M) in Eq. (3.8) and using Eq. (2.1), we get

A f X = X (ρ)ξ + fρX + ρϕX, X ∈ X(M). (3.9)

Using symmetry and skew symmetry of the operators A f and ϕ, respectively, in the above
equation, we conclude

2ρϕX = η(X)∇ρ − X (ρ)ξ, X ∈ X(M), (3.10)

and
2A f X = η(X)∇ρ + X (ρ)ξ + fρX, X ∈ X(M), (3.11)

where η is smooth 1-form dual to the vector field ξ . Taking squared norm in Eq. (3.10), gives

2ρ2 ‖ϕ‖2 = ‖ξ‖2 ‖∇ρ‖2 − ξ(ρ)2. (3.12)

Also, taking divergence in Eq. (3.8), we get

� f = ξ(ρ) + n fρ. (3.13)

Now, taking squared norm in Eq. (3.11) and using above equation, we arrive at

∥∥A f
∥∥2 − 1

n
(� f )2 = 1

2

(‖ξ‖2 ‖∇ρ‖2) + n − 2

2n
ξ(ρ)2 (3.14)

Taking covariant derivative in Eq. (3.10) and using Eq. (2.1), we get

2X (ρ)ϕY + 2ρ(∇ϕ)(X, Y ) + ρη(∇XY )∇ρ − (∇XY ) (ρ)ξ

= X (η(Y ))∇ρ + η(Y )AρX − XY (ρ)ξ − Y (ρ)( f X + ϕX),

that is,

2X (ρ)ϕY + 2ρ(∇ϕ)(X, Y ) = f g(X, Y )∇ρ + g(ϕX, Y )∇ρ

+ η(Y )AρX − Hρ(X, Y )ξ − f Y (ρ)X − Y (ρ)ϕX.

For a local orthonormal frame {e1, . . . , en}, take X = Y = ei in the above equation and sum,
which in view of Eq. (2.1) gives

3ϕ(∇ρ) − 2ρQξ − 2ρ(n − 1)∇ f = (n − 1) f ∇ρ + Aρξ − (�ρ)ξ.

Taking inner product in above equation with ξ , we get

−2ρRic(ξ, ξ) − 2ρ(n − 1)ξ( f )

= Hρ(ξ, ξ) + (n − 1) f ξ(ρ) − ‖ξ‖2 �ρ. (3.15)

Equation (3.10) with X = ξ gives

‖ξ‖2 ∇ρ = ξ(ρ)ξ,

which, on taking divergence on both sides and using Eq. (2.1), leads to

2g ( f ∇ρ + ϕ∇ρ, ξ) + ‖ξ‖2 �ρ = ξξ(ρ) + n f ξ(ρ).

Since, the Eq. (2.1) with ϕ(ξ) = 0 gives ∇ξ ξ(ρ) = f ξ(ρ); consequently, the above equation
takes the form

2 f ξ(ρ) + ‖ξ‖2 �ρ = Hρ(ξ, ξ) + f ξ(ρ) + n f ξ(ρ),
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that is,
(n − 1) f ξ(ρ) + Hρ(ξ, ξ) − ‖ξ‖2 �ρ = 0.

Using this equation in Eq. (3.15), we arrive at

ρRic(ξ, ξ) = −ρ(n − 1)ξ( f ),

which on using Eq. (3.8), that is, ρξ = ∇ f gives

Ric(∇ f, ξ) = −(n − 1) ‖∇ f ‖2 . (3.16)

Finally, taking divergence on both sides of equation ϕξ = 0 and using Eqs. (2.1) and (2.6),
we arrive at

Ric(ξ, ξ) + (n − 1)ξ( f ) = ‖ϕ‖2 ,

which on multiplying by ρ and using Eq. (3.6) gives

ρ ‖ϕ‖2 = 0,

which on connected M implies either ρ = 0 or ϕ = 0 and we discuss these two cases
separately.

Case (i) If ρ = 0, then Eq. (3.8) confirms that f is a constant. Note that this constant f is
nonzero, for otherwise ξ will be a Killing vector field, which contradicts the assumption that
ξ is a nontrivial conformal vector field. Now define a smooth function h on M by

h = 1

2
‖ξ‖2 ,

which by Eq. (2.1) gives ∇h = f ξ − ϕ(ξ) = f ξ (as ξ is null conformal vector field) and,
consequently,

Ah(X) = f 2X + f ϕ(X), X ∈ X(M).

The above equation gives

Hh(X, X) = cg(X, X), c = f 2 > 0, X ∈ X(M).

Note that the function h is not a constant, for then in view of ∇h = f ξ and constant f �= 0,
will give ξ = 0 contradicting the fact that ξ is a nontrivial conformal vector field. Thus on
polarization, the above equation gives

Hh(X, Y ) = cg(X, Y ), constant c > 0, X, Y ∈ X(M).

Hence, M is isometric to the Euclidean space (Rn, 〈, 〉) (cf. [19,21]).
Case (ii) Assume that ϕ = 0. Then Eqs. (2.6) and (3.8) give

Q(ξ) = −(n − 1)ρξ.

Taking divergence on both sides of this equation and using Eq. (2.7) and div ξ = n f , we get

f S + 1

2
ξ(S) = −(n − 1)ξ(ρ) − n(n − 1)ρ f,

that is,

f (S + n(n − 1)ρ) + 1

2
ξ(S + 2(n − 1)ρ) = 0.
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2144 S. Deshmukh

As S + 2(n − 1)ρ is a constant along the integral curves of the vector field ξ , we have
f (S + n(n − 1)ρ) = 0, and as seen above f �= 0, thus on connected M , we have

S = −n(n − 1)ρ. (3.17)

Thus in view of above equation, we have S + 2(n − 1)ρ = (n − 1)(2 − n)ρ is a constant,
and as n ≥ 3, we conclude ρ is a constant. Using this information in Eqs. (3.13) and (3.14),
we arrive at

� f = nρ f,
∥∥A f

∥∥2 = 1

n
(� f )2 . (3.18)

The constant ρ = 0 is already dealt with in Case (i); therefore, we assume ρ �= 0, and this
in view of the hypothesis and Eq. (3.17) gives ρ < 0 and therefore ρ = −c for positive
constant c. The second equation in Eq. (3.18) is the equality in the Schwartz inequality∥∥A f

∥∥2 ≥ 1
n (� f )2. Hence, A f = � f

n I and consequently in view of the first equation in
Eq. (3.18) gives

H f (X, Y ) = −c f g(X, Y ), X, Y ∈ X(M). (3.19)

Note that if the potential function f is a constant, then Eq. (3.8) gives−cξ = 0 with constant
c �= 0 that leads to a contradiction ξ = 0 as ξ is a nontrivial conformal vector field. Hence
Eq. (3.19) is Obata’s differential equation and therefore M is isometric to Sn(c).

The converse is trivial as the Euclidean space (Rn, 〈, 〉) admits a nontrivial gradient confor-
mal vector field ξ = ψ (ψ position vector field) with potential function f = 1

2 ‖ψ‖2 , ϕ = 0
and is a null conformal vector field with connecting function ρ = 1, which satisfies all
the requirements of the hypothesis (S + 2(n − 1)ρ = 2(n − 1)). Also, the sphere Sn(c)
admits a nontrivial gradient conformal vector field ξ induced by a nonzero constant vector
field Z = ξ + hN on the Euclidean space Rn+1 with potential function f = −√

ch, N
being unit normal vector field to Sn(c). As this vector field ξ is gradient conformal vector
field, we have ϕ = 0, it is nontrivial null conformal vector field with connecting function
ρ = −c. Hence the conformal vector field ξ satisfies all the requirements in the hypothesis
(S + 2(n − 1)ρ = (n − 1)(n + 2)c).

Acknowledgements I express my sincere thanks to the referee for many helpful suggestions.
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