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Abstract Weconsider plasmon resonances for the elastostatic system inR3 associatedwith a
very broad class of sources. Theplasmonic device takes a general core–shell–matrix formwith
the metamaterial located in the shell. It is shown that the plasmonic device in the literature
which induces resonance in R

2 does not induce resonance in R
3. We then construct two

novel plasmonic devices with suitable plasmon constants, varying according to the source
term or the loss parameter, that can induce resonances. If there is no core, we show that
resonance always occurs. If there is a core of an arbitrary shape, we show that the resonance
strongly depends on the location of the source. In fact, there exists a critical radius such that
resonance occurs for sources lying within the critical radius, whereas resonance does not
occur for sources lying outside the critical radius. Our argument is based on the variational
technique by making use of the primal and dual variational principles for the elastostatic
system, along with a highly technical construction of the associated perfect plasmon elastic
waves.
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1 Introduction

1.1 Mathematical setup

In this paper, we consider plasmon resonances for the elastostatic system, generalizing and
extending our two-dimensional study in [18] (see also [15]) to the much more challenging
three-dimensional case. Following [18], we first introduce the mathematical setup of the
elastostatic system and plasmon resonance. Let C(x) := (Ci jkl(x))Ni, j,k,l=1, x ∈ R

N with
N = 2, 3, be a four-rank tensor such that

Ci jkl(x) := λ(x)δi jδkl + μ(x)
(
δikδ jl + δilδ jk

)
, x ∈ R

N , (1.1)

where λ,μ are real-valued functions and δ is the Kronecker delta.C(x) describes an isotropic
elastic material tensor distributed in the space RN , where λ and μ are referred to as the Lamé
constants. For a regular elastic material, it is required that the Lamé constants satisfy the
following strong convexity condition,

μ > 0 and Nλ + 2μ > 0. (1.2)

In the sequel, we write Cλ,μ to specify the dependence of the elastic tensor on the Lamé
parameters λ and μ.

Let � and � be bounded domains in R
N with connected Lipschitz boundaries such that

� � �. Consider an elastic parameter distribution Cλ̃,μ̃ given with
(
λ̃(x), μ̃(x)

) = (
A(x) + iδ

)
(λ, μ), x ∈ R

N , (1.3)

where δ ∈ R+ denotes a loss parameter; (λ, μ) are two Lamé constants satisfying the strong
convexity condition (1.2); and A(x) has a matrix–shell–core representation in the following
form

A(x) =

⎧
⎪⎨

⎪⎩

+1, x ∈ �,

c, x ∈ �\�,

+1, x ∈ R
N\�,

(1.4)

where c is constant that will be specified later. The choice of c is critical in our study, and in
principle, it will be negative valued. In such a case, c is called a plasmon constant and (1.3)
is referred to as a plasmonic device.

Let f be an R
N -valued function that is compactly supported outside � satisfying

∫

RN
f(x) dV (x) = 0. (1.5)

f signifies an elastic source/forcing term.
Let uδ(x) ∈ C

N , x ∈ R
N , denote the displacement field in the space that is occupied by

the elastic configuration (Cλ̃,μ̃, f) as described above. In the quasi-static regime, uδ(x) ∈
H1
loc(R

N )N verifies the following Lamé system
⎧
⎪⎨

⎪⎩

Lλ̃,μ̃uδ(x) = f(x), x ∈ R
N ,

uδ|− = uδ|+, ∂νλ̃,μ̃
uδ|− = ∂νλ̃,μ̃

uδ|+ on ∂� ∪ ∂�,

uδ(x) = O(‖x‖−1
)

as ‖x‖ → +∞,

(1.6)

where the partial differential operator (PDO) Lλ̃,μ̃ is given as follows

Lλ̃,μ̃uδ := ∇ · Cλ̃,μ̃∇suδ = μ̃�uδ + (̃λ + μ̃)∇∇ · uδ, (1.7)

123



On three-dimensional plasmon resonances in elastostatics 1115

with ∇s defined to be the symmetric gradient

∇suδ := 1

2

(
∇uδ + ∇uTδ

)
,

and T signifying thematrix transpose. In (1.6), the conormal derivative (or traction) is defined
by

∂νλ̃,μ̃
uδ = ∂uδ

∂νλ̃,μ̃

:= λ̃(∇ · uδ)ν + μ̃
(
∇uδ + ∇uTδ

)
ν on ∂� or ∂�, (1.8)

where ν denotes the exterior unit normal to ∂�/∂�, and the ± signify the traces taken from
outside and inside of the domain �/�, respectively.

Next, for u ∈ H1
loc(R

N )N and v ∈ H1
loc(R

N )N , we introduce

Pλ,μ(u, v) :=
∫

RN

[
λ(∇ · u)(∇ · v)(x) + 2μ∇su : ∇sv(x)

]
dV (x), (1.9)

where and also in what follows, for two matrices A = (ai j )Ni, j=1 and B = (bi j )Ni, j=1,

A : B =
N∑

i, j=1

ai j bi j . (1.10)

For the solution uδ to (1.6), we define

Eδ

(
Cλ̃,μ̃, f

)
:= δ

2
Pλ,μ (uδ,uδ) , (1.11)

which is the imaginary part of

1

2

∫

RN
∇suδ : Cλ̃,μ̃∇suδ dV .

Eδ signifies the energy dissipation of the elastostatic system (1.6).

Definition 1.1 The configuration (Cλ̃,μ̃, f) in (1.6) is said to be resonant if

lim
δ→+0

Eδ

(
Cλ̃,μ̃, f

)
= +∞; (1.12)

and it is said to be weakly resonant if

lim sup
δ→+0

Eδ

(
Cλ̃,μ̃, f

)
= +∞. (1.13)

1.2 Main results and connection to existing studies

As mentioned earlier in defining the elastic tensor Cλ̃,μ̃, the plasmon constant c will be
negatively valued. Hence, in the limiting case as the loss parameter δ goes to zero, the
corresponding PDO Lλ̃,μ̃ loses its ellipticity. In this limiting case, the non-elliptic PDO
Lλ̃,μ̃ possesses an infinite dimensional kernel space. Hence, “anomalous” resonance will be
induced by such an infinite dimensional kernel, which is generally referred to as plasmon
resonance in the literature. It is not surprising that the resonant field demonstrates a highly
oscillatory behaviour, reflected by the blowup of the associated energy; see Definition 1.1.
It is rather surprising that such a blowup behaviour is localized within a specific region
with a sharp boundary not defined by any discontinuities in the material parameters, and the
field outside that region converges to a smooth one as δ goes to zero. Another surprisingly
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1116 H. Li, H. Liu

interesting feature of the plasmon resonance is that it strongly depends on the location of the
forcing source.

Plasmon materials, a.k.a. negative materials, have received significant attentions in the
literature in recent years, especially in the optics. The associated plasmon resonances can
find many striking applications in science and technology such as invisibility cloaking and
imaging resolution enhancement. We refer to [1–3,7,10–12,15,19,21–27] for the relevant
study in electrostatics, [4,5,9,13] for acoustic waves and [6] for electromagnetic waves. In
recent two papers [8,18], the plasmon resonance was investigated for the elastostatic system
(1.3)–(1.6) inR2. Briefly summarizing, it has been shown in [8,18] that inR2, when c in (1.4)
is a suitable negative constant being fixed, then for a broad class of forcing terms, resonance
occurs. Both in [8] and [18], the dependence of the plasmon resonance on the location of the
source has been shown. In [8], the localized and cloaking effects of the plasmon resonance
have been derived. In this paper, we shall generalize and extend the relevant two-dimensional
study to themuchmore challenging three-dimensional case. In summary, the following results
have been achieved in the present paper.

(1) The plasmon resonance is critically associated with the non-trivial kernel of the non-
elliptic PDO Lλ̃,μ̃ in the limiting case. Hence, the proper choice of the plasmon constant
c in (1.4) such that Lλ̃,μ̃ with δ = 0 possesses an infinite dimensional kernel is critical
for the occurrence of the plasmon resonance. In [8,18], the plasmon constant is a fixed
negative constant, and it is derived based on the investigation of the spectral properties
of the corresponding Neumman–Poincaré operator in solving the underlying elastostatic
system in R

2; see Remark 3.2 for more relevant discussion. Indeed, this is the main
tool in deriving the critical plasmon constant in most of the literature mentioned earlier
in the optical case. However, the spectral properties of the corresponding Neumann–
Poincaré operator for the elastostatic system in R

3 are not yet known. In Sect. 3, based
on certain purely analysis means, we derive all the possible plasmon constants as well
as the associated infinite dimensional kernels of the PDO Lλ̃,μ̃ in the limiting case with
δ = 0. This also casts light on the corresponding investigation of the spectral properties
of the Neumann–Poincaré operator for the elastostatic system in R

3.
(2) For a very broad class of forcing terms, it is shown that resonance does not occur for

the plasmonic device (1.3)–(1.4) with a fixed constant c, which particularly includes the
one considered in [8,18] for the elastostatic system in R

2. That is, the plasmonic device
which induces resonance in R

2 does not induce resonance in R
3.

(3) By properly choosing the plasmon constant c, varying according to the forcing source
or the loss parameter δ, we construct two novel plasmon devices, one with a core and
the other without a core. If there is no core, we show that resonance always occurs,
whereas if the core is non-empty and of an arbitrary shape, we show that there exists a
critical radius such that resonance occurs when the source lies within the critical radius,
whereas resonance does not occur when the source lies outside the critical radius. Our
argument follows the general variational strategy pioneered in [15] for dealing with
plasmon resonances in electrostatics. The variational approach was further followed in
[18] for two-dimensional plasmon resonances in elastostatics. Similar to [15] and [18],
for the three-dimensional elastostatics considered in the present article, we can only
show the resonance and non-resonance results, and we cannot deal with the localized
and cloaking effects.

Finally, we mention in passing that the existence of exotic elastic materials with negative
stiffness was reported in the physical literature; see [14] and [17].
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The rest of the paper is organized as follows. In Sect. 2, we provide some preliminary
knowledge including the variational principles and the spherical harmonic representations for
the elastostatic system. In Sect. 3, we derive the plasmon constants and construct the perfect
plasmon elastic waves. Section 4 is devoted to the resonance and non-resonance results. The
paper is concluded in Sect. 5.

2 Preliminaries for the elastostatic system

In this section, we collect some preliminary knowledge for the elastostatic system (1.6),
including the variational principles and the spherical harmonic representations. Throughout
the paper, we assume that the force term f = ( fi )3i=1 ∈ H−1(R3)3 in (1.6) with a compact
support and a zero average in the sense that

〈 fi , 1〉 = 0, i = 1, 2, 3, (2.1)

where 1 : R3 → R is the constant function, 1(x) = 1 for all x ∈ R
3. In what follows, we

let BR with R ∈ R+ denote a central ball of radius R in R
3. Without loss of generality, we

assume that there exists R0 ∈ R+ such that supp(f) ⊂ BR0 . In the subsequent study, we shall
also need the following Banach space

S :=
{
u ∈ H1

loc(R
3)3; ∇u ∈ L2(R3)3×3 and

∫

BR0

u = 0
}
, (2.2)

endowed with the Sobolev norm for u = (ui )Ni=1,

‖u‖S :=
(∫

RN

N∑

i=1

‖∇ui‖2 dV +
∫

BR0

‖u‖2 dV
)1/2

. (2.3)

2.1 Variational principles

For self-containedness, we present the primal and dual variational principles for the elasto-
static system (1.6), which were established in [18] (see also [15]) and shall play a critical
role in our subsequent plasmon resonance study. For a fixed force term f ∈ H−1(R3)3 and
for the solution uδ ∈ H1

loc(R
3)3 : R3 → C

3 in (1.6), we set

uδ = vδ + i
1

δ
wδ, (2.4)

where vδ,wδ ∈ H1
loc(R

3)3 : R3 → R
3 satisfying vδ = O(‖x‖−1) and wδ = O(‖x‖−1) as

‖x‖ → +∞. One has

LλA,μAvδ − Lλ,μwδ = f, (2.5)

LλA,μAwδ + δ2Lλ,μvδ = 0, (2.6)

where
(λA(x), μA(x)) := A(x)(λ, μ), x ∈ R

3, (2.7)

with A given in (1.4), and λ,μ two regular Lamé constants in (1.3). Furthermore, there holds
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Eδ (uδ) :=Eδ

(
Cλ̃,μ̃, f

)
= δ

2
Pλ,μ (uδ,uδ)

= δ

2
Pλ,μ (vδ, vδ) + 1

2δ
Pλ,μ (wδ,wδ) , (2.8)

where Eδ is given in (1.11) and Pλ,μ is given in (1.9).
Next, we introduce the following energy functionals

Iδ (v,w) := δ

2
Pλ,μ (v, v) + 1

2δ
Pλ,μ (w,w) for (v,w) ∈ S × S, (2.9)

Jδ (v,ψ) :=
∫

R3
f · ψ − δ

2
Pλ,μ (v, v) − δ

2
Pλ,μ (ψ,ψ) for (v,ψ) ∈ S × S, (2.10)

and consider the following optimization problems:

Minimize Iδ (v,w) over all pairs (v,w) ∈ S × S
subject to the PDE constraint LλA,μAv − Lλ,μw = f; (2.11)

and

Maximize Jδ(v,ψ) over all pairs (v,ψ) ∈ S × S
subject to the PDE constraint LλA,μAψ + δLλ,μv = 0. (2.12)

In the sequel,we shall refer to (2.11) and (2.12), respectively, as the primal and dual variational
problems for the elastostatic system (1.6), or equivalently (2.5)–(2.6).

We have the following variational principles from [18].

Theorem 2.1 There holds the primal variational principle that the problem (2.11) is equiv-
alent to the elastic problem (1.6) in the following sense. The infimum

inf
{
Iδ(v,w); LλA,μAv − Lλ,μw = f

}

is attainable at a pair (vδ,wδ) ∈ S × S. The minimizing pair (vδ,wδ) verifies that the
function uδ := vδ + iδ−1wδ is the unique solution to the elastic problem (1.6), and moreover,
one has

Eδ(uδ) = Iδ(vδ,wδ). (2.13)

Similarly, there holds the dual variational principle that the problem (2.12) is equivalent
to the elastic problem (1.6) in the following sense. The supremum

sup
{
Jδ(v,ψ);LλA,μAψ + δLλ,μv = 0

}

is attainable at a pair (vδ,ψδ) ∈ S × S. The maximizing pair (vδ,ψδ) verifies that the
function uδ := vδ + iψδ is the unique solution to the elastic problem (1.6), and moreover, one
has

Eδ(uδ) = Jδ(vδ,ψδ). (2.14)

2.2 Spherical harmonic representations

For the subsequent use, we present some results on the spherical harmonic representations
to the solutions of the following Lamé equations

Lλ,μu :=μu + (λ + μ)∇∇ · u = 0. (2.15)
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We also refer to [20] for more relevant discussion. The solution u to (2.15) is called forego-
ing/outgoing if it decays as follows

u(x) = O (‖x‖−1) as ‖x‖ → +∞. (2.16)

In the sequel, for x ∈ R
3\{0}, we make use of the spherical coordinates

x = (x j )
3
j=1 = r · x̂ with r = ‖x‖ and x̂ = r−1 · x .

For n ∈ N, we let Ym
n (x̂)(m = n, n − 1, . . . , 1, 0, . . . ,−n + 1,−n) denote the orthonormal-

ized Laplace spherical harmonic polynomial of degree n and order m. In what follows, we
set Yn(x̂) to be the vector of size 2n − 1,

Yn(x̂) =
⎡

⎢
⎣

Yn
n (x̂)
...

Y−n
n (x̂)

⎤

⎥
⎦ ; (2.17)

and introduce the matrices D
nx j
n+1 and D

(n+1)x j
n , 1 ≤ j ≤ 3, to be such that

∂

∂x j

[
rn+1Yn+1(x̂)

] = D
nx j
n+1r

nYn(x̂) (2.18)

and
∂

∂x j

[
r−n−1Yn(x̂)

] = D
(n+1)x j
n r−n−2Yn+1(x̂). (2.19)

We also introduce a coefficient matrix Gn of size 3 × (2n + 1) as follows

Gn =
⎡

⎣
ann an−1

n . . . a−n+1
n a−n

n
bnn bn−1

n . . . b−n+1
n b−n

n
cnn cn−1

n . . . c−n+1
n c−n

n

⎤

⎦ , (2.20)

where a j
n , b

j
n and c jn , −n ≤ j ≤ n are all complex numbers. We use Gn

j,:, 1 ≤ j ≤ 3, to
denote the j-th row of the matrix Gn ; that is, e.g.

Gn
1,: = [

ann an−1
n . . . a−n+1

n a−n
n

]
. (2.21)

The general form of a foregoing solution to (2.15) can be written as

uo(x) =
∞∑

n=1

Gnr−n−1Yn(x̂) + kn

⎡

⎢⎢
⎣

t1n+1D
(n+2)x1
n+1

t1n+1D
(n+2)x2
n+1

t1n+1D
(n+2)x3
n+1

⎤

⎥⎥
⎦ r−n−1Yn+2(x̂), (2.22)

where

kn := λ + μ

2((n + 2)λ + (3n + 5)μ)
, (2.23)

and
t1n+1 :=Gn

1,:D(n+1)x1
n + Gn

2,:D(n+1)x2
n + Gn

3,:D(n+1)x3
n . (2.24)

The general form of an entire solution to (2.15) can be expressed as

ui (x) =
∞∑

n=1

GnrnYn(x̂) − Mn

⎡

⎢⎢
⎣

t3n−1D
(n−2)x1
n−1

t3n−1D
(n−2)x2
n−1

t3n−1D
(n−2)x3
n−1

⎤

⎥⎥
⎦ rnYn−2, (2.25)
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where

Mn := λ + μ

2((n − 1)λ + (3n − 2)μ)
, (2.26)

and
t3n−1 :=Gn

1,:D(n−1)x1
n + Gn

2,:D(n−1)x2
n + Gn

3,:D(n−1)x3
n . (2.27)

For a solution u to (2.15) inside a ball BR , if the surface displacement is prescribed on
∂BR , say

u(Rx̂) =
⎡

⎣
An

Bn

Cn

⎤

⎦Yn(x̂), (2.28)

where An,Bn,Cn are the coefficient vectors of size 2n + 1, then by straightforward (though
a bit tedious) calculations, one has that

u(x) =
∞∑

n=1

⎡

⎣
An

Bn

Cn

⎤

⎦ rn

Rn
Yn + Mn+2

R2 − r2

Rn+2

⎡

⎢
⎣

t2n+1D
nx1
n+1

t2n+1D
nx2
n+1

t2n+1D
nx3
n+1

⎤

⎥
⎦ rnYn(x̂), (2.29)

where

Mn+2 := 1

2

λ + μ

(n + 1)λ + (3n + 4)μ
, (2.30)

and
t2n+1 :=An+2D

(n+1)x1
n+2 + Bn+2D

(n+1)x2
n+2 + Cn+2D

(n+1)x3
n+2 . (2.31)

On the other hand, if the surface traction is prescribed on ∂BR , say

∂u
∂νλ,μ

(Rx̂) =
⎡

⎣
A′
n

B′
n

C′
n

⎤

⎦Yn(x̂), (2.32)

where A′
n,B

′
n,C

′
n are the coefficient vectors of size 2n + 1, then by straightforward cal-

culations, one can show that the solution u inside BR is still given by (2.29), but with the
coefficients (An,Bn,Cn) replaced by (Ãn, B̃n, C̃n) as follows

Ãn = R

(n − 1)μ

(
A

′
n + s1n t

4
nD

nx1
n−1 + s2n t

5
nD

nx1
n+1

)
,

B̃n = R

(n − 1)μ

(
B

′
n + s1n t

4
nD

nx2
n−1 + s2n t

5
nD

nx2
n+1

)
,

C̃n = R

(n − 1)μ

(
C

′
n + s1n t

4
nD

nx3
n−1 + s2n t

5
nD

nx3
n+1

)
, (2.33)

where

t4n := A
′
nD

(n−1)x1
n + B

′
nD

(n−1)x2
n + C

′
nD

(n−1)x3
n ,

t5n := A
′
nD

(n+1)x1
n + B

′
nD

(n+1)x2
n + C

′
nD

(n+1)x3
n , (2.34)

and

s1n := En

n − 1 + n(2n + 1)En
,

s2n := 1

2n(2n + 1)
, (2.35)
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On three-dimensional plasmon resonances in elastostatics 1121

with

En := 1

2n + 1

(n + 2)λ − (n − 3)μ

(n − 1)λ + (3n − 2)μ
. (2.36)

3 Perfect plasmon elastic waves

Let us consider the following elastostatic system for ψ ∈ H1
loc(R

3)3 : R3 → C
3,

⎧
⎪⎨

⎪⎩

LλA,μAψ = 0,

ψ |− = ψ |+, ∂νλA ,μA
ψ |− = ∂νλA ,μA

ψ |+ on ∂BR,

ψ(x) = O(‖x‖−1) as ‖x‖ → ∞,

(3.1)

where

A(x) =
{
c, ‖x‖ ≤ R,

+1, ‖x‖ > R.
(3.2)

Clearly, if c is a positive constant, then by the well-posedness of the elastostatic system (3.1),
one must have that ψ ≡ 0. We seek non-trivial solutions to (3.1) when c is allowed to be
negative valued. Those non-trivial solutions are referred to as the perfect plasmon elastic
waves, and in combination with the variational principles in Theorem 2.1, they shall be
crucial for our subsequent establishment of the plasmon resonances for (1.3)–(1.6) in R

3.
Indeed, we have

Theorem 3.1 Consider the PDE system (3.1)–(3.2) for a function ψ ∈ H1
loc(R

3)3 :
R
3 → R

3. Let n ∈ N and n ≥ 2 be fixed and set

ζ1 := −1 − 3

n − 1
,

ζ2 := − (2n + 2) ((n − 1)λ + (3n − 2)μ)

(2n2 + 1)λ + (2 + 2n(n − 1)) μ
,

ζ3 := − (2n2 + 4n + 3)λ + (2n2 + 6n + 6)μ

2n ((n + 2)λ + (3n + 5)μ)
. (3.3)

Then, if
c = ζ1, (3.4)

there exists a non-trivial solution ψ = ψ̂n,k ∈ H1
loc(R

3)3 as follows:

ψ̂n,k(x) =
{
Gn,ζ1,krnYn(x̂), r ≤ R,

Gn,ζ1,k R2n+1

rn+1 Yn(x̂), r > R,
(3.5)

with Gn,ζ1,k , k = 1, 2, . . . , 2n + 1, satisfying

t1n+1 = 0 and t3n−1 = 0, (3.6)

where t1n+1 and t3n−1 are, respectively, defined in (2.24) and (2.27) with Gn
i,: replaced by

Gn,ζ1,k
i,: , i = 1, 2, 3.
If

c = ζ2, (3.7)
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there exists a non-trivial solution ψ = ψ̂n,k ∈ H1
loc(R

3)3 as follows:

ψ̂n,k(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gn,ζ2,krnYn(x̂) − Mn(r2 − R2)

⎡

⎢
⎢
⎣

t3n−1D
(n−2)x1
n−1

t3n−1D
(n−2)x2
n−1

t3n−1D
(n−2)x3
n−1

⎤

⎥
⎥
⎦ rn−2Yn−2(x̂), r ≤ R,

Gn,ζ2,k R2n+1

rn+1 Yn(x̂), r > R,

(3.8)
with Gn,ζ2,k , k = 1, 2, . . . , 2n − 1, satisfying

t1n+1 = 0 and t3n−1 �= 0, (3.9)

where t1n+1 and t3n−1 are, respectively, defined in (2.24) and (2.27) with Gn
i,: replaced by

Gn,ζ2,k
i,: , i = 1, 2, 3.
If

c = ζ3, (3.10)

there exists a non-trivial solution ψ = ψ̂n,k ∈ H1
loc(R

3)3 as follows:

ψ̂n,k(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gn,ζ3,krnYn(x̂), r ≤ R,

Gn,ζ3,k R2n+1

rn+1 Yn(x̂) + kn(r2 − R2)

⎡

⎢
⎣

t1n+1D
(n+2)x1
n+1

t1n+1D
(n+2)x2
n+1

t1n+1D
(n+2)x3
n+1

⎤

⎥
⎦ R2n+1

rn+3 Yn+2(x̂), r > R,

(3.11)
with Gn,ζ3,k , k = 1, 2, . . . , 2n + 3, satisfying

t1n+1 �= 0 and t3n−1 = 0, (3.12)

where t1n+1 and t3n−1 are, respectively, defined in (2.24) and (2.27) with Gn
i,: replaced by

Gn,ζ3,k
i,: , i = 1, 2, 3.

By Theorem 3.1, we find a series of perfect plasmon waves, ψ̂n,k , n = 2, 3, 4, . . ., and
these are actually resonant modes for our subsequent use in Sect. 4. The form of the plasmon
constant c in (3.4) is critical for the existence of the perfect plasmon waves (3.5). With the
explicit forms of the plasmon constant in (3.4) and the perfect plasmon wave in (3.5), one can
verify by direct calculations that ψ̂n ∈ H1

loc(R
3)3 and satisfies the PDE system (3.1)–(3.2).

Nevertheless, in what follows, we shall give a proof of Theorem 3.1, starting from the most
general construction of perfect plasmon waves for the PDE system (3.1)–(3.2). The general
idea is that we represent the solution inside BR and outside BR , respectively, by the spherical
harmonic expansions (2.25) and (2.22). Then, with the help of our discussion in (2.28)–
(2.36), we match the surface displacement and traction of the elastic field on the sphere ∂BR .
Throughout this trial process, we leave the plasmon constant c as a free parameter. It turns out
that (3.3) gives all the possibilities that one can determine non-trivial solutions of the forms,
(3.5)–(3.6), (3.8)–(3.9) and (3.11)–(3.12), respectively. That is, we actually have found all
the possible plasmon resonances in R

3 for the elastostatic system (1.3)–(1.6).
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Proof of Theorem 3.1 First, by (2.22), we represent the solution ψ outside BR by the fol-
lowing harmonic expansion,

⎡

⎣
uo

vo

wo

⎤

⎦ =
∞∑

n=1

Gnr−n−1Yn(x̂) + kn

⎡

⎢
⎢
⎣

t1n+1D
(n+2)x1
n+1

t1n+1D
(n+2)x2
n+1

t1n+1D
(n+2)x3
n+1

⎤

⎥
⎥
⎦ r−n−1Yn+2(x̂), (3.13)

where Gn is a coefficient matrix of size 3 × 2n + 1, and kn, t1n+1 are given in (2.23), (2.24),
respectively. Here and also in what follows, if the superscript of Gn is non-positive, we set
the matrix to be identically zero.

Then, by (3.13), one readily has that the displacement of the solution ψ on ∂BR is given
by

ψ(Rx̂) =
⎡

⎣
An

Bn

Cn

⎤

⎦Yn(x̂), (3.14)

with ⎧
⎪⎨

⎪⎩

An = Gn
1,;/R

n+1 + kn−2t1n−1D
nx1
n−1/R

n−1,

Bn = Gn
2,;/R

n+1 + kn−2t1n−1D
nx2
n−1/R

n−1,

Cn = Gn
3,;/R

n+1 + kn−2t1n−1D
nx3
n−1/R

n−1.

(3.15)

By using our argument in (2.28)–(2.31), one has from (3.15) that the solution ψ inside
BR is given by

⎡

⎣
ui

vi

wi

⎤

⎦ =
∞∑

n=1

⎡

⎣
An

Bn

Cn

⎤

⎦ rn

Rn
Yn(x̂) + Mn+2

R2 − r2

Rn+2

⎡

⎢
⎣

t2n+1D
nx1
n+1

t2n+1D
nx2
n+1

t2n+1D
nx3
n+1

⎤

⎥
⎦ rnYn(x̂), (3.16)

where Mn+2 and t2n+1 are given in (2.30) and (2.31), respectively.
Next, we consider the traction on the sphere ∂BR . Using (3.13) and by direct calculations,

the traction on the sphere ∂BR of the solution ψ outside the sphere BR has the following
representation:

∂ψ

∂νλA,μA

(Rx̂) =
∞∑

n=1

⎡

⎣
A

′
n

B
′
n

C
′
n

⎤

⎦Yn(x̂), (3.17)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A
′
n =

(
lnt1n+1D

nx1
n+1 + mnR2t1n−1D

nx1
n−1 + 1

2n+1 t
3
n−1D

nx1
n−1 + G1,:(−n − 2)

)
μ

Rn+2 ,

B
′
n =

(
lnt1n+1D

nx2
n+1 + mnR2t1n−1D

nx2
n−1 + 1

2n+1 t
3
n−1D

nx2
n−1 + G2,:(−n − 2)

)
μ

Rn+2 ,

C
′
n =

(
lnt1n+1D

nx3
n+1 + mnR2t1n−1D

nx3
n−1 + 1

2n+1 t
3
n−1D

nx3
n−1 + G3,:(−n − 2)

)
μ

Rn+2 ,

(3.18)
with

ln =
(

2λ

λ + μ
+ 2(−n − 2)

2n + 3

)
kn − 2

(2n + 3)(2n + 1)
, (3.19)

mn =
( −2λ

λ + μ
− 4n(n − 1)

2n − 1

)
kn−2 − 1

2n − 1
, (3.20)

t3n−1 = Gn
1,:D(n−1)x1

n + Gn
2,:D(n−1)x2

n + Gn
3,:D(n−1)x3

n . (3.21)
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By the transmission condition, the traction of the solution ψ inside the ball BR should also
be given by

∞∑

n=1

(
A

′
n,B

′
n,C

′
n

)
Yn(x̂), (3.22)

which, with the help of our argument in (2.32)–(2.36) and along with straightforward (though
lengthy and tedious) calculations, can determine the solution ψ inside BR of the same form
as (3.16), but with the coefficients (An,Bn,Cn), replaced by

(
Ãn, B̃n, C̃n

)
, n ≥ 2, as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ãn = R
(n−1)cμ

(
A

′
n + s1n t

4
nD

nx1
n−1 + s2n t

5
nD

nx1
n+1

)
,

B̃n = R
(n−1)cμ

(
B

′
n + s1n t

4
nD

nx2
n−1 + s2n t

5
nD

nx2
n+1

)
,

C̃n = R
(n−1)cμ

(
C

′
n + s1n t

4
nD

nx3
n−1 + s2n t

5
nD

nx3
n+1

)
,

(3.23)

where

t4n = A
′
nD

(n−1)x1
n + B

′
nD

(n−1)x2
n + C

′
nD

(n−1)x3
n , (3.24)

t5n = A
′
nD

(n+1)x1
n + B

′
nD

(n+1)x2
n + C

′
nD

(n+1)x3
n , (3.25)

s1n = En

n − 1 + n(2n + 1)En
, (3.26)

s2n = 1

2n(2n + 1)
, (3.27)

and

En = 1

2n + 1

(n + 2)λ − (n − 3)μ

(n − 1)λ + (3n − 2)μ
. (3.28)

In particular, we note here that when n = 1,
(
Ã1, B̃1, C̃1

)
is the solution to the following

system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−E1(Ã1D
0x1
1 + B̃1D

0x2
1 + C̃1D

0x3
1 )D1x1

0

−
(
Ã1D

2x1
1 + B̃1D

2x2
1 + C̃1D

2x3
1

)
D1x1
2 /3 = RA

′
1/(cμ),

−E1(Ã1D
0x1
1 + B̃1D

0x2
1 + C̃1D

0x3
1 )D1x2

0

−
(
Ã1D

2x1
1 + B̃1D

2x2
1 + C̃1D

2x3
1

)
D1x2
2 /3 = RB

′
1/(cμ),

−E1(Ã1D
0x1
1 + B̃1D

0x2
1 + C̃1D

0x3
1 )D1x3

0

−
(
Ã1D

2x1
1 + B̃1D

2x2
1 + C̃1D

2x3
1

)
D1x3
2 /3 = RC

′
1/(cμ).

(3.29)

Equation (3.29) is useless in our subsequent discussion, and we simply set the coefficient
matrix to be identically zero, namely G1 = 0. Next, we consider the situation when n ≥ 2.
It is seen from our earlier arguments that we have two expressions of the solution ψ inside
BR . For consistency, one must have

An = Ãn Bn = B̃n Cn = C̃n, n ≥ 2, (3.30)

where (An,Bn,Cn) and
(
Ãn, B̃n, C̃n

)
are given in (3.15) and (3.23), respectively.
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We have from An = Ãn in (3.30) that:

(

Gn
1,: + Gn

1,;(n + 2)

c(n − 1)

)
1

Rn+1 + kn−2t1n−1D
nx1
n−1/R

n−1

− 1

c(n − 1)Rn+1

(
mnR

2t1n−1

(
Dnx1
n−1 + s1ns

4
nD

nx1
n−1 + s2ns

5
nD

nx1
n+1

)

t1n+1

((
ln − (n + 2)s2n

)
Dnx1
n+1 + lns

2
ns

6
nD

nx1
n+1 + lns

1
ns

3
nD

nx1
n−1

)

t3n−1

2n + 1

((
1 + s1ns

4
n − (2n + 1)(n + 2)s1n

)
Dnx1
n−1 + s2ns

5
nD

nx1
n+1

)
)

, (3.31)

where

s3n = Dnx1
n+1D

(n−1)x1
n + Dnx2

n+1D
(n−1)x2
n + Dnx3

n+1D
(n−1)x3
n ,

s4n = Dnx1
n−1D

(n−1)x1
n + Dnx2

n−1D
(n−1)x2
n + Dnx3

n−1D
(n−1)x3
n ,

s5n = Dnx1
n−1D

(n+1)x1
n + Dnx2

n−1D
(n+1)x2
n + Dnx3

n−1D
(n+1)x3
n ,

s6n = Dnx1
n+1D

(n+1)x1
n + Dnx2

n+1D
(n+1)x2
n + Dnx3

n+1D
(n+1)x3
n . (3.32)

The other two equations in (3.30), namely Bn = B̃n and Cn = C̃n , yield similar relations
to (3.31)–(3.32), by replacing Gn

1,:, D
nx1
n+1, D

nx1
n−1 successively by G

n
2,:, D

nx2
n+1, D

nx2
n−1 and G

n
3,:,

Dnx3
n+1, D

nx3
n−1. Putting these three equations together, we can get the final system of equations

as follows [
Gn

1,: Gn
2,: Gn

3,:
]
H = 0. (3.33)

By direct calculation, the eigenvalues of the matrix H are

ζ
′
1 = c1n,λ,μ (c − ζ1) ,

ζ
′
2 = c2n,λ,μ (c − ζ2) ,

ζ
′
3 = c3n,λ,μ (c − ζ3) , (3.34)

where

ζ1 = −n + 2

n − 1
,

ζ2 = − (2n + 2)((n − 1)λ + (3n − 2)μ)

(2n2 + 1)λ + (2 + 2n(n − 1))μ
,

ζ3 = − (2n2 + 4n + 3)λ + (2n2 + 6n + 6)μ

2n((n + 2)λ + (3n + 5)μ)
, (3.35)

and c1n,λ,μ, c
1
n,λ,μ and c1n,λ,μ are nonzero constants which depend on n, λ and μ. Moreover,

the multiplicities of the eigenvalues ζ
′
1, ζ

′
2 and ζ

′
3 are, respectively, 2n + 1, 2n − 1 and

2n+3. Furthermore, the numbers of linearly independent eigenfunctions associated with the
eigenvalues ζ

′
1, ζ

′
2 and ζ

′
3 are, respectively, 2n+1, 2n−1 and 2n+3 and these eigenfunctions

are orthogonal.
By setting

c = ζ1, (3.36)
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1126 H. Li, H. Liu

and solving Eq. (3.33), one can obtain the corresponding 2n + 1 solutions, namely Gn,ζ1,k ,
k = 1, 2, . . . , 2n + 1. By direct calculations, these solutions satisfy

t1n+1 = 0, t3n−1 = 0. (3.37)

Therefore, the corresponding perfect plasmon elastic waves are

ψ̂n,k(x) =
{
Gn,ζ1,krnYn(x̂), r ≤ R,

Gn,ζ1,k R2n+1

rn+1 Yn(x̂), r > R.
(3.38)

Next, by setting
c = ζ2, (3.39)

and solving Eq. (3.33), one can obtain the corresponding 2n − 1 solutions, namely Gn,ζ2,k ,
k = 1, 2, . . . , 2n − 1. By direct calculations, these solutions satisfy

t1n+1 = 0, t3n−1 �= 0. (3.40)

Therefore, the corresponding perfect plasmon elastic waves are

ψ̂n,k(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Gn,ζ2,krnYn(x̂)

−Mn(r2 − R2)

⎡

⎢
⎣

t3n−1D
(n−2)x1
n−1

t3n−1D
(n−2)x2
n−1

t3n−1D
(n−2)x3
n−1

⎤

⎥
⎦ rn−2Yn−2(x̂), r ≤ R,

Gn,ζ2,k R2n+1

rn+1 Yn(x̂), r > R.

(3.41)

Finally, by setting
c = ζ3, (3.42)

and solving Eq. (3.33), one can obtain the corresponding 2n + 3 solutions, namely Gn,ζ3,k ,
k = 1, 2, . . . , 2n + 3. By direct calculations, these solutions satisfy

t1n+1 �= 0, t3n−1 = 0. (3.43)

Therefore, the corresponding perfect plasmon elastic waves are

ψ̂n,k(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Gn,ζ3,krnYn(x̂), r ≤ R,

Gn,ζ3,k R2n+1

rn+1 Yn(x̂)

+ kn(r2 − R2)

⎡

⎢
⎣

t1n+1D
(n+2)x1
n+1

t1n+1D
(n+2)x2
n+1

t1n+1D
(n+2)x3
n+1

⎤

⎥
⎦ r−n−3Yn+2(x̂), r > R.

(3.44)

The proof is complete. ��
Remark 3.1 For the coefficient matrices given in (3.5)–(3.6), (3.8)–(3.9) and (3.11)–(3.12),
one can verify that there holds the following orthogonality relation,

Gn,ζi ,k1 : Gn,ζ j ,k2 = 0, if i �= j, or i = j, k1 �= k2, (3.45)

where we recall that the operator : between two matrices is defined in (1.10). Thus, from the
last equation, one has that

∫

∂B1
Gn,ζi ,k1Yn(x̂) · Gn,ζ j ,k2Yn(x̂) = 0, (3.46)
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if i �= j , or i = j , k1 �= k2. Throughout our subsequent study, we normalize Gn,ζi ,k ,
i = 1, 2, 3, such that

Gn,ζi ,k : Gn,ζi ,k = 1, (3.47)

and then, one can show that
∫

∂B1
Gn,ζi ,kYn(x̂) · Gn,ζi ,kYn(x̂) = Gn,ζi ,k : Gn,ζi ,k = 1. (3.48)

Remark 3.2 By the strong convexity condition (1.2), one can readily verify that ζi , i = 1, 2, 3
defined in (3.3) are all negatively valued. The choice of those plasmon constants is crucial
for the existence of the perfect plasmon waves. In [8,18], the plasmon constant and the
corresponding perfect plasmon waves are determined by use of the spectral properties of the
associated Neumann–Poincaré operator as follows. Let the Kelvin matrix of the fundamental
solution � = (	i j )

N
i, j=1 to the PDO Lλ,μ be given by (cf. [16])

	i j (x) =

⎧
⎪⎨

⎪⎩

α

2π
δi j ln ‖x‖ − β

2π

xi x j
‖x‖2 when N = 2,

− α

4π

δi j

‖x‖ − β

4π

xi x j
‖x‖3 when N = 3,

(3.49)

where

α = 1

2

(
1

μ
+ 1

2μ + λ

)
and β = 1

2

(
1

μ
− 1

2μ + λ

)
,

and x = (xi )Ni=1 ∈ R
N and δi j is the Kronecker delta. We seek a solution to (3.1) using the

integral ansatz as a single-layer potential as follows

ψ = S [ϕ] (x) :=
∫

∂BR

�(x − y)ϕ(y) ds(y) x ∈ R
2, (3.50)

where ϕ ∈ H−1/2(∂BR)N . There holds the following jump relationship of the conormal
derivative of the single-layer potential in (3.50),

∂

∂νλA,μA

S [ϕ]
∣∣± =

(
±1

2
I + K∗

)
[ϕ] on ∂BR, (3.51)

where

K∗[ϕ] = p.v.
∫

∂BR

∂

∂νλA,μA (x)
�(x − y)ϕ(y)ds(y), x ∈ ∂BR, (3.52)

and p.v. stands for the Cauchy principle value. Using the transmission condition across ∂BR

for ψ (see (3.1)), along with the help of (3.51), one can show that

K∗[ϕ] = c + 1

2(c − 1)
ϕ. (3.53)

Hence, in order to find a non-trivial solution ψ in (3.50), c+1
2(c−1) should belong to the

spectral set of the Neumann–Poincaré operator K∗. The spectral properties of K∗ in the
two-dimensional case are now known by the study in [8], but the three-dimensional case
is not yet understood. Clearly, by Theorem 3.1, one may be able to derive the eigenvalues
and the corresponding eigenfunctions for this Neumann–Poincaré operator K∗ in the 3D
spherical geometry.
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In the next section, we shall apply the non-trivial solutions ψ̂n,k in Theorem 3.1 as trial
functions to the primal and dual variational principles in Theorem 2.1 to establish the reso-
nance and non-resonance results. In the variational principles, the trial functions are all real
valued, but the solutions ψ̂n,k found in Theorem 3.1 are all complex valued. Nevertheless,
we would like to point out that clearly the real-valued functions Rψ̂n,k and �ψ̂n,k are all
solutions to (3.1).

4 Plasmon resonances for the elastostatic system

With the preparations in Sects. 2 and 3, we are in a position to consider the anomalous
localized resonance for a plasmonic device of the form (1.3)–(1.4), associated with the
elastostatic system (1.6). Henceforth, we assume that the force term f(x) is a real-valued
distributional functional of the following form

f = FH2�∂Bq , F : ∂Bq → R
3, F ∈ L2(∂Bq)

3, q ∈ R+, (4.1)

and ∫

∂Bq
F dH2 = 0. (4.2)

Next, we give the Fourier series expression of the force term f specified in (4.1) and (4.2),
which can be represented as follows

f =
∞∑

n=1

(
2n+1∑

k=1

γn,ζ1,kG
n,ζ1,k +

2n−1∑

k=1

γn,ζ2,kG
n,ζ2,k +

2n+3∑

k=1

γn,ζ3,kG
n,ζ3,k

)

fqn , (4.3)

where

fqn = YnH2�∂Bq ,

γn,ζi ,k =
∫

∂B1
f(qx̂) · Gn,ζi ,kYn(x̂)ds(x̂), (4.4)

and Gn,ζi ,k , i = 1, 2, 3 are given in Theorem 3.1.
Throughout the rest of the paper, we assume that G1,ζi ,k = 0, i = 1, 2, 3. Finally, we

let the exterior domain � for the plasmonic structure (1.4) be taken to be BR with a fixed
R ∈ R+ and R < q .

4.1 Non-resonance result

We first show that the plasmonic device considered in [18] that is resonant in R
2 does not

induce resonance inR3, which necessitates our subsequent design of novel plasmonic devices
in Sects. 4.2 and 4.3 for the occurrence of resonances.

Theorem 4.1 Consider the elastic configuration (Cλ̃,μ̃, f), whereCλ̃,μ̃ is described in (1.3)–
(1.4) with � = B1, � = Bre and c being a negative-valued constant. Let f be given in (4.3)
with γn,ζi ,k = 0, i = 2, 3. Then, there is no resonance.

Proof We make use primal variational principle in Theorem 2.1 to prove the non-resonance
by finding suitable test functions (vδ,wδ) satisfying LλA,μAvδ − Lλ,μwδ = f in (2.11) such
that Iδ(vδ,wδ) remains bounded as δ → +0.
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For n ∈ N, we set

v̂n,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gn,ζ1,krnYn, |x | ≤ 1,
e1Gn,ζ1,krnYn + e2Gn,ζ1,k Yn

rn+1 , 1 < |x | ≤ re,

e3Gn,ζ1,krnYn + e4Gn,ζ1,k Yn
rn+1 , re < |x | ≤ q,

e5Gn,ζ1,k Yn
rn+1 , q < |x |,

(4.5)

where

e1 =n − 1 + c(n + 2)

c(2n + 1)
,

e2 = (c − 1)(n − 1)

c(2n + 1)
,

e3 =−(c − 1)2(n2 + n − 2) + (2 + c(n − 1) + n)(n − 1 + c(n + 2))r2n+1
e

c(1 + 2n)2r2n+1
e

,

e4 =−(c − 1)(n − 1)(c(n + 2) + n − 1)(r2n+1
e − 1)

c(2n + 1)2
,

e5 =−(c − 1)(n − 1)(n − 1 + c(n + 2))(r2n+1
e − 1)

c(2n + 1)2
+

q2n+1
(−(c − 1)2(n2 + n − 2)r−2n−1

e + (2 + c(n − 1) + n)(−1 + n + c(n + 2))
)

c(2n + 1)2
.

By direct calculations, one can show that v̂n,k defined above is continuous over R
3 and

satisfies
LλA,μA v̂n,k = 0 x ∈ R

3\∂Bq . (4.6)

On ∂Bq , v̂n,k has a conormal derivative:

∂ v̂n,k

∂νλ,μ

= e6Gn,ζ1,kYn, (4.7)

where ∂ v̂n,k
∂νλ,μ

is defined in (1.8) and

e6 = (c − 1)2(n2 + n − 2) − (n + 2 + c(n − 1))(n − 1 + c(n + 2))r2n+1
e

c(2n + 1)q

qn

r2n+1
e

. (4.8)

Therefore, by setting
τn,k = γn,k/e6, (4.9)

one can readily verify that

LλA,μA

(
τn,k v̂n,k

) = γn,kGn,ζ1,kYn . (4.10)

Hence, by letting
vδ =

∑

n,k

τn,k v̂n,k, (4.11)

we have
LλA,μAvδ = f in R

3. (4.12)

Therefore, if we set wδ ≡ 0, then (vδ,wδ) satisfies the PDE constraint in (2.11).
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Finally, by the primal variational principle in Theorem 2.1, we can deduce the following
estimate:

Eδ(uδ) ≤ Iδ(vδ,wδ) = Iδ(vδ, 0) = δ

2
Pλ,μ(vδ, vδ)

≤ δC
∑

n,k

τ 2n (Gn,ζ1,k : Gn,ζ1,k)nq2n ≤ δC
∑

n

nq2n

n2q2n
‖F‖2L2(∂Bq )

≤ δC‖F‖2L2(∂Bq )
. (4.13)

That is, there is no resonance and the proof is complete. ��

By Theorem 4.1, if the negative plasmon constant c is fixed, then there is no resonance
occurring. In [8,18], two-dimensional plasmon resonances are shown to occur for plasmonic
devices with a fixed negative plasmon constant being c = −1. The major difference between
the studies in [8] and [18] is that the loss parameter δ only exists in the plasmonic layer
in [8], whereas the loss parameter exists in the whole space in [18]. In Theorem 4.1, we
have assumed that the loss parameter exists in the whole space. Nevertheless, it might be
unobjectionable to claim that resonance does not occur even if the loss parameter only exists
in the plasmonic layer. In Theorem 4.2 in what follows, we shall show that if the core � in
Theorem 4.1 is taken to be an empty set, one can properly choose a negative-valued plasmon
constant, depending on the force term f , such that resonance occurs.

4.2 Resonance with no core

In this section, we shall construct a novel plasmonic device without a core, namely � = ∅,
which ensures that resonance can always occur.

Theorem 4.2 Let f be given by (4.3), with γn0,ζi ,k �= 0 for some n0 ∈ N and 1 ≤ i ≤ 3,
representing the force supported at a distance q > R. Consider the elastic configuration
(Cλ̃,μ̃, f), where Cλ̃,μ̃ is described in (1.3)–(1.4) with c = ζi , given in (3.3), n = n0 and
� = BR. Assume that there is no core; that is, � = ∅. Then, the configuration is resonant,
i.e. Eδ(Cλ̃,μ̃, f) → +∞ as δ → +0.

Proof In what follows, we only give the proof of the situation when γn0,ζ1,k �= 0, and when
γn0,ζ2,k �= 0 or γn0,ζ3,k �= 0, the discussion is similar.

We make use of the dual variational principle for its proof. Fix the radii R, q and consider
an arbitrary sequence δ = δ j → +0 as j → +∞. Our aim is to find a sequence (vδ,ψδ),
satisfying the constraint LλA,μAψδ + δLλ,μvδ = 0 of (2.12) and such that Jδ(vδ,ψδ) →
+∞.

Since γn0,ζ1,k �= 0, we first assume that Rγn0,ζ1,k �= 0 and choose

vδ ≡ 0, (4.14)

ψδ : ≡ τδRψ̂n0,k, (4.15)

where ψ̂n0,k is given by (3.5) and τδ ∈ R satisfies Rγn0,ζ1,k · τδ > 0 and will be further
chosen below. Thus, the pair (vδ,ψδ) satisfies the PDE constraint in (2.12). With the help
of the dual variational principle in Theorem 2.1, the definition of Jδ , the orthogonality of
Fourier series and γn0,ζ1,k �= 0 for some n0 ∈ N, we can obtain
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Eδ(uδ) ≥ Jδ(vδ,ψδ) = Jδ(0,ψδ) =
∫

f · ψδ − δ

2
Pλ,μ(ψδ,ψδ)

=R

∫

∂Bq
γn0,ζ1,kτδq

−n0 R2n0
(
Gn0,ζ1,kYn0 · Gn0,ζ1,kYn0

)
− δ

2
|τδ|2Pλ,μ

(
ψ̂n0 , ψ̂n0

)

= C0τδ − C1(δ|τδ|2). (4.16)

Here and also in what follows, C0 and C1 are two generic constants depending on Gn0,ζ1,k ,
γn0,ζ1,k , q and R and may change from one inequality/equality to another.

Choosing τδ → ∞with δ|τδ|2 → +0 as δ → +0, we obtainEδ(uδ) → +∞ for δ → +0.
Next, if �γn0,ζ1,k �= 0, by setting

vδ = 0 and ψδ = τδ�ψ̂n0,k, (4.17)

and using a similar argument as before, one can show that resonance occurs.
The proof is complete. ��

4.3 Resonance with a core of an arbitrary shape

In this section, we consider a non-radial geometry with a non-empty core, � ⊂ B1, of an
arbitrary shape. We shall show that resonance or non-resonance of the configuration strongly
depends on the location of the force term f .

Theorem 4.3 Consider the elastic configuration (Cλ̃,μ̃, f), whereCλ̃,μ̃ is described in (1.3)–
(1.4) with � = BR for a certain R > 1 and � ⊂ B1 with a connected Lipschitz boundary
∂�. Furthermore, let nδ be the smallest integer such that

R−nδ < δ, (4.18)

and c = ζi , 1 ≤ i ≤ 3, where ζi is given in (3.3)with n = nδ . Consider the elastostatic system
(1.6), with Cλ̃,μ̃ described above. Then, for the source f of the form (4.3) with γn,ζi ,k �= 0
only, namely γn,ζ j ,k = 0, j �= i , and supported at a distance q from the origin with R < q <

R∗ := R3/2, the configuration (Cλ̃,μ̃, f) is resonant.

Proof In what follows, we only give the proof when c = ζ1 with

f =
∞∑

n=1

(
2n+1∑

k=1

γn,ζ1,kG
n,ζ1,k

)

fqn , (4.19)

and when c = ζ2 or c = ζ3, the corresponding discussion is similar
We fix R < q < R∗ and a sequence δ = δ j → +0 and consider a force term f given by

(4.19). Our aim is to find a sequence (vδ,ψδ), satisfying the PDE constraint LλA,μAψδ +
δLλ,μvδ = 0 in (2.12) and such that Jδ(vδ,ψδ) → +∞.

First, we choose
ψδ :≡ τδRψ̂nδ,k, (4.20)

where ψ̂nδ ,k is given by (3.5). The number τδ ∈ R will be properly chosen below. For ψδ ,
it is apparent that LλA,μAψδ �= 0 along the core interface ∂� ⊂ B1. In order to satisfy the
PDE constraint, we define vδ to be the solution of −δLλ,μvδ = LλA,μAψδ . Since −Lλ,μ is
an elliptic PDO, by the standard elliptic estimates one can arrive at the following estimate:

δPλ,μ (vδ, vδ) ≤ C0δ
−1

∥∥LλA,μAψδ

∥∥2
H−1(R3)3

≤ C0δ
−1τ 2δ nδ. (4.21)
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It remains to calculate the energy Jδ(vδ,ψδ). Since nδ is the smallest integer fulfilling
(4.18), one clearly has that R−nδ+1 ≥ δ. With the help of the dual variational principle in
Theorem 2.1, we have

Eδ(uδ) ≥ Jδ

(
vδ,ψδ

) =
∫

f · ψδ − δ

2
Pλ,μ(vδ, vδ) − δ

2
Pλ,μ

(
ψδ,ψδ

)

≥ (
C0Rγnδ ,ζ1,kτδq

−nδ R2nδ − C1δ
−1τ 2δ nδ − C1δτ

2
δ nδR

2nδ
)

(
Gnδ ,ζ1,k : Gnδ ,ζ1,k

)
≥ τδR

nδ

(
Gnδ ,ζ1,k : Gnδ ,ζ1,k

)

(
C0Rγnδ,ζ1,k

(
R

q

)nδ

− C1
1

(δRnδ )
τδnδ − C1τδnδ

(
δRnδ

)
)

. (4.22)

The choice of Rnδ < δ with 1 < δRnδ ≤ R ensures that the last two contributions are of
comparable order. We then find, for some C1 > 0,

Eδ(uδ) ≥ τδR
nδ

(
C0Rγnδ,ζ1,k

(
R

q

)nδ

− C1τδnδ

)
. (4.23)

We choose τδ to be

τδ = 1

2C1nδ

C0Rγnδ,ζ1,k

(
R

q

)nδ

, (4.24)

and then, from (4.23) and (4.24) we readily have that

Eδ(uδ) ≥ τδR
nδ

(
1

2
C0Rγnδ,ζ1,k

(
R

q

)nδ
)

= 1

4C1nδ

(C0Rγnδ,ζ1,k)
2
(
R3

q2

)nδ

. (4.25)

By the assumption, q < R∗ and if the sequence of the Fourier coefficients γn,ζ1,k of the
force term f decays not very quickly (ensuring that the RHS term of (4.25) goes to infinity
as δ → +0), we easily see from (4.25) that Eδ(uδ) → +∞ as δ → +0.

Finally, by setting

ψδ :≡ τδ�ψ̂nδ,k, (4.26)

in (4.20), and using an analogous argument as above, one can arrive at a similar conclusion.
The proof is complete. ��

4.4 Non-resonance in the radial case

InSect. 4.3,we show that for certain source terms lyingwithin the critical radius R∗, resonance
occurs. In this section,we shall show that if the source term lies outside the critical radius, then
resonance does not occur. To that end, we would consider our study in the radial geometry
by assuming that the core � = B1.

Theorem 4.4 Consider the elastic configuration (Cλ̃,μ̃, f), whereCλ̃,μ̃ is described in (1.3)–
(1.4) with c = ζ1 and, � = BR for a certain R > 1 and � = B1. Consider the elastostatic
system (1.6), with Cλ̃,μ̃ describe above. Let the source f be given by (4.3) with γn,ζi ,k = 0,

i = 2, 3, and be supported at a distance q with q > R∗ := R3/2; then, the configuration
(Cλ̃,μ̃, f) is non-resonant.

Proof Wemake use of the primal variational principle to show the non-resonance result. We
shall construct test functions (vδ,wδ), satisfying the constraint
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LλA,μAvδ − Lλ,μwδ = f (4.27)

such that the energy along this sequence Iδ(vδ,wδ) remains bounded as δ → +0.
Let vδ be of the form:

vδ =
∑

n �=nδ

∑

k

(
vδ,n,k + vδ,nδ,k

)
, (4.28)

where vδ,n,k , n �= nδ , satisfies

LλA,μAvδ,n,k = γn,ζ1,kG
n,ζ1,kfqn in R

3, (4.29)

and vδ,nδ,k satisfies

LλA,μAvδ,nδ,k = γnδ ,ζ1,kG
nδ ,ζ1,k f qnδ

on ∂Bq . (4.30)

Set
vδ,n,k = τn,k v̂n,k, (4.31)

where τn,k and v̂n,k are, respectively, given in (4.5) and (4.9) with c replaced by −1− 3
nδ−1 .

One can readily verify that vδ,n,k , n �= nδ , defined above satisfies (4.29). Next, we define

V̂nδ,k =
{
Gnδ ,ζ1,krnδYnδ , ‖x‖ ≤ q,

Gnδ ,ζ1,kq2nδ+1r−nδ−1Ynδ , ‖x‖ > q,
(4.32)

and set
vδ,nδ,k = τnδ ,kV̂nδ,k, τnδ ,k = −γnδ ,ζ1,k

(2nδ + 1)qnδ−1 , (4.33)

then, it is easy to see that (4.30) holds.
In order to satisfy the constraint (4.27), we choose wδ as follows:

− Lλ,μwδ = f − LλA,μAvδ

=
∑

k

(
fnδ,k − LλA,μAvδ,nδ,k

)
, (4.34)

where
fnδ ,k = γnδ,ζ1,kG

nδ ,ζ1,k f qnδ
, (4.35)

and the last equation follows from (4.29) and (4.30).
It remains to calculate the energy Iδ(vδ,wδ). First, for vδ,nδ,k , one has the following

estimate:
δPλ,μ

(
vδ,nδ,k, vδ,nδ,k

) = Cδ|τnδ ,k |2nδq
2nδ ≤ Cδ|γnδ ,k |2, (4.36)

and from the proof of Theorem 4.1, it is easy to have for vδ,n,k , n �= nδ that

δPλ,μ

(
vδ,n,k, vδ,n,k

) ≤ Cδ|γn,k |2. (4.37)

Hence, we have
δPλ,μ (vδ, vδ) ≤ Cδ‖F‖2L2(∂Bq )

. (4.38)

Next, we estimate the energy due to wδ , and by (4.34) one has

1

δ
Pλ,μ (wδ,wδ) ≤ C

1

δ

∥∥∥∥∥

∑

k

(
fnδ,k − LλA,μAvδ,nδ,k

)
∥∥∥∥∥

2

H−1

≤ C
1

δ

∑

k

|τnδ,k |2nδR
2nδ .

(4.39)
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With the help of (4.33) and the choice of nδ , R−nδ ≈ δ, we have

1

δ
Pλ,μ(wδ,wδ) ≤ C

1

δ

∑

k

γ 2
nδ ,k

nδ

(
R

q

)2nδ

≤ C
∑

k

γ 2
nδ,k

nδ

(
R3/2

q

)2nδ

. (4.40)

Therefore, if q > R3/2, 1
δ
Pλ,μ(wδ,wδ) is bounded.

By summarizing our earlier deduction, we clearly have shown that Iδ(vδ,wδ) is bounded.
That is, the configuration (Cλ̃,μ̃, f) is non-resonant.

The proof is complete. ��

5 Concluding remarks

In this paper, we consider plasmon resonances for the elastostatic system in R
3. First, we

show that the plasmon device in the literature which induces resonance in R
2 does not

induce resonance in R
3. Then, we derive two novel plasmon devices, one with a core and

the other one without a core, such that plasmon resonances can occur. This is mainly based
on the highly non-trivial derivation of the proper plasmon parameters in Theorem 3.1. For
the novel constructions, we show both resonance and non-resonance results for a very broad
class of distributional sources based on variational arguments. Furthermore, we establish
the dependence of the plasmon resonances on the location of the force term. That is, there
exists a critical radius such that when the source is located within the critical radius, then
resonance occurs, whereas if the source is located outside the critical radius, then resonance
does not occur. By comparing our main results in Theorems 4.1–4.4 with those resonance and
non-resonance results in the two-dimensional case in [8,18], the plasmon resonances in the
three-dimensional case reveal some distinct and novel behaviours. The variational approach
was initiated in [15] for the plasmon resonance in the electrostatics modelled by the Laplace
equation.As canbe seen that the variational approach iswell situated to treat the resonance and
non-resonance of the plasmon devices, whereas the spectral approach initiated in [2] for the
elastostatics can be used to show both resonance and non-resonance as well as their localized
and cloaking effects. However, for the latter approach, it requires exact spectral information
of the associatedNeumann–Poincaré operator, which is not always available. In this paper, we
adopt the variational approach to treat the much more complicated and challenging plasmon
resonances in the elastostatics modelled by the Lamé system. Similar to the electrostatics in
[15,19], we could only establish the resonance and non-resonance results, as well as their
dependence on the source location, and we didn’t show the localized and cloaking effects.
Nevertheless, as pointed out in Remark 3.2, using our results in Theorem 3.1, one may be
able to derive the spectral properties of the Neumann–Poincaré operator in (3.53). Then, by
following the spectral arguments, one may also be able to show the localized and cloaking
effects of the plasmon resonances in the three-dimensional elastostatics.We shall report those
findings in our future work.
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