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Abstract In this note, we describe an elliptic root system and elliptic Weyl group, due to
Saito (Publ RIMSKyoto Univ 21:75–179, 1985), from view point of double loop algebra and
its group. A natural action of the double loop group will be introduced on a trivial C

∗-bundle
over the space of ∂-connections on a C∞-trivial principal bundle over an elliptic curve that
would be constructed from 2-dimensional central extension of a double loop algebra. The
invariant theory of the elliptic Weyl group will be also discussed.
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1 Introduction

Saito [14] arrived at the notions of elliptic root system and elliptic Weyl group in the course
of his study on simply elliptic singularities [12]. An elliptic root system is a root system
defined on a real vector space with positive semi-definite bilinear form whose radical is of
dimension 2, extending finite and affine root system. The existence of imaginary roots which
generate 2-dimensional radical indicates its relation to an elliptic curve.

It is natural to consider the construction of a Lie algebra with given elliptic root system as
the next step, and there were several attempts to this problem by Wakimoto [19], Slodowy
[18], Yamada (one of the authors of this article) [21] and Saito with Yoshii [16] etc. For recent
developments, see e.g., [9]. Among these constructions, one has the ‘maximal’ one that is the
universal central extension of a 2-toroidal Lie algebra g⊗C[s±1, t±1] for some simple finite-
dimensional Lie algebra g (cf. [5]). Notice that the kernel of the universal central extension
of such an algebra is of infinite dimension, whereas that of the Lie algebra g ⊗ C[t±1] is
1-dimensional.

A relation between a simple singularity and the simple Lie algebra of the same type was
clarified by the Grothendieck-Brieskorn-Slodowy theory [17]. This description in terms of
Lie algebras was a key to construct the periodmap, in particular the primitive form [13], of the
semi-universal deformation of a simple singularity [22]. Helmke and Slodowy [2] constructed
the space of semi-universal deformation of an isolated hypersurface simply elliptic singularity
in terms of a holomorphic affine Lie group, where the relation between holomorphic principal
G-bundles, where G is the connected and simply connected simple Lie group over C whose
Lie algebra is g, and the affine Lie group associated with G played an important role. Our
project is to describe the semi-universal deformation of an isolated simply elliptic singularity
in terms of Lie algebras that would be 2-toroidal Lie algebras, as one can see in [2]. This
construction may allow us to describe the primitive form and hence the period map for an
isolated simply elliptic singularity.

In this article, we explain the algebraic structure of 2-toroidal Lie algebras, i.e., in view of
elliptic root systems etc. Next, we show that all of these concepts have some natural meaning
in terms of the space C(g) of ∂-connections on a topologically trivial principalG-bundle over
an elliptic curve. This note is organized as follows.

In Sect. 2, we explain the so-called elliptic root system, elliptic Weyl groupWell and their
hyperbolic extensions in view of 2-toroidal Lie algebras. In Sect. 3, we show that the elliptic
Weyl group can be regarded as the quotient of the normalizer of its Cartan subalgebra of
the C∞-completion E(g) of a 2-toroidal Lie algebras by its centralizer in the correspond-
ing group E(G). An E(G)-action on the space C(g) will be studied and its relation to the
invariant theory of Well will be explained in Sect. 4. In Sect. 5, an action of SL(2, Z) will be
studied.
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Double loop algebras and elliptic root systems 745

2 Elliptic root systems and 2-toroidal Lie algebras

In this section, we will recall some facts about what is called an elliptic root system, its Weyl
groups, and their hyperbolic extension, introduced by Saito [14]. We also describe them in
terms of 2-toroidal Lie algebras and their central extensions.

2.1 Elliptic root systems and their Weyl groups

In this subsection, we recall the notion of an elliptic root system and an elliptic Weyl group.
Let us generalize the classical notion of root system [14]:

Definition 2.1 Let F be a finite-dimensional vector space over R, (·, ·) be a symmetric
bilinear form of signature (l+, l0, l−), i.e., l+, l0 and l− signify the number of positive, zero
and negative eigenvalues, respectively. We call a non-empty subset R ⊂ F , the root system
associated with (·, ·) if it satisfies the next five axioms:

1. Let Q(R) be the Z-submodule of F generated by R. Then, dim(Q(R) ⊗ R) = dim F ,
i.e., Q(R) is a full lattice in F .

2. For any α ∈ R, (α, α) �= 0.
3. For α ∈ R, let wα ∈ GL(F) be the reflection defined by

wα(λ) = λ − 2(λ, α)

(α, α)
α λ ∈ F.

Then, wα(R) = R for any α ∈ R.

4. For any α, β ∈ R,
2(α, β)

(α, α)
∈ Z.

5. (Irreducibility) There is no non-empty subsets R1 and R2 such that R = R1 ∪ R2 and
R1 ⊥ R2.

As is well known, when the signature (l+, l0, l−) of R is either of the form (l, 0, 0) or (l, 1, 0),
R is a finite root system or an affine root system, respectively. In case when the signature of R
is of the form (l, 2, 0), R is called an elliptic root system. This is the root system introduced
by K. Saito for his study on simply elliptic singularities.

Here and after, we will study the structure of an elliptic root system, say R. Set

Rad (·, ·) = {λ ∈ F |(λ, γ ) = 0 ∀ γ ∈ F}.
It follows that the vector space Rad (·, ·) is a 2-dimensional subspace of F defined over
Q, i.e., Rad (·, ·) ∩ Q(R) is a full sublattice of Q(R). In this sense, fixing a 1-dimensional
subspace E of Rad (·, ·) defined over Q is called a marking for R, and the pair (R, E) is
called a marked elliptic root system.

Remark 2.1 Two non-isomorphic marked elliptic root systems can be isomorphic as elliptic
root systems. G(1,3)

2 and G(3,1)
2 are such examples. See [14] for detail.

For a marked elliptic root system (R, E), set

Ff = F/Rad (·, ·), Fa = F/E,

R f = R/R ∩ Rad (·, ·), Ra = R/R ∩ E .

Denote the symmetric bilinear form on Ff and Fa , induced from (·, ·), by (·, ·) f and (·, ·)a .
It is clear that R f and Ra are, respectively, the finite and affine root systems associated with
(Ff , (·, ·) f ) and (Fa, (·, ·)a).
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746 K. Iohara, H. Yamada

Remark 2.2 Ra is the real root system of the corresponding affine Lie algebra.

In the sequel, we regard Ff and Fa as vector subspaces of F and R f ⊂ Ra ⊂ R, for
simplicity.

Let {α1, . . ., αl} and {α0, α1, . . ., αl} be root basis of R f and Ra , respectively, i.e.,

Ff :=
l⊕

i=1

Rαi Fa :=
l⊕

i=0

Rαi ,

and each root is a Z-linear combination of αi ’s where all nonzero coefficients are either all
positive or all negative. We express the fundamental imaginary root of the affine root system
Ra as

δ1 =
l∑

i=0

aiαi ,

that is, ai are coprime positive integers such that δ1 is an imaginary root of the corresponding
affine Lie algebra. We let

A =
(
2(αi , α j )

(αi , αi )

)

0≤i, j≤l

be the generalized Cartan matrix of Ra .
Now, following Wakimoto [19], we study the structure of the marked elliptic root system

(R, E) in view of the generalized Cartan matrix A. An (l + 1)-tuple of positive integers
(k0, k1, . . ., kl) is called counting weight, if the diagonal matrix K = diag(k0, k1, . . ., kl)
satisfies the next two conditions:

1. K AK−1 is a generalized Cartan matrix (cf. [3]), and
2. G.C.D.(k0, k1, . . ., kl) = 1.

Example 2.1 1. If A is the generalized Cartan matrix of type X (1)
l with X = A, D, E , a

counting weight is uniquely determined as

(k0, k1, . . ., kl) = (1, 1, . . ., 1).

2. Let

A =
⎛

⎝
2 −1 0

−1 2 −1
0 −3 2

⎞

⎠

be the generalized Cartan matrix of type G(1)
2 . There are two possible counting weights:

(1, 1, 1) and (1, 3, 1). Namely, in general, a counting weight is not uniquely determined
from a generalized Cartan matrix of affine type.

Let Wa be the affine Weyl group associated with the affine root system Ra . It is well
known that Ra decomposes into a finite number of Wa-orbits (cf. Remark 2.2) and that each
Wa-orbit of Ra contains a simple root.

Lemma 2.1 If two simple roots αi and α j lie in the same Wa-orbit, then we have ki = k j .
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Double loop algebras and elliptic root systems 747

Proof We recall that αi and α j lie in the same Wa-orbit if and only if the vertices corre-
sponding to these simple roots are connected by a subdiagram consisting of simple edges of
the Dynkin diagram of Ra . Hence, since Ra is irreducible, it is sufficient to show this lemma
in the case when the vertices corresponding to αi and α j are connected by one simple edge.

Set A = (ai, j ) and B = (bi, j ) = K AK−1. As bi, j = ai, j ki k
−1
j and ai, j = a j,i = −1 by

assumption, this implies that

bi, j b j,i = (ai, j ki k
−1
j )(a j,i k j k

−1
i ) = ai, j a j,i = 1.

from which it follows that bi, j = b j,i = −1, since B is a generalized Cartan matrix. Thus,
we conclude that ki = k j . �
Now, for any α ∈ Ra , there exists w ∈ Wa and a simple root αi such that α = w(αi ). The
above lemma assures that we can define the counting weight of the root α by

k(α) = ki .

Let δ2 be a Z-basis of the lattice Q(R) ∩ E . The number k(α) is the smallest positive integer
such that α + k(α)δ2 ∈ R. Indeed, we have

Proposition 2.2 (cf. [14,19]) R = {α + mk(α)δ2| α ∈ Ra, m ∈ Z}.
Remark 2.3 Let us state the relation between a counting weight and the elliptic Dynkin
diagram due to Saito [14]. Let a∨ = (a∨

0 , a∨
1 , . . ., a∨

l ) ∈ (Z>0)
l+1 be the vector satisfying

1. a∨A = 0, and
2. G.C.D.(a∨

0 , a∨
1 , . . ., a∨

l ) = 1.

Set

I =
{
j ∈ {0, 1, . . ., l}

∣∣∣∣∣
a∨
j

k j
= max

{
a∨
0

k0
,
a∨
1

k1
, . . .,

a∨
l

kl

}}
.

For j ∈ I , we set α∗
j = α j + δ2 and consider the set of vertices parametrized by

{α0, α1, . . ., αl} ∪ {α∗
j | j ∈ I }.

The elliptic Dynkin diagram for the root system R is the graph with the vertices given by
the above set where the vertices α and β are connected following the usual rules for Dynkin

diagram depending on the values
2(α, β)

(α, α)
and

2(β, α)

(β, β)
. When these values are 2, we connect

these vertices with two dashed edges.

In the rest of this article, we are only interested in the elliptic root systems of type X (1,1)
l

(X = A, B,C, D, E, F,G) in which case one always has (k0, k1, . . ., kl) = (1, 1, . . ., 1).
Hence, the above proposition in this case implies

Corollary 2.3 The root system of type X (1,1)
l is given by

R = {α f + mδ1 + nδ2| α f ∈ R f , m, n ∈ Z}.
Now, we discuss on the structure of the Weyl group associated with the elliptic root system
of type X (1,1)

l . Recall that, for any α ∈ R, the reflectionwα with respect to α is, by definition,
given by

wα(λ) = λ − 2(λ, α)

(α, α)
α ∀ λ ∈ F.
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748 K. Iohara, H. Yamada

The subgroup of GL(F) generated by {wα}α∈R is called elliptic Weyl group and will be
denoted by Well .

Recall that

F = Ff ⊕ Rδ1 ⊕ Rδ2, Rad (·, ·) = Rδ1 ⊕ Rδ2.

We define the subspace F∗
f of F

∗ by

F∗
f = {h ∈ F∗|h(δ1) = h(δ2) = 0},

where F is identified with the dual of F∗. Let d1, d2 be the elements of F∗ satisfying

di |Ff = 0, di (δ j ) = δi, j (i, j ∈ {1, 2}).
It is clear that

F∗ = F∗
f ⊕ Rd1 ⊕ Rd2.

Let μ : F → F∗ be the linear map satisfying

1. for any λ ∈ Ff , μ(λ) ∈ F∗
f such that

μ(λ)(κ) = (λ, κ) ∀ λ, κ ∈ Ff ,

2. μ|Rδ1⊕Rδ2 = 0.

It follows that the restriction of the linear map μ to Ff is injective. Hence, for α f ∈ R f , we
set

α∨
f = 2

(α f , α f )
μ(α f ) ∈ F∗.

The elliptic group Well naturally acts on the dual F∗, and its action is explicitly given by

wα(h) = h − h(α)α∨
f ∀ h ∈ F∗,

for α = α f + mδ1 + nδ2 ∈ R with α f ∈ R f . For α f ∈ R f , we set

t i
α∨
f

= wδi−α f wα f (i = 1, 2).

By direct computation, one can check that, for any h +ω1d1 +ω2d2 ∈ F∗ with h ∈ F∗
f , one

has

t i
α∨
f
(h + ω1d1 + ω2d2) = h + ω1d1 + ω2d2 + ωiα

∨
f (i = 1, 2).

Let Q∨
f be the coroot lattice of R f , i.e.,

Q∨
f =

l⊕

i=1

Zα∨
i .

The above computation implies the next proposition:

Proposition 2.4 (cf. [15])Well ∼= W f � (Q∨
f ×Q∨

f ), where W f is theWeyl group associated
with the finite root system R f .

Remark 2.4 The elliptic Weyl groupWell is generated by {wα0 , wα1 , . . ., wαl , wα∗
j
( j ∈ I )}.
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Double loop algebras and elliptic root systems 749

2.2 Hyperbolic extension

As in the previous subsection, let F be an (l + 2)-dimensional R-vector space, (·, ·) be a
symmetric bilinear form with signature (l, 2, 0), E ⊂ Rad (·, ·) be a marking and (R, E) be
a marked elliptic root system in F . As we have seen before, the radical Rad (·, ·) signifies the
existence of the translation in 2 directions. But, the space (F∗

f )C:= C ⊗R F∗
f is too small to

consider the invariant functions with respect to the action of the elliptic Weyl group since the
only invariant holomorphic function on (F∗

f )C is a constant. Following Saito [14], the notion
of the hyperbolic extension will be introduced depending upon the marking E .

Recall that we have chosen a basis {δ1, δ2} of Rad (·, ·) satisfying
Rad (·, ·) ∩ Q(R) = Zδ1 ⊕ Zδ2, E ∩ Q(R) = Zδ2.

We define the (l + 3)-dimensional R-vector space F̂ and a symmetric bilinear form (·, ·)E
as follows:

F̂ = F ⊕ R
1 = Ff ⊕ Rδ1 ⊕ Rδ2 ⊕ R
1 = Fa ⊕ Rδ2 ⊕ R
1,

(·, ·)E |F×F = (·, ·), (δi ,
1)E = δi,1, (Ff ,
1)E = {0}, (
1,
1)E = 0.

We call (F̂, (·, ·)E ) a hyperbolic extension of (F, (·, ·)). By definition, we have

Rad (·, ·)E = E= Rδ2,

and the restriction of (·, ·)E to the (l + 2)-dimensional subspace

F̂a := Fa ⊕ R
1

is non-degenerate.
For the elliptic root system R and α ∈ R, define ŵα ∈ GL(F̂) by

ŵα(λ) = λ − 2(λ, α)E

(α, α)E
α ∀ λ ∈ F̂

and consider the subgroup Ŵell of GL(F̂) generated by {ŵα}α∈R called the hyperbolic
extension of the elliptic Weyl group Well .

Let us study the structure of the group Ŵell . Let d1, d2, c1 be the elements of the dual F̂∗
satisfying

di (
1) = 0, di (δ j ) = δi, j , di (Ff ) = {0},
c1(
1) = 1, c1(δi ) = 0, c1(Ff ) = {0}.

By definition, one sees that the symmetric bilinear form (·, ·)E is non-degenerate on F̂a .
Hence, introducing two subspaces of F̂∗ by

F̂∗
f := (Rδ1 ⊕ Rδ2 ⊕ R
1)

⊥, F̂∗
a := (Rδ2)

⊥,

one has

F̂∗
a = F̂∗

f ⊕ Rd1 ⊕ Rc1,

F̂∗ = F̂∗
f ⊕ Rd1 ⊕ Rd2 ⊕ Rc1 = F̂∗

a ⊕ Rd2.

Let μ̂ : F̂ → F̂∗ be the linear map defined by

μ̂(λ)(κ) = (λ, κ)E λ, κ ∈ F̂ .
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750 K. Iohara, H. Yamada

Since Rad (·, ·)E = E = Rδ2, it follows that μ̂(δ2) = 0. Nevertheless, the restriction

μ̂|F̂a : F̂a −→ F̂∗
a ,

is a linear isomorphism. Hence, we set E∗ = Rd2 and define the symmetric bilinear form
(·, ·)E∗ on F̂∗ by

(μ̂(λ), μ̂(κ))E∗ := (λ, κ)E (λ, κ ∈ F̂a), (d2, F̂
∗)E∗ := {0}.

By definition, one has

Rad (·, ·)E∗ = E∗ = Rd2.

For α ∈ R ⊂ F̂ , set

α∨ = 2

(α, α)E
μ̂(α).

By definition, one has

α∨(λ) = 2(α, λ)E

(α, α)E
.

Th equalities μ̂(δ1) = c1 and μ̂(δ2) = 0 imply that, for α = α f + mδ1 + nδ2 ∈ R with
α f ∈ R f , one has

α∨ = α∨
f + 2m

(α, α)E
c1 = α∨

f + m
(α∨

f , α
∨
f )E∗

2
c1.

Hence, the natural action of the hyperbolic extension Ŵell on F̂∗ is given by

ŵα(h) = h − h(α)α∨ h ∈ F̂∗

for any α ∈ R. By direct computation, one obtains

Lemma 2.5 For α = α f +mδ1+nδ2 ∈ R with α f ∈ R f and h = h f +ω1d1+ω2d2+uc1 ∈
F̂∗ with h f ∈ F∗

f , one has

ŵα(h) = h − (h f (α f ) + mω1 + nω2)α
∨
f

− m

(
(h f , α

∨
f )E∗ + (mω1 + nω2) · (α∨

f , α
∨
f )E∗

2

)
c1.

For α f ∈ R f , we set

t̂ i
α∨
f

:= ŵδi−α f ŵα f (i = 1, 2).

By Lemma 2.5, one has

Corollary 2.6 For α f , β f ∈ R f and h = h f + ω1d1 + ω2d2 + uc1 ∈ F̂∗ with h f ∈ F∗
f ,

one has

1. t̂1
α∨
f
(h) = h + ω1α

∨
f −

(
(h f , α

∨
f )E∗ + ω1 · (α∨

f , α
∨
f )E∗

2

)
c1,

t̂2
α∨
f
(h) = h + ω2α

∨
f ,

2. t̂1
α∨
f
t̂2
β∨
f
(t̂2

β∨
f
t̂1
α∨
f
)−1(h) = h − ω2(α

∨
f , β

∨
f )E∗c1.
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Double loop algebras and elliptic root systems 751

Remark 2.5 For any α∨
f ∈ Q∨

f , set

t̂1
α∨
f
(h) = h + ω1α

∨
f −

(
(h f , α

∨
f )E∗ + ω1 · (α∨

f , α
∨
f )E∗

2

)
c1,

t̂2
α∨
f
(h) = h + ω2α

∨
f .

It can be verified that for any β∨
1 , β∨

2 ∈ Q∨
f , one has

t̂ i
β∨
1
t̂ i
β∨
2

= t̂ i
β∨
1 +β∨

2
(i = 1, 2).

Thus, setting

H(Q∨
f ) = 〈t̂1

α∨
f
, t̂2

β∨
f
| α∨

f , β
∨
f ∈ Q∨

f 〉,

Lemma 2.6 and Remark 2.5 imply that this group is a discrete Heisenberg group. Moreover,
the next isomorphism is well known:

Proposition 2.7 ([14,21]) Ŵell ∼= W f � H(Q∨
f ).

Notice that Moody and Shi [7] obtained similar results for n-toroidal Lie algebras.

2.3 2-Toroidal Lie algebras

In this subsection, we describe elliptic root systems and their Weyl groups in view of 2-
toroidal Lie algebras gtor = g ⊗ C[s±1, t±1] where g is a simple finite-dimensional Lie
algebra over C. Recall that a 2-toroidal Lie algebra is the Lie algebra whose bracket structure
is given as follows: for X, Y ∈ g,

[X ⊗ smtn, Y ⊗ sk tl ] := [X, Y ] ⊗ sm+k tn+l ,

where the bracket in the right-hand side is the Lie bracket in g. Here and after, we do not
distinguish them.

Two derivations ds = s
∂

∂s
and dt = t

∂

∂t
on C[s±1, t±1] form a commutative Lie algebra

d = Cds ⊕ Cdt which also acts naturally on gtor; for A ⊗ smtn ∈ gtor,

[ds, A ⊗ smtn] := mA ⊗ smtn, [dt , A ⊗ smtn] := nA ⊗ smtn .

Set gdtor = d� gtor . With the aide of a non-degenerate symmetric invariant bilinear form (·, ·)
on g, we define the symmetric bilinear form ( · | · ) on gdtor as follows: for X⊗smtn, Y⊗sk tl ∈
gdtor,

(X ⊗ smtn |Y ⊗ sk tl) = (X, Y )δm+k,0δn+l,0,

(d�|X ⊗ smtn) = (ds |dt ) = 0 (� ∈ {s, t}).
Unfortunately, this symmetric bilinear form is degenerate and is only gtor-invariant.Moreover,
the restriction of ( · | · ) to the commutative subalgebra hd := d ⊕ h satisfies

Rad ( · | · )|hd×hd = d,

where h is a Cartan subalgebra of g.
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752 K. Iohara, H. Yamada

The Lie algebra gdtor admits the simultaneous eigenspace decomposition with respect to
hd:

gdtor = hd ⊕
⎛

⎝
⊕

α∈(hd )∗
gdα

⎞

⎠ , gdα = {A ∈ gtor|[h, A] = α(h)A (h ∈ hd)}.

The set �ell := {α ∈ (hd)∗|gdα �= {0}} is called a double affine root system. Let us identify
h∗ with a subspace of (hd)∗ as follows: for α ∈ h∗, we set α(d�) = 0 (� ∈ {s, t}). Let δs, δt
be the elements of (hd)∗ satisfying

δ�|h = 0, δ�(d) = δ�, (�,  ∈ {s, t}).
We have the next decomposition

(hd)∗ = h∗ ⊕ Cδs ⊕ Cδt .

We extend the symmetric bilinear form ( · | · ) on h∗ to (hd)∗ by

(δ�|(hd)∗) = {0} for � ∈ {s, t}.
The next proposition is clear:

Proposition 2.8

�ell = {α f + mδs + nδt |α f ∈ � f ∪ {0}, m, n ∈ Z} \ {0},
where � f is the root system of g with respect to h.

Set

�re
ell = {α ∈ �ell |(α|α) �= 0}, �im

ell = {α ∈ �ell |(α|α) = 0}.
The set �re

ell (resp. �
im
ell ) is called real root system of �ell (resp. imaginary root system of

�ell ). We have

�re
ell = {α f + mδs+ nδt |α f ∈ � f , m, n ∈ Z}, �im

ell = {mδs+ nδt |(m, n) ∈ Z
2\{(0, 0)}},

and

gdα f +mδs+nδt
= gα f ⊗ Csmtn, gdmδs+nδt

= h ⊗ Csmtn .

Remark 2.6 For g of type Xl , the set�re
ell is the elliptic root systemof type X (1,1)

l byCorollary
2.3.

Now, we consider the Weyl group of gdtor. Define the linear isomorphism ν f : h −→ h∗ by

ν f (h f )(h
′
f ) = (h f |h′

f ) h f , h
′
f ∈ h,

and set

α∨
f = 2

(α f |α f )
ν−1
f (α f ) (α f ∈ � f ).

Let eα f (α f ∈ � f ) be a root vector of root α f in g normalized by the relations [eα f , e−α f ] =
α∨
f for any α f . For α = α f + mδx + nδy ∈ �re

ell with α f ∈ � f , we set eα = eα f ⊗ smtn .

The affine automorphism sα of gdtor defined by

sα = exp(ad(eα)) exp(−ad(e−α)) exp(ad(eα)).
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stabilizes hd, i.e.,

sα(h) = h − α(h)α∨
f h ∈ hd.

Notice that this is an isometry on h but is only an affine transformation on hd. We denote the
restriction of sα (α ∈ �re

ell ) to h
d bywα . The double affineWeyl groupWda f is, by definition,

the subgroup of the group of affine transformations on hd generated by wα (α ∈ �re
ell ).

For any α f ∈ � f , we set

t�
α∨
f

= wδ�−α f · wα f (� ∈ {s, t}).

It can be checked that, for any h = h f + ωsds + ωt dt ∈ hd with h f ∈ h, we have

t�
α∨
f
(h) = h + ω�α

∨
f (� ∈ {s, t}).

It follows that

Proposition 2.9 One has the isomorphism

Wda f ∼= W f � (Q∨
f × Q∨

f ).

This proposition shows that Wda f ∼= Well , that is, we obtained a description of the elliptic
Weyl group Well in terms of the 2-toroidal Lie algebra gtor.

Next, we consider the hyperbolic extension from view point of 2-toroidal Lie algebras.
For this purpose, we consider a 2-dimensional central extension g̃dtor of g

d
tor to obtain a non-

degenerate symmetric invariant bilinear form on it. Namely, it is the vector space

g̃dtor := gdtor ⊕ Ccs ⊕ Cct ,

enjoying the next commutation relations

[gdtor, cs] = [gdtor, ct ] = {0},
[X ⊗ smtn, Y ⊗ sk tl ] = [X, Y ] ⊗ sm+k tn+l + (X, Y )δm+k,0δn+l,0(mcs + nct ),

[ds, X ⊗ smtn] = mX ⊗ smtn, [dt , X ⊗ smtn] = nX ⊗ smtn,

[ds, dt ] = 0,

where X, Y ∈ g and k, l,m, n ∈ Z.
The Lie algebra g̃dtor possesses a non-degenerate symmetric g̃dtor-invariant bilinear form

〈 · | · 〉 whose non-trivial pairings are given by
〈X ⊗ smtn |Y ⊗ sk tl〉 = (X, Y )δm+k,0δn+l,0,

〈∂�|d〉 = δ�, (�,  ∈ {s, t}).
We remark that the restriction of this symmetric g̃dtor-invariant bilinear form to the (rkg+ 4)-
dimensional commutative subalgebra

h̃ := hd ⊕ Ccs ⊕ Cct ,

is again non-degenerate.
We identify (hd)∗ with a subspace of h̃∗ as follows: for α ∈ (hd)∗, we set α(c�) = 0 (� ∈

{s, t}). Since cs and ct are central in g̃dtor, the root space decomposition of g̃dtor with respect
to h̃ looks as follows:

g̃dtor = h̃ ⊕
⎛

⎝
⊕

α∈�ell

g̃α

⎞

⎠ , g̃α = gdα.
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754 K. Iohara, H. Yamada

Let 
s,
t be the elements of h̃∗ satisfying


�(h
d) = 0, 
�(c) = δ�, (�,  ∈ {s, t}).

We have

h̃∗ = (hd)∗ ⊕ C
s ⊕ C
t = h∗ ⊕ Cδs ⊕ Cδt ⊕ C
s ⊕ C
t .

Define the linear isomorphism ν : h̃ −→ h̃∗ by

ν(h̃)(h̃′) = 〈h̃|h̃′〉 h̃, h̃′ ∈ h̃.

Via this isomorphism, we define a non-degenerate symmetric bilinear form on h̃∗ by

〈λ̃|κ̃〉 = 〈ν−1(λ̃)|ν−1(κ̃)〉 λ̃, κ̃ ∈ h̃∗.

For α ∈ �re
ell ⊂ h̃∗, we set

α∨ = 2

〈α|α〉ν
−1(α) ∈ h̃.

Notice that we have

ν−1(δ�) = c�, ν−1(
�) = d� (� ∈ {s, t}),
and for α = α f + mδx + nδy ∈ �re

ell with α f ∈ � f , we also have

α∨ = α∨
f + 2

〈α f |α f 〉 (mcs + nct ).

In the same way as sα (α ∈ �re
ell ), we define the automorphism s̃α of g̃dtor by

s̃α = exp(ad(eα))exp(−ad(e−α)) exp(ad(eα)).

By direct computation, one can check that

s̃α(h̃) = h̃ − α(h̃)α∨,

for any h̃ ∈ h̃, namely, s̃α stabilizes h̃. We denote the restriction of s̃α to h̃ by w̃α and define
W̃da f as the subgroup of O (̃h, 〈·|·〉) generated by w̃α (α ∈ �re

ell ). The group W̃da f is too
big for our purpose, and we need to reduce the space h̃ to a smaller space which we explain
below.

Set

H± =
{
(ωs, ωt ) ∈ C × C

∗
∣∣∣∣ ±Im

(
ωs

ωt

)
> 0

}
,

and

h̃H± = {h̃ = h f + ωsds + ωt dt + uscs + ut ct ∈ h̃ | h f ∈ h, (ωs, ωt ) ∈ H± }.
Notice that we treat ds and dt unequally. For an elliptic root system R, the choice of amarking
E causes unequal treatment, and it is natural to choose Cdt as E∗. Let

X (̃hH±) = {̃h ∈ h̃H± | 〈̃h |̃h〉 = 0 }
be a complex submanifold of h̃H± . Since the symmetric bilinear form 〈 · | · 〉 is W̃da f -invariant,
W̃da f acts on X (̃hH±). By definition, this action commuteswith the naturalC∗-action. Hence,
W̃da f acts on the projectified space

P(X (̃hH±)) := X (̃hH±)/C
∗.
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Before studying the W̃da f -action on P(X (̃hH±)), let us describe this latter space explicitly.
We remark that h̃ = h f + ωsds + ωt dt + uscs + ut ct ∈ X (̃hH±) with h f ∈ h implies the

next equalities:

〈h f |h f 〉 + 2(ωsus + ωt ut ) = 0 i.e., ut = − 1

ωt

(
ωsus + 1

2
〈h f |h f 〉

)
.

Hence, setting ĥH = H × h × C, where H = {τ ∈ C|Im τ > 0}, we have
Proposition 2.10 The holomorphic mapping

ϕ : P(X (̃hH−)) −→ ĥH

defined by

[h f + ωsds + ωt dt + uscs + ut ct ] �−→
(

−ωs

ωt
,−h f

ωt
,−us

ωt

)

is an isomorphism of complex manifolds.

Set τ = −ωs

ωt
∈ H. Let us compute the action of W̃da f on ĥH ∼= P(X (̃hH−)).

For α ∈ �re
ell , we denote by ŵα the element of Aut(̂hH) induced from w̃α ∈ W̃da f .

Lemma 2.11 For (τ, h f , u) ∈ ĥH and α = α f + mδs + nδt ∈ �re
ell with α f ∈ � f , one has

ŵα(τ, h f , u)

=
(

τ, h f − (α f (h f ) + mτ − n)α∨
f , u − m

(
〈α∨

f |h f 〉 + (mτ − n)
〈α∨

f |α∨
f 〉

2

))
.

For α f , β f ∈ � f , we set

t̂ s
α∨
f

:= ŵδs−α f · ŵα f , t̂ t
β∨
f

:= ŵδt+β f · ŵβ f .

Notice that the difference of the sign in two formulas occurs because of the definition τ =
−ωs

ωt
. By Lemma 2.11, we have

Corollary 2.12 For any (τ, h f , u) ∈ ĥH and α f , β f ∈ � f , we have

1. t̂ s
α∨
f
(τ, h f , u) =

(
τ, h f + τα∨

f , u −
(

〈α∨
f |h f 〉 + τ · 〈α∨

f |α∨
f 〉

2

))
.

2. t̂ t
β∨
f
(τ, h f , u) = (τ, h f + β∨

f , u).

3. t̂ s
α∨
f
t̂ t
β∨
f
(t̂ t

β∨
f
t̂ s
α∨
f
)−1(τ, h f , u) = (τ, h f , u − 〈α∨

f |β∨
f 〉).

Remark 2.7 Motivated by Corollary 2.12 1. and 2., we introduce the automorphisms t̂ s
α∨
f
and

t̂ t
α∨
f
of ĥH for α∨

f ∈ Q∨
f by

t̂ s
α∨
f
(τ, h f , u) =

(
τ, h f + τα∨

f , u −
(

〈α∨
f |h f 〉 + τ · 〈α∨

f |α∨
f 〉

2

))
,

t̂ t
α∨
f
(τ, h f , u) = (τ, h f + α∨

f , u).

It can be checked that, for any β∨
1 , β∨

2 ∈ Q∨
f , one has

t̂ s
β∨
1
t̂ s
β∨
2

= t̂ s
β∨
1 +β∨

2
, t̂ t

β∨
1
t̂ t
β∨
2

= t̂ t
β∨
1 +β∨

2
.
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Set

Ŵda f = 〈ŵα|α ∈ �re
ell〉.

By Corollary 2.12 and Remark 2.7, the group generated by t̂ s
α∨
f
and t̂ t

β∨
f

(α∨
f , β

∨
f ∈ Q∨

f ) is a

discrete Heisenberg group (cf. Corollary 2.12 (3)) isomorphic to H(Q∨
f ). Indeed, we have

Proposition 2.13 Ŵda f ∼= W f � H(Q∨
f ). In particular, we have Ŵda f ∼= Ŵell .

Thus, we conclude that the group Ŵda f realizes the hyperbolic extension of Well . We call
the space ĥH ∼= P(X (̃hH)) the hyperbolic extension of H × h. Let us end up this subsection
with a remark which would be related to invariant theory of the Weyl groupWell that will be
discussed in Sect. 4.3:

Remark 2.8 By definition, we have

〈α∨
f |β∨

f 〉 = (α∨
f , β

∨
f ) ∈ Z

for any α∨
f , β

∨
f ∈ Q∨

f . This means that the Ŵell -action on ĥH induces a Well -action on

H × h × C
∗ via the exponential map C −→ C

∗; z �→ exp(2π
√−1z).

3 Double loop groups and elliptic Weyl groups

In this section, we will show that the elliptic Weyl group, recalled in Sect. 2.1 and related
to 2-toroidal Lie algebras in Sect. 2.3, can be obtained naturally from double loop groups
associated with a connected and simply connected simple Lie groupG overC. Here, a double
loop group signifies the Fréchet Lie group

E(G) := C∞(S1 × S1,G)

with its Lie algebra

E(g) := C∞(S1 × S1, g)

called a double loop algebra, where g signifies the Lie algebra of G. As usual, their structures
are defined by pointwise operations. In Sect. 2.3, we used the terminology ‘toroidal’, but in
this section, as we work on C∞-class, we use ‘double loop’ to distinguish with the former.
We realize S1 as

√−1R/2π
√−1R and set

∂x = ∂

∂x
= s

∂

∂s
= ds, ∂y = ∂

∂y
= t

∂

∂t
= dt (s = ex , t = ey).

As in Sect. 2.3, d := C∂x ⊕ C∂y acts naturally on E(g):

[∂�, X ⊗ f ] := X ⊗ ∂� f X ∈ g, f ∈ C∞(T, C), � ∈ {x, y}.
Via this action, we introduce a Lie algebra structure on E(g)d := d � E(g).

Remark 3.1 Notice that the group E(G) is not only a regular F Lie group in the sense
of [10] but also locally exponential in the sense of [8], where the exponential map
exp : E(g) −→ E(G) is a local diffeomorphism between neighborhoods of 0 ∈ E(g) and of
e ∈ E(G).
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We define a left action of E(G) on E(g)d as follows:

L : E(G) × E(g)d −→ E(g)d;
(g, (ξ, A)) �−→ (ξ,Ad(g)A − dg · g−1(ξ)).

(1)

We sometimes denote L(g, (ξ, A)) by Lg(ξ, A).
We choose a commutative ad-diagonalizable subalgebra of E(g)d by

hd = d ⊕ h,

and set

NE(G)(h
d) = {g ∈ E(G)|Lg(h

d) = hd},
ZE(G)(h

d) = {g ∈ E(G)|Lg(ξ, h) = (ξ, h) for (ξ, h) ∈ hd}.
Our purpose of this subsection is to show that the group

W ′
ell := NE(G)(h

d)/ZE(G)(h
d),

is isomorphic to Well , i.e., we have the next theorem:

Theorem 3.1 W ′
ell

∼= W f � (Q∨
f × Q∨

f ).

Proof For g ∈ NE(G)(h
d), (ξ, h) ∈ hd, we have

Lg(ξ, h) = (ξ,Ad(g)(h) − dg · g−1(ξ)) ∈ hd

by definition. In particular, letting h = 0, we obtain t := dg · g−1(ξ) ∈ h. �
Now, suppose that ξ = ωx∂x + ωy∂y ∈ d satisfies −ωx

ωy
∈ H. For (a, b) ∈ R

2, setting

Ka,b(x, y) = g(x, y)−1g(x + a, y + b) ∈ E(G),

we see that

ξKa,b(x, y) = ξ(g(x, y)−1)g(x + a, y + b) + g(x, y)−1ξ(g(x + a, y + b))

= −g(x, y)−1(ξg(x, y)g(x, y)−1)g(x + a, y + b)

+ g(x, y)−1(ξg(x + a, y + b)g(x + a, y + b)−1)g(x + a, y + b)

= −g(x, y)−1tg(x + a, y + b) + g(x, y)−1tg(x + a, y + b) = 0,

that is, Ka,b(x, y) is ξ -holomorphic. Since T = S1 × S1 is compact, Ka,b has to be a
constant, say A(a, b) ∈ G. We regard A as a C∞-function T −→ G. By definition, one has
A(a, b) = g(0, 0)−1g(a, b). Moreover, we have

Lemma 3.2

A(a, b) ∈ ZE(G)(h
d) = H,

where H signifies the Cartan subgroup of G whose Lie algebra is h.

Proof Since g ∈ NE(G)(h
d) implies dg · g−1(ξ) ∈ h as we have already shown, we have

Ad(g)h ⊂ h which implies A(a, b) ∈ NG(h) for each (a, b). By the connectivity of T, it
follows that ImA ⊂ NG(h) is connected since A is continuous. Now, A(0, 0) = e ∈ G
implies Im A ⊂ H since G is simply-connected by assumption. �
Next, we show

123



758 K. Iohara, H. Yamada

Lemma 3.3

A ∈ HomGrp(T, H).

Proof By direct computation, one has

A(a + a′, b + b′) = g(0, 0)−1g(a + a′, b + b′)
= g(0, 0)−1g(a, b) · g(a, b)−1g(a + a′, b + b′)
= A(a, b)Ka′,b′(a, b) = A(a, b)A(a′, b′).

�

We remark that HomGrp(T, H) ∼= Q∨
f × Q∨

f . By definition and Lemma 3.3, we have

g(a, b) = g(0, 0)A(a, b) ∈ NG(h) � (Q∨
f × Q∨

f ),

which implies the existence of the surjection NG(h)�(Q∨
f ×Q∨

f ) � NE(G)(h
d). In particular,

we obtain ZE(G)(h
d) = ZG(h) = H . As W f = NG(h)/ZG(h), we see that there is a

surjection W f � (Q∨
f × Q∨

f ) � NE(G)(h
d)/ZE(G)(h

d).
Now, for α ∈ �re

ell , we define the element s′
α of E(G) by

s′
α = exp(eα) exp(−e−α) exp(eα).

We denote the subgroup of E(G) generated by {s′
α|α ∈ �re

ell} byWell . By direct calculation,
we have

Ls′α (ξ, h) = (ξ, h − α(ξ, h)α∨
f ) (ξ, h) ∈ hd,

i.e., s′
α ∈ NE(G)(h

d). Set

w′
α = Ls′α

∣∣
hd

.

It follows that

Lemma 3.4 The group generated by {w′
α|α ∈ �re

ell} is isomorphic to W f � (Q∨
f × Q∨

f ).

Proof First of all, it can be checked easily that 〈w′
α|α ∈ � f 〉 = W f . For α ∈ � f , we set

(t�
α∨)′ = w′

δ�−α ◦ w′
α � ∈ {x, y}.

It can be verified by direct calculation that these elements act on hd and satisfy

(t�
α∨)′(ξ, h) = (ξ, h + ω�α

∨),

where we set ξ = ωx∂x + ωy∂y ∈ d. Hence the result follows. �

By this lemma, Theorem 3.1 follows.
Let P∨

f be the co-weight lattice of � f , i.e., the dual lattice of the root lattice Q f , and for


∨ ∈ P∨
f , we define two elements of C∞(R2,G) by

φx

∨ := exp(−x
∨), φ

y

∨ := exp(−y
∨).
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(The group C∞(R2,G) acts on the Lie algebra C∞(R2, g) via the gauge transformation as
in (1)). Notice that these elements preserve E(g) ⊂ C∞(R2, g) as can be seen from the next
formulae: for � ∈ {x, y},

L
φ

�


∨
(ξ, h) = (ξ, h + ω�


∨),

L
φ

�


∨
(ξ, eα) = (ξ, e−α(
∨)�eα + ω�


∨).
(2)

It turns out that φx

∨ , φ

y

∨ ∈ E(G) if and only if 
∨ ∈ Q∨

f . Indeed, it can be checked that

φ
�

α∨ = s′
δ�−αs

′
α for α ∈ � f and � ∈ {x, y} (cf. see, e.g., Sect. 1). In particular, we have

L
φ

�

α∨

∣∣∣∣
hd

= (t�
α∨)′ for α∨ ∈ Q∨

f . Here and after, for 
∨ ∈ P∨
f and � ∈ {x, y}, we set

(t�

∨)′ = L

φ
�


∨

∣∣∣∣
hd

.

We call the subgroup of GL(hd) generated by W f and 〈(t x

∨)′, (t y


∨)′|
∨ ∈ P∨
f 〉 the

extended elliptic Weyl group and denote it by We
ell .

Remark 3.2 (cf. [14]) Similarly, one can show that the group We
ell

∼= W f � (P∨
f × P∨

f ) is

isomorphic to NE(Gad )(h
d)/ZE(Gad )(h

d), i.e., the Weyl group of E(Gad), where Gad is the
Chevalley group of adjoint type associated with the Lie algebra g.

4 Central extensions of E(g) and E(G)

Here, we reconstruct the hyperbolic extension of the elliptic Weyl group recalled in Sect. 2.3,
from viewpoint of a central extension of the double loop group E(G).

4.1 ˜E(G)-Action on ˜E(g)d

Let Ẽ(g)d be the Fréchet space

Ẽ(g)d := E(g)d ⊕ (Cdx ⊕ Cdy)

with the smooth Lie bracket satisfying

[Ẽ(g)d, Cdx ⊕ Cdy] = {0},
[X ⊗ f, Y ⊗ g] = [X, Y ] ⊗ f g + (X, Y )

[(∫

T

(∂x f )gω

)
dx +

(∫

T

(∂y f )gω

)
dy

]
,

[∂x , X ⊗ f ] = X ⊗ ∂x f, [∂y, X ⊗ f ] = X ⊗ ∂y f,

[∂x , ∂y] = 0.

Here, X, Y ∈ g, f, g ∈ C∞(T, C) with T = (√−1R/2π
√−1Z

)2
and ω = − 1

4π2 dx ∧ dy

is a volume form on T.
The Lie algebra Ẽ(g)d possesses the non-degenerate symmetric invariant bilinear form

〈·|·〉 whose non-trivial pairings are given by
〈A|B〉 =

∫

T

(A, B)ω (A, B ∈ E(g)),

〈∂�|d〉 = δ�, (�,  ∈ {x, y}).
(3)
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Notice that this bilinear form is the smooth extension of the bilinear form defined on g̃dtor.
Next, we introduce a central extension of E(G) by C, denoted by Ê(G), as follows.
Let � be the two-cocycle defined by

�(g1, g2) = 1

8π2

∫

T

(g−1
1 dg1 ∧ dg2 · g−1

2 ), (4)

for g1, g2 ∈ E(G). Here, the two-cocyle condition means, for gi ∈ E(G) (1 ≤ i ≤ 3),

�(g1, g2) + �(g1g2, g3) = �(g1, g2g3) + �(g2, g3). (5)

The Fréchet Lie group Ê(G) is the central extension of E(G) by C with the two-cocyle �,
i.e., for (gi , ci ) ∈ Ê(G) (i = 1, 2), we define their product by

(g1, c1) · (g2, c2) := (g1g2, c1 + c2 + �(g1, g2)). (6)

The next lemma describes a central extension of (1):

Lemma 4.1 Let L̂ : Ê(G) × Ẽ(g)d −→ Ẽ(g)d be the map defined by

L̂((g, c), (ξ, A, α)) = L̂(g,c)(ξ, A, α)

:=
(

ξ,Ad(g)A − dg · g−1(ξ), α − c · ξ� (−4π2ω) + 〈A|g−1dg〉 − 1

2
〈dg · g−1(ξ)|dg · g−1〉

)
.

Here, ξ ∈ d, A ∈ E(g) and α ∈ Cdx ⊕ Cdy.

1. L̂ defines a left Ê(G)-action on Ẽ(g)d.
2. This left Ê(G)-action keeps the bilinear form 〈·|·〉 invariant.
Remark 4.1 1. Since T has no boundary, we have

�(g1, g2) = 0 gi = exp(Ai ⊗ fi ) ∈ E(G) (i = 1, 2).

2. If Im
ωx

ωy
< 0, ξ = ωx∂x + ωy∂y ∈ d defines a holomorphic structure on T.

We set

X = { Ã = (ξ, A, α) ∈ Ẽ(g)d | 〈 Ã| Ã〉 = 0 },
XH± = {(ωx∂x + ωy∂y, A, α) ∈ X | (ωx , ωy) ∈ H± },

where H± is defined in Sect. 2.1. By Lemma 4.1, we have

Corollary 4.2 The group Ê(G) acts on XH± .

By definition, this action commutes with the natural C
∗-action. Hence, Ê(G) acts on the

projectified space

P(XH±) := XH±/C
∗.

We remark that Ã = (ωx∂x + ωy∂y, A, uxdx + uydy) ∈ XH± implies the next equalities:

〈A|A〉 + 2(ωxux + ωyuy) = 0 i.e., uy = − 1

ωy

(
ωxux + 1

2
〈A|A〉

)
.
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Proposition 4.3 The map

ψ± : P(XH±) −→ H × E(g) × C

defined by

[ωx∂x + ωy∂y, A, uxdx + uydy] �−→
(

±ωx

ωy
,± A

ωy
,− ux

ωy

)

is an isomorphism of complex Fréchet manifolds.

We set τ = −ωx

ωy
∈ H and ∂ = τ∂x − ∂y . We denote the elliptic curve (T, ∂) by Eτ . Set

C(g) = H × E(g), C(g)τ = {τ } × E(g).

The latter space can be identified with the space of ∂-connections on C∞-trivial principal
G-bundles over Eτ . By Remark 4.1.2, we consider the map ψ− in the rest of this section.

Denoting the induced action of Ê(G) on C(g) × C via ψ− by the same letter L̂ , we obtain
the next proposition:

Proposition 4.4 For (g, c) ∈ Ê(G) and (τ, A, u) ∈ C(g) × C, we have

L̂(g,c)(τ, A, u)

=
(

τ,Ad(g)(A) − (∂g)g−1, u − c + 〈A|g−1∂x g〉 − 1

2
〈(∂g)g−1|(∂x g)g−1〉

)
.

Remark 4.2 The canonical projection C(g)×C � C(g) induces the left E(G)-action on C(g)

which we denote by L .

Now, we reconstruct the hyperbolic extension of Well in terms of the left Ê(g)-action on
C(g) × C. For α ∈ �re

ell , we define the element ŝ′
α of Ê(G) by

ŝ′
α = (exp(eα), 0) · (exp(−e−α), 0) · (exp(eα), 0).

Lemma 4.5 For α ∈ �re
ell , we have

1. �(exp(eα), exp(−e−α)) = �(exp(eα) · exp(−e−α), exp(eα)) = 0.
2. ŝ′

α = (s′
α, 0).

Proof (1) For α = α f + mδx + nδy (α f ∈ � f ),

eα = eα f ⊗ smtn, e−α = e−α f ⊗ s−mt−n .

Hence, by Remark 4.1, we obtain the result.
(2) This follows from (1) and the definition of ŝ′

α .
�

Set

ĥ′
H

= H × h × C ⊂ C(g) × C.

By Proposition 4.4 and Lemma 4.5, we obtain
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Corollary 4.6 For (τ, h, u) ∈ ĥ′
H
and α = α f + mδx + nδy ∈ �re

ell (α f ∈ � f ), we have

L̂ ŝ′α (τ, h, u)

=
(

τ, h − (α f (h) + (mτ − n))α∨
f , u − m

(
〈α∨

f |h〉 + (mτ − n)
〈α∨

f |α∨
f 〉

2

))
.

In particular, ŝ′
α ∈ Ê(G) stabilizes ĥ′

H
. Hence, we set

ŵ′
α = L̂ ŝ′α

∣∣∣̂
h′
H

.

For α f , β f ∈ � f , we set

(t̂ x
α∨
f
)′ = ŵ′

δx−α f
◦ ŵ′

α f
, (t̂ y

β∨
f
)′ = ŵ′

δy+β f
◦ ŵ′

β f
.

Notice that we have

(t̂ x
α∨
f
)′ = L̂(s′δx−α f

·s′α f
,0)

∣∣∣∣̂
h′
H

, (t̂ y
β∨
f
)′ = L̂(s′δy+β f

·s′β f
,0)

∣∣∣∣̂
h′
H

.

From Proposition 4.4 and Corollary 4.6, the next lemma follows:

Lemma 4.7 For any (τ, h, u) ∈ ĥ′
H
and any α f , β f ∈ � f , one has

1. (t̂ x
α∨
f
)′(τ, h, u) =

(
τ, h + τα∨

f , u −
(

〈α∨
f |h〉 + τ

〈α∨
f |α∨

f 〉
2

))
.

2. (t̂ y
β∨
f
)′(τ, h, u) = (τ, h + β∨

f , u).

3. (t̂ x
α∨
f
)′(t̂ y

β∨
f
)′(τ, h, u) = (t̂ y

β∨
f
)′(t̂ x

α∨
f
)′(τ, h, u − 〈α∨

f |β∨
f 〉).

Let Ŵ ′
ell be the subgroup of Aut(̂h

′
H
) generated by ŵ′

α (α ∈ �re
ell).

By Lemma 2.11, Corollary 2.12 and Lemma 4.7, Ŵ ′
ell is isomorphic to the hyperbolic

extension Ŵell of Well . Namely, we obtain

Theorem 4.8 Ŵ ′
ell

∼= W f � H(Q∨
f )

∼= Ŵell .

4.2 E(G)-Action on ˜C(g)

In the previous subsection, we have studied the Ê(G)-action on C(g) × C. Here, via the
exponential map C → C

∗; z �→ e2π
√−1z , we will show that the group E(G) acts on C̃(g) :=

C(g) × C
∗. In addition, we will study the Well -action on h̃H := H × h × C

∗ ⊂ C̃(g) which
will play an important role in the invariant theory.

Let θ be the Maurer–Cartan form of G and define the 3-form σ on G as follows:

σ = 1

24π2 (θ ∧ dθ). (7)

Here and after, the invariant form (·, ·) is normalized so that the square length of the long
root is 2. We normalize the exterior product as in Sect. 5.2.

The next lemma, called the Polyakov–Wiegmann identity, follows by direct computa-
tion:
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Lemma 4.9 ([11]) Let f, g : D × [0, 1] → G be a C∞-map, where D = {z ∈ C| |z| ≤ 1}
is a closed disk. One has the next identity:

( f · g)∗σ = f ∗σ + g∗σ + 1

8π2 d( f −1 · d f ∧ dg · g−1).

Let ST be the solid torus bounded by T and let g ∈ E(G). Regarding g as a loop on
the loop group L(G) := C∞(S1,G), it follows that there exists g ∈ C∞(ST,G) whose
restriction to T is g since π1(L(G)) ∼= π1(G) × π1(�G) ∼= 0. Hence, we fix such element
g and set

λ(g) =
∫

ST
g∗σ. (8)

It follows that λ(g) mod Z does not depend on the choice of g. In particular, the number
e2π

√−1λ(g) is well defined (see, e.g., [6] for detail). By Lemma 4.9, we obtain the next lemma:

Lemma 4.10 For any g, g′ ∈ E(G), the next identity holds:

λ(g · g′) ≡ λ(g) + λ(g′) + �(g, g′) mod Z.

We set

Ẽ(G) = E(G) × C
∗,

and define the structure of the group as follows:

(g, u) · (g′, v) = (gg′, uve−2π
√−1�(g,g′)).

By Lemma 4.10, we have

Corollary 4.11 The central extension

1 −→ C
∗ −→ Ẽ(G) −→ E(G) −→ 1,

splits. Indeed, E(G) ↪→ Ẽ(G); g �→ (g, e−2π
√−1λ(g)) is a section of this short exact

sequence.

Thus, by setting

C̃(g) = C(g) × C
∗, C̃(g)τ = C(g)τ × C

∗,

the Ê(G)-action given in Proposition 4.4 lifts to an Ẽ(G)-action on C̃(g). In particular, by
the splitting E(G) ↪→ Ẽ(G) as above, it induces naturally the left action L̃ of E(G) on C̃(g).
This can be explicitly given as follows:

Proposition 4.12 For g ∈ E(G) and (τ, A, u) ∈ C̃(g), we have

L̃g(τ, A, u)

=
(

τ,Ad(g)(A) − ∂g · g−1, u · e2π
√−1

{
〈A|g−1∂x g〉− 1

2 〈∂g·g−1|∂x g·g−1〉
}

· e−2π
√−1λ(g)

)
.

Remark 4.3 1. By Remark 4.2, the canonical projection C̃(g) � C(g) is E(G)-equivariant.
2. For τ ∈ H, the embedding C(g)τ ↪→ E(g)d; (τ, A) �→ ∂ + A is E(G)-equivariant.
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Now, we study the action of Well on

h̃H := H × h × C
∗ ⊂ C̃(g).

For α ∈ �re
ell , we define the element s̃α of Ẽ(G) by

s̃α = (exp(eα), e−2π
√−1λ(exp(eα))) · (exp(−e−α), e−2π

√−1λ(exp(−e−α)))

· (exp(eα), e−2π
√−1λ(exp(eα))).

By Corollary 4.11, we have

s̃α = (s′
α, e−2π

√−1λ(s′α)).

Lemma 4.13 For any α ∈ �re
ell , one has

λ(s′
α) = 0.

Proof By Lemmas 4.5 and 4.10, we have

λ(s′
α) = λ(exp(eα)) + λ(exp(−e−α)) + λ(exp(eα)).

Suppose thatα = α f +mδx+ nδy withα f ∈ � f .We set g(x, y) = exp(eα) and g(x, y, r) =
exp(r |m+n|+2eα) (0 ≤ r ≤ 1). Then g is a extension of g to a C∞-function on ST. By the
Maurer-Cartan equation

dθ = −1

2
[θ, θ ],

we have g∗σ = 0. �
By this lemma, we have

s̃α = (s′
α, 1) (α ∈ �re

ell).

Hence, by Proposition 4.12, the next lemma follows:

Lemma 4.14 For α = α f + mδx + nδy (α f ∈ � f ) and (τ, h, u) ∈ h̃H, one has

L̃s′α (τ, h, u)

=
⎛

⎝τ, h − (α f (h) + (mτ − n))α∨
f , u · e−2π

√−1m

(
〈α∨

f |h〉+(mτ−n)
〈α∨

f |α∨
f 〉

2

)⎞

⎠ .

This lemma implies that s′
α stabilizes h̃H. We set

w̃α = L̃s′α
∣∣̃
hH

,

and

t̃ x
α∨
f

= w̃δx−α f · w̃α f , t̃ y
β∨
f

= w̃δy+β f · w̃β f ,

for α ∈ �re
ell and α f , β f ∈ � f . We denote by W̃ell the subgroup of Aut(̃hH) generated by

w̃α (α ∈ �re
ell). Since 〈α∨

f |β∨
f 〉 = (α∨

f , β
∨
f ) is an integer (cf. Remark 2.8), by Lemma 4.7, it

follows that W̃ell is isomorphic to Well . Namely, we obtain the next result:
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Theorem 4.15 W̃ell ∼= W f � (Q∨
f × Q∨

f )
∼= Well .

Remark 4.4 It can be shown that the E(G)-orbit of {τ } × h × C
∗ ⊂ C̃(g)τ is dense and

OE(G)(τ, h) ∩ ({τ } × h) = OWell (τ, h) for any h ∈ h,

whereOG(X) (G = E(G),Well) signifies the G-orbit of X . Thus, the latter can be seen as an
analogue of the Chevalley restriction theorem. The proof of these statements require some
arguments on principal G-bundles over Eτ and will be discussed in our future publication.

4.3 Invariant theory of Well

In this subsection, we discuss on the structure of Well -invariants holomorphic functions on
h̃H = H × h× C

∗. For simplicity, we denote the ring of holomorphic functions on H and h̃H
by OH and Oh̃H

, respectively.

For α∨
f ∈ Q∨

f , we define t̃
x
α∨
f
, t̃ y

α∨
f
, as in Remark 2.7, as follows:

t̃ x
α∨
f
(τ, h, u) =

⎛

⎝τ, h + τα∨
f , ue

−2π
√−1

(
〈α∨

f |h〉+τ
〈α∨

f |α∨
f 〉

2

)⎞

⎠ ,

t̃ y
α∨
f
(τ, h, u) = (τ, h + α∨

f , u).

It turns out that, as in Corollary 2.12, this is compatible with the action given by Lemma 4.14
for α f ∈ � f . Moreover, for α∨

f , β
∨
f ∈ Q∨

f , one has

t̃ x
α∨
f
t̃ x
β∨
f

= t̃ x
α∨
f +β∨

f
, t̃ y

α∨
f
t̃ y
β∨
f

= t̃ y
α∨
f +β∨

f
.

Hence, t̃ x
α∨
f
, t̃ y

α∨
f
are elements of Well , viewed as the subgroup of Aut(̃hH) generated by

{w̃α}α∈�re
ell
. We denote the subgroup of Well generated by {t̃ x

α∨
f
}α∨

f ∈Q∨
f
, {t̃ y

α∨
f
}α∨

f ∈Q∨
f
and

{t̃ x
α∨
f
, t̃ y

α∨
f
}α∨

f ∈Q∨
f
by Tx , Ty and T , respectively.

Let Pf ⊂ h∗ be the weight lattice of g, i.e., the dual lattice of Q∨
f . A Ty-invariant function

on h̃H is nothing but the function on τ, u and e2π
√−1λ (λ ∈ Pf ), where e2π

√−1λ is the

function on h defined by e2π
√−1λ : h �→ e2π

√−1λ(h). For K ∈ Z, we set

fλ,K (τ, h, u) = u−K e2π
√−1λ(h).

By computing
∑

α∨
f ∈Q∨

f
fλ,K (t̃ x

α∨
f
(τ, h, u)), we see that the function

θλ,K (τ, h, u) := u−K
∑

γ∈ν f (Q∨
f )

q
1
2K ||λ+Kγ ||2e2π

√−1(λ+Kγ )(h)

on h̃H where q = e2π
√−1τ ∈ C

∗ and the linear map ν f : h → h∗ is defined in Sect. 2.3, is
T -invariant and is holomorphic on h̃H for K ∈ Z>0.

Fix a set of simple roots� f and let�
+
f be the set of positive roots of� f with respect to� f .

We denote the highest root of�+
f by θ f and the half sum of roots in�+

f by ρ f . Let P
+
f be the

set of dominant weights with respect to � f , i.e., the set {λ ∈ Pf |λ(α∨
f ) ≥ 0 (∀ α f ∈ � f )}.

We remark that ρ f ∈ P+
f . The number h∨ := 1+ρ f (θ

∨
f ), called the dual Coxeter number,

plays an important role.
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766 K. Iohara, H. Yamada

For K ∈ Z≥0, we set

P+
K = {(λ, K )| λ ∈ P+

f , λ(θ∨
f ) ≤ K }, P+

a f :=
⋃

K∈Z≥0

P+
K .

It is clear that P+
0 = {(0, 0)}. Now for (λ, K ) ∈ P+

a f , we set

χλ,K (τ, h, u) =
∑

w∈W f
ε(w)θw(λ+ρ f ),K+h∨(τ, h, u)

∑
w∈W f

ε(w)θw(ρ f ),h∨(τ, h, u)
,

where ε(w) = deth(w) stands for the signature of w ∈ W f . It is well known that χλ ∈ OWell

h̃H
is the character of the integrable highest weightmodules over the affine Lie algebra associated
with g (cf. [3,4]). Indeed, the next stronger statement is known:

Proposition 4.16 (cf. [1]) OWell

h̃H
=⊕(λ,K )∈P+

a f
OHχλ,K as OH-module.

As an OH-algebra, the following description of OWell

h̃H
is known.

Let {
α f }α f ∈� f ⊂ h∗ be the dual basis of �∨
f := {α∨

f }α f ∈� f ⊂ h, i.e., 
α f (β
∨
f ) =

δα f ,β f . Set a
∨
0 = 1 and a∨

α f
= 
α f (θ

∨
f ). One has

Theorem 4.17 (cf. [1,20]) For each α f ∈ � f , there exists χα f ∈⊕(λ,aα∨
f
)∈P+

a f
OHχλ,aα∨

f

such that

1. χ0,1 and χα f (α f ∈ � f ) are algebraically independent, and

2. OWell

h̃H
is generated by χ0,1 and χα f (α f ∈ � f ) as OH-algebra.

Remark 4.5 The above theorem together with Remark 4.4 implies that there might exist
E(G)-invariant holomorphic functions on C̃(g)τ that provide us an analogue of the adjoint
quotient map C̃(g)τ � h ⊕ C. We will discuss on the existence of such a map with its
application in our future publication.

In 1984, Kac and Peterson [4] gave formulas of the Jacobian of the fundamental characters
χ0,1, χ
α f ,a∨

α f
(α f ∈ � f ) for type A(1)

l , B(1)
l ,C (1)

l , D(1)
l ,G(1)

2 and for some twisted cases,

without proof. Their formulas suggest

Conjecture 4.18 OWell

h̃H
= OH[χ0,1, χ
α f ,a∨

α f
(α f ∈ � f )] as OH-algebra. In particular,

χ0,1 and χ
α f ,a∨
α f

(α f ∈ � f ) are algebraically independent.

5 SL2(Z)-Action on H × E(g)× C

In the previous subsection,we have studied an E(G)-action on C̃(g)with the aid of Proposition
4.3 via the isomorphismψ−. Here, via the isomorphismψ+ in the same proposition, we will
study an SL(2, Z)-action on C̃(g) = H × E(g) × C.

A natural left SL2(Z)-action on R
2 is denoted by ϕ, i.e., for γ ∈ SL(2, Z), we set

ϕγ : R
2 −→ R

2;
(
x
y

)
�−→ γ

(
x
y

)
.

The next lemma is easy to check:
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Lemma 5.1 For γ ∈ SL(2, Z) and (ξ, A, α) ∈ Ẽ(g)d, we set

γ.(ξ, A, α) := (ϕγ ∗(ξ), (ϕγ −1)∗(A), (ϕγ −1)∗(α)).

1. This is a left action and keeps the bilinear form 〈·|·〉 invariant.
2. For γ ∈ SL(2, Z) and (g, c) ∈ Ê(G), the next identity holds:

γ ◦ L̂(g,c) ◦ γ −1 = L̂((ϕ
γ−1 )∗g,c).

The induced action of SL(2, Z) on Imψ+:

Proposition 5.2 For (τ, A, u) ∈ C̃(g) and γ =
(
a b
c d

)
∈ SL(2, Z), we have

γ.(τ, A, u) =
(
aτ + b

cτ + d
,
(ϕγ −1)∗A
cτ + d

, u − c〈A|A〉
2(cτ + d)

)
.

This action coincides exactly with the SL(2, Z)-action of the C-span of the characters of
integrable modules over an affine Lie algebra given in [4].

Appendix 1: Lifting of a Weyl group

In Sect. 3, we have calculated a lifting of a reflection

s′
α = exp(eα) exp(−e−α) exp(eα) ∈ E(G)

and its action on hδ . Here, for the sake of leader’s convenience, we will show how one can
calculate its action on E(g)d.

5.1 On hd

For α ∈ �re
ell and t ∈ C

∗, set

σα(t) = exp(teα) exp(−t−1e−α) exp(teα).

Let us compute rapidly Lσα(t)(ξ, h) for (ξ, h) ∈ hd. By definition, we have

Lσα(t)(ξ, h) = Lexp(teα) ◦ Lexp(−t−1e−α) ◦ Lexp(teα)(ξ, h)

= Lexp(teα) ◦ Lexp(−t−1e−α)(ξ, h − tα(ξ, h)eα)

= Lexp(teα)(ξ, h − α(ξ, h)α∨ − tα(ξ, h)eα)

= (ξ, h − α(ξ, h)α∨) = w′
α(ξ, h).

In particular, this action does not depend upon the choice of t ∈ C
∗.

5.2 On E(g)d

Let α ∈ �re
ell and β ∈ �ell such that β �= ±α. Let p, q ∈ Z≥0 be integers satisfying

(β + Zα) ∩ � = {β + iα| − q ≤ i ≤ p} : α-string throughβ.
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Since {eα, e−α, α∨} forms an sl2-triplet, i.e., [α∨, e±α] = ±2e±α and [eα, e−α] = α∨,
setting eβ+iα = 1

(p − i)! (ade−α)p−i (eβ+pα) for −q ≤ i ≤ p, one can check

⎧
⎪⎪⎨

⎪⎪⎩

[
α∨, eβ+iα

] = (2i − p + q)eβ+iα,
[
eα, eβ+iα

] = (i + q + 1)eβ+(i+1)α,
[
e−α, eβ+iα

] = (p + 1 − i)eβ+(i−1)α,

where we set eβ−(q+1)α = 0 = eβ+(p+1)α for simplicity. Let us compute Lσα(t)(ξ, eβ). Since
we have

Lσα(t)(ξ, eβ) = Lσα(t)(ξ, 0) + Lσα(t)(0, eβ)

by definition, and the first term can be computed using the result of the last subsection, we
may assume that ξ = 0. Let us calculate step by step. First, we have

Lexp(teα)(0, eβ)

=
(
0,

p∑

i=0

1

i ! t
i (adeα)i (eβ)

)
=
(
0,

p∑

i=0

(q + 1)(q + 2) · · · (q + i + 1)

i ! t i eβ+iα

)

=
(
0,

p∑

i=0

(−1)i
(−q − 1

i

)
t i eβ+iα

)
.

Second, we have

Lexp(−t−1e−α)

(
0,

p∑

i=0

(−q − 1

i

)
(−t)i eβ+iα

)

=
⎛

⎝0,
p∑

i=0

(−q − 1

i

)
(−t)i

∑

j≥0

1

j ! (−t)− j (ade−α) j eβ+iα

⎞

⎠

=
⎛

⎝0,
p∑

i=0

(−q − 1

i

)∑

j≥0

(
p + j − i

j

)
(−t)i− j eβ+(i− j)α

⎞

⎠ .

Here, the sum is taken over

{(i, j) ∈ Z
2≥0| 0 ≤ i ≤ p, 0 ≤ j ≤ q + i}

= {(i, j) ∈ Z
2≥0| j ≤ i ≤ p} ∪ {(i, j) ∈ Z

2≥0| 0 ≤ i ≤ p, 0 < j − i ≤ q}.

We consider the change of variables in each domain of the right-hand side as follows:
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m = i − j and n = i on the first and m = j − i and n = i on the second. We have

=
(
0,

p∑

m=0

( p∑

n=m

(
p − m

p − n

)(−q − 1

n

))
(−t)meβ+mα

+
q∑

m=1

( p∑

n=0

(−q − 1

n

)(
p + m

p − n

))
(−t)−meβ−mα

)

=
⎛

⎝0,
p∑

m=−q

(
p − q − 1 − m

p

)
(−t)meβ+mα

⎞

⎠

=
⎛

⎝0,
p∑

m=p−q

(
p − q − 1 − m

p

)
(−t)meβ+mα

⎞

⎠

=
(
0,

q∑

m=0

(−m − 1

p

)
(−t)p−q+meβ+(p−q+m)α

)
.

Here, in the second equality, we used the formula

∑

i, j≥0
i+ j=N

(
α

i

)(
β

j

)
=
(

α + β

N

)

which can be proved by looking at the coefficient of t N in (1+ t)α · (1+ t)β = (1+ t)α+β .
Hence, we obtain

Lexp(−t−1e−α) ◦ Lexp(teα)(0, eβ) =
(
0, (−1)p

q∑

m=0

(
p + m

p

)
(−t)p−q+meβ+(p−q+m)α

)
.

Finally, we compute Lσα(t)(0, eβ) = Lexp(teα) ◦ Lexp(−t−1e−α) ◦ Lexp(teα)(0, eβ). We have

Lσα(t)(0, eβ)

=
(
0, (−1)p

q∑

m=0

(
p + m

p

)
(−t)p−q+m

q−m∑

n=0

1

n! t
n(adeα)neβ+(p−q+m)α

)

=
(
0, (−1)p

q∑

m=0

(
p + m

p

)
(−t)p−q+m

q−m∑

n=0

(
p + m + n

n

)
tneβ+(p−q+m+n)α

)
.

Now, we compute the summation

q∑

m=0

(
p + m

p

)
(−t)p−q+m

q−m∑

n=0

(
p + m + n

n

)
tn .
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By the change of variable k = m + n, we obtain

q∑

m=0

(
p + m

p

)
(−t)p−q+m

q−m∑

n=0

(
p + m + n

n

)
tn

= (−t)p−q
∑

0≤m≤k≤q

(−1)m
(
p + m

m

)(
p + k

k − m

)
tk

= (−t)p−q
q∑

k=0

k∑

m=0

(−p − 1

m

)(
p + k

k − m

)
tk

= (−t)p−q .

Hence, the only non-trivial contribution in the above summation comes from the term corre-
sponding to (m, n) = (0, 0). Thus, we obtain

Lσα(t)(0, eβ) = (0, (−1)q t p−qeβ+(p−q)α) = (0, (−1)q t−β(α∨)ewα(β)).

In particular, we have

Ls′δ�−α f
◦ Ls′α f

(0, eβ) = Ls′δ�−α f
(0, (−1)qeβ−β(α∨

f )α f
) = (0, eβ−β(α∨

f )δ�
)

for α = α f ∈ � f and � ∈ {x, y}, and for any α ∈ �re
ell

Lσα(t)2(0, eβ) = Lσα(t)(0, (−1)q t−β(α∨)ewα(β)) = (0, (−1)p+qeβ),

i.e.,
σα(t)2 = (−1)α

∨
. (9)

Appendix 2: Normalization on exterior product

Here, for a differentiable manifold M , we fix a normalization on differential p-form on M .
For ω1, . . ., ωr ∈ �1

M and X1, . . ., Xr ∈ �M , we set

(ω1 ∧ · · · ∧ ωr )(X1, . . ., Xr ) := det(ωi (X j ))1≤i, j≤r .

Hence, for ω ∈ �
p
M , ω′ ∈ �

q
M and X1, . . ., X p+q ∈ �M , the exterior product ω ∧ ω′ is

defined by

(ω ∧ ω′)(X1, . . ., X p+q)

:= 1

p!q!
∑

σ∈Sp+q

(sgnσ)ω(Xσ(1), . . ., Xσ(p))ω
′(Xσ(p+1), . . ., Xσ(p+q)).

With this normalization, it is natural to define the de Rham differential d as follows: for
ω ∈ �r

M and X0, . . ., Xr ∈ �M ,

(dω)(X0, . . ., Xr ) =
r∑

i=0

(−1)i Xi (ω(X0, . . .,
∨
Xi , . . ., Xr )

+
∑

i< j

(−1)i+ jω([Xi , X j ], . . .,
∨
Xi , . . .,

∨
X j , . . ., Xr ).
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