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Abstract We prove a subset of inequalities of Caffarelli–Kohn–Nirenberg type in the hyper-
bolic spaceHN , N ≥ 2, based on invariance with respect to a certain nonlinear scaling group,
and study existence of corresponding minimizers. Earlier results concerning the Moser–
Trudinger inequality are now interpreted in terms of CKN inequalities on the Poincaré disk.
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1 Introduction

In this paper, we study inequalities that define the embedding for the (homogeneous) Sobolev
space H1(HN ) of the hyperbolic space HN , N ≥ 2, into functional spaces of Lebesgue and
Lorentz type, including their radial counterpart, with the radiality understood in terms of
the Poincaré ball model. The space H1(HN ) is defined as the completion of C∞

c (HN ) with
respect to the quadratic form of the Laplace–Beltrami operator onHN (see below for details).
Similar inequalities in the Euclidean case are a subset of the celebrated Caffarelli–Kohn–
Nirenberg (CKN for short) inequalities (see [17], Theorem 4.1, or [10]) and we refer the
reader to the paper of Dolbeault, Esteban and Loss [15] for recent results concerning sharp
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estimates of constants and radiality of minimizers). CKN inequalities are distinguished by
various optimality properties, including scaling invariance.

1.1 Hyperbolic scaling invariance in the two-dimensional case

The case N = 2 of the present paper, once one identifies the space H1
0 (B) of the open unit disk

B ⊂ R
2 as the Sobolev space of the Poincaré disk model of H2, has been already studied in

the paper [3]. The scale-invariant inequalities in [3] provide bounds for appropriate weighted
L p-norms of a function, or its spherical decreasing rearrangement, by the LN -norm of its
gradient on the N -dimensional ball. The inequalities for general values p ≥ N are derived,
without losing scaling invariance, from the corresponding inequalities for p = N and p = ∞
by means of Hölder inequality. For the case N = 2, which is considered in the present paper,
we have the Leray inequality ([18]) for the case p = 2 and the pointwise estimate for radial
functions (which also implies the Trudinger inequality for general functions) for the case
p = ∞. Leray inequality

∫
B

|∇u|2dx ≥ 1

4

∫
B

u2

r2 log
( 1
r

)2 dx (1)

is a two-dimensional counterpart of the Hardy inequality on RN , N ≥ 3

Q(u) =
∫
RN

|∇u|2dx −
(
N − 2

2

)2 ∫
RN

u2

r2
dx ≥ 0, (2)

and, understood as an inequality on the Poincaré disk, has the following invariant form on
H

2: ∫
H2

|∇Hu|2dVH ≥ 1

16

∫
H2

u2

r2
(1 − r2)2

log
( 1
r

)2 dVH. (3)

For p = ∞, there is a well-known pointwise estimate for radial functions

sup
0<r<1

2πu2(r)

log
( 1
r

) ≤
∫
B

|∇u|2dx =
∫
H2

|∇Hu|2dVH, (4)

which is a counterpart of the Strauss estimate [26] for radial functions on RN , N ≥ 2:

sup
0<r<1

r N−2u(r)2 ≤ CN

∫
RN

|∇u|2dx . (5)

1.2 Nonlinear scalings for Laplace–Beltrami operators by levels of fundamental
solution

Similarly to the original CKN inequalities, which are invariant (up to a normalization factor)
with respect to linear scalings {u(x) �→ u(t x)}t>0, their counterparts in [3], in restriction to
radial functions, are invariant up to normalization with respect to nonlinear scalings {u(r) �→
u(rs)}s>0. In this paper, we show that this transformation is a particular case of the scaling
transformation r �→ G−1(λG(r)) where G(r) is the radial fundamental solution (which can
be obviously taken here up to an arbitrary scalar multiple) of the Poisson equation for the
hyperbolic Laplace–Beltrami operator. In particular,G(r) = log 1

r for theDirichlet Laplacian
on the unit disk, and thus, in the Poincaré disk coordinates, also for the Laplace–Beltrami
operator onH2. The fundamental solution G(r) = 1

r N−2 plays a similar role in the Euclidean
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case for N ≥ 3: with this choice of G the formula r �→ G−1(λG(r)) means multiplication
of r by a power of λ.

The role of fundamental solution in the scaling invariance and furthermore, the role of its
square root as a generalized ground state, which we discuss below, is partly motivated by the
paper of Adimurthi and Sekar [1].

1.3 Square root of fundamental solution as a ground state: case p = 2

It is well known that the Hardy inequality (2) has no minimizer, but any sequence (un), that
minimizes the quadratic form Q(u) in (2) under a constraint

∫
K u = 1, where K ⊂ R

N \ {0}
is an open relatively compact set, converges in H1

loc(R
N \ {0}) to the unique (up to a constant

multiple) positive solution
√
G(r), with G(r) = 1

r N−2 , of the corresponding Euler–Lagrange
equation, called the generalized ground state, or virtual bound state. By the ground state
alternative of [22], Theorem 1.5 (see also [23], Theorem 1.6), existence of the virtual bound
state implies that there is no nonzero nonnegative measurable function W such that Q(u) ≥∫
Wu2, i.e., the Hardy potential is optimal. A general result in [14] states that, under general

conditions on the elliptic operator, the square root of the positive minimal Green function
is always a generalized ground state. For the sake of consistency of the paper, instead of
applying definitions and quoting the exact statement from [14], we give a short direct proof
that

√
G is a generalized ground state in our case. This not only provides the best constant

in the hyperbolic counterpart of the Hardy inequality, but also assures that the potential in it
cannot be improved.

1.4 Non-radial case with p ∈ (2, 2N
N−2 ]

Let the critical Sobolev exponent be denoted as

2∗ =
{

2N
N−2 , N ≥ 3,

∞ N = 2.

Since there is no embedding of H1
0,loc(B \{0}) into L p

loc(B \{0})when N ≥ 3 and p > 2∗, or
when N = 2 and p = ∞, hyperbolic counterparts of general (non-radial) CKN inequalities
have to account for this limitation. In particular, when N = 2, we have a critical (p = ∞)
embedding in the form

sup
0<r<1

2πu#(r)2

log
( 1
r

) ≤
∫
H2

|∇Hu|2dVH, (6)

where u# is the Schwarz (spherical decreasing) rearrangement of u, relative to the Lebesgue
measure on B, derived from (4) and the Polia–Szegö inequality (since the latter holds also
with respect to rearrangements relative to the Riemannianmeasure onH2 ([6]), inequality (6)
holds also when the rearrangement u# is defined relative to that measure). Note that the left-

hand side is stronger than sup0<r<1
u#(r)√
log e

r

, which is a quasinorm on the standard Zygmund

scale, and is known (see, e.g., [7]) to be equivalent to the Orlicz norm of the functional of
critical growth

∫
B eau

2
dx for the Sobolev space H1

0 (B).
When N ≥ 3 and p ∈ [2, 2∗], embeddings of the space Ḣ1(RN ) (the completion of

C∞
c (RN ) in the norm ‖∇ · ‖2) into weighted L p-spaces in the non-radial case of CKN

inequalities follow from those in the radial case by means of standard rearrangement argu-
ment, namely the Polia–Szegö inequality and the Hardy–Littlewood inequality. The latter,
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however, applies only when the weight in the Lebesgue integral is non-increasing, which is
the case only if p ≤ 2∗. Following the similar approach in the hyperbolic case, we do not have
the decresing weight, but instead, for N ≥ 3, p ∈ [2, 2∗], instead of embeddings of H1(HN )

into weighted L p-spaces, at embeddings into certain rearrangement-invariant quasi-Banach
spaces, which we then identify as intersections of Lorentz spaces L2,p(HN ) ∩ L2∗,p(HN )

(in the case N = 2 we have an intersection of spaces of Zygmund–Lorentz type). These
intersections are strictly smaller than L p , and thus these embeddings refine the embedding
of H1(HN ) into L p(HN ) from [19] (Note that in the Euclidean case there are no embeddings
Ḣ1(RN ) ↪→ L p(RN ) for p �= 2∗.)

Scale-invariant inequalities of the present paper follow several other previously established
inequalities of Sobolev type on the hyperbolic space. In particular, we would like to mention
the Poincaré-Sobolev inequality of Mancini and Sandeep ([19], (1.2), which, as they have
shown, by writing it in the half-space coordinates, follows from the Sobolev–Hardy–Mazy’a
inequality, which is in turn equivalent to a subset of the original CKN inequalities by means
of the ground state transform, also known as Picone identity); as well as related inequalities
in [8] and [9]. Inequalities with weight play an important role in the study of Hénon-type
equations in hyperbolic space, and a few such embeddings have been developed in [11] and
[16]. The scale-invariant inequalities that we prove are significantly sharper than some of
those found in literature. In particular, (30) is stronger than (1.1) in [19], while the weight
in the embedding in [11], Lemma 2, case α = 0, which uses hyperbolic distance from the
origin d(x) = log 1+r

1−r , behaves as a positive power of r at the origin and as a negative power
of | log(1 − r)| at r = 1, while the weight (12) in our embeddings (31) and (26) has the
power singularity both at the origin and at r = 1, see (19)–(20).

The paper is organized as follows. In Sect. 2 we recall definitions related to the hyperbolic
space. In Sect. 3 state the main results. In Sect. 4 we prove the inequalities of CKN type. In
Sect. 5we prove existence ofminimizers in the hyperbolic CKN inequalities and study related
compactness issues. A refined analysis of concentration compactness phenomena, in the form
of profile decomposition, is given for sequences of radial functions. In Appendix, we provide
cross-references between the results of this paper and the results in [3] for the case N = 2,
one of them being representation of the Moser–Trudinger inequality as a two-dimensional
case of the Sobolev embedding for the hyperbolic space.

2 Preliminaries

2.1 Poincaré ball

Poincaré ball model (coordinate map) of the hyperbolic space HN , N ≥ 2, is the unit ball B
in R

N centered at the origin and equipped with the metric

ds2 = 4
∑N

i=1 dx
2
i

(1 − r2)2
.

Here and in what follows the notation r refers to
√∑N

i=1 x
2
i , the Euclidean distance of a

point x ∈ B from the origin.
The Riemannian measure and the Laplace–Beltrami operators in the Poincaré ball model

are, respectively,
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dVH = 2N

(1 − r2)N
dx, (7)

and ∫
HN

|∇Hu|2dVH =
∫
B

|∇u|2 2N−2dx

(1 − r2)N−2 , (8)

where ∇H =
(

(1−r2)
2

)2 ∇ and |∇Hu|2 = 〈∇Hu,∇Hu〉 where 〈, 〉 denotes the inner product
given by the metric.

Notation ‖u‖p will refer to the L p(HN , dVH)-norms. Norms with weight W relative to
the measure on H

N for the spaces L p(HN ,WdVH), 1 ≤ p < ∞, be denoted as ‖u‖p,W .
Reference to the weight W when W = 1 will be omitted from notation in some instances.
Notation ‖u‖∞,W will refer to the supremum norm for the product |u(x)W (x)|, and the
corresponding space will be denoted as L∞(HN ,W ).

The Sobolev space H1(HN ) is defined as a completion of C∞
c in the norm defined by

the quadratic form above. By H1
r (HN ) we will denote the subspace of radially symmetric

functions of H1(HN ) (which is the same as functions in H
N which are radial with respect

to the hyperbolic distance from 0.). We will denote u ∈ H1
r (HN ) by its radial representative

u : [0, 1) → R.

We will denote by ωN−1 the surface measure of the unit sphere SN−1 ⊂ R
N .

2.2 Scaling by fundamental solution

Let f (r) = (1−r2)N−2

r N−1 and let G(r) = ∫ 1
r f (t)dt . It is known that 1

NωN−1
G is a fundamental

solution of the hyperbolic Laplacian (see, e.g., [25], Section 3.2). Given that r �→ G(r) is a
monotone function and the range ofG onHN is (0,∞)we define the followingmultiplicative
transformation group on H1

r (HN ) by means of the change of radial variable in the Poincaré
ball coordinates:

ρt (r) = G−1(tG(r)), r ∈ (0, 1), t > 0. (9)

The radialmap (9) is an analog of the linear scaling inRN , N ≥ 3, ρt (r) = λr, λ = t−
1

N−2 ,
which has the same form as (9) once one substitutes for G the fundamental solution C(N )

r N−2 of

the Laplace operator in RN . Action of the linear scaling on functions on RN , under suitable
normalizations, preserves the right- and the left-hand sides in the original CKN inequalities
including the quadratic form of the Laplace operator. Transformation (9) similarly preserves
the quadratic form of the Laplace–Beltrami operator, if only in restriction to radial functions,
and, furthermore, one can show by elementary computations based on change of variable
under the integral that every radial diffeomorphism with this property is necessarily of the
form (9).

When N = 2, the Laplace operator does not have a positive fundamental solution on the
whole on R

2, but the same construction on the unit disk B, using the fundamental solution
G(r) = 1

2π log 1
r , defines an automorphism ρt (r) = r t of B, whose action preserves, up to a

normalization factor, the quadratic form of the Laplacian on B evaluated on radial functions
(see [2,3]). There also exists a family of maps, which we write in the notation of a complex
variable as z �→ zm,m ∈ N, whose action preserves, up to normalization, the quadratic form
of the Laplacian on B for general functions as well (see [5]). This case is appended to the
present paper, via the Poincaré ball model, as the case of H2.

Indeed, for general N , we also have
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Proposition 2.1 The family of operators

D =
{
gt : gtu(r) := t−

1
2 u(ρt (r)) = t−

1
2 u(G−1(tG(r))), t > 0

}
(10)

forms a multiplicative group of isometries on H1
r (HN ).

Proof The multiplicative property of the group is obvious. In order to prove that (10) defines
an isometry, first consider a general change of the radial variable in the integral

∫ 1
0 u2r

dr
f (r)

appearing in the expression of the norm in (8) when u is radial. Let ρ be a general increasing
C1-function that maps [0, 1] bijectively onto itself, then changing the variable as r = ρ(t)
and v(t) = u(r) we get

∫ 1

0
u2r

dr

f (r)
=

∫ 1

0

v2t

ρ′(t)2
ρ′(t)
f (ρ(t))

dt =
∫ 1

0

[
f (t)

ρ′(t) f (ρ(t))

]
v2t

dt

f (t)
. (11)

Since the ”test weight” u′2 is arbitrary, the right-hand side is a positive multiple of
∫ 1
0 u2r

dr
f (r)

if and only if f (t)
ρ′(t) f (ρ(t)) is a positive constant, i.e., dG(ρ(r))

dr = λ
dG(r)
dr for some λ > 0.

Given that ρ(1) = 1 and G(1) = 0, this is equivalent to G(ρ(r)) = λG(r). Since G is
a diffeomorphism between (0, 1) and (0,∞), this defines the function ρ as in (9) with the
required isometric property, and, by necessity, it is the only radial function with this property.

��

Proposition 2.2 Let N ≥ 2 and let

Vp(r) = f (r)2(1 − r2)2

G(r)
p+2
2

for p ∈ [1,∞), V∞(r) = 1√
G(r)

. (12)

Then (10) is an isometry also in L p(HN ; VpdVH), p ∈ [1,∞].

Proof Similarly to the proof of Proposition 2.1, we will use the change of variable (this time
already fixed as (9)) in order to derive the weight Vp as a unique one (up to a multiple) for

which
∫ 1
0 |u(r)|pVp(r)

dr
f (r) is invariant with respect to (10). Consider first p < ∞. Taking

into account that, as in the proof of Proposition 2.1, G(ρt (r)) = tG(r) and, consequently,
f (ρt (r))ρ′

t (r) = t f (r), we have, omitting the subscript t ,

∫ 1

0
t−

p
2 |u|pVp(ρ)

dρ

f (ρ)
=

∫ 1

0
t−

p
2 |u|pVp(ρ)

ρ′(r)dr
f (ρ)

=
∫ 1

0
t−

p
2 |u|pVp(ρ)

t f (r)dr

f (ρ)
.

(13)

It remains to substitute t = G(ρ)/G(r) and equate the integrands as in the proof of Propo-
sition 2.1 to arrive, after elementary computations, at an expression for Vp(ρ)/Vp(r) that
gives (12) up to a constant.

If p = ∞, we have

sup
ρ<1

|u(ρ)|√
G(ρ)

= |u(ρ)|√
tG(r)

= sup
r<1

|t−1/2u(ρ(r))|√
G(r)

.

��

The following statement also follows by direct computation.
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Let us give some exact and some asymptotic values for G and Vp .

G(r) = log
1

r
for N = 2, (14)

G(r) = (1 − r)2

r
for N = 3, (15)

G(r) = C(N )

r N−2 (1 + or→0(1)) for N ≥ 3, (16)

G(r) = C(N )(1 − r)N−1(1 + or→1(1)) for N ≥ 3. (17)

Vp(r) = (1 − r2)2

r2(log 1
r )

p+2
2

for N = 2, 1 < p < ∞, (18)

Vp(r) = C(N , p)

r N (1−p/2∗) (1 + or→0(1)) for N ≥ 3, 1 < p < ∞, (19)

Vp(r) = C(N , p)

(1 − r)
(N−1)(p−2)

2

(1 + or→1(1)) for N ≥ 3, 1 < p < ∞. (20)

2.3 Lorentz spaces involved in the estimates

Lorentz spaces L p,q for ameasure space, and in the present paper for (HN , dVH), are complete
linear quasinormed vector spaces of measurable functions such that

‖u‖p,q =
⎛
⎝

∞∫

0

(
t1/pu∗(t)

)q dt

t

⎞
⎠

1/q

, q < ∞. (21)

where u∗ : [0,∞) → [0,∞ is the symmetric decreasing rearrangement of u. We recall that
L p,p coincides with the Lebesgue space L p .
We define the Schwarz rearrangement of a measurable function u : H

N → R, denoted
u# : HN → [0,∞), as the radial function given, in the Poincaré ball coordinates by

u#(x) = u∗(VH(B|x |)), (22)

where VH is the Riemannian measure in the hyperbolic metric, an B|x | is a Euclidean ball in
the Poincaré ball coordinates, of Euclidean radius |x |, centered at the origin.

Theorem 2.3 The set of all measurable functions satisfying

‖u#‖q,Vq < ∞, q ∈ (1,∞), (23)

is a linear space with ‖u#‖q,Vq as a quasinorm. Furthermore, if N ≥ 3 and 2 ≤ q ≤ 2∗,
then this space coincides with the intersection of Lorentz spaces L2,q(HN ) ∩ L2∗,q(HN ),
and quasinorm (23) is equivalent to the intersection quasinorm ‖ · ‖2,q +‖ · ‖2∗,q . Moreover,
L2,q(HN ) ∩ L2∗,q(HN ) ↪→ Lq(HN ).

Proof 1. Let us prove first that (23) defines a quasinorm, that is, there is a constant C such
that for every measurable functions u and v one has

‖(u + v)#‖q,Vq ≤ C
(‖u#‖q,Vq + ‖v#‖q,Vq

)
. (24)

The argument is similar to the classical one for Lorentz spaces. We may assume that the
right-hand side is finite, since otherwise this is tautologically true. First observe that by a
simple change of variable
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‖(u + v)#‖q,Vq =
⎛
⎝

∞∫

0

(u + v)∗(t)q V̂q(t)dt

⎞
⎠

1/q

where V̂q is given by V̂q(t)|t=VH(Br ) := Vq(r). By the well-known inequality for rearrange-
ments of functions on a measure space, we have (u + v)∗(t) ≤ u∗( t2 ) + v∗( t2 ). Using this
inequality, (24) follows from elementary estimations and a change of variable once we have
the following doubling property for V̂q : There exists a constant C > 0 such that

V̂q(t) ≤ CV̂q(t/2), t > 0. (25)

Note that the function V̂q is positive and continuous, so that the quotient V̂q (t)

V̂q (t/2)
is bounded

on every compact subset of (0,∞) (by a constant possibly dependent on the subset). Thus,
in order to prove that this quotient is uniformly bounded, it suffices to consider asymptotics
of V̂q at zero and at infinity. For the sake of brevity, we use the notation f ∼ g near a given
point whenever f/g has a positive limit at that point. Omitting multiplicative constants, we
have t = VH(Br ) ∼ r N at zero and t ∼ (1 − r)1−N at infinity, so that r ∼ t1/N near zero

and 1 − r ∼ t−
1

N−1 near infinity. Assume first that N ≥ 3. From (19) we have V̂q(t) ∼
r−N (1−q/2∗) ∼ t−(1−q/2∗) near zero. From (20) we have V̂q(t) ∼ (1− r)−

(N−1)(q−2)
2 ∼ t

(q−2)
2

near infinity. Both expressions satisfy doubling property (25). If N = 2, we have by (18)

V̂q(t) = (1−r2)2

r2(log 1
r )

q+2
2

. This gives us V̂q(t) ∼ 1

t (log |t |) q+2
2

near zero and V̂q(t) ∼ 1

t2(log t)
q+2
2

near infinity. Since the function 1/ log |t | easily verifies doubling property (25), so does V̂q(t).
We conclude that (23) defines a quasinorm, from which it is immediate that condition (23)
defines a linear space.

2. Calculations in the previous step for N ≥ 3 give that V̂q(t) ∼ tq/2∗−1 at zero and
is V̂q(t) ∼ tq/2−1 at infinity. The exponents in the asymptotics are the same as in the
weights for the Lorentz spaces L2∗,q and L2,q , respectively. When 2 ≤ q ≤ 2∗, the quantity
tq/2∗−1 dominates tq/2−1 at zero, while tq/2−1 dominates tq/2∗−1 at infinity, and therefore
C1(tq/2∗−1 + tq/2−1) ≤ V̂q(t) ≤ C2(tq/2∗−1 + tq/2−1). This proves the second assertion of
the theorem.

3. The last assertion of the theorem follows from the fact that the weight t
2
q −1 + t

2∗
q −1 is

bounded away from zero for 2 < q < 2∗, which implies that the Lq -norm is bounded by the
quasinorm of L2,q ∩ L2∗,q . ��

Remark 2.4 When N = 2, an argument similar to the step 2 of the proof above shows the
space defined by the quasinorm ‖ · ‖q,Vq , 2 ≤ q ≤ ∞, is an intersection of two spaces of
Lorentz–Zygmund type. For the sake of brevity, we will denote this space as Lq(H2). When

q = ∞ these spaces coincide and the quasinorm of L∞(H2) is sup0<r<1
u#(r)√
log 1

r

.

3 Main results

Themain results of this paper are the inequalities below.They all useweightsVp, 2 ≤ p ≤ ∞,
defined in (12).
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Theorem 3.1 Let N ≥ 2. For all p ∈ [2,∞] there exists a constant c(N , p) > 0, such that
for and every u ∈ H1(HN ),∫

HN
|∇Hu|2dVH ≥ c(N , p)‖u#‖2p,Vp

. (26)

Moreover, for N ≥ 3 and p ∈ [2, 2∗], inequality (26) is equivalent to an embedding into the
intersection of Lorentz spaces

H1(HN ) ↪→ L2,p(HN ) ∩ L2∗,p(HN ) (27)

Remark 3.2 From (27) follows the embedding of Mancini and Sandeep in [19]

H1(HN ) ↪→ L p(HN ), 2 ≤ p ≤ 2∗. (28)

Furthermore, since Lorentz spaces are monotone increasing with respect to the second index,
(27) is in fact equivalent to its case for p = 2, namely

H1(HN ) ↪→ L2(HN ) ∩ L2∗,2(HN ). (29)

Remark 3.3 To illustrate optimality of the inequality (26), consider its restriction to H1
r (HN ).

If V (r) is a continuous function and V (r)
Vp(r)

→ +∞ when r → 0 or r → 1, then the
inequality (26) with Vp replaced by V will be false. Indeed, one can fix any nonzero function
w ∈ H1

r (HN ) and, by changing the radial variable under the integral defining the L p−norm,
easily find that supt>0 ‖gtw‖p,V = ∞.

Theorem 3.4 For every u ∈ H1(HN ),∫
HN

|∇Hu|2dVH ≥ 1

16

∫
HN

|u|2V2dVH, (30)

and there is no other measurable function W ≥ V2 for which this inequality could hold with
W instead of V2.

Note that for N = 2 this is the classical Leray inequality, [18].

Remark 3.5 From inequality (30), one can infer the value (N−1)2

4 for the bottom of the
spectrum for the hyperbolic Laplace–Beltrami operator, (1.1) in [19]. Indeed, leaving details
to the reader, one verifies first that V2 is a decreasing function of r , so that V2(r) ≥ V2(1).

From the definition of G we have G(r) = 2N−2(1−r)N−1

N−1 (1 + or→1(1)), and thus

V2(r) =
(
2 f (r)(1 − r)

G(r)

)2

(1 + or→1(1)) = (2(N − 1))2 (1 + or→1(1)),

which implies V2(r)
16 ≥ (N−1)2

4 .

Theorem 3.6 For N ≥ 2, p ∈ [2,∞], there exists a constant cr (N , p) > 0, such that for
every u ∈ H1

r (HN ), ∫
HN

|∇Hu|2dVH ≥ cr (N , p)‖u‖2p,Vp
. (31)

The constants cr (N , 2) = 1
16 and cr (N ,∞) = 2N−2ωN−1 are exact, and cr (N , p) ≤

cr (N , 2)cr (N ,∞)p−2, 2 < p < ∞.
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The case p = ∞ has been already proved by Hasegawa ([16], formula (A.3), Lemma
A.1.)

We have the following result concerning minimizers of the above inequality.

Theorem 3.7 Let N ≥ 2. If p ∈ (2,∞], then the minimum in

cr (N , p) = inf
u∈H1

r (HN ),‖u‖p,Vp=1
‖∇Hu‖22. (32)

is attained. Furthermore, for any minimizing sequence (un), there exists a renamed subse-
quence and sequence (tn) such that (gtn un) converges to a minimizer. When p = ∞, the
minimizer is unique up to the sign and the action of the group (10), and equals

ψN (r) =
{
1, 0 ≤ r ≤ r1,

G(r), r1 ≤ r ≤ 1,
(33)

where r1 = G−1(1).

Note that the function (33) is a generalization of the test function used by Moser [21] in
the case N = 2.

Our further results include Theorem 5.1 on cocompactness of embeddings of H1
r (HN )

relative to the group (10), Theorem 5.3 on structure of unbounded sequences in H1
r (HN ),

Theorem 5.4 on compactness of embeddings of the inhomogeneous counterpart of H1
r (HN )

into L p-spaces, and an elementary Theorem 5.5 on compactness of embeddings in presence
of ”sub-Hardy” potentials.

4 Proofs of the inequalities

Let us look in more detail at the weight V2(r) =
(

f (r)(1−r2)
G(r)

)2
for N ≥ 3. At r = 1 the

value of V2 is finite and positive, and near zero V2(r) = (N−2)2

r2
(1+ or→0(1)). In particular,

V2(r) =
(

(1+r)2

r

)2
for N = 3. In other words, the weight 1

16V2 that appears in the theorem

below is qualitatively similar to the weight (N−2)2

4r2
from the usual radial Hardy inequality in

R
N . We are going to use the following well-known identity (see, e.g., [13]).

Lemma 4.1 (Ground state transform). Let 	 be a domain in RN and let V be a continuous
function on 	. Let A(x), x ∈ 	, be a symmetric real-valued positive matrix with continuous
coefficients. If v ∈ C2(	) is a positive solution of the equation (understood in the sense of
weak derivatives) −∇ · A(x)∇v(x) = V (x)v(x), x ∈ 	, then the following identity holds
for any u ∈ C∞

c (	): ∫
	

(
A(x)∇u(x) · ∇u(x) − V (x)|u(x)|2) dx

=
∫

	

v2A(x)∇
(
u(x)

v(x)

)
· ∇

(
u(x)

v(x)

)
dx . (34)

Proof of Theorem 3.4. Direct calculation of−
H

√
G(r) shows that v(r) = √

G(r) satisfies
the Euler–Lagrange equation for the functional

Q(u) :=
∫
HN

|∇Hu|2dVH − 1

16

∫
HN

V2|u|2dVH. (35)
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Since v > 0, we can represent (35) by means of (34) in the form

Q(u) =
∫
HN

v2
∣∣∣∇H

(u
v

)∣∣∣2 dVH ≥ 0. (36)

The remaining assertion of the theorem follows from Theorem 1.4 of [22]. Indeed, Theo-
rem 1.4 of [22] states, among the rest, that if the quadratic form as in (34) (in particular
our form (35)) has a null sequence (Definition 1.1, [22]), it admits no spectral gap. Absence
of spectral gap (Definition 1.2, [22]) is exactly the second assertion of our theorem. A null
sequence is a sequence (vn)which converges to a positive solution v of Q′(v) = 0 uniformly
on compact subsets, and satisfies Q(vn) → 0. Thus it suffices to construct a null sequence.
Let, r1 = G−1(1), and let

εn(r) =
{

− 1
2n for r ≤ r1,

1
2n for r ≥ r1,

n ∈ N.

Define now

vn(r) = v(r)1+2εn(r). (37)

Note that v(r1) = 1 and therefore the functions vn are Lipschitz continuous at r1 and smooth
elsewhere, so that vn ∈ H1

loc(H
N ). Then

Q(vn) = ωN−1

∫ 1

0
G(r)

∣∣∣∂r vn

v

∣∣∣2 dr

f (r)

= ωN−1

∫ 1

0
G(r)|∂rG(r)εn(r)|2 dr

f (r)

=
∫ 1

0
εn(r)

2 f (r)

G(r)1+2εn(r)
dr

= − 1

n2

∫ 1

0

1

2εn(r)
∂rG(r)−2εn(r)dr

= 1

n

∫ r1

0
∂r [G(r)1/n]dr − 1

n

∫ 1

r1
∂r [G(r)−1/n]dr

= 1

n
G(r)1/n |r10 − 1

n
G(r)−1/n |1r1 = 2G(r1)

n
= 2

n
→ 0.

At the last step of calculation we use the asymptotic values of G at 0 and 1 provided at the
end of Sect. 2.2 that yield G(r)−2εn(r) → 0 as r → 0 or r → 1. ��
Proof of Theorem 3.6. Let us first prove (31) for the case p = ∞, that is,

|u(r)|√
G(r)

≤ 1√
ωN−1

‖∇Hu‖2, u ∈ H1
r (HN ). (38)

We include this proof only for the sake of consistency, as an essentially the same argument
is found in the proof of Lemma A1, [16]. Using Cauchy–Schwarz inequality we have

u(r) =
∫ r

1
u′(s)ds ≤

∫ r

1

u′(s)√
f (s)

√
f (s)ds (39)

≤
(∫ 1

0

u′(s)2

f (s)
ds

) 1
2
(∫ 1

r
f (s)ds

) 1
2

≤ 1√
2N−2ωN−1

‖∇Hu‖2
√
G(r), (40)
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which verifies (38). Inequality (31) for p ∈ (2,∞), including the asserted estimate for
cr (N , p), follows now immediately from application of Hölder inequality to (35) and (38).

The exact constant cr (N , 2) is realized on the normalized sequence vn from (37). An easy
computation shows that ‖∇Hvn‖2 → ∞ and thus Q(wn) → 0 where wn = vn/‖∇Hvn‖2.
This immediately implies that 1

16

∫
HN |wn |2V2dVH = ‖∇Hvn‖22 − Q(wn) → 1.

The exact constant cr (N ,∞) is realized on the Lipschitz continuous function (33). Indeed,

‖∇HψN‖22 = ωN−12
N−2

∫ 1

r1
|G ′(r)|2 dr

f (r)

= ωN−12
N−2

∫ 1

r1
f (r)dr = ωN−12

N−2G(r1) = ωN−12
N−2.

At the same time ψN (r1)2/G(r1) = 1, which proves that the constant cr (N ,∞) is exact. ��
Proof of Theorem 3.1. Inequality (26) follows from (31) oncewe take into account the Polya-
Szegö inequality for rearrangements in the hyperbolic space, ‖∇Hu#‖2 ≤ ‖∇Hu‖2 (see [6]).
Embedding of H1(HN ) into L2,p ∩ L2∗,p follows from Theorem 2.3. ��

5 Cocompactness, profile decomposition, and minimizers

In this section we follow the framework of [3] (which, implicitly, studied the case N = 2 of
the present paper).

We recall that an embeddingof aHilbert spaceH into aBanach spaceY is called cocompact
relative to a group of unitary operators D if any sequence (un) ⊂ H D-weakly convergent
to zero (i.e., is such that for any (gn) ⊂ D, gnun ⇀ 0), converges in the norm of Y .

Embeddings of H1
r (HN ) defined by (31) are cocompact relative to the following discrete

subgroup of the group (10):

D0 =
{
g j ∈ D : j ∈ 2Z

}
. (41)

Theorem 5.1 Let N ≥ 2. For any p ∈ (2,∞], the embedding H1
r (HN ) ↪→ L p(HN ; VpdVH)

is cocompact relative to the group D0.

The argument is an elementary generalization of the proof for the case N = 2 in [3],
Lemma 3.3, Lemma 3.4 and their interpretation in Remark 3.5. The main step in the proof
of the theorem is the case p = ∞ which is a trivial generalization of [3], Lemmas 3.3.

Proposition 5.2 The embedding H1
r (HN ) ↪→ L∞(HN , V∞) is cocompact relative to the

group (10).

Proof Let (un) ⊂ H1
r (HN ) such that for any sequence (tn) of positive numbers, gtn un ⇀ 0.

Let us fix the sequence (sn) such that

|un(sn)|√
G(sn)

≥ 1

2
sup

0<r<1

|un(r)|√
G(r)

.

Note that, setting r1 = G−1(1), we can write the left-hand side of the expression above as
|gtn un(r1)| where tn = G(sn). Since gtn un ⇀ 0, gtn un(r1) → 0 by local compactness of
Sobolev embeddings in dimension 1, and the proposition follows. ��

We can now prove Theorem 5.1.
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Proof Let (un) ⊂ H1
r (HN ) such that for any sequence of numbers jn ∈ 2Z, g jn un ⇀ 0.

Since for any sequence (tn) of positive numbers there exist jn ∈ 2Z such that 1 ≤ tn/jn ≤ 2,
we have that gtn un ⇀ 0 for any (tn). Indeed, assume the contrary, namely that on a renamed
subsequence gtn un ⇀ w �= 0. Extracting a further subsequence such that tn/jn → a ∈
[1, 2], taking into account that a multiplicative group of isometries on Hilbert space satisfies
g∗
s = g−1

s = g1/s , and using the general notation of scalar product for the one of H1
r (HN ),

we have

|(gtn un, w)| = |(gtn/jn g jn un, w)| = |(g jn un, g jn/tnw)|
≤ |(g jn un, g jn/tnw − g1/aw)| + |(g jn un, g1/aw)|
≤ |‖∇Hun‖2‖∇H(g jn/tn − g1/a)w‖2 + |(g jn un, g1/aw)| → 0,

while the left-hand side converges to ‖∇Hw‖22 �= 0, a contradiction.
Consequently,

‖un‖p
p,Vp

≤ ‖un‖22,V2‖un‖p−2
∞,V∞ ≤ C‖∇Hun‖22‖un‖p−2

∞,V∞ → 0

by Proposition 5.2. ��
As a consequence of Theorem 5.1, we have the following structural result for general

bounded sequences in H1
r (HN ).

Theorem 5.3 Let uk ⇀ 0 in H1
r (HN ), N ≥ 2. There exist sequences ( j (n)

k )k∈N ⊂ 2Z, n ∈
N, such that for a renumbered subsequence of (uk),

g
1/j (n)

k
uk ⇀ w(n), (42)

∣∣∣log2 j (m)
k − log2 j (n)

k

∣∣∣ → ∞ for n �= m, (43)

∑
n∈N

∫
HN

|∇Hw(n)|2dVH ≤ lim sup
∫
HN

|∇Huk |2dVH, (44)

uk −
∑
n∈N

g
j (n)
k

w(n) → 0 in L p(HN , VpdVH), p ∈ (2,∞], (45)

and the series
∑

n∈N g
j (n)
k

w(n) converges in H1(HN ) unconditionally and uniformly in k.

Proof This theorem is just a particular case of the theorem on profile decompositions in
general Hilbert space, Theorem 3.1 in [27], for H1(HN ) equipped with the group D (the
unconditional convergence has been explicitly stated only later, in a more general result,
Theorem 5.5 (see Definition 2.5) in [24]). For more details about application of the general
theorem to the group D, we refer the reader to [3]. ��

We can now prove Theorem 3.7.

Proof 1. Let (un) be a minimizing sequence for (32), that is, ‖un‖p,Vp = 1 and ‖∇Hun‖22 →
cr (p). Since both norms in (32) are D-invariant, for any sequence jn ∈ 2Z, (g jn un) is also
a minimizing sequence. Without loss of generality, we may assume that (un) has a weak
limit u �= 0. Indeed, if (g jn un) ⇀ 0 for any jn ∈ 2Z, then by Theorem 5.1 un → 0 in
L p(HN , VpdVH), which is a contradiction. We may then pass to a subsequence of (g jn un)
that has a nonzero weak limit and rename it as un .
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2. Assume now that p < ∞. Let vn = un − u. By Brezis-Lieb Lemma and by the well-
known elementary relation for square norms in theHilbert space,‖un‖2−‖u‖2−‖un−u‖2 →
0, we have (applying in the second relation the definition (32) of cr (N , p)):

‖u‖p
p,Vp

+ ‖vn‖p
p,Vp

→ ‖un‖p
p,Vp

= 1,

‖u‖2p,Vp
+ ‖vn‖2p,Vp

≤ 1

cr (N , p)
‖∇Hu‖22 + 1

cr (N , p)
‖∇Hvn‖22

= 1

cr (N , p)
‖∇Hun‖22 + o(1) → 1.

Given that p > 2 and u �= 0, two relations above can hold simultaneously only if vn → 0
in L p(HN , VpdVH) or if u = 0 (which is ruled out on the step 1). Then ‖u‖p,Vp = 1 and by
weak lower semicontinuity ‖∇Hu‖2 ≤ cr (N , p) and thus, necessarily, ‖∇Hu‖2 = cr (N , p).
Consequently, u is a minimizer. Furthermore, by weak convergence and convergence of the
norm, we have un → u in H1

r (HN ).
3. Finally, let p = ∞. Let (un)n∈N be a minimizing sequence for (38), namely such

that ‖∇Hun‖22 → cr (N ,∞), |[gtun](r1)| ≤ 1 for all t > 0 and there is a sequence (tn)n∈N
of positive numbers such that [gtn un](r1) → 1. Let wn = gtn un/[gtn un](r1). Then we
have ‖∇Hwn‖22 → cr (N ,∞), |[gtwn](r1)| ≤ 1 + o(1) for all t > 0 and wn(1) = 1.
Then there is a w ∈ H1

r (HN ) such that, on a renamed weakly convergent subsequence of
(wn), wn ⇀ w. By the compactness of the local Morrey embedding, 1 = wn(r1) → w(r1),
while |[gtw](r1)| ≤ 1 for all t > 0. By weak semicontinuity of the norm, ‖∇Hw‖22 ≤
lim inf ‖∇Hwn‖22 = cr (N ,∞). Thus w is a minimizer for (38), ‖∇Hwn‖2 → ‖∇Hw‖2, and,
consequently, wn → w and gtn un → w in the norm of H1

r (HN ). Furthermore, we have

inf
u(r1)=1

‖∇Hu‖22 ≤ inf
u(r1)=1, supt>0 |[gt u](r1)|=1

‖∇Hu‖22
= inf

supt>0 |[gt u](r1)|=1
‖∇u‖22 = cr (N ,∞). (46)

Indeed, the inequality in the relation above is trivial, and the equality to the right of it follows
from the trivial inequality

inf
u(r1)=1, supt>0 |[gt u](r1)|=1

‖∇Hu‖22 ≥ inf
supt>0 |[gt u](r1)|=1

‖∇Hu‖22 = cr (N ,∞)

and the fact that our function w satisfies the additional constraint in the left-hand side.
Consider now the infimum in the left-hand side of (46). It is necessarily attained on a

function which is harmonic on (0, r1) and on (r1,∞), which, by the requirement that its
squared gradient is integrable, equals necessarily to the function (33).

We conclude that any minimizing sequence for (38) admits a renamed subsequence and
a sequence of positive numbers (tn) such that gtn un → w in the norm of H1

r (HN ).
Furthermore, if w̃ is any minimizer for (38), the constant minimizing sequence (w̃)n∈N

admits a sequence of positive numbers (tn)n∈N such that gtn w̃ → w in the H1
r (HN )-norm.

Then necessarily tn → t with some t > 0 and w̃ = g 1
t
w. ��

As a consequence of the profile decomposition we have the following compactness result.
The intersection space below is assumed to have the scalar product that is a sum of scalar
products of constituent spaces.
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Theorem 5.4 Let N ≥ 3, p ∈ (2, 2∗), and let

Wp = V
1− N

2 (1−p/2∗))
2∗ . (47)

Then the embedding H1
r (HN ) ∩ L2(HN , dVH) ↪→ L p(HN ,WpdVH) (and, therefore, the

embedding H1
r (HN ) ∩ L2(HN , dVH) ↪→ L p(HN , dVH)) is compact.

Note that the exponent in the right-hand side of (47) is positive, so the weight Wp is
bounded away from zero and goes to infinity at r = 1.

Proof Assume without loss of generality that un ⇀ 0 in H1
r (HN ) ∩ L2(HN , dVH) and

consider the subsequence of (un) given by Theorem 5.3. Note that for each n such that
( j (n)

k )k has a subsequence convergent to zero, the corresponding profile w(n) will be zero.
Indeed, taking into account that r2V2(r) is bounded away from zero (since it follows that
f (r)(1−r2)

G(r) ≥ C
r from (16) and (17) for N ≥ 3, and from (14) for N = 2), we have

∫
HN

|w(n)|2dVH ≤ C
∫
HN

r2|w(n)|2V2dVH (48)

= lim
k→∞

∫
HN

(G−1(1/j (n)
k G(r))2uk |2V2dVH → 0. (49)

Therefore, all nonzero terms g j (n)w(n) in the profile decomposition of uk will correspond

to sequences ( j (n)
k )k → ∞, which implies, by a calculation similar to the one above, that

g j (n)w(n) → 0 in L2(HN ). Thus the remainder in (45) is bounded in L2(HN ). Consequently,

uk vanishes in any norm defined by the interpolating between L2(HN ) and L2∗
(HN , V2∗dVH)

by means the Hölder inequality, that is, in the L p(HN ,WpdVH)-norm. ��
We add now a more elementary compactness result.

Theorem 5.5 Let p ∈ [1,∞] and let V (r) be a measurable function such that, for some
C > 0 and all r > 0, |V (r)| ≤ CVp(r). If

lim
r→0

V (r)/Vp(r) = lim
r→1

V (r)/Vp(r) = 0, (50)

then the embedding H1
r (HN ) ↪→ L p(HN , V dVH) is compact.

The proof of this statement is entirely similar to that for Theorem 1.1 in [12], is left to the
reader. Note that this result is sharp in the sense that if V = Vp , then the embedding is not
compact, due to invariance of both norms with respect to the non-compact group D.
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Appendix: case N = 2

The case N = 2 of the present paper has been already handled by [3], which did not mention
hyperbolic geometry, but studied, inter alia, the radial Sobolev space H1

0,r (B) of the unit disk.
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However, since the latter space is isomorphic to H1
r (H2), all the results of [3] for N = 2

allow an immediate interpretation in terms of hyperbolic geometry. We cross-reference here
the results in [3] for N = 2 with the results in this paper.

• The scaling (1.6) in [3] is the same as (10) with G(r) = log 1
r .• The scale-invariant weights Vp in [3, formula (1.5)], coincide with the definition (12).

• The radial embedding of Theorem 3.6 follows by interpolation between Leray inequality
and the pointwise estimate of [3], Corollary 2.2.

• Cocompactness of the embedding H1
r (H2) ↪→ L p(H2, VpdVH) for p ∈ (2,∞] (Theo-

rem 5.1 for N = 2) was proved in [3], Lemmas 3.3 and 3.4.
• Theorem 4.2 in [3] is based on a false statement that the weight Vp is decreasing (the

authors have asked the journal to publish an erratum). Its argument is still valid, however,
in restriction to radial functions, and gives the case N = 2 of Theorem 3.7 in the present
paper.

• The profile decomposition of Theorem 5.3 for the case N = 2 is [3, Theorem 5.1].

Remark 5.6 Moser–Trudinger inequality, or, more precisely, its refinement for hyperbolic
spaces proved in [4,20], can be also identified as a two-dimensional case of a general inequal-
ity for N ≥ 2,

sup
u∈H1(HN ),‖∇Hu‖2≤1

∫
HN

([G−1(ωN−1u
2(x))]−2 − 1)N/2dVH < ∞. (51)

For N ≥ 3, however, the asymptotics of the integrand, as a function of u, are, by (16),(17),
∼ u2 at zero and ∼ |u|2∗

at infinity. Therefore, (51) is a consequence of the embedding of
H1(HN ) into L2(HN ) ∩ L2∗

(HN ) from [19], which in turn is a consequence of (27).
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