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Abstract Let (Mn, g)(n ≥ 3) be an n-dimensional complete, simply connected, locally
conformally flat Riemannian manifold with constant scalar curvature S. Denote by T the
trace-free Ricci curvature tensor of M . The main result of this paper states that T goes to
zero uniformly at infinity if for p ≥ n

2 , the L
p-norm of T is finite. As applications, we prove

that (Mn, g) is compact if the L p-norm of T is finite and S is positive, and (Mn, g) is scalar
flat if (Mn, g) is a noncompact manifold with nonnegative constant scalar curvature and the
L p-norm of T is finite. We prove that (Mn, g) is isometric to a sphere if S is positive and the
L p-norm of T is pinched in [0,C), where C is an explicit positive constant depending only
on n, p and S. Finally, we prove an L p(p ≥ n

2 )-norm of T pinching theorem for complete,
simply connected, locally conformally flat Riemannian manifolds with negative constant
scalar curvature.

Keywords Constant curvature space · Conformally flat manifold · Trace-free Ricci
curvature tensor

Mathematics Subject Classification Primary 54C21 · 53C20

1 Introduction

Recall that a Riemannian manifold (Mn, g) of dimension n is said to be locally conformally
flat if a neighborhood of each point of M can be conformally immersed into the standard
sphere. When n ≥ 4, it is well known that this is equivalent to the fact that the Weyl tensor
identically vanishes (see [1,2,16], for example). According to the decomposition of the
Riemannian curvature tensor, for n ≥ 3, a locally conformally flat manifold has constant
sectional curvature if and only it is Einstein, that is, the trace-free Ricci tensor, defined by
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T =Ric− S
n g, is identically equal to zero, where Ric is the Ricci curvature tensor and S is the

scalar curvature. As a consequence, it follows from the H. Hopf classification theorem that
the space forms are isometric to the only complete, simply connected, locally conformally
flat, Einsteinmanifolds. Classification of locally conformally flatmanifolds is one of themost
important problem in the study of differential geometry, but is very difficult. Under various
geometric conditions, many scholars have given some partial results to this classification
[4–9,11,12,14,15,17–20]. For example, some interesting rigidity results have been obtained
under the pointwise pinching and L p pinching assumptions for the traceless Ricci tensor,
respectively [5–9,11,14,17–20]. The curvature pinching phenomenon plays an important
role in global differential geometry. We are interested in L p pinching problems for complete
locally conformally flat Riemannian manifold with constant scalar curvature. Throughout
this paper, we always assume that M is an n-dimensional complete locally conformally flat
Riemannian manifold with n ≥ 3.

In 1996, Hebey and Vaugon [11] showed that a compact locally conformally flat Rieman-
nian manifold (M, g)with Yamabe metric g and positive scalar curvature for a L

n
2 trace-free

Ricci curvature pinching condition, is isometric to a quotient of sphere. In 2007, Pigola et al.
[14] proved that a complete, simply connected, locally conformally flat Riemannian mani-
fold M with zero scalar curvature for a L

n
2 trace-free Ricci curvature pinching condition is

isometric to Euclidean space. In 2010, Xu and Zhao [19] proved that a complete, simply con-
nected, locally conformally flat Riemannian manifold M with dimension n ≥ 6 and constant
nonzero scalar curvature for a L

n
2 trace-free Ricci curvature pinching condition is isometric

to a constant curvature space form. In addition, they concluded that if the Ln-norm of trace-
free Ricci curvature T is finite, then T goes to zero uniformly at infinity. As its application,
they obtained that a complete, simply connected, locally conformally flat Riemannian man-
ifold M with constant positive scalar curvature for a Ln trace-free Ricci curvature pinching
condition is isometric to a sphere. In this note, we obtain the following rigidity theorems.

Theorem 1 Let M be a complete, simply connected, locally conformally flat Riemannian
n-manifold with constant scalar curvature. For p ≥ n

2 , if
∫
M |T |p < +∞, then, given any

ε > 0 and any x0 ∈ M there exists a geodesic ball Br (x0) with center x0 and radius r such
that |T |(x) < ε for all x ∈ M \ Br (x0).

Theorem 2 Let M be a complete, simply connected, locally conformally flat Riemannian
n-manifold with positive constant scalar curvature. For p ≥ n

2 , if
∫
M |T |p < +∞, then M

must be compact.

Corollary 1 Let M be a complete, simply connected, noncompact locally conformally flat
Riemannian n-manifoldwith nonnegative constant scalar curvature. For p ≥ n

2 , if
∫
M |T |p <

+∞, then M must be scalar flat.

Remark 1 If p = n, Theorems 1 and 2 and Corollary 1 reduce to Lemmas 3.4 and 3.5 and
Corollary 3.6 of [19], respectively.

Theorem 3 Let M be a complete, simply connected, locally conformally flat Riemannian
n-manifold with positive constant scalar curvature. Then for p ≥ n

2 , if

(∫

M
|T |p

) 1
p

< C1,
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where

C1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3
√
6

4 ω
2
3
3 , if n = 3 and p = 3

2 ,[
6(2p−3)

S

] 3
2p

√
6pS

12(2p−3)ω
1
p
3 , if n = 3 and 3

2 < p < 2,
[
n(n−1)

S

] n
2p S√

n(n−1)
ω

1
p
n , if n = 3 and p ≥ 2, or n ≥ 4,

then M is isometric to a sphere.

Remark 2 Some L
n
2 trace-free Ricci curvature pinching theorems have been shown in [11,

14,19]. Theorem 3 extends the L
n
2 trace-free Ricci curvature pinching theorem given by

[19] in dimension n ≥ 6 and power p = n
2 to n ≥ 3 and p ≥ n

2 . Theorem 3 improves the
aforementioned result due to [11]. The pinching constant in Theorem 3 is better than the one
in the Ln trace-free Ricci curvature pinching theorem given by [19].

Theorem 4 Let M be a complete, simply connected, locally conformally flat Riemannian
n-manifold with nonpositive constant scalar curvature. Assume that (i) or (ii) holds:

(i) scalar curvature S = 0 and p = n
2 ;

(ii) scalar curvature S < 0, n ≥ 6 and n
2 ≤ p < n−2

2 (1 +
√
1 − 4

n ).

Then there exists a small number C2 such that if

(∫

M
|T |p

) 1
p

< C2,

then M is a constant curvature space form. In particular, when p = n
2 , if S = 0, C2 =

2n− 5
2
√
n − 1(n − 2)(n2 − 2n + 4)ω

2
n
n ; if S < 0, C2 = √

n(n − 1)ω
2
n
n .

Remark 3 If p = n
2 , Theorem 4 reduces to some results of [14] and [19]. Theorems 3 and 4

can be considered as generalization of some main results in [14] and [19].

Remark 4 Let M be a complete Riemannian n-manifold with harmonic curvature and pos-
itive Yamabe constant. Using the same argument as in this note, we obtain some analog of
Theorems in this note (see [7,8]). In 1996, Hebey and Vaugon [11] characterized M under
L

n
2 pinching assumption for the traceless Ricci tensor and Weyl tensor.

2 Proofs of Theorems

In what follows, we adopt, without further comment, the moving frame notation with respect
to a chosen local orthonormal frame.

Let M be a locally conformally flat Riemannian n-manifold. Conformally flatness and
decomposition of the Riemannian curvature tensor into irreducible components yield

Ri jkl = 1

n − 2
(Rikδ jl − Rilδ jk + R jlδik − R jkδil) − S

(n − 1)(n − 2)
(δikδ jl − δilδ jk),

(1)

where Ri j denotes the components of the Ricci tensor Ric and S is the scalar curvature.
Assuming that S is constant, from the second Bianchi identities and (1), we immediately
obtain that the Ricci tensor is a Codazzi tensor, i.e.,
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Ri j,k = Rik, j .

Thus the traceless Ricci tensor

T = Ric − S

n
g

is again Codazzi, i.e., Ti j,k = Tik, j . Then we get

|T |2 = |Ric|2 − S2

n
.

We compute

�|T |2 = 2|∇T |2 + 2〈T,�T 〉 = 2|∇T |2 + 2Ti j Ti j,kk . (2)

Since the traceless Ricci tensor is Codazzi, by the Ricci identities, we obtain

Ti j,kk = Tik, jk = Tki,k j + Tli Rlk jk + Tkl Rli jk

= Tkk,i j + Tli Rlk jk + Tkl Rli jk

= Tli Rlk jk + Tkl Rli jk, (3)

which gives

Ti j Ti j,kk = Ti j Tli Rlk jk + Ti j Tkl Rli jk . (4)

Now we calculate

Ti j Tli Rlk jk = Ti j Tli

(

Tl j + S

n
δl j

)

= Ti j Tli Tl j + S

n
|T |2 (5)

and

Ti j Tkl Rli jk = 2

n − 2
Ti j Til Tl j + S

n(n − 1)
|T |2. (6)

By substituting (4), (5) and (6) into (2), we obtain

�|T |2 = 2|∇T |2 + 2n

n − 2
Ti j Til Tl j + 2S

n − 1
|T |2. (7)

Applying the simple algebraic lemma due to [13], we have

�|T |2 ≥ 2|∇T |2 − 2n√
n(n − 1)

|T |3 + 2S

n − 1
|T |2. (8)

From (8), by the Kato inequality |∇T |2 ≥ n+2
n |∇|T ||2 (see Lemma in [11]), we obtain

|T |�|T | ≥ 2

n
|∇|T ||2 − n√

n(n − 1)
|T |3 + S

n − 1
|T |2. (9)

Let u = |T |. By (9), we compute

uα�uα = uα
(
α(α − 1)uα−2|∇u|2 + αuα−1�u

)

= α − 1

α
|∇uα|2 + αu2α−2u�u

≥
(

1 − n − 2

nα

)

|∇uα|2 − nα√
n(n − 1)

u2α+1 + Sα

n − 1
u2α, (10)

where α is a positive constant.
In order to prove main results in this note, we need Lemma 1 as follow:
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Lemma 1 Let M be an n(≥ 3)-dimensional complete noncompact Riemannian manifold
satisfying a Sobolev inequality of the following form:

(∫

M
| f | 2n

n−2

) n−2
n ≤ D1

∫

M
|∇ f |2 + F1

∫

M
| f |2,∀ f ∈ C∞

0 (M).

If a nonnegative function u ∈ C∞(M) satisfies
∫
M u

n
2 < +∞ and

�u ≥ au2 + bu

for some constants a and b. Then, given any ε > 0 and any x0 ∈ M there exists a geodesic
ball Br (x0) with center x0 and radius r such that u(x) < ε for all x ∈ M \ Br (x0).

Remark 5 Xiao and the first author [8] can carry out the proof of Lemma 1 by suitable
modification to the proof of Theorem 1.1 in [3].

Proof of Theorem 1 Taking α = 2p
n ≥ 1, from (10) we obtain

uα�uα ≥ − nα√
n(n − 1)

u2α+1 + Sα

n − 1
u2α. (11)

Using the Young’s inequality, from (11) we obtain

uα�uα ≥ au3α + bu2α, (12)

where a and b are two constants depending only on n, α and S. Setting w = uα , we can
rewrite (12) as

�w ≥ aw2 + bw. (13)

On the other hand, when M is a complete, simply connected, locally conformally flat
Riemannian n-manifold, M satisfies the Sobolev inequality (see Corollary 3.2 in [10]):

(∫

M
| f | 2n

n−2

) n−2
n ≤ 4

n(n − 2)ω
2
n
n

∫

M

(

|∇ f |2 + (n − 2)

4(n − 1)
S f 2

)

, f ∈ C∞
0 (M). (14)

Combining (13) with (14), we can prove Theorem 1 by using Lemma 1. This completes the
proof of Theorem 1. �
Proof of Theorem 2 Take a local orthonormal frame {ei } such that Ric is diagonal. By (1),
we have

Ri ji j = Tii + Tj j

n − 2
+ S

n(n − 1)
. (15)

Note that S is positive. From (15), we see from Theorem 1 that there is a positive constant
δ such that Ri ji j > δ in M \ Ω for some compact set Ω . The remainder of the argument is
analogous to that in Lemma 3.5 of [19]. For completeness, we give the following proof.

Since M is complete, it suffices to show that M is bounded. Otherwise, there is a point
p1 ∈ M such that d(p1,Ω) = infq∈Ω d(p1, q) = π√

δ
+ 1. Since Ω is compact, there

is a point p2 such that d(p1, p2) = d(p1,Ω). Let γ be a minimal geodesic parametrized
by arclength such that γ (0) = p1 and γ ( π√

δ
+ 1) = p2. Define γ (t) = γ ( π t√

δ
). Taking

p3 = γ (1). Then for t ≤ 1, γ (t) ∈ M\Ω is a minimal geodesic with γ (0) = p1 and
γ (1) = p3. The formula for the second variation of arclength implies that for a parallel field
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E along γ , with E(0) ⊥ γ ′(0), the second derivative of the arclength of a variation induced
by E is given by

I (E, E) =
∫ 1

0
sin2 π t[π2 − l2Rm(γ ′, E, γ ′, E)],

where l = π√
δ
. Let {e1, . . . , en−1} be orthonormal parallel vector fields along γ such that

ei (t) ⊥ γ ′(t). Then
∑

I (ei , ei ) =
∫ 1

0
sin2 π t[(n − 1)π2 − l2Ric(γ ′, γ ′)].

Since Ri ji j > δ in M \ Ω , we obtain
∑

I (ei , ei ) < 0.

On the other hand, since γ (t) is a minimizing geodesic, we have
∑

I (ei , ei ) ≥ 0, which is
a contradiction. Hence M is bounded and compact. This completes the proof of Theorem 2.

�
Proof of Theorem 3 When S > 0, we see from Theorem 2 that M is compact. Taking α =
2p
n ≥ 1. Using the Young’s inequality, i.e., f g ≤ ε f p

p + ε
− q

p gq

q , from (10) we obtain

uα�uα ≥
(

1 − n − 2

nα

)

|∇uα|2 − nε1−α

√
n(n − 1)

u3α −
[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

]

u2α. (16)

Setting w = uα , we can rewrite (16) as

w�w ≥
(

1 − n − 2

nα

)

|∇w|2 − nε1−α

√
n(n − 1)

w3 −
[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

]

w2. (17)

From (17), we obtain

wβ�wβ ≥
(

1 − n − 2

nαβ

)

|∇wβ |2 − nβε1−α

√
n(n − 1)

w2β+1 − β

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

]

w2β,

(18)
where β is a positive constant. From (18), integrating by parts we get

(

2 − n − 2

nαβ

) ∫

M
|∇wβ |2 − nβε1−α

√
n(n − 1)

∫

M
w2β+1

−β

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w2β ≤ 0. (19)

By the Hölder inequality and (19), we have
(

2 − n − 2

nαβ

) ∫

M
|∇wβ |2 − nβε1−α

√
n(n − 1)

(∫

M
w

2nβ
n−2

) n−2
n

(∫

M
w

n
2

) 2
n

−β

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w2β ≤ 0. (20)

Case 1. When n = 3 and 1 ≤ α < 4
3 , if α > 1, set ε =

√
6αS

24(α−1) ; if α = 1, set ε = 1. Take

αβ = 1
3 . From (14) and (20), we get

⎡

⎣3ω
2
3
3

4
− ε1−α

√
6α

(∫

M
|T |p

) 2
3

⎤

⎦
(∫

M
w6β

) 1
3 ≤ 0. (21)
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We choose
(∫

M |T |p) 1
p < C1 such that (21) implies

(∫
M w6β

) 1
3 = 0, that is, T = 0, i.e.,

M is Einstein manifold. Since M is a complete, simply connected, locally conformally flat
manifold, M is isometric to a sphere.

Case 2. When n = 3 and α ≥ 4
3 , or n ≥ 4, set ε = S√

(n−1)n
and 1

αβ
= n

n−2 (1+
√
1 − 4

nα
).

We also get

⎡

⎣(2 − n − 2

nαβ
)
n(n − 2)ω

2
n
n

4
− nβε1−α

√
n(n − 1)

(∫

M
|T |p

) 2
n

⎤

⎦
(∫

M
w

2nβ
n−2

) n−2
n ≤ 0. (22)

We choose
(∫

M |T |p) 1
p < C1 such that (22) implies

(∫
M w

2nβ
n−2

) n−2
n = 0, that is, T = 0, i.e.,

M is Einstein manifold. Since M is a complete, simply connected, locally conformally flat
manifold, M is isometric to a sphere. This completes the proof of Theorem 3. �

Proof of Theorem 4 Let φ be a smooth compactly supported function onM and α = 2p
n ≥ 1.

First choosing β = n
4 in (18), multiplying (18) by φ2 and integrating over M , we obtain

[

1 − 4(n − 2)

n2α

] ∫

M
|∇w

n
4 |2φ2 ≤ n2ε1−α

4
√
n(n − 1)

∫

M
w

n
2 +1φ2 +

∫

M
w

n
4 φ2�w

n
4

+n

4

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w

n
2 φ2

= n2ε1−α

4
√
n(n − 1)

∫

M
w

n
2 +1φ2 − 2

∫

M
w

n
4 φ〈∇φ,∇w

n
4 〉

−
∫

M
|∇w

n
4 |2φ2 + n

4

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w

n
2 φ2,

which gives

[

2 − 4(n − 2)

n2α

] ∫

M
|∇w

n
4 |2φ2 ≤ n2ε1−α

4
√
n(n − 1)

∫

M
w

n
2 +1φ2 − 2

∫

M
w

n
4 φ〈∇φ,∇w

n
4 〉

+n

4

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w

n
2 φ2. (23)

Using the Cauchy–Schwarz inequality, we can rewrite (23) as

[

2 − 4(n − 2)

n2α
− ε

] ∫

M
|∇w

n
4 |2φ2 ≤ n2ε1−α

4
√
n(n − 1)

∫

M
w

n
2 +1φ2 + 1

ε

∫

M
w

n
2 |∇φ|2

+n

4

[
n(α − 1)ε√
n(n − 1)

− Sα

n − 1

] ∫

M
w

n
2 φ2, (24)
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for the positive constant ε. By (14) and (24), we have

n(n − 2)ω
2
n
n

4

(∫

M
(φ2w

n
2 )

n
n−2

) n−2
n ≤

∫

M

(

|∇(φw
n
4 )|2 + (n − 2)Sw

n
2 φ2

4(n − 1)

)

=
∫

M

(
w

n
2 |∇φ|2 + φ2|∇w

n
4 |2

+ 2φw
n
4 〈∇φ,∇w

n
4 〉 + (n − 2)Sw

n
2 φ2

4(n − 1)

)

≤
(

1 + 1

η

) ∫

M
w

n
2 |∇φ|2 + (1 + η)

∫

M
φ2|∇w

n
4 |2

+
∫

M

(n − 2)Sw
n
2 φ2

4(n − 1)

≤ B
∫

M
w

n
2 |∇φ|2 + E

∫

M
w

n
2 +1φ2 + D

∫

M
w

n
2 φ2,

(25)

where

B = 1 + 1

η
+ 1 + η

ε
(
2 − 4(n−2)

n2α
− ε

) ,

E = (1 + η)n2ε1−α

4
√
n(n − 1)

(
2 − 4(n−2)

n2α
− ε

) ,

D = (n − 2)S

4(n − 1)
− (1 + η)nαS

4(n − 1)
(
2 − 4(n−2)

n2α
− ε

) + (1 + η)n2(α − 1)ε

4
√
n(n − 1)

(
2 − 4(n−2)

n2α
− ε

) .

Case 1. S = 0.
Taking α = 1, we have D = 0. Thus from (25) we have

n(n − 2)ω
2
n
n

4

(∫

M
(φw

n
4 )

2n
n−2

) n−2
n ≤ B

∫

M
w

n
2 |∇φ|2 + E

∫

M
w

n
2 +1φ2

≤ B
∫

M
w

n
2 |∇φ|2 + E

(∫

M
(φw

n
4 )

2n
n−2

) n−2
n

(∫

M
w

n
2

) 2
n

.

Since (
∫
M w

n
2 )

2
n < C2, there exists a constant F = n(n−2)ω

2
n
n

4 − E(
∫
M w

n
2 )

2
n > 0, such that

F

(∫

M
(φu

n
4 )

2n
n−2

) n−2
n ≤ B

∫

M
u

n
2 |∇φ|2. (26)

Let us choose a cutoff function φ satisfying the properties that

φ(x) =
{
1, on B(r),
0, on M \ B(2r),

and |∇φ| ≤ 2
r . In particular, if M is compact, and if r > d , where d is the diameter of M ,

then φ = 1 on M . From (26), we get

F

(∫

Br
u

n2
2(n−2)

) n−2
n ≤ 4

r2
B

∫

M
u

n
2 . (27)
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Let r → +∞, by assumption that
∫
M u

n
2 < ∞, from (27), we have T = 0, i.e., M is Einstein

manifold. Since M is a complete, simply connected, locally conformally flat manifold, M is
a constant curvature space form.

Case 2. S < 0.
When n ≥ 6, noting that ε, ε and η are sufficiently small, we choose 1 ≤ α < n−2

n (1 +√
1 − 4

n ) such that D ≤ 0. The rest of the proof runs as before.

In particular, when p = n
2 , i.e.,α = 1.We choose η such that D = 0, i.e., (2−4 n−2

n2
−ε) =

(1+η)n
(n−2) . Thus we have

n(n−2)ω
2
n
n

4

E
= √

n(n − 1)ω
2
n
n .

So we choose
(∫

M |T | n2
) 2

n
<

√
n(n − 1)ω

2
n
n such that F > 0. The rest of the proof runs as

before. This completes the proof of Theorem 4. �
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