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Abstract In this paper, we extend and solve the Björling problem for timelike surfaces in
the ambient space R4

1. To do this, we define a Gauss map ideally suited to this setting using
the split-complex variable and then we obtain a Weierstrass representation formula. We use
this to construct new examples and give applications. In particular, we obtain one-parameter
families of timelike surfaces in R

4
1 which are solutions of the timelike Björling problem. In

addition, we establish symmetry principles for the class of minimal timelike surfaces in R
4
1.

Keywords Timelike surfaces · Björling problem · Lorentz–Minkowski space · Symmetry
principles

Mathematics Subject Classfication 53A10 · 53B30 · 53C50

1 Introduction

The Björling problem and its solutions are an important, well-known problem. In the three-
dimensional Euclidean space R

3, given a real analytic strip the classical Björling problem
was proposed by Björling in 1844 and consists in the construction of a minimal surface inR3

containing the strip in the interior. The solution was obtained by Schwarz in 1890 through an
explicit formula in terms of initial data. After that, the Björling problem has been considered
in other ambient spaces, including in larger codimension or with indefinite metrics. Some
works in this direction are [3–8,18], and [9]. For instance, in [3] the Björling problem was
solved for spacelike surfaces in L

3 = R
3
1 using a complex representation formula, while

in [11] we can find a version of the problem in the hyperbolic three-dimensional space H3.
[18] focused on the problem in three-dimensional Lie groups, while in [7] they considered
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Lorentzian three-dimensional Lie groups. In addition, [5] considers spacelike surfaces in the
Lorentz–Minkowski space L4 = R

4
1.

For timelike surfaces the authors, more recently, proposed and solved in [6] and [9],
the Björling problem for timelike surfaces in R

3
1 and R

4
2. In ([6,9]) the authors use the split-

complex (or paracomplex) variable and theory of solutions to the homogeneouswave equation
for constructing split-holomorphic extensions and then use theWeierstrass representation for
minimal surfaces in R

4
1. This representation was first derived by Konderak [14] for R3

1 and
extended to other Lorentzian 3-manifolds in [16].

In this paper, we are mainly concerned with solving the Björling problem for timelike
surfaces in the Lorentz space L4 = R

4
1. We observe that this problem, besides its importance

in geometry, it also is very interesting from the point of view of physics, since our ambient
space is the simplest example of a relativistic spacetime. In order to solve this problem, we
establish, using the split-complex variable, a convenient local frame for the immersion, which
we use to describe the Gauss map. Then, we apply split-holomorphic extensions in a natural
way to find the solution of the Björling problem and to show the uniqueness of the surface.
We note that, since the initial curve c can be timelike or spacelike, we must consider two
problems, the timelike Björling problem and the spacelike Björling problem.

After solving theBjörling problem,we give explicit examples ofminimal timelike surfaces
which are solutions to the Björling problem and moreover, we recover the representation
formula of the Björling problem for minimal timelike surface in the Lorentz–Minkowski
space L3 = R

3
1 ([6]). As another consequence, we rewrite versions of the timelike Björling

problemwhichwe also solve using theWeierstrass representation initially obtained [Formulas
(13), (14)]). These solutions describe a one-parameter family of timelike surfaces in which
each member is a solution of the timelike Björling problem.

As part of our study, we also prove the split-complex version of Schwarz reflection and
we extend the notion of k-subspace of symmetry for timelike surface in R

4
1 ([9]). Then

we describe types of symmetries for minimal timelike surfaces in R
4
1 with respect to non-

degenerate k-subspaces.

2 Split-complex variable and preliminares

We begin our study of the Björling problem in R4
1, whose inner product is 〈x, y〉 = −x1y1 +

x2y2 + x3y3 + x4y4, by defining a version of the cross product, �:

〈�(u, v, w), x〉 =

∣
∣
∣
∣
∣
∣
∣
∣

x1 x2 x3 x4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

∣
∣
∣
∣
∣
∣
∣
∣

(1)

for all x ∈ R
4
1,

Then, it follows that 〈�(u, v, w), u〉 = 0 = 〈�(u, v, w), v〉 = 〈�(u, v, w),w〉 and
�(u, v, e1)= − ũ × ṽ, �(u, v, e2)= ũ × ṽ, �(u, v, e3)= − ũ × ṽ, �(u, v, e4)= ũ × ṽ,

where ũ means dropping the first coordinate in the first case, the second coordinate in the
second case, etc., and the cross product is taken in the three-dimensional space with the
metric inherited from R

4
1.

Now, we consider the split-complex variable z = t + k′s where t, s ∈ R and k′2 = 1.
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The Björling problem for timelike minimal surfaces... 1233

Definition 2.1 The split-complex numbers C′ = {t + k′s|t, s ∈ R, k′2 = 1, 1k′ = k′1} are
a commutative algebra over R. If z = t + k′s then Re(z) = t, Im(z) = s, z̄ = t − k′s. The
indefinite metric on C

′ is given by −zz̄ = −t2 + s2.

We define C
′4
1 to be C

′4 to be the split-complex vector space with the indefinite split-
hermitian structure:

h(z, w) = −z1w̄1 + z2w̄2 + z3w̄3 + z4w̄4.

This induces an indefinite inner product g(, ) on R
8
4 by

Reh(z, w) = g((x1 + k′y1, . . . , x4 + k′y4), (u1 + k′v1, . . . , u4 + k′v4))
= g((x1, y1, x2, y2, x3, y3, x4, y4), (u1, v1, u2, v2, u3, v3, u4, v4))

= −x1u1 + y1v1 + x2u2 − y2v2 + x3u3 − y3v3 + x4u4 − y4v4.

g(z, z) = −x1
2 + y1

2 + x2
2 − y2

2 + x3
2 − y3

2 + x4
2 − y4

2.

The related symmetric bilinear product is:

(z, w) = −z1w1 + z2w2 + z3w3 + z4w4 = h(z, w̄),

so that

(z, z) = −x1
2 − y1

2 + x2
2 + y2

2 + x3
2 + y3

2 + x4
2 + y4

2

+ 2k′(−x1y1 + x2y2 + x3y3 + x4y4)

We define an indefinite Riemannian metric g̃p(X, Y ) = 4
c gz(X

′, Y ′) for X, Y ∈
Tp(C

′
P
3
1
−
), c > 0 is fixed, z is any point in H7

3 with π(z) = p and π∗X ′ = X, π∗Y ′ = Y.

Denote the Grassmannian of oriented timelike 2-planes in R
4
1,G

(

R
2
1 ⊂ R

4
1

) := G−
2,4. Then,

if u, v ∈ R
4
1 are perpendicular vectors with−〈u, u〉 = η2 = 〈v, v〉, we note that u+k′v ∈ C

4
1

and

g(u + k′v, u + k′v) = −2η2

(u + k′v, u + k′v) = 0,

thus this is an element in the quadric

Q2
1 = {[z] ∈ C

′
P
3
1
− | (z, z) = 0}.

Let G+
2,4 = G(R2 ⊂ R

4
1) denote the Grassmannian of spacelike 2-planes of R4

1 with the

induced orientation. Given m, n ∈ R
4
1, with 〈m,m〉 = 〈n, n〉 = λ2 > 0 and 〈m, n〉 = 0, let

span[m, n] ∈ G+
2,4. Then, we can identifyG

+
2,4 with the quadric QR = {[z] ∈ C

′
P
3
1 | (z, z) �=

0, g(z, z) = 0 = (z, z̄)}, through the mapping that sends each span[m, n] ∈ G+
2,4 into

[z] ∈ QR where z = m + k′n. To define the projective space C′
P
3 here, we use lines in C

′4
with the equivalence relation defined by multiplying by invertible λ ∈ C

′.
Now, we focus on minimal timelike immersions.

Definition 2.2 Asmooth immersion X : M2
1 → R

4
1 of a two-dimensional oriented connected

manifold is called a timelike surface if the induced metric has signature (1, 1).

For our goals, we need to know that

Proposition 2.1 If S = X (M) is a timelike surface in R
4
1 then �M X = 2H, where � and

H denote the Laplacian and the mean curvature vector of the immersion, respectively.
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Definition 2.3 A timelike surface S in R
4
1 is minimal if the mean curvature vector H = 0

for all points of S.

Let z = t + k′s, where t and s are conformal coordinates in a neighborhood of a point p
in M2

1 , so that −〈Xt , Xt 〉 = η2 = 〈Xs, Xs〉 and 〈Xt , Xs〉 = 0. Let

φ j = ∂X j

∂z
= 1

2

(
∂X j

∂t
+ k′ ∂X j

∂s

)

,

where X j represents a component of timelike immersion. Observe that

−φ2
1 + φ2

2 + φ2
3 + φ2

4 = 〈Xs, Xs〉 + 〈Xt , Xt 〉 + 2k 〈Xt , Xs〉 = 0.

If we set |a + k′b|2 = b2 − a2 then

−|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 = 1

4
(〈Xs, Xs〉 − 〈Xt , Xt 〉) = η2

2
> 0.

Consider the split-complex 1-forms defined by � j = φ jdz. By looking at a conformal
change of coordinates and using Proposition 2.1 in [17], we can see that these forms are
globally defined on M2

1 .

2Re
∫

γ

φ jdz = Re
∫

γ

(
∂X j

∂t
+ k′ ∂X j

∂s

)

(dt + k′ds)

=
∫

γ

(
∂X j

∂t
dt + ∂X j

∂s
ds

)

=
∫

γ

dX j = X j
∣
∣
γ .

Thus the integral over any closed curve has real part zero. The converse is also true.

Theorem 2.1 ([14]) Let 
 be a Lorentzian surface and choose four split-holomorphic one-
forms �1,�2,�3,�4 globally defined on 
 satisfying:

−�2
1 + �2

2 + �2
3 + �2

4 = 0. (2)

−|�1|2 + |�2|2 + |�3|2 + |�4|2 > 0. (3)

Each� j has no real periods. (4)

Then the map X : 
 → R
4
1 given by

X (z) = 2Re
∫

γz

(�1,�2,�3,�4) dz,

where γz is a path from the fixed basepoint z is a minimal immersion in R
4
1.

Remark 2.1 We could also use the split-complex variable w = k′z = s + k′t in the above
formulas, setting

ψ j = ∂X j

∂w
= 1

2

(
∂X j

∂s
+ k′ ∂X j

∂t

)

.

After replacing � j by � j the formulas are the same, except that

−|ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 = −〈Xs, Xs〉 + 〈Xt , Xt 〉 < 0.

We will use this alternative choice of variable when studying the Björling problem assuming
that the initial curve is spacelike, as we will see in Sect. 4.
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3 Weierstrass representation and the Gauss map

If X : M2
1 → R

4
1 is a timelike immersion of (M2

1 , z = t + k′s), we can explicitly obtain
three functions x, y, μ : M2

1 → C
′ such that

∂X

∂z
= μ(1 + x2 + y2, 2x, 2y,−1 + x2 + y2).

In fact, setting

μW = (φ1, φ2, φ3, φ4)

where (W,W ) = 0 and (W, W̄ ) �= 0, then φ1φ̄1 �= 0, and we obtain
(

φ2

φ1

)2

+
(

φ3

φ1

)2

+
(

φ4

φ1

)2

= 1.

Inspired by classical stereographic projection, we define homogeneous coordinates for the
Grassmannian of timelike planes, taking:

μ(1 + x2 + y2) = φ1, 2μx = φ2, 2μy = φ3, μ(−1 + x2 + y2) = φ4.

Therefore,

W = (1 + x2 + y2, 2x, 2y,−1 + x2 + y2),

and we can solve for x, y and μ:

μ = φ1 − φ4

2
, x = φ2

φ1 − φ4
, y = φ3

φ1 − φ4
. (5)

Note that φ1 − φ4 �= 0, since φ1 − φ4 = 0 implies (φ2)
2 + (φ3)

2 = 0, and in C
′ the

equation a2 + b2 = 0 has no non-trivial solutions. This would yield φ2 = φ3 = 0, but by
formula (2), this is not possible.

We can also define two normal vectors N1 and N2 using x and y:

N1 = (1 + x x̄ + y ȳ, x + x̄, y + ȳ,−1 + x x̄ + y ȳ), (6)

N2 = k′(x ȳ − yx̄,−y + ȳ, x − x̄, x ȳ − yx̄), (7)

which are orthogonal to the vector W = E + k′F ∈ R
4
1 + k′

R
4
1. So we have an orthonormal

local frame defined by

{F/λ, E/λ, N1/λ, N2/λ} (8)

where λ2 = 4(Im2x + Im2y) = (x − x̄)2 + (y − ȳ)2, with sign +, −, +, +, resp. Note that

E = W + W̄

2
, F = k′ W − W̄

2
, N2 = �

(
F

λ
,
E

λ
, N1

)

, F = �
(

E,
N2

λ
,
N1

λ

)

.

Now let (U, z = t + k′s) be isothermal coordinates in a neighborhood of a point p in
M2

1 , so that −〈Xt , Xt 〉 = η2 = 〈Xs, Xs〉 and 〈Xt , Xs〉 = 0. If we write μ = 1
2 (α + k′β) and

� = (φ1, φ2, φ3, φ4), it follows that

� = 1

2
(Xt + k′Xs) = μW = μ(E + k′F) = 1

2
(αE + βF) + k′

2
(βE + αF)

therefore

Xt = αE + βF, Xs = βE + αF.
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Now, take the local orthonormal ordered frame adapted to the immersion, with sign +, −,
+, +, given by,

{
Xs

η
,
Xt

η
,
N1

λ
,
N2

λ

}

(9)

where η2 = λ2(α2 − β2), which we have assumed to be positive. We also have:

�
(

Xt ,
N2

λ
,
N1

λ

)

= �
(

αE + βF,
N2

λ
,
N1

λ

)

= αF + βE = Xs . (10)

Finally, taking
{

m := N1
λ

(z), n := N2
λ

(z)
}

to be the orthonormal, normal frame defined

by (9), we define the split-complex map A : M2
1 → QR, according the curve type which we

will use as initial data for solving the Björling problem, as follows:
If the curve c is timelike, A(z) is defined by

A(z) = [m(z) + k′n(z)]. (11)

If the curve c is spacelike, A(w), w = k′z, is defined by

A(w) = [n(w) + k′m(w)]. (12)

We see that in both cases, [A(z)] ∈ QR and [�(z)] ∈ Q2
1.

4 Main results

We now consider the spacelike and timelike Björling problem for timelike minimal surfaces
in R

4
1. Let c : I ⊆ R → R

4
1 be a C

ω timelike or spacelike curve in R
4
1 and let p : I → C

′4
be a Cω vector field along c, so that 〈c′,Re(p)〉 = 0 = 〈c′, Im(p)〉, 〈Re(p),Re(p)〉 = 1 =
〈Im(p), Im(p)〉 and 〈Re(p), Im(p)〉 = 0. We ask that if we rotate c′(0) to either e1 or e2
and add the missing vector, that |e1, e2, Im(p),Re(p)| = 1.

Wecall such a pair (c, p) an analytic strip. If the curve c is timelike, the timelike Björling
problem is to find a timelike minimal surface S defined by X : � ⊆ C

′ → R
4
1 so that

1. X (u, 0) = c(u)

2. A(u, 0) = [p(u)], ∀u ∈ I.

We can make the same definition for a C∞ or a Ck strip.
If the curve c is spacelike, the spacelike Björling problem asks for a timelike minimal

surface with

1. X (0, u) = c(u)

2. A(0, u) = [p(u)], ∀u ∈ I.

Now, we solve these two Björling problems.
It’s clear that if X : � ⊆ C

′ → R
4
1 is a timelike minimal immersion, then c(u) := X (u, 0)

or X (0, u) and [p(u)] := A(u, 0) or A(0, u) satisfy the data and are either smooth or analytic,
depending on the surface.

Now, we recall from [6] that, using basic properties of the homogeneous wave equation,
a split-complex valued function f (t, 0) = γ (t) + k′δ(t), t ∈ [−R, R], can be extended
split-holomorphicaly as

f (t, s) = u(t, s) + k′v(t, s) = (F(t + s) + G(t − s), F(t + s) − G(t − s)),
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The Björling problem for timelike minimal surfaces... 1237

on the rhombus in R
2 with vertices (±R, 0) and (0,±R), where F,G are C2-real func-

tions such that F(t) + G(t) = γ (t) and F(t) − G(t) = δ(t). This extension is called the
split-holomorphic deterministic extension. Using this extension, one proves the following
proposition.

Proposition 4.1 Let φ(t, s) = u + k′v and φ̂(t, s) = a + k′b two split-holomorphic exten-
sions of a split-complex valued function γ (t) + k′δ(t), so that u(t, 0) = a(t, 0) = γ (t) and
v(t, 0) = b(t, 0) = δ(t) in an open set I . Then, they agree everywhere on a subset of the
intersection domain of the two extensions.

Then, note from above that if γ and δ are at least of C2-class, we have unique split-
holomorphic extensions. Therefore, we are going to solve the Björling problem, only
requiring that the curve c and the vector field p have components at least of C2-class. We
remind the reader that the classic Björling problem assumes the curve c and the vector field
p, to be both analytic.

Theorem 4.1 Let S be a timelike minimal surface in R4
1 given by X : U ⊆ C

′ → R
4
1. Define

the curve c(u) = X (u, 0) and the split-complex vector field [p(u)] := A(u, 0) along c on a
real interval contained in U. Choose any simply connected open set � ⊆ U containing I in
which we can define split-holomorphic extensions of c and p. Then, for all z ∈ � we have

X (z) = Re

(

c(z) + k′
∫ z

zo
�(c′(ζ ), Im(p(ζ )),Re(p(ζ )))dζ

)

. (13)

In the spacelike case we get equation:

X (w) = Re

(

c(w) − k′
∫ w

wo

�(c′(ζ ), Im(p(ζ )),Re(p(ζ )))dζ

)

. (14)

Proof We set � = ∂X
∂z = (φ1, φ2, φ3, φ4). Then we can see from the ordered basis (9), that

�(z) = 1

2
(Xt (z) + k′Xs(z)) = 1

2
(Xt + k′ � (Xt (z), n(z),m(z))), z ∈ �. (15)

Restricting to I we get:

�(u, 0) = 1

2
[Xt (u, 0) + k′ � (Xt (u, 0), n(u, 0),m(u, 0))] (16)

= 1

2
[c′(u) + k′ � (c′(u), Im(p(u)),Re(p(u)))], (17)

where A(u, 0) = [p(u)] is given by formula (11). Since these functions are at least of
C2-class, we can extend them uniquely to split-holomorphic functions on some open set
containing I , more specifically, if I is the interval (−R, R) ⊂ �, then shrinking �, if
necessary, so that it is contained in the rhombus R with vertices (±R, 0) and (0,±R), we
obtain from Proposition 3.1 that �(u, 0) has a unique extension to

�(z) = 1

2
[c′(z) + k′ � (c′(z), Im(p(z)),Re(p(z)))], on �.

So when the curve is timelike, we are done.
In the case of the spacelike Björing problem, we use the variable w = k′z, and we get

that

�(w) = 1

2
(Xs(w) + k′Xt (w)) = 1

2
(Xs(w) + k′ � (Xs(w), n(w),m(w))). (18)
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1238 M. P. Dussan et al.

Restricting to (0, u), we find

�(0, u) = 1

2
(Xs(0, u) + k′ � (Xs(0, u), n(0, u),m(0, u))) (19)

= 1

2
(Xs(0, u) + k′ � (c′(u),Re(p(u)), Im(p(u)))). (20)

Here, we have switched, of course to:

1. X (0, u) = c(u)

2. A(0, u) = [p(u)],∀u ∈ I,

where A(u, 0) = [p(u)] is given by formula (12). Similarly, since these functions are C2,
we can extend them uniquely to split-holomorphic functions on some open set containing I .
Thus,

�(s + kt) = 1

2
(c′(w) + k′ � (c′(w),Re(p(w)), Im(p(w)))), on�.

Thus, the theorem holds. 
�
Proposition 4.2 The solutions given by formula (13) and (14) are independent of the choice
of orthonormal basis of the normal plane.

Proof For a real parameter θ , let cos(θ)m(t) + sin(θ)n(t) and − sin(θ)m(t) + cos(θ)n(t)
be a new orthonormal basis of Nt = Span{m(t), n(t)}. This defines

pθ (t) = (cos(θ)m(t) + sin(θ)n(t)) + k′ (− sin(θ)m(t) + cos(θ)n(t)) .

Then making the split-holomorphic extension, we have

pθ (z) = (cos(θ)m(z) + sin(θ)n(z)) + k′(− sin(θ)m(z) + cos(θ)n(z)),

so from the anti-commutativity of the exterior product it follows that

Xθ (z) = Re

{

c(z) + k′
∫ z

z0
�(c′, Im(pθ ),Re(pθ ))dξ

}

= Re

{

c(z)+k′
∫ z

z0
�(c′,− sin(θ)m(ξ)+ cos(θ)n(ξ), cos(θ)m(ξ)+ sin(θ)n(ξ))dξ

}

= Re

{

c(z) + k′
∫ z

z0
[cos2(θ) � (c′, n(ξ),m(ξ)) + sin2(θ) � (c′, n(ξ),m(ξ))]dξ

}

= Re

{

c(z) + k′
∫ z

z0
�(c′, Im(p),Re(p))dξ

}

= X (z),

hence follows the claimed independence. 
�
For our examples, it is convenient to note that, using power series, we have split-

holomorphic extensions of various functions:

cos(t + k′s) = cos(t) cos(s) − k′ sin(t) sin(s)
sin(t + k′s) = sin(t) cos(s) + k′ cos(t) sin(s)

cosh(t + k′s) = cosh(t) cosh(s) + k′ sinh(t) sinh(s)
sinh(t + k′s) = sinh(t) cosh(s) + k′ cosh(t) sinh(s).
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The Björling problem for timelike minimal surfaces... 1239

Example 4.1 This example begins with a timelike curve: c(t) = (sinh(t), 0, 0, cosh(t)),
p(t) = (sinh(t), k′ sin(t), k′ cos(t), cosh(t)). Using formula (13), we obtain the minimal
immersion

X (t, s) = (sinh(t) cosh(s),− cos(t) sin(s), sin(t) sin(s), cosh(t) cosh(s)).

Moreover, the split-holomorphic functions μ(z), x(z) and y(z), where z = t + k′s, are

μ(z) = 1

4
e−z, x(z) = −k′ez cos(z), y(z) = k′ez sin(z).

In fact,

2μ = ∂

∂z
(X1 − X4) = ∂

∂z
(cosh(s)(sinh(t) − cosh(t))) = 1

2
e−z .

2μx = ∂

∂z
X2 = 1

2
e−z x = ∂

∂z
(− cos(t) sin(s)) = −k′

2
(cos(t) cos(s) − k′ sin(t) sin(s))

2μy = ∂

∂z
X3 = 1

2
e−z y = ∂

∂z
(sin(t) sin(s)) = k′

2
(sin(t) cos(s) + k′ cos(t) sin(s)).

Note that c(t) = X (t, 0). Now, using the formulas (5)–(8), and x(t, 0), y(t, 0) we obtain
A(t, 0) = [p(t)]. In fact, since

x(t, 0) = a = −k′et cos(t), y(t, 0) = b = k′et sin(t)

we have that

aā = −e2t cos2(t), ab̄ = e2t sin(t) cos(t),

therefore,

N1(t, 0) = (1 − e2t , 0, 0,−1 − e2t ), N2(t, 0) = (0,−2et sin(t),−2et cos(t), 0),

and

m(t) = N1

2et
= (− sinh(t), 0, 0,− cosh(t)), n(t) = N2

2et
= (0,− sin(t),− cos(t), 0).

Thus A(t, 0) = [p(t)], as claimed. Note that in formula (13) we can change p to −p. We
observe that the initial curve c is a geodesic.

Example 4.2 The Björling data are the spacelike curve c(s) = (0, cos s, sin s, 0) and the
vector field

p(s) = (0, cos s, sin s, 0) + k′(sinh s, 0, 0, cosh s).

Using formula (14), in the variable w = s + k′t we obtain the minimal immersion,

X (t, s) = (sinh t cosh s, cos t cos s, cos t sin s, sinh t sinh s).

Moreover, the split-holomorphic functions μ(w), x(w) and y(w) are

μ(w) = 1

4
k′e−w, x(w) = −k′ew sinw, y(w) = k′ew cosw.

Note that for t = 0, X (0, s) = c(s). Now, using the formulas (5)–(8), taking

x(0, s) = a = −k′es sin s and y(0, s) = b = k′es cos s,
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we obtain

aā = −e2s sin2 s, bb̄ = −e2s cos2 s, ab̄ = e2s sin s cos s.

N1(0, s) = (1 − e2s, 0, 0,−1 − e2s), N2(0, s) = (0,−2es cos s,−2es sin s, 0).

Therefore, we have

m(s) = (− sinh s, 0, 0,− cosh s) and n(s) = (0,− cos s,− sin s, 0).

Since, for each s ∈ I , the vector c′′(s) belongs to the normal plane along the curve c(s) =
X (0, s) this curve is a geodesic line of the surface solution X (M).

Next, we establish the uniqueness for the solution of the Björling problem.

Theorem 4.2 There exists a unique solution X : � → R
4
1 to the Björling problem for

timelike minimal surfaces which is given by the representations above, where � is a simply
connected open subset of C′ containing the real interval I and for which c and p have
split-holomorphic extensions.

Proof Assume the timelike curve case and define the split-holomorphic curve � : � ⊆
C

′ → C
′4 by

�(z) = c′(z) + k′ � (c′(z), Im(p(z)),Re(p(z))), ∀z ∈ �, (21)

where� is a simply connected open subset ofC′ containing I onwhich the split-holomorphic
extensions c(z), p(z) exist.

We know that

〈c′(u), �(c′(u), Im(p(u)),Re(p(u)))〉 = 0

〈 � (c′(u), Im(p(u)),Re(p(u))), �(c′(u), Im(p(u)),Re(p(u)))〉 = −〈c′(u), c′(u)〉.
This means that φ(u, 0) = v + k′w with v and w orthogonal and of opposite length, so that

−φ1(u, 0)2 + φ2(u, 0)2 + φ3(u, 0)2 + φ4(u, 0)2 = 0.

Similarly,

−|φ1(u, 0)|2 + |φ2(u, 0)|2 + |φ3(u, 0)|2 + |φ4(u, 0)|2 = −2|c′(u)|2 �= 0.

Using the split-holomorphic deterministic extension, we see that

−φ1(z)
2 + φ2(z)

2 + φ3(z)
2 + φ4(z)

2 = 0

where the extensions exist. By shrinking the simply connected set, we can also assume that

−|φ1(z)|2 + |φ2(z)|2 + |φ3(z)|2 + |φ4(z)|2 �= 0.

Using the fact that if C is a curve in the C′ plane and f (z) is a split-holomorphic function
on C with a continuous derivative f ′(z), then

∫

C
f ′(z)dz = f (z)|C (22)

and that the integral is clearly path independent, we can see that the split-holomorphic curve
� has no real periods in a simply connected domain.

Thus, using Theorem 2.1, X (z) = Re
∫ z
xo

�(ζ)dζ defines a timelike minimal surface

X (�) in R
4
1.

123



The Björling problem for timelike minimal surfaces... 1241

Next, we check that X (u, 0) = c(u) and A(u, 0) = [p(u)]. The first condition is clear,
since the second part of the integrand is purely imaginary. For the second condition, we note
that

Xt (u, 0) = c′(u)

Xs(u, 0) = �(c′(u), Im(p(u)),Re(p(u))).

Meanwhile, from (15) we see that Xs(u, 0) = �(c′(u), n(u),m(u)). So it follows that
A(u, 0) = [m(u) + k′n(u)] = [Re(p(u)) + k′Im(p(u))] = [p(u)].

The uniqueness follows easily from Proposition 4.1.
For spacelike curves the proof follows the same line as the timelike case. 
�
As noted in [6], one cannot solve the Björling problem uniquely for a null curve. One

cannot even guarantee existence. The null Björling problem would state that for any null
curve x(u) with a spacelike frame [m(u), n(u)] along the curve we could find a minimal
surface X (u, v), where u and v are null coordinates, so that X (u, 0) = x(u) and the normal
space to the surface along the curve is spanned by m(u) and n(u). 1

Proposition 4.3 Let x(u) be a null curve in R
4
1, with a given orthonormal spacelike frame

[m(u), n(u)] along the curve. If there is a solution X (u, v) to the Björling problem along the
curve then, locally X (u, v) = x(u) + y(v) for another null curve y(v) so that y(0) = 0 and
y′(0) ⊥ m(u), n(u) in a neighborhood of 0.

Proof We recall that every minimal surface in R
4
1 can be written as a sum of null curves.

It’s easy to see we can find such a y(v) and, since X (u, 0) = x(u) we must have y(0) = 0.
Furthermore, the tangent space along the curve is given by

Xu(u, v) = x ′(u)

Xv(u, v) = y′(v).

Thus Xu(u, 0) = x ′(u) and Xv(u, 0) = y′(0). 
�
Next, we give an example of a null curve with a normal frame that cannot be contained in
any minimal surface.

Example 4.3 Take the null helix x(u) = 1√
2
(sinh(u), cosh(u), cos(u), sin(u)). The tangent

vector to the curve is α(u) = 1√
2
(cosh(u), sinh(u),− sin(u), cos(u)).

Define the normal frame by:

m(u) = 1√
2
(sinh(u), cosh(u),− cos(u),− sin(u)) and

n(u) = 1√
2
(sinh(u), cosh(u), cos(u), sin(u)).

Here, y′(0) would need be orthogonal to m(u) and n(u) for all u around 0, but this is
impossible because m(u) and n(u) span all of R4

1 in any small neighborhood of 0.

Example 4.4 In this example, we construct a one-parameter family of solutions of the Björ-
ling problem. Let c(t) = (sinh t, 0, 0, cosh t) be the curve in Example 4.1, and consider the
vector fields

m(t) = (sinh t, 0, 0, cosh t), n1(t) = (0, sin t, cos t, 0), n2(t) = (0, cos t,− sin t, 0).

1 We thank the referee for suggesting this problem.
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We use the normal plane given by span[m(t), nθ (t)] where
nθ (t) = cos θn1(t) + sin θn2(t) = (0, sin(θ + t), cos(θ + t), 0),

for θ ∈ [0, 2π]. Then given the initial data c(t) and
pθ (t) = m(t) + k′nθ (t) = (sinh t, 0, 0, cosh t) + k′(0, sin(θ + t), cos(θ + t), 0),

we obtain a one-parameter family of solutions of the Björling problem given by

Xθ (t, s) = (sinh t cosh s,− cos(θ + t) sin s, sin(θ + t) sin s, cosh t cosh s).

Note that Xθ (t, 0) = c(t) for all θ . For θ = 0, we have the Example 4.1. Moreover

c′′(t) = m(t) = (sinh t, 0, 0, cosh t)

implies that the curve is a geodesic line of each surface Xθ (t, s).

Using the split-complex representation formulas (13), (14),we recover the timelike (space-
like) Björling problem in L

3 = R
3
1, namely Theorem 3.1 and 3.2 in ([6]), as follows.

Corollary 4.1 Let c : I → R
3
1 = {x4 = 0} ⊂ R

4
1, be a regular real timelike (spacelike)

curve at least of C2-class, and let p : I → C
′4 be a real vector field along c at least of

C2-class, such that p(u) = w + k′e4 if the curve is timelike (p(u) = e4 + k′w if the curve
is spacelike), where w(u) ∈ R

3
1 is a unit spacelike vector field with 〈c′(u), w(u)〉 = 0 for all

u ∈ I . Then, there exists a unique solution to the timelike (spacelike) Björling problem for
minimal timelike surfaces in R

3
1, which is given by

Re

(

c(z) + k′
∫ z

to
(w(ξ) × c′(ξ))dξ

)

, (23)

where × is the cross product of R3
1.

Proof If curve c is timelike and p(u) = w + k′e4 we have
�(c′(u), Imp(u),Rep(u)) = w̃(u) × c̃′(u) and from Theorem 4.2’s formula, (23) follows.

For the spacelike curve c with p(u) = e4 + k′w, we have
�(c′(u), Imp(u),Rep(u)) = −w̃(u) × c̃′(u) and from Theorem 4.2 we have the claim. 
�
Example 4.5 The Björling data are the spacelike curve c(s) = (0, cosh(s), s, 0) and the
vector field

p(s) =
(

0,
1

cosh(s)
,− sinh(s)

cosh(s)
, k′

)

.

Using formula (14), in the variable w = s + k′t , we obtain the minimal immersion,

X (w) = (sinh(t) cosh(s), cosh(t) cosh(s), s, 0).

Note that for t = 0, X (0, s) = c(s).

5 Applications and more examples

We now use formula (13) and Theorem 4.2 in order to construct families of examples by
considering the Frenet frame on the curve c, as we see next.
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Example 5.1 Assume that γ (t) is a non-degenerate timelike curve with
〈

γ ′(t), γ ′(t)
〉 = −1,

and let T (t), N (t), B(t), R(t) be the Frenet frame adapted to it. We consider two cases for
Björling problem, namely, given the strip (c, p) with

c(t) = γ (t) and p(t) = N (t) + k′B(t) (24)

c(t) = γ (t) and p(t) = N (t) + k′R(t), (25)

for each case, we find a timelike minimal surface S defined by X : � ⊂ C
′ → R

4
1 so that

X (t, 0) = c(t) and A(t, 0) = [p(t)].
Since in both cases the curve c and the Frenet frame satisfy the conditions of the timelike

Björling problem, it follows from formula (13) that the surfaces which are local solutions for
the Björling problem are, respectively, given by

X (z) = Re

(

c(z) + k′
∫ z

z0
�(c′(ξ), B(ξ), N (ξ))dξ

)

, Xs(t, 0) = R(t),

Y (z) = Re

(

c(z) + k′
∫ z

z0
�(c′(ξ), R(ξ), N (ξ))dξ

)

, Ys(t, 0) = B(t).

Note that, for (t, 0), Xt (t, 0) = T (t) = Yt (t, 0), both surfaces stay orthogonal along the
curve γ (t) and N (t) is a common normal field to both surfaces.

For a real parameter θ ∈ [0, 2π ], we define Z(θ, z) = cos(θ)X (z) + sin(θ)Y (z). This is
the solution given by

Z(θ, z) = Re

(

c(z) + k′
∫ z

z0
�(c′(ξ), cos(θ)B(ξ) + sin(θ)R(ξ), N (ξ))dξ

)

,

which satisfies Zs(θ, t, 0) = − sin(θ)B(t) + cos(θ)R(t).
We can take the domain of the split-holomorphic extensions to be compact. The resulting

surfaces are then transversal to each other.

Example 5.2 Let c(t), t ∈ R, a timelike curve given by

c(t) =
(√

2 sinh t,

√
3

3
cos(t

√
3),

√
3

3
sin(t

√
3),

√
2 cosh t

)

.

The first, the second and the third curvatures will be denoted by k(t), τ (t), ρ(t). The Frenet
frame {T, N , B, R} satisfy the Frenet formulas

⎧

⎪⎪⎨

⎪⎪⎩

T ′ = kN
N ′ = kT + τ B
B ′ = −τN + ρR
R′ = −ρB,

where B(t) belongs to the subspace Span[T (t), N (t), c′′′(t)], it preserves this orientation and
R(t) = − � (T (t), N (t), B(t)). Note that

R′ = �(T ′, N , B) + �(T, N ′, B) + �(T, N , B ′) = ρ � (T, N , R) = −ρB.
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Now,

T (t) =
(√

2 cosh t,− sin(t
√
3), cos(t

√
3),

√
2 sinh t

)

N (t) = 1√
5

(√
2 sinh t,−√

3 cos(t
√
3),−√

3 sin(t
√
3),

√
2 cosh t

)

with k(t) = √
5

B(t) = 1√
2

(

−√
2 cosh t, 2 sin(t

√
3),−2 cos(t

√
3),−√

2 sinh t
)

with τ(t) = 4
√
10

5

R(t) = 1√
5

(√
3 sinh t,

√
2 cos(t

√
3),

√
2 sin(t

√
3),

√
3 cosh t

)

with ρ(t) =
√
15

5
.

Then, we take the initial data c(t) and the normal plane along the curve c(t) given by

pθ (t) = N (t) + k′ (cos(θ)B(t) + sin(θ)R(t)) , θ ∈ [0, 2π].
Then from Theorem 4.2 it follows that, for each θ ∈ [0, 2π], Zθ is a timelike minimal
surface. In addition the curve Zθ (t, 0) = c(t) is a common geodesic and N (t) is the normal
to the all these surfaces Zθ along the curve c(t). The surfaces are given parametrically by

Zθ (z) = Re(c(z)) + cos(θ)Im

(∫ z

z0
R(ξ)dξ

)

+ sin(θ)Im

(∫ z

z0
B(ξ)dξ

)

.

For the next two results, we take as reference the Schwarz Principle of Reflection estab-
lished in Theorem 3.3 of [9], and we prove a version of Propositions 3.2 and 3.3 of [9].

Proposition 5.1 (Timelike version) Let X : � ⊆ C
′ ∈ R

4
1 be the solution of the timelike

Björling problem for a given strip (c, p) in R
4
1, where � is simply connected open set con-

taining the real interval I which is symmetric with respect to the real axis and for which c(z)
and p(z) have split-holomorphic extensions. For all z ∈ �, we have

X (z̄) = Re

(

c(z) − k′
∫ z

zo
�(c′(ζ ), Im(p(ζ ),Re(p(ζ ))dζ

)

. (26)

Proof Let S̃ = X̃(�) be defined by X̃(t, s) = X (t,−s). The surface is still timelike and
minimal. Using our definitions of m̃ and ñ, we see that

m̃(t, s) = m(t,−s)

ñ(t, s) = −n(t,−s)

Ã(t, s) = Ā(t,−s).

Then Ã(t, 0) = Ā(t, 0) = [ p̄(t)] and X̃(t, 0) = X (t, 0) = c(t). Thus X̃ is a solution of the
Björling problem for c̃ = c, p̃ = p̄. This implies

X̃(z) = 2Re

∫ z

zo
�̃(w)dw,

where �̃(ξ) = 1
2

(

X̃t + k′ � (X̃t (ξ), ñ(ξ), m̃(ξ))
)

. Restricting to (t, 0) we get:

�̃(t, 0) = 1
2

(

Xt (t, 0) + k′ � (Xt (t, 0),−n(t, 0),m(t, 0))
)

, and we are done. 
�
For the spacelike case, we have the following result for which we omit the proof since it

follows the same line as the proof of Proposition 5.1. Now, we just recall that w = s + k′t
and we have to use the spacelike Björling representation formula.
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Proposition 5.2 (Spacelike version) Let X : � ⊆ C
′ ∈ R

4
1 be the solution of the spacelike

Björling problem for a given strip (c, p) in R
4
1, where � is a w-symmetric simply connected

open set containing the real interval I and for which c(w) and p(w) have split-holomorphic
extensions. For all w ∈ � we have

X (w̄) = Re

(

c(w) + k′
∫ w

wo

�(c′(ζ ), Im(p(ζ ),Re(p(ζ ))dζ

)

. (27)

5.1 k-subspaces of symmetry

In this section, we study k-subspaces of symmetry for timelike minimal surfaces in R
4
1 and

we establish some results describing various symmetries for this kind of surface.
We start defining orthogonal intersection and degenerate or non-degenerate subspace of

symmetry.

Definition 5.1 Let X : M2
1 → R

4
1 be a regular surface in R

4
1, and consider a k-dimensional

plane �k ⊂ R
4
1. We say that �k intersects the surface orthogonally provided at any point

X (p) of X (M2
1 )∩�k �= ∅ both TpM2∩TX (p)�

k and TpM2∩(TX (p)�
k)⊥ are 1-dimensional.

Definition 5.2 A k-plane � is a plane of symmetry for the surface X (M) = S if there exists
a linear transformation A ofR4

1 with A2 = Id which fixes� pointwise and a diffeomorphism
T which satisfies A ◦ X = X ◦ T .

If � is non-degenerate, we ask that A be orthogonal. Specifically, R4
1 = � ⊕ W , with

A(p) = p if p ∈ � and A(w) = −w if w ∈ W .
If � is degenerate, we have R4

1 = V ⊕ W with A|W being an orthogonal transformation
and A|V being anti-orthogonal, meaning 〈Av, Av′〉 = −〈v, v′〉. We still ask that A(p) = p
if p ∈ � and only � is fixed pointwise. Finally, we require V and W to be invariant by A.

Even in the degenerate case, V and W are non-degenerate, since ⊕ means orthogonal direct
sum.

In R
4
1 there are three one-dimensional types of lines: timelike, spacelike and null lines.

We have three types of planes, with signature:

(+,+) (−,+) (0,+).

Here + means a spacelike vector, − a timelike vector and 0 a null vector. Finally, there are
three kinds of three-dimensional subspaces: (−,+,+) (+,+,+) (0,+,+). Next, we give
every type of obtainable example below. Each one of them represents a timelike minimal
surfaces with k-plane of symmetry.

Example 5.3

X (t, s) =
(
2

3

(

t3 + 3ts2
) + t, t2 + s2, 2ts,

2

3

(

t3 + 3ts2
) − t

)

has [e2] as line of symmetry with T (t, s) = (−t, s). It has [e2, e3] as a plane of symmetry
with T (t, s) = (−t,−s), and [e1, e2, e4] as three-space of symmetry with T (t, s) = (t,−s).
This example covers the spacelike line and (+,+), (−,+,+) cases, respectively.

Example 5.4

X (t, s) = (cosh(s) sinh(t),− cos(t) sin(s), sin(s) sin(t), cosh(s) cosh(t)).
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This has [e2, e4] as a plane of symmetry with T (t, s) = (−t, s). It has [e3, e4] as a plane
of symmetry with T (t, s) = (−t,−s), and [e1, e4] as a plane of symmetry with T (t, s) =
(t,−s). So this example covers (+,+) and (−,+) cases.

Example 5.5

X (t, s) = (t + s, cos t + cos s, sin t, sin s).

is symmetric with respect to [e1] using T (t, s) = (t + π, s − π). So it covers the timelike
line case.

When the fixed subspace is degenerate, there is an orthonormal basis with respect to which
the symmetry A has the following forms, with subspaces V = [e1, e4] and W = [e2, e3]. In
fact,

If � = [e1 + e4] then there is an orthonormal basis so that

A =

⎛

⎜
⎜
⎝

0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

⎞

⎟
⎟
⎠

If � = [e1 + e4, e3], we have the following A

A =

⎛

⎜
⎜
⎝

0 0 0 1
0 −1 0 0
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠

If � = [e1 + e4, e2, e3], we have the following A

A =

⎛

⎜
⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠

So, using this information, we have

Example 5.6 The parametric timelike minimal surface

X (t, s) = (t, 0, 0, s)

is symmetric with respect to the degenerate line � = [e1 + e4].
It is also symmetric with respect to � = [e1 + e4, e3] and symmetric with respect to

� = [e1+e4, e3, e2]. In all of them, we use T (t, s) = (s, t), and V = [e1, e4],W = [e2, e3].
Finally, the surface is symmetricwith respect to the three-dimensional subspace [e2, e3, e4]

using T (t, s) = (−t, s). So this examples covers the degenerate cases (0), (0,+), (0,+,+),
and the non-degenerate (+,+,+) case.

Thus, we have examples of all possible cases.
We observe that, according to our definition of orthogonal intersection, in Example 5.3 the

only subspace of symmetry which intersects X orthogonally is [e2]. In Example 5.4, the only
orthogonal intersection is with respect to [e1, e4] and in Example 5.6, the null line [e1 + e4]
orthogonally intersects the surface

The main theorem of this section concerns minimal surfaces which are symmetric with
respect to non-degenerate subspaces.
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Theorem 5.1 Let S be a timelike minimal surface in R
4
1 given by X : U ⊂ C

′ → R
4
1.

Then

1. every non-degenerate straight line contained in S is an axis of symmetry of S;
2. if S intersects any timelike or spacelike 2-plane �2 orthogonally along a regular curve

of S then �2 is a plane of symmetry of S;
3. if S intersects any timelike or spacelike 3-space �3 orthogonally along a regular curve

of S, then �3 is a 3-plane of symmetry of S.

To prove this theorem, we need Lemma 5.1 belowwhich will imply Theorem 5.1 after using a
special coordinate system. For constructing that system, we follow the technique of Hoffman
and Karcher [12], which employs the conjugate minimal surface. We learned of this in [5].

Definition 5.3 The map X∗ : � ⊂ C
′ → R

4
1 given by

X∗(z) = Im

∫

γz

(�1,�2,�3,�4) dz,

where γz is a path from the fixed basepoint z is aminimal immersion inR4
1 called the conjugate

immersion.

Equivalently X∗ is the harmonic conjugate of X, in that X∗
j t = X js and X∗

js = X jt .
It is easy to see that (X j , X∗

j ) gives a new coordinate system on an open set in �, unless
X jt = ±X js in a subset of�, inwhich case X j is a function of t±s. Of course, one coordinate
could be identically zero, since our immersion might be contained in a three-dimensional
subspace.

In every case below, we just have to have one of the complementary coordinates not being
a function of t ± s. If any of the nonzero complementary functions is a function of t ± s then
the definition of orthogonal intersection says that the curve γ (w) = (t (w), s(w)) defined by
X j (γ (w)) = 0 would satisfy t (w)± s(w) = c, where c is a constant. But this is a null curve,
which is a contradiction. We see easily that in every case there is a complementary function
which can be used as a coordinate.

In general, we use (X j , X∗
j ) as a new coordinate system on �. For instance, to look at

case (3) in the Theorem, let’s assume that S intersects the x1, x2, x3 three-space orthogonally.
Then c(z) = (c1(z), c2(z), c3(z), 0) and in the tangent space, c′⊥ = c∗′ is in [e4], because
of the definition of orthogonal intersection.

We can set u = X3 and v = X∗
3 . To use the Lemma, we need u + kv so that X (u, 0) or

X (0, v) ⊂ [e1, e2, e3]. v = 0 means that we are in X∗ ∩ [e1, e2, e4], which is the curve c∗.
We have c(u) = (c1(u), c2(u), u, 0), so that x4(u, 0) = 0.

Now, we have the following version of the Lemma 4.1 of [9]

Lemma 5.1 Let S be a timelike minimal surface in R
4
1, given by X : � ⊆ C

′ → R
4
1, where

� is symmetric and simply connected.

1. If, for all t ∈ I , the curve c(t) = X (t, 0) is contained in the x1-axis, then

X (t,−s) = (x1(t, s),−x2(t, s),−x3(t, s),−x4(t, s)). (28)

2. If, for all s ∈ I , the curve c(s) = X (s, 0) is contained in the x4-axis, then

X (s,−t) = (−x1(s, t),−x2(s, t),−x3(s, t), x4(s, t)). (29)

3. If, for all t ∈ I , the curve X (t, 0) is contained in the timelike plane � = [e1, e4], then
X (t,−s) = (x1(t, s),−x2(t, s),−x3(t, s), x4(t, s)). (30)
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4. If, for all s ∈ I the curve X (s, 0) is contained in the spacelike plane � = [e3, e4] then
X (s,−t) = (−x1(s, t),−x2(s, t), x3(s, t), x4(s, t)).

5. If, for all s ∈ I , the curve X (s, 0) is contained in the timelike 3-space � = [e1, e2, e3]
and if the surface S intersects � orthogonally along c, then

X (s,−t) = (x1(s, t), x2(s, t), x3(s, t),−x4(s, t)). (31)

6. If, for all t ∈ I , the curve X (t, 0) is contained in the 3-space � = [e1, e2, e3] and if the
surface S intersects � orthogonally along c, then

X (t,−s) = (x1(t, s), x2(t, s), x3(t, s),−x4(t, s)). (32)

7. If, for all s ∈ I , the curve X (s, 0) is contained in the positive definite 3-space � =
[e2, e3, e4] and if the surface S intersects � orthogonally along c, then

X (s,−t) = (−x1(s, t), x2(s, t), x3(s, t), x4(s, t)). (33)

Proof We include some of the proofs; the missing ones are similar, of course.
1. Set c(t) := X (t, 0) and p(t) = A(t, 0). By definition, we have c(t) = (c1(t), 0, 0, 0),

Imp(t) = (0,m2(t, 0),m3(t, 0),m4(t, 0)) and Rep(t) = (0, n2(t, 0), n3(t, 0), n4(t, 0)).
We see that �(c′(t), I(p(t, 0))),R(p(t, 0)) has zero for its first coordinate and we write the
vector as (0, �2(t), �3(t), �4(t)). Using the formulas for X (z), X (z̄) we find:

X (z) =
(

Re(c1(z)), Im
∫ z

�2(ζ )dζ, Im

∫ z

�3(ζ )dζ, Im

∫ z

�4(ζ )dζ

)

X (z̄) =
(

Re(c1(z)),−Im

∫ z

�2(ζ )dζ,−Im

∫ z

�3(ζ )dζ,−Im

∫ z

�4(ζ )dζ

)

.

For (2), c(s) := X (s, 0) and p(s)=A(s, 0).By definition, we have c(s) = (0, 0, 0, c4(s)),
Imp(s) = (m1(s, 0),m2(s, 0),m3(s, 0), 0) and Rep(s) = (n1(s, 0), n2(s, 0), n3(s, 0), 0).
We see that �(c′(s), I(p(s, 0)),R(p(s, 0))) has zero for its last coordinate and we write the
vector as (�1(s), �2(s), �3(s), 0). Using the formulas for X (w), X (w̄) we find:

X (w) =
(

−Im

∫ w

�1(ζ )dζ,−Im

∫ w

�2(ζ )dζ,−Im

∫ w

�3(ζ )dζ,Re(c4(w))

)

X (w̄) =
(

Im

∫ w

�1(ζ )dζ, Im

∫ w

�2(ζ )dζ, Im

∫ w

�3(ζ )dζ,Re(c4(w))

)

.

3.The hypothesismeans that c(t) = (c1(t), 0, 0, c4(t)). The plane given by [Rep(t), Imp(t)]
is orthogonal to Tc(t)S along c(t). In addition, the hypothesis means (c′(t)⊥ ∩ Tc(t)S) ⊥
sp[e1, e4]. Thus, �(Rep(t), Imp(t), c′(t)) is in [e2, e3]. Now, the result follows as before:

X (z̄) = Re(c(z)) − k′
∫ z

zo
(0, α(ζ ), β(ζ ), 0)dζ.

5. By the hypothesis c(s) = (c1(s), c2(s), c3(s), 0). Since S intersects � orthogonally, it
follows that Xt (s, 0) ∈ �⊥, then Xt (s, 0) is parallel to e4. Then Imp(s) and Rep(s) lie in
�, which implies that �(Rep(s), Imp(s), c′(s)) is of the form (0, 0, 0, �4(s)). Then,

X (w) = (Re(c1(w)),Re(c3(w)),Re(c3(w)), Im

∫ w

�4(s)),

X (w̄) = (Re(c1(w)),Re(c2(w)),Re(c3(w)),−Im

∫ w

�4(s)).
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