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Abstract We obtained existence and pointwise regularity results for the following parabolic
free boundary problem:

ut − �u = χ{u>0} log u in � × (0, T ],

with initial and boundary conditions in some appropriate spaces. The equation is singular
along the set ∂{u > 0}, and the logarithmic nonlinearity does not have scaling properties.
Thus, the machinery from regularity theory for free boundary problems, which strongly
relies on the homogeneity of the problem, can not be applied directly. We prove that, near
the free boundary, an approximate solution grows at most like r2 log r. This is the so-called
supercharacteristic growth, and its study has intriguing open questions. Our estimates are
crucial to understand further analytic and geometric properties of the free boundary.
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1 Introduction

In this paper we study a model of parabolic equation with singular nonlinearity. Given a
bounded smooth domain � ⊂ R

N and the associated local space–time cylinder QT :=
�×(0, T ], T > 0,we fix two prescribed nonnegative functions u0 ∈ C1(�), g ∈ W 1,1

2 (QT )

∩ L∞(QT ), and consider the singular parabolic problem
⎧
⎨

⎩

ut − �u = χ{u>0} log u in QT ,

u = g on ∂� × (0, T ],
u = u0 in � × {0}.

(1.1)

Our goal is to prove local existence of a solution and regularity properties for (1.1).
Parabolic equations with singular nonlinearities have been studied in a series of papers.

One important model is
ut − �u = −χ{u>0}uγ−1 in QT , (1.2)

coupled with boundary and initial conditions, where 0 < γ < 2. This problem arises as
limit of equations modelling either quenching phenomena or chemical reactions (see [1] and
[7]). Problem (1.2) when γ ∈ [1, 2) (strong reaction) was studied in [4], where the authors
proved optimal regularity and nondegeneracy estimates for the unique solution under some
natural assumptions on the boundary and initial conditions. Moreover, they showed that the
(n + 1)-dimensional Hausdorff measure (with respect to the parabolic metric) of the free
boundary ∂{u > 0} is locally bounded (see also [3], [14] and references therein).

The works [5] and [13] deal with (1.2) when γ ∈ (0, 1). In both cases, the authors find a
solution using a limit process. In fact, they studied the equation

ut − �u = f (ε, u) in QT , (1.3)

where, for ε > 0, the function f (ε, u) is smooth and f (ε, u) → −uγ−1 pointwisely as
ε → 0+ for u > 0.

The singular character of these equations gives rise to free boundary solutions. Thus,
an important task is to prove optimal regularity of the solution close to the free boundary
∂{u > 0}. In the case of the power-type nonlinearity, the limit solution in [5] satisfies

u ∈ C
1,αγ

loc (QT ), 0 < γ < 1, αγ = γ

2 − γ
.

This means that, locally, u is (1 + αγ )/2-Hölder continuous in t and ∇u is αγ -Hölder
continuous in x (following the notation in [8]).

The power-type singular nonlinearity −uγ−1 is stronger than log u for any γ ∈ (0, 1).
Thus, it is natural to think that the optimal regularity for solutions of (1.1) should be better
than C1,α for any 0 < α < 1. Of course it is not C1,1 since the left-hand side in (1.1) blows
up along the free boundary. We shall show that a limiting solution u of (1.1) satisfies

u ∈ C1,log−lip
x,loc (QT ) ∩ C0,log−lip

t,loc (QT ).

Comparing with the results for the problem with power-type nonlinearity and observing that
the right-hand side in (1.1) becomes unbounded, we see that this regularity is optimal.

For the existence result, we are going to use also an approximation procedure as explained
in details below. For now, let us just mention that the logarithmic nonlinearity can change
sign and this fact raises new challenges, specially concerning a priori estimates in L∞ for u.

Parabolic and elliptic equations with logarithmic nonlinearity arise when we consider
equations modelling the dynamic of thin films of viscous fluids (see [2] and references
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therein). From theoretical aspects of the free boundary theory, the lack of scaling of the log-
type reaction is the main difference between (1.1) and (1.2). Recall that scaling arguments
are essential in the study of regularity theory of free boundary problems. We are going to
show that, for a fixed t ∈ (0, T ) and close to the free boundary, the approximated solution
exhibits a supercharacterictic growth like r2 log r. Phenomenon of this type was studied first
by Monneau & Weiss in [10], where the authors investigated an unstable obstacle problem:

− �u = χ{u>0} in � ⊂ R
n . (1.4)

Solutions of (1.4) have the supercharacteristic growth close to some free boundary points.
Furthermore, the second variation of the energy associated to a solution of (1.4) takes the
value −∞ and the solutions are thus called completely unstable. Thus, Eq. (1.1) becomes an
interesting example of a highly unstable parabolic free boundary problem, in the sense that
every free boundary point grows like r2logr.

Finally, let us mention that the regularity theory for minimizers of the elliptic problem
associated with (1.1) was recently considered by the second author and Shahgholian in [6].

We begin to describe in more details our main results and techniques.

1.1 Description of the results

A solution of (1.1) is a function u ∈ W 1,0
2 (QT ) (see Sect. 1.2 for the definition of the spaces)

satisfying the following: For any test function η ∈ C2(QT ) vanishing on ∂� × (0, T ] and
for every τ ∈ (0, T ), one has the integral identity

∫

�

u(τ )η(τ )dx −
∫

�

u0η(0)dx +
∫ τ

0

∫

�

(−uηt + 〈∇u,∇η〉) dxdt

=
∫ τ

0

∫

�

ηχ{u>0} log udxdt, (1.5)

with u0 ∈ C1(�).

Our existence result relies on an approximation procedure that we now describe. For each
0 < ε < 1 we define the perturbed term

βε(s) =
⎧
⎨

⎩

log

(
s2 + εs + ε

s + ε

)

for s ≥ 0,

0 for s < 0,
(1.6)

and the approximating problem
⎧
⎨

⎩

uε
t − �uε = βε(uε) in QT ,

u = g on ∂� × (0, T ],
u = u0 in � × {0}.

(1.7)

The variational formulation of a solution of (1.7) is analogous to the one for the unper-
turbed problem (1.5): For u0 ∈ C1(�),we test the equation with any η ∈ C2(QT ) vanishing
on ∂� × (0, T ] and for every τ ∈ (0, T ) we need to have

∫

�

uε(τ )η(τ )dx −
∫

�

u0η(0)dx +
∫ τ

0

∫

�

(−uεηt + 〈∇uε,∇η〉) dxdt

=
∫ τ

0

∫

�

ηβε(u
ε)dxdt. (1.8)
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986 A. R. F. de Holanda et al.

Remark 1.1 Using density results, one could take as a test function η ∈ W 1,2
2 (QT ) vanishing

almost everywhere on ∂� × (0, T ] and satisfying η = 0 on � × {T } in the sense of traces.

Proposition 1.2 Let T > 0 be fixed and assume u0 ∈ C1(�), g ∈ W 1,1
2 (QT ) ∩ L∞(QT )

with u0, g ≥ 0. Then, for each ε ∈ (0, 1), problem (1.7) has a solution uε ≥ 0 such that
uε ∈ C3(QT ). Furthermore, there exists a constant M > 0, M = M(�, g, u0, T ), such
that

‖uε‖L∞(QT ) ≤ M, for every ε ∈ (0, 1).

The existence part of Proposition 1.2 is proved by the method of sub- and supersolution.
Since the logarithmic nonlinearity changes sign, we can not apply arguments based purely on
the maximum principle to obtain the L∞-estimate uniform in ε, differently from the power-
type nonlinearity. We proceed as follows: First, we prove an L2-estimate which enable us to
control a truncated norm of uε; after that, the general machinery from [9] can be applied.

Once we have the approximated solution uε, pointwise uniform in ε > 0 estimates are
proved in order to pass to the limit as ε → 0+ to obtain a candidate for a solution of (1.1).

Lemma 1.3 Let u0 ∈ C1(�), u0, g ≥ 0, and suppose that uε ≥ 0 satisfies (1.7). Then, for
any �′ ⊂⊂ � and any τ ∈ (0, T ], there are constants C1,C2,� > 0 such that

|∇uε(x, t)|2 ≤ C1
(
uε(x, t)| log uε(x, t)| + �uε(x, t)

)
, for all x ∈ �′, t ∈ [0,T] (1.9)

and
|uε

t (x, t)| ≤ C2| log uε(x, t)|, for all x ∈ �′, t ∈ (τ,T]. (1.10)

The constants C1 and � depend on dist(�′, ∂�), N , g, u0, and ‖uε‖L∞(QT ), and, besides
the dependence on these quantities, C2 depends also on τ. In particular, these constants do
not depend on ε ∈ (0, 1).

Let us mention that the proof of the estimate in time (1.10) is a delicate part of our work
since it requires a new kind of intrinsic scaling. The proof of the gradient estimate (1.9) uses
a Bernstein-type technique, and it was motivated by [5].

The purpose of Lemma 1.3 is twofold: It allows us to obtain uniform in ε estimates in
the Hölder spaces C1,α

x,loc and C0,α
t,loc for the family (uε)0<ε<1 and, by compactness, we find

a candidate for a solution, which is the limit of uε when ε → 0; it also gives the optimal
regularity for the limit solution.

Our existence result reads as follows.

Theorem 1.4 Let u0 ∈ C1(�), u0 ≥ 0, and suppose that (uε)0<ε<1 is a family of solution
of (1.7) for each ε ∈ (0, 1). Then there exists a subsequence ε j → 0+ such that uε j → u
uniformly on compact subsets of QT for some u ∈ C(�×[0, T ]). Furthermore, the function
u is a weak solution of (1.1) in the sense (1.5).

Remark 1.5 (Nonuniqueness)We emphasize that our regularity result (Theorem1.6 below) is
true for any limit solution from Theorem 1.4. Even for the power-type nonlinearity −uγ−1,

the uniqueness/nonuniqueness seems to be a challenging question. For instance, Winkler
proved in [15] that there exist a number 0 < γc < 1 such that, if γ < γc and the dimension
satisfies N ≤ 6, then problem (1.2) has at least two solutions. A crucial role in the proof
of this result is played by an explicit solution in the ball. Thus, in the case of the log-type
nonlinearity, uniqueness/nonuniqueness is an interesting open question.

Finally, we present our regularity result.
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Theorem 1.6 Let u0 ∈ C1(�), u0 ≥ 0, and suppose that u is the limit solution fromTheorem
1.4. Then we have the following:

(i) for any t ∈ (0, T ), we have that u(·, t) ∈ C1,log−lip
loc (�);

(ii) for any x ∈ �, we have that u(x, ·) ∈ C0,α
loc (0, T ) for any α ∈ (0, 1); furthermore, if

�′ ⊂⊂ � and τ ∈ (0, T ), then

|ut (x, t)| ≤ C | log u(x, t)|, for all (x, t) ∈ �′ × (τ,T],
where C = C(τ, dist(�′, ∂�), ‖u‖L∞(QT )).

1.2 Notation

We fix� ⊂ R
N and T > 0. The parabolic cylinder is QT = �× (0, T ] and the local version

is denoted by Qt1,t2 = � × (t1, t2], where t1, t2 are fixed satisfying (t1, t2] ⊂ (0, T ].
For the parabolic functional spaces and norms, we use notations similar to those in [9].

For completeness we present here.
For p ≥ 1, L p,q(QT ) indicates the parabolic Lebesgue space of those functions u : QT →

R with finite norm given by

‖u‖L p,q (QT ) =
(∫ T

0

∫

�

|u(x, t)|pdxdt
)1/q

.

The simplifications L p(QT ) = L p,p(QT ) and ‖ · ‖p = ‖ · ‖L p,p(QT ) are also used.
When we freeze the time variable, the Lebesgue space will be denoted by L p(�), p ≥ 1,

and the norm in these spaces will be denoted by

‖u(·, t)‖L p(�) =
(∫

�

|u(x, t)|pdx
)1/p

.

We also denote by W 1,0
q (QT ) and W 1,1

q (QT ) the Banach (actually Hilbert) spaces gener-
ated by the norms

‖u‖W 1,0
q

= ‖u‖q + ‖∇u‖q ,
‖u‖W 1,1

q
= ‖u‖q + ‖∇u‖q + ‖ut‖q .

2 L∞-bound uniform in ε

The L∞-estimate uniform in ε is essential to obtain compactness. Since the logarithmic
nonlinearity changes sign, this is not just an application of the maximum principle (as in
the case of power-type nonlinearity). In our case, we use the slow growth of the function
s �→ log s and the general results from [9].

We need first to prove an L2-estimate.

Lemma 2.1 Let u0 ∈ C1(�) and g ∈ W 1,1
2 (QT ) with u0, g ≥ 0, and suppose uε ≥ 0 is

weak solution of (1.7) with 0 < ε ≤ ε0, for some fixed ε0 > 0. Then

sup
0≤t≤T

‖uε(·, t)‖L2(�) ≤ sup
0≤t≤T

‖uε(·, t)‖L2(�) + ‖∇uε‖L2(QT ) ≤ C,

for a constant C = C(n,�, T, ‖g‖W 1,1
2 (QT )

, ‖u0‖L2(�), ε0) (it does not depend on 0 < ε <

ε0).
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988 A. R. F. de Holanda et al.

Proof For simplicity we denote u = uε. Then we fix τ ∈ (0, T ) and use η = u − g as a test
function to obtain, after integration by parts, the following identity:

3

2

∫

�

u2(τ )dx +
∫ τ

0

∫

�

|∇u|2dxdt =
∫ τ

0

∫

�

βε(u)(u − g)dxdt −
∫ τ

0

∫

�

ugtdxdt

+
∫

�

u(τ )g(τ )dx + 1

2

∫

�

u2(0) −
∫

�

u0g(0)dx +
∫ τ

0

∫

�

〈∇u,∇g〉dxdt.
(2.1)

Let a ∈ (0, 1) be fixed and C1 > 0 be a constant depending only on a and ε0 such that, for
every s ≥ 0, |βε(s)| ≤ C1sa . Thus, applying Hölder and Poincaré inequalities,

∫ τ

0

∫

�

βε(u)(u − g)dxdt ≤ C2

∫ τ

0

(
‖u‖aL2(�)

(‖∇u‖L2(�) + ‖∇g‖L2(�)

))
dt,

where the constant C2 > 0 depends on a and �. By Young’s inequality,
∫ τ

0

∫

�

βε(u)(u − g)dxdt ≤ C2δ1

∫ τ

0
‖∇u‖2L2(�)

dt + C3

∫ τ

0
‖u‖2aL2(�)

dt

+C2

2

∫ τ

0
‖∇g‖2L2(�)

dt. (2.2)

The constant C3 depends on δ1 and C2.

We will use Young’s inequality once again. First
∫ τ

0

∫

�

〈∇u,∇g〉dxdt ≤ δ2

∫ τ

0

∫

�

|∇u|2dxdt + 1

4δ2

∫ τ

0

∫

�

|∇g|2dxdt, (2.3)

and then:
∫

�

u(τ )g(τ )dx ≤ δ3

∫

�

u2(τ )dx + 1

4δ3

∫

�

g2(τ )dx, (2.4)

∫ τ

0

∫

�

ugtdxdt ≤
∫ τ

0

(

δ4

∫

�

u2dx + 1

4δ4

∫

�

g2t dx

)

dt. (2.5)

Now we elect δ1 = 1/(4C2), δ2 = 1/4 and δ3 = 1 and then substitute (2.2)–(2.5) in (2.1) to
obtain
∫

�

u2(τ )dx +
∫ τ

0

∫

�

|∇u|2dxdt ≤ C4T sup
0≤t≤T

‖u(·, t)‖2aL2(�)
+ δ4T sup

0≤t≤T
‖u(·, t)‖2L2(�)

+ C5

∫

�

u2(0)dx + C6‖g‖2W 1,1
2 (QT )

.

All the constants appearing above depend only on the quantities specified in the lemma. We
take the sup over the interval (0, T ] and δ4 = 1/(2T ) to obtain

1

2
sup

0≤t≤T
‖u(·, t)‖2L2(�)

+
∫ T

0

∫

�

|∇u|2dxdt ≤ C4T sup
0≤t≤T

‖u(·, t)‖2aL2(�)

+ C6

(

‖u0‖2L2(�)
+ ‖g‖2

W 1,1
2 (QT )

)

.

Since 2a < 2 we obtain

sup
0≤t≤T

‖u(·, t)‖2L2(�)
+ ‖∇u‖2L2(QT )

≤ C,

for a constant C as indicated in the lemma. ��
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Now we prove the L∞-estimate.

Lemma 2.2 Let us assume that the same hypothesis of Lemma 2.1 hold and adiationally
that g ∈ L∞(QT ). There exists a constant M = M(n,�, T, ‖g‖W 1,1

2 (QT )
, ‖u0‖L2(�),

‖g‖L∞(QT ), ‖u0‖L∞(�)) > 0 (independent of ε > 0) such that, for every weak solution
uε ≥ 0 of (1.7),

‖uε‖L∞(QT ) ≤ M.

Proof As before, we denote u = uε. Let us fix k0 ∈ N such that

k0 ≥ max{‖u0‖L∞(�), ‖g‖L∞(QT )}
and, for any k ∈ N with k ≥ k0, let us define

uk(x, t) = max{u(x, t) − k, 0}, (x, t) ∈ QT ,

and also

Ak(t) = {x ∈ � | u(x, t) > k}, 0 ≤ t ≤ T .

By the results in Chapter II, Section 4, of [9], we can use uk as a test function in the
definition of a solution for (1.7). This will give us the following identity:

1

2

∫

Ak (τ )

(uk)2(τ )dx +
∫ τ

0

∫

Ak (t)
|∇uk |2dxdt =

∫ τ

0

∫

Ak (t)
βε(u)ukdxdt

+1

2

∫

Ak (0)
(uk)2(0)dx, (2.6)

which holds for every interval (0, τ ) ⊂ (0, T ].
For 0 < a < 1 there existsC > 0 depending only on a, such that βε(u) ≤ Cua .Applying

this estimate and using Hölder inequality we have
∫ τ

0

∫

Ak (t)
βε(u)ukdxdt ≤ C1

∫ τ

0
‖u‖aL2(Ak (t))

|Ak(t)|(1−a)/2‖uk‖L2(Ak (t))dt. (2.7)

On the other hand, from the Sobolev inequality,

‖uk‖L2(Ak (t)) ≤ C2‖∇uk‖L2(Ak (t))|Ak(t)| 12− 1
2∗ , (2.8)

for a constant C2 = C2(�) > 0. Using (2.8) in (2.7) and Young’s inequality we obtain
∫ τ

0

∫

Ak (t)
βε(u)ukdxdt ≤ C2δ

∫ τ

0
‖∇uk‖2L2(Ak (t))

dt

+C2

4δ

∫ τ

0
‖u‖2aL2(Ak (t))

|Ak(t)|2−a− 2
2∗ dt. (2.9)

Using (2.9) in (2.6) with δ = 1/(2C2) we get the following:

1

2

∫

Ak (τ )

(uk)2(τ )dx + 1

2

∫ τ

0

∫

Ak (t)
|∇uk |2dxdt ≤ C3

∫ τ

0
‖u‖2aL2(Ak (t))

|Ak(t)|2−a− 2
2∗ dt.

(2.10)
Now we take the sup for τ ∈ [0, T ] in (2.10) and apply Lemma 2.1 to obtain

sup
0≤t≤T

‖uk(·, t)‖L2(�) + ‖∇uk‖2 ≤ C4

(∫ T

0
|Ak(t)|2−a− 2

2∗
)1/2

. (2.11)
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We observe that (2.11) can be written in the following way:

sup
0≤t≤T

‖uk(·, t)‖L2(�) + ‖∇uk‖2 ≤ C4

(∫ T

0
|Ak(t)|r/q

)(1+κ)/r

,

where q = 2 and

r = 2, a = 2

n
, κ = 0 if n > 2,

r = 3, a = 1

2
, κ = 1

2
if n = 2,

r = 5, a = 1

2
, κ = 3

2
if n = 1.

With the last estimate and the values of q, r and κ we are in position to apply Theorem 6.1
on page 102 of [9], which implies the result. ��

To finish this section let us prove that problem (1.7) has a solution for each ε ∈ (0, 1).

Lemma 2.3 Let T > 0 be fixed and suppose u0 ∈ C1(�), g ∈ W 1,1
2 (QT ) ∩ L∞(QT )

with u0, g ≥ 0. Then, for each ε ∈ (0, 1), problem (1.7) has a solution uε ≥ 0 such that
uε ∈ C3(QT ).

Proof We are going to use the sub- and supersolution method. Since u = 0 is obviously a
subsolution, we only need to find a supersolution. In order to do that, let Y be a solution of

⎧
⎨

⎩

Yt − �Y = 1 in QT ,

Y = g on ∂� × (0, T ],
Y = u0 in � × {0}.

For k > 0 to be fixed we define u = kY. Then,

ut − �u − βε(u) ≥ k − log(u + 1) ≥ k − log(k‖Y‖L∞ + 1).

By the growth of log we can choose k > 0 large enough such that u is a supersolution.
Now we can proceed as in the elliptic case (Lemma 2.3 in [11]) using the comparison

principle for parabolic equations (Corollary 2.2.6 in [8]) to obtain a solution u satisfying
0 ≤ u ≤ u. The regularity of u follows from the general theory from [9]. ��
Remark 2.4 Proposition 1.2 follows from Lemma 2.3 and Lemma 2.2.

3 Pointwise uniform estimates for ∇uε and uε
t

In this section we prove pointwise estimates for ∇uε and uε
t that are uniform in ε > 0. We

start with the gradient of a solution of (1.7) following the lines of [5].

Lemma 3.1 Let u0 ∈ C1(�) with u0 ≥ 0. Suppose that uε ∈ C3(QT ) ∩ C1(QT ) sat-
isfies (1.7) and let �′ ⊂⊂ �. Then there are constants C,� > 0, depending only on
dist(�′,�), N , ‖uε‖L∞(QT ), u0, such that

|∇uε(x, t)|2 ≤ Cuε(x, t)

(

� + log
1

uε(x, t)

)

, for every x ∈ �′, t ∈ [0, T ]. (3.1)

123



Pointwise regularity for a parabolic equation with log-term… 991

Proof The idea is to use a Bernstein-type technique. First, as in [5], we fix a function

ψ ∈ C2(�), ψ > 0 in �, ψ = 0 on ∂� and such that
|∇ψ |2

ψ
is bounded in �. (3.2)

For instance, ψ could be a power of the first eigenfunction of the Dirichlet Laplacian. Notice
that there is a constant δ′ > 0 such that ψ ≥ δ′ in �′.

To simplify notation, we denote u = uε and define

Z(u) = −u log u + �u with Z(0) = 0. (3.3)

We fix � ≥ max{1, 2M} where M is the constant from Lemma 2.2. Then Z ′(u) ≥ 0 and
Z ′′(u) ≤ 0, that is, Z is nondecreasing and concave. We also define

w = |∇u|2
Z(u)

, v = wψ. (3.4)

The function v is continuous in � and v = 0 in ∂�. In fact, the only problem is when u = 0,
but since u ∈ C3(�) we have |∇u|2 ≤ u ≤ −u log u + �u near the points where u vanishes
and then w is bounded.

The proof is by contradiction. Assuming that estimate (3.1) fails, we have

sup
QT

v > C1, (3.5)

where C1 > 0 will be fixed later (independent of ε) in order to obtain a contradiction.
The construction of v implies that, if (x0, t0) ∈ QT is a maximum point, then necessarily

x0 ∈ � and t0 > 0. Furthermore,
∇v(x0, t0) = 0 (3.6)

and
�v(x0, t0) − vt (x0, t0) ≤ 0. (3.7)

We manage to show that, if we choose C1 very large, we get a contradiction with (3.7).
Since similar computations have been done in details in [5], we just point out here the main
differences. First, computing �v − vt and evaluating in (x0, t0) we have

�v − vt ≥ 1

Z(u)

(

ψw2
(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

+ w(ψZ ′(u)βε(u)

− 2ψZ(u)β ′
ε(u) − K Z(u)) − Kψ1/2w3/2Z(u)1/2Z ′(u)

)

,

(3.8)

where K is a positive constant depending on ψ. The following estimates hold uniform in
0 < ε < 1 :

Z(u)1/2Z ′(u) ≤ C

(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

, (3.9)

Z(u)|β ′
ε(u)| ≤ C

(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

, (3.10)

−Z ′(u)βε(u) ≤ C

(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

, (3.11)

Z(u) ≤ C

(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

. (3.12)

Here the constant C > 0 depends on M .
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Using (3.9)–(3.12) in (3.8) we obtain

�v − vt ≥
1
2 Z

′(u)2 − Z(u)Z ′′(u)

Z(u)ψ

(
v2 − C(v + v3/2)

)
.

Thus, if v(x0, t0) > C1 for some large C1 independent of ε, we obtain a contradiction to
(3.7).

Now, in order to prove (3.9)–(3.12) we need to choose an adequate � and use the growth
of the logarithmic nonlinearity.

We first consider (3.9). Notice that

Z(u)1/2Z ′(u) ≤ (−u log u + �u + 1)(− log u + � − 1)

≤ M log2 u − (C2u + C3) log u + C4. (3.13)

Thus, if log u ≤ 0, since C2u + C3 ≤ C5� for some constant C5 > 0, we have

Z(u)1/2Z ′(u) ≤ M log2 u − C5� log u + C4

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

= C

(
1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

.

On the other hand, since

� logM < �M

and � ≥ max{2M, 1}, we have

−� log u + �2 + 1

2
≥ −� logM + �2 + 1

2
> 0.

Assuming that log u > 0 we see that

M log2 u − (C2u + C3) log u + C4 ≤ M log2 u + C4

≤ M log2 u − � logM + C5
�2 + 1

2

≤ M log2 u − � log u + C5
�2 + 1

2
.

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

.

Now we prove (3.10). Once we have

β ′
ε(u) = (u + ε)2 − ε

(u2 + εu + ε)(u + ε)
,

if we assume that u ≤ √
ε − ε we obtain

|β ′
ε(u)| = ε − (u + ε)2

(u2 + εu + ε)(u + ε)
≤ ε

(u2 + εu + ε)(u + ε)
≤ 1

u + ε
≤ 1

u
.

On the other hand, if u >
√

ε − ε,

|β ′
ε(u)| = (u + ε)2 − ε

(u2 + εu + ε)(u + ε)
≤ u + ε

u2 + εu + ε
≤ 1

u
.
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Therefore,

Z(u)|β ′
ε(u)| ≤ − log u + �.

Now, if log u ≤ 0, then − log u < −� log u and we get

Z(u)|β ′
ε(u)| ≤ −� log u + C

(
1

2
log2 u + �2 + 1

2

)

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

for some constant C > 0. In the set where log u > 0 we have

Z(u)|β ′
ε(u)| ≤ C

(

− � logM + �2 + 1

2

)

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

.

Now we consider inequality (3.11). Once βε(u) ≤ − log u, we have that

−Z ′(u)βε(u) ≤ log2(u) − (� − 1) log u.

But −(� − 1) log u ≤ −� log u if log u ≤ 0. Therefore,

−Z ′(u)βε(u) ≤ log2(u) − � log u

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

.

In the case log u > 0 we obtain

−Z ′(u)βε(u) ≤ C

(
1

2
log2 u − � logM + �2 + 1

2

)

≤ C

(
1

2
log2 u − � log u + �2 + 1

2

)

.

Finally, (3.12) follows from the definition of Z(u) after some computations and dividing
again in the cases log u ≤ 0 and log u > 0. This finishes the proof ��

Nowwe prove the pointwise estimate in time. In the case of a power-type nonlinearity, next
lemma can be seen as a maximum principle (see [4]). The lack of homogeneity complicates
considerably the technique, and we need new ideas followed by the general parabolic theory.

Lemma 3.2 Let u0 ∈ L∞(�), u0 ≥ 0, be the initial data and uε be the solution of (1.7).
Then, for each �′ ⊂⊂ � and τ ∈ (0, T ], there exists C > 0 such that

|uε
t (x, t)| ≤ C log

1

uε(x, t)
, (x, t) ∈ �′ × (τ, T ]

where C = C(τ, dist(�′, ∂�), ‖uε‖L∞(QT )).

Proof Let us call again u = uε. Since ‖uε‖L∞(QT ) is bounded for a constant independent of
ε, there is no loss of generality if we suppose ‖uε‖L∞(QT ) ≤ M < 1.

Given (x0, t0) ∈ �′ × (τ, T ], we consider the rescaled and translated function

ũ(x, t) = e− �
r u(r x + x0, r

2t + t0),
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where � ≥ max{1, 2M} is the constant in Lemma 3.1. Now, fix r0 = min(1, dist(�′, ∂�),√
τ) and let r > 0 be given by

r−2e
�
r = Lr−2

0 e
2�
r0 log u(x0, t0),

where L = 4(logM)−1 < 0. We have 0 < r < r0/2 and, by the choice of r0, the function ũ
is defined in B1 × [−1, 0], it is of class C1, and it satisfies

ũt − �ũ = r2e− �
r βε(e

�
r ũ) in B1 × (−1, 0]. (3.14)

Furthermore, we can find a constant C > 0 satisfying

|ut (x0, t0)| = r−2e
�
r |ũt (0, 0)|

= 4(logM)−1r−2
0 e

2�
r0 |ũt (0, 0)| log u(x0, t0)

≤ C log
1

u(x0, t0)

provided there is C1 > 0 such that

|ũt (0, 0)| ≤ C1. (3.15)

Thus, all we need to do is to prove (3.15). Recall that, from Lemma 3.1, we have

|∇u|2 ≤ C2(−u log u + �u) in Br0(x0) × (t0 − r2, t0).

Moreover,

|∇ũ|2 = r2e− 2�
r |∇u|2.

It follows that

|∇ũ|2 ≤ C2r
2e− 2�

r (−u log u + �u)

≤ C2r
2e− �

r (−ũ log ũ + �ũ(1 − 1/r))

≤ Cũ log
1

ũ
(3.16)

whenever 0 < r < 1. The inequality above holds in B1 × (−1, 0] and log(ũ)−1 ≤ (ũ)−1

since ũ < 1. So,

|∇ũ3/2|2 ≤ 9

4

|∇ũ|2
log 1

ũ

≤ C, in B1 × (−1, 0). (3.17)

Now, let ψ ∈ C∞
0 (B1 × (0, 1]). Multiplying Eq. (3.14) by ũtψ and integrating over B1

we find
∫

B1
ũ2t ψdx = −1

2

d

dt

∫

B1
|∇ũ|2ψdx −

∫

B1
ũt∇ũ∇ψdx + r2e− 2�

r
d

dt

∫

B1
Bε(e

�
r ũ)ψdx,

where

Bε(u) =
∫ u

0
βε(s)ds.

Hence, by Young’s inequality

1

2

∫

B1
ũ2t ψdx ≤ −1

2

d

dt

∫

B1
|∇ũ|2ψdx + C

∫

B1
|∇ũ|2dx + r2e− 2�

r
d

dt

∫

B1
Bε(e

�
r ũ)ψdx .
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Integrating from t1 ∈ (−1, 0) to 0 we obtain
∫ 0

t1

∫

B1
ũ2t ψdxdt ≤

∫

B1
|∇ũ(·, t1)|2dx + 2C

∫ 0

t1

∫

B1
|∇ũ|2dxdt

+ 2r2e− 2�
r

∫

B1
Bε(e

�
r ũ(·, 0))ψdx

− 2r2e− 2�
r

∫

B1
Bε(e

�
r ũ(·, t1))ψdx . (3.18)

Assuming 0 < ε < 1 − M we see that

βε(u) = log
u2 + εu + ε

u + ε
≤ 0 < u,

which implies

Bε(e
�
r ũ) ≤ 1

2
e
2�
r ũ2.

On the other hand, −βε(u) ≤ u−1/2 and

−Bε(e
�
r ũ) ≤ 2e

�
2r ũ1/2.

Using the previous inequalities in (3.18) we get
∫ 0

t1

∫

B1
ũ2t ψdxdt ≤ − C

∫

B1
ũ(·, t1) log ũ(·, t1)dx − C

∫ 0

t1

∫

B1
ũ log ũdxdt

+ r2
∫

B1
ũ2(·, 0)dx + 4r2e− 3�

r

∫

B1
ũ1/2(·, t1)dx .

(3.19)

Since 0 < r < r0/2 and ũ log ũ ≤ ũ1/2, we see that there is a constant C > 0 such that
∫ 0

t1

∫

B1
ũ2t ψdxdt ≤ C

[

1 +
∫ 0

t1

∫

B1
ũ1/2dxdt +

∫

B1
ũ1/2(·, t1)dx

]

(3.20)

Now, (3.17) implies that, for any y ∈ B1 and t ∈ (−1/2, 0),

ũ(y, t) ≤ C(1 + ũ(x, t))

where x ∈ Br1 with r1 ≤ ( 12 )
1/3N < 1. It follows that (see [5])

ũ1/2(y, t) ≤
(

C

(

1 + |t |1/3
(∫ 0

t1

∫

B1
ũ2t ψdxdt

)1/2
))1/2

≤ C

(

1 + |t |1/6
(∫ 0

t1

∫

B1
ũ2t ψdxdt

)1/4
)

.

For |t | ≤ |t1| the Young’s inequality implies

ũ1/2(y, t) ≤ C

(

1 + |t1|1/6
(∫ 0

t1

∫

B1
ũ2t ψdxdt

))

.

It follows from (3.20) that
∫ 0

t1

∫

B1
ũ2t ψdxdt ≤ C

(

1 + |t1|1/6
(∫ 0

t1

∫

B1
ũ2t ψdxdt

))

.

123



996 A. R. F. de Holanda et al.

Then, choosing δ > 0 small we see that, for t1 ∈ (−δ, 0], there is a constant C (which does
not depend on t1) such that

∫ 0

t1

∫

B1
ũ2t ψdxdt ≤ C.

From (3.17) there exist ρ > 0 small and C1 > 0 with C1 = C1(ρ) → 0 as ρ → 0 such that

ũ(x, t)3/2 ≥ ũ(x0, t)
3/2 − C1, in Bρ(0) × (−ρ, 0].

The continuity of ũ implies the existence of C2 > 0, C2 = C2(ρ) → 0 as ρ → 0, such that

ũ(x0, t) ≥ ũ(0, 0) − C2 in Bρ(0) × (−ρ, 0].
Since ũ(0, 0) > 0 does not depend on ρ,

ũ(x, t) ≥ C > 0 in Bρ(0) × (−ρ, 0].
Thus,

|ũt − �ũ| ≤ C in Bρ(0) × (−ρ, 0].
Now, parabolic regularity theory implies inequality (3.15). ��
Remark 3.3 Lemma 1.3 follows from Lemma 3.1 and Lemma 3.2.

4 Existence of a solution

In this section we justify the passage to the limit as ε → 0+ proving Theorem 1.4. Let us
start with the existence of a candidate.

Proposition 4.1 Let uε be a solution of (1.7), 0 < ε ≤ ε0 with initial data u0 ∈ L∞(�),

u0 ≥ 0. Then, if �′ ⊂⊂ � and τ ∈ (0, T ) are fixed, for every α ∈ (0, 1), there exists a
constant C > 0, depending only on �′, n, τ, T, α and ‖u0‖L∞(�) such that

|uε(x, t) − uε(x, s)| ≤ C |t − s|α, (4.1)

and
|∇uε(x, t) − ∇uε(y, t)| ≤ C |x − y|α, (4.2)

for every x, y ∈ �′ and t, s ∈ (τ, T ). In particular, there exists u : � × (0, T ) → R such
that, at least for a subsequence,

uε → u as ε → 0+, locally uniformly inQT .

Furthermore, u satisfies

|ut (x, t)| ≤ C1| log u(x, t)|, for every x ∈ �′, t ∈ [0, T ] (4.3)

and

|∇u(x, t)|2 ≤ C1u(x, t) (� + | log u(x, t)|) , for every x ∈ �′, t ∈ [0, T ], (4.4)

where the constant C1 depends only on N ,�′, τ, T and ‖u0‖L∞(�) and � is the one from
Lemma 3.1.
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Proof The proof of estimates (4.1) and (4.2) follows exactly as in [5], Corollary 3.2. Just
notice that Lemma 3.1 and Lemma 3.2 imply that uε satisfies the estimates (16) and the one
from Lemma 3.1, both in [5]. Now, the existence of the limit and the estimates for u follow
from the compactness results available between Hölder spaces (see, for instance, [8]).

We also need an integrability result.

Lemma 4.2 Let u be the limit function from Proposition 4.1. Then,

χ{u>0} log u ∈ L1
loc(QT ).

Proof For 0 < ε ≤ ε0 we fix 0 < a0 < 1 satisfying βε0(a0) = 0. We let �′ ⊂⊂ � and
η ∈ C∞

0 (�) be such that 0 ≤ η ≤ 1 and η ≡ 1 in �′. Then, for some constants M̃, M > 0
depending on ε0 we have:

∫ T

0

∫

�′∩{uε≤a0}
|βε(u

ε)|dxdt ≤ −
∫ T

0

∫

�′
βε(u

ε)dxdt + M̃T

≤ −
∫ T

0

∫

�′
ηβε(u

ε)dxdt + M̃T

≤ −
∫ T

0

∫

�

ηβε(u
ε)dxdt + MT

= −
∫ T

0

∫

�

(
ηuε

t + 〈∇uε,∇η〉) dxdt + MT

= −
∫ T

0

∫

�

η
(
uε(T ) − u0

)
dx −

∫ T

0

∫

�

〈∇uε,∇η〉dxdt
+ MT .

We conclude the proof using Lemma 2.1, Lemma 2.2 and Fatou’s Lemma. ��
Finally, we give the proof of existence.

Proof of Theorem 1.4 Let us show that the function u from Proposition 4.1 is a solution in
the sense of (1.5). To this end, let ξ : R → R be a smooth function satisfying 0 ≤ ξ(s) ≤ 1
and

ξ(s) =
{
1, s ≥ 1,
0, s ≤ 1/2.

For m > 0 we use the test function ηξ(uε/m), η ∈ C∞
c (� × [0, T )) in the definition (1.8)

(for a general test function we use an approximation procedure). We obtain:
∫

�

uε(τ )η(τ )ξ(uε(τ )/m)dx −
∫

�

u0η(0)ξ(u0/m)dx −
∫ τ

0

∫

�

uε
(
ηξ(uε/m)

)

t dxdt

+
∫ τ

0

∫

�

〈∇uε,∇(ηξ(uε/m))〉dxdt =
∫ τ

0

∫

�

βε(u
ε)ηξ(uε/m)dxdt.

(4.5)
From the dominated convergence theorem we can pass to the limit in the first and second

integral in the first line of (4.5) as ε → 0 and m → 0. As for the third integral we have
∫ τ

0

∫

�

uε
(
ηξ(uε/m)

)

t dxdt=
∫ τ

0

∫

�

uεηtξ(uε/m)dxdt+ 1

m

∫ τ

0

∫

�

uεuε
t ηξ ′(uε/m)dxdt,

(4.6)
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and as above

lim
m→0

lim
ε→0

∫ τ

0

∫

�

−uεηtξ(uε/m)dxdt = −
∫ t2

t1

∫

�

uηtdxdt.

On the other hand, let �′ ⊂⊂ � be such that η = 0 in (� \ �′) × [0, τ ]. Then Lemma 3.2
implies that

1

m

∣
∣
∣
∣

∫ τ

0

∫

�

uεuε
t ηξ ′(uε/m)dxdt

∣
∣
∣
∣ ≤ 1

m
sup |η| sup |ξ ′|

∫ τ

0

∫

�′
χ{1/2≤uε/m≤1}uε|uε

t |dxdt

≤ C
∫ τ

0

∫

�′
χ{1/2≤uε/m≤1}

uε

m
| log uε|dxdt

≤ C
∫ τ

0

∫

�′
χ{1/2≤uε/m≤1}| log uε|dxdt.

Hence,

lim
ε→0

1

m

∣
∣
∣
∣

∫ τ

0

∫

�

uεuε
t ηξ ′(uε/m)dxdt

∣
∣
∣
∣ ≤ C

∫ t2

t1

∫

�′
χ{1/2≤u/m≤1}| log u|. (4.7)

Lemma 4.2 and dominated convergence theorem implies that the right-hand side of (4.7)
tends to zero as m → 0.

Back to (4.5) we compute
∫ τ

0

∫

�

〈∇uε,∇(ηξ(uε/m))〉dxdt =
∫ τ

0

∫

�

ξ(uε/m)〈∇uε,∇η〉dxdt

+ 1

m

∫ τ

0

∫

�

η|∇uε|2ξ ′(uε/m)dxdt.

Again, it is not difficult to show that

lim
m→0

lim
ε→0

∫ τ

0

∫

�

ξ(uε/m)〈∇uε,∇η〉dxdt =
∫ τ

0

∫

�

〈∇u,∇η〉dxdt.

On the other hand, applying Lemma 3.2 we have

1

m

∣
∣
∣
∣

∫ τ

0

∫

�

η|∇uε|2ξ ′(uε/m)dxdt

∣
∣
∣
∣ ≤ C

∫ τ

0

∫

�′
χ{1/2≤uε/m≤1}

uε

m
(| log uε| + �)dxdt

≤ C
∫ τ

0

∫

�′
χ{1/2≤uε/m≤1}(| log uε| + �)dxdt.

It follows from Lemma 4.2 that

lim
m→∞ lim

ε→0

1

m

∣
∣
∣
∣

∫ τ

0

∫

�

η|∇uε|2ξ ′(uε/m)dxdt

∣
∣
∣
∣ = 0.

Finally, using the pointwise convergence of the function βε(uε)ηξ(uε/m) as ε → 0 and
Lemma 4.2 we see that

lim
m→0

lim
ε→0

∫ τ

0

∫

�

βε(u
ε)ηξ(uε/m)dxdt =

∫ τ

0

∫

�

χ{0<u}η log udxdt. (4.8)

This finishes the proof of existence. ��
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5 Optimal regularity

In this last section we prove the log−lip regularity for the approximated solution and finish
the proof of Theorem 1.6.

Theorem 5.1 Let u0 ∈ C1(�), u0 ≥ 0, and suppose that u is the limit solution of (1.1)
from Theorem 1.4. Then there are positive constants C and R0 such that

|∇u(y, t0) − ∇u(x, t0)| ≤ C |y − x || log |y − x ||
for all x, y ∈ �′ ∩ BR0(x0), where �′ ⊂⊂ � and 0 < t0 < T .

Proof Let us fix x0, y0 ∈ �′ ∩ {u(·, t0) > 0} and consider the inequality

|x − x0|2| log |x − x0|| < max {u(x0, t0), u(y0, t0)} . (5.1)

Notice also that we can assume that u < 1. Besides, without loss of generality, we also
assume u(x0, t0) > u(y0, t0).

Let us define

ũ(x, t) = e− �
r u(r x + x0, r

2t + t0), (x, t) ∈ Bρ × (−ρ, 0],
where �, r and r0 were chosen in the proof of Lemma 3.2 and ρ > 0 will be fixed later.
Proceeding as in that lemma, there exist C, ρ > 0 such that

|ũt − �ũ| ≤ C in Bρ × (−ρ, 0],
|ũt | ≤ C in Bρ × (−ρ, 0],
|ũ| ≤ C on Bρ × {−ρ} and ∂Bρ × (−ρ, 0].

Besides, ũ(·, t0) satisfies �ũ(·, t0) = h in Bρ, with h having all the requirements of the
regularity theory for the obstacle problem developed in details in [12] (see Theorem 2.14).
Thus, we deduce that ∇ũ is C0,1 in the variable x ∈ Bρ/2 × (−ρ/2, 0]. Let r0 > 0 be fixed
small enough and y0 be adjusted such that y0 ∈ �′ ⊂⊂ � and |y0 − x0| < r0. Then, choose
ρ in such way that

y0 − x0
r

∈ Bρ/2(0).

Then, ∣
∣
∣
∣∇ũ

(
y0 − x0

r
, 0

)

− ∇ũ(0, 0)

∣
∣
∣
∣ ≤ Cr−1|y0 − x0|.

Back to u we have

|∇u(y0, t0) − ∇u(x0, t0)| ≤ Cr−2e
�
r |y0 − x0|

= Cr−2
0 e

2�
r0 |L|| log u(x0, t0)||x − x0|.

(5.2)

If (5.1) is true, then

| log u(x0, t0)| ≤ ∣
∣log

(|x − x0|2| log |x − x0||
)∣
∣ ≤ C | log |x − x0||,

and from (5.2),

|∇u(x, t0) − ∇u(x0, t0)| ≤ C |x − x0|| log |x − x0||,
where C is a constant depending on r0 and ρ.

123



1000 A. R. F. de Holanda et al.

Now we assume that (5.1) does not happen. From the gradient estimate (4.4) and using
that the function s �→ −s log s is increasing for 0 < s < s0, s0 small, we get

|∇u(y0, t0) − ∇u(x0, t0)|
≤ |∇u(y0, t0)| + |∇u(x0, t0)|
≤ C

(
(−u(y0, t0) log u(y0, t0))

1/2 + (−u(x0, t0) log u(x0, t0))
1/2)

≤ C

(

|y0 − x0|2 log 1

|y0 − x0|
)1/2 (

− log

(

|y0 − x0|2 log 1

|y0 − x0|
))1/2

≤ C |y0 − x0| log 1

|y0 − x0|
(

2 + 2 log (− log |y0 − x0|)
log |y0 − x0|

)1/2

≤ C |y0 − x0| log 1

|y0 − x0| .

This finishes the proof of the regularity. ��
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