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Abstract This paper is concerned with the existence and stability of time periodic traveling
curved fronts for reaction–diffusion equations with bistable nonlinearity inR3. We first study
the existence and other qualitative properties of time periodic traveling fronts of polyhedral
shape. Furthermore, for any given g ∈ C∞(S1)withmin0≤θ≤2π g(θ) = 0 that gives a convex
bounded domain with smooth boundary of positive curvature everywhere, which is included
in a sequence of convex polygons, we show that there exists a three-dimensional time periodic
traveling front by taking the limit of the solutions corresponding to the convex polyhedrons
as the number of the lateral surfaces goes to infinity.
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1 Introduction

Traveling fronts have been extensively studied since the last decade, one can refer to [2,3,12,
40] and references therein for the study of planar traveling fronts to the following autonomous
reaction–diffusion equation

∂u(y, t)

∂t
= �u(y, t) + f (u(y, t)), y ∈ R

N , t > 0 (1.1)

in one or multidimensional space. Recently, the study on nonplanar traveling fronts among
mathematicians has attracted an increasing attention and many new types of nonplanar trav-
eling fronts have been observed of (1.1). For instance, Brazhnik and Tyson [6], Hamel and
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618 W.-J. Sheng

Nadirashsili [15], Hamel and Roquejoffre [16], El Smaily et al. [11] considered nonplanar
traveling fronts of (1.1) with monostable nonlinearity for N ≥ 2 (i.e., f (0) = f (1) = 0,
f ′(0) > 0, f ′(1) < 0); Bonnet and Hamel [5], Hamel et al. [17] examined the V-shaped
traveling front of (1.1) with the combustion nonlinearity (i.e., f (s) = 0 for s ∈ [0, θ ] ∪ {1},
f (s) > 0 in (θ, 1)); Chen et al. [9], Gui [13] studied the existence and qualitative properties
of cylindrically symmetric traveling fronts of (1.1) with the balanced bistable nonlinearity
(i.e., f (0) = f (a) = f (1) = 0, f ′(0) < 0, f ′(1) < 0, f ′(a) > 0 and

∫ 1
0 f (s)ds = 0);

Hamel et al. [18,19], Ninomiya and Taniguchi [28,29] studied V-shaped traveling fronts of
(1.1) for the unbalanced bistable case (i.e., f (0) = f (a) = f (1) = 0, f ′(0) < 0, f ′(1) < 0,
f ′(a) > 0 and

∫ 1
0 f (s)ds �= 0). Additionally, Hamel et al. [18,19] considered cylindrically

symmetric traveling fronts of (1.1) for N ≥ 3; Taniguchi [35,36], Kurokawa and Taniguchi
[23] studied pyramidal-shaped traveling fronts of (1.1) for N ≥ 3. More recently, Wang
[41] and Wang et al. [45] developed the arguments of [28,29,35,36] to reaction–diffusion
systems. See also Haragus and Scheel [20,21] for the study of almost planar traveling fronts.
Very recently, Taniguchi [37] studied multidimensional traveling fronts of (1.1) for N = 3.
For the study on the nonconvex and nonconnected traveling fronts, we refer to del Pino et al.
[10]. Other related works on traveling fronts for autonomous reaction–diffusion equations
can be referred to [7,8,14,26,27,32,34,38,39,43].

It is well known that in population dynamics interactive species may live in a fluctuating
environment, for instance, physical environment conditions such as temperature, humidity
and the available of food, water and other resources usually varies in time with seasonal
or daily changes [46]. Therefore, in nature, another more realistic model might be of the
following form

∂u(y, t)

∂t
= �u(y, t) + f (u(y, t), t), y ∈ R

N , t > 0. (1.2)

When the data of (1.2) are functions with commensurate time period, we call (1.2) a periodic
equation. Recently, there are a lot of works devote to the study of traveling fronts of (1.2). One
can refer to [1,4,22,25,30,31,47] for the study of time almost periodic and time periodic
planar traveling fronts. Nevertheless, a very little attention has been paid to the study of
nonplanar traveling fronts for nonautonomous reaction–diffusion equations, even for the
time periodic case. As far as we know, Wang and Wu [44] proved that there exists a two-
dimensional time periodic V-shaped traveling front. Moreover, they showed that such a
traveling curved front is asymptotically stable. Sheng et al. [33] addressed the existence
and asymptotic stability of time periodic pyramidal-shaped traveling fronts. Very recently,
Wang [42] showed the existence of time periodic cylindrically symmetric traveling fronts by
appealing to the method of comparison principle and the asymptotic speed of propagation.

However, the issue of the existence and stability of multidimensional time periodic travel-
ing curved fronts for reaction–diffusion equation with bistable nonlinearity is still open. The
main contribution of the current study is to give an affirmative answer to this issue. Actu-
ally, motivated by [33,37,42,44], we first consider the existence, uniqueness and stability
of three-dimensional time periodic traveling fronts of polyhedral shape. Then, for any given
g ∈ C∞(S1) with min0≤θ≤2π g(θ) = 0 that defines a convex domain with smooth boundary
of positive curvature everywhere, which is included in a sequence of convex polygons, we
show that there exists a three-dimensional time periodic traveling front by taking the limit
of the solutions associated with the convex polyhedrons as the number of the lateral surfaces
goes to infinity.
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Time periodic traveling curved fronts of bistable reaction… 619

In this paper, we study traveling curved fronts of the following reaction–diffusion equation

∂u(x, y, z, t)

∂t
= �u(x, y, z, t) + f (u(x, y, z, t), t), (x, y, z) ∈ R

3, t > 0 (1.3)

under the following hypotheses:

(H1) There exists T > 0 such that f (u, t) = f (u, t + T ) for all (u, t) ∈ R
2.

(H2) The period map P(α) := ω(α, T ) has exactly three fixed points α−, α0, α+ such that
α− < α0 < α+, where ω(α, t) is the solution of

ωt = f (ω, t), t ∈ R, ω(α, 0) = α ∈ R.

Furthermore, they are nondegenerate and α± are stable, i.e.,

d

dα
P(α±) < 1 <

d

dα
P(α0).

(H3) There exists ν0 > 0 such that ν+ +ν− + fu(W ±(t), t) > ν0 for any t ∈ [0, T ], where

ν± := − 1

T

∫ T

0
fu(W ±(λ), λ)dλ,

and

W ±(t) := ω(α±, t), W 0(t) := ω(α0, t).

(H4) There exist constants r0 > 0 and ε ∈ (
0,mint∈[0,T ](W 0(t) − W −(t))

)
such that

f (u, t) ≥ r0u(ε−u) for anyu ∈ (0, ε) and t ∈ [0, T ],where f (u, t) := f (W 0(t), t)−
f (W 0(t) − u, t).

A typical example of f satisfying (H1)–(H3) is the cubic potential f = (1−u2)(2u −ρ(t)),
where ρ(t) ∈ (−2, 2) is T -periodic, which is the particular case of the following more
general example (see Alikakos et al. [1])

f (u, t) = p(u)(p′(u) − ρ(t)),

where ρ ∈ C1 and p ∈ C3 satisfy ρ(· + T ) = ρ(·), and p(±1) = 0, p(·) > 0 in (−1, 1).
Moreover, by taking |ρ(t)| ≤ 2

√
5/5, then such a function f satisfies (H4) (see Wang [42]).

It is known from [1] that when f (u, t) ∈ C2,1(R×R) satisfies (H1) and (H2), there exists
a unique solution pair (c, U ) of (1.3) such that

⎧
⎨

⎩

Ut + cUξ − Uξξ − f (U, t) = 0, (ξ, t) ∈ R
2,

U (±∞, t) = limξ→±∞ U (ξ, t) = W ±(t), t ∈ R,

U (ξ, t + T ) = U (ξ, t), U (0, 0) = α0,

(1.4)

where the function U (·, ·) : R × R → R is the wave profile and the constant c ∈ R is the
wave speed. In addition, (c, U ) enjoys the following properties:

(i) U (ξ, t) ismonotone increasingwith respect to themoving coordinate for each t . Namely,
Uξ (ξ, t) > 0 in R × R.

(ii) There exist positive constants C1 and β1 satisfying

|U (±ξ, t) − W ±(t)| + |Uξ (±ξ, t)| + |Uξξ (±ξ, t)| ≤ C1e
−β1ξ , ξ ≥ 0, t ∈ R.

That is, U exponentially approaches its limits as ξ → ±∞.
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620 W.-J. Sheng

Without loss of generality, we assume that the solutions travel toward z-direction. Set

u(x, y, z + lt, t) = v(x, y, z1, t), z1 = z + lt.

For simplicity, we denote v(x, y, z1, t) by v(x, y, z, t). Substituting v into (1.3), we have

L[v] := vt − vxx − vyy − vzz + lvz − f (v, t) = 0, (x, y, z) ∈ R
3, t > 0,

v(x, y, z, 0) = v0(x, y, z), (x, y, z) ∈ R
3. (1.5)

Hereafter, we always assume l > c > 0. The objective of this paper is to seek for the solution
V (x, y, z, t) of

L[V ] := Vt − Vxx − Vyy − Vzz + lVz − f (V, t) = 0, (x, y, z, t) ∈ R
3 × R, (1.6)

V (x, y, z, t) = V (x, y, z, t + T ), (x, y, z) ∈ R
3, t ∈ [0, T ]. (1.7)

Let

τ :=
√

l2 − c2

c
> 0.

Given n ≥ 3 be an integer. Assume that {θ j }1≤ j≤n satisfy

0 < θ1 < θ2 < · · · < θn < 2π and max
1≤ j≤n

(θ j+1 − θ j ) < π,

where θn+1 = θ1 + 2π . Given, l j with

min
1≤ j≤n

l j ≥ 0 for 1 ≤ j ≤ n.

Then,

ν j = 1√
1 + τ 2

⎛

⎝
τ cos θ j

τ sin θ j

1

⎞

⎠

is the unit normal vector of a surface {z = τ(x cos θ j + y sin θ j )}. Putting
h j (x, y) := τ(x cos θ j + y sin θ j − l j ),

h(x, y) = max
1≤ j≤n

h j (x, y) = τ max
1≤ j≤n

(x cos θ j + y sin θ j − l j ), (1.8)

then {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron. If (l1, l2, . . . , ln) =

(0, 0, . . . , 0), the polyhedron becomes a pyramid in R
3.

Denote

� := max
2≤ j≤n−1

l j sin(θ j+1 − θ j−1) − l j−1 sin(θ j+1 − θ j ) − l j+1 sin(θ j − θ j−1)

sin(θ j+1 − θ j ) + sin(θ j − θ j−1) − sin(θ j+1 − θ j−1)
. (1.9)

For j = 1, 2 . . . , n, define

� j := {
(x, y) ∈ R

2|h(x, y) = h j (x, y), h(x, y) ≥ τ�
}
.

We note that � j �= ∅ for all 1 ≤ j ≤ n. Here �1,�2, . . . , �n are located counterclockwise.
Set

S j = {(x, y, z) ∈ R
3| − z = h j (x, y), (x, y) ∈ � j }, j = 1, . . . , n.

Let

� j = {(x, y, z) ∈ R
3| − z = h j (x, y) = h j+1(x, y) ≥ τ�}, j = 1, . . . , n
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Time periodic traveling curved fronts of bistable reaction… 621

be a part of an edge of a polyhedron {(x, y, z) ∈ R
3| − z ≥ h(x, y)}. If (l1, l2, . . . , ln) =

(0, 0, . . . , 0) and � = 0, then � j and
⋃n

j=1 � j stand for an edge and the set of all edges of
a pyramid, respectively. For each γ > 0, we define

D(γ ) :=
⎧
⎨

⎩
(x, y, z) ∈ R

3
∣
∣
∣
∣dist

⎛

⎝(x, y, z),
n⋃

j=1

� j

⎞

⎠ > γ

⎫
⎬

⎭
.

Theorem 1.1 Let l > c > 0 and h(x, y) be given by (1.8). Under the assumptions (H1)–
(H3), there exists a solution V (x, y, z, t) of (1.6)–(1.7) such that

lim
γ→∞ sup

(x,y,z)∈D(γ ),t∈[0,T ]

∣
∣
∣V (x, y, z, t) − U

(c

l
(z + h(x, y)), t

)∣∣
∣ = 0, (1.10)

lim
R→∞ sup

|x|>R,t∈[0,T ]

∣
∣
∣
∣V (x, y, z, t) − max

1≤ j≤n
E j (x − X j (ρ), y − Y j (ρ), z + τρ, t)

∣
∣
∣
∣ = 0,

(1.11)

W +(t) > V (x, y, z, t) > U
(c

l
(z + h(x, y)), t

)
> W −(t), (x, y, z) ∈ R

3, t > 0,

(1.12)

inf
W−(t)+δ≤V (x,y,z,t)≤W+(t)−δ,t∈[0,T ]

Vz(x, y, z, t) > 0 for δ > 0 small enough, (1.13)

lim
R→∞ sup

|z+h(x,y)|>R,t∈[0,T ]
|Vz(x, y, z, t)| = 0. (1.14)

Moreover, if

max
1≤ j≤n

Ṽ
(

x − X j (−l̂), y − Y j (−l̂), z − τ l̂, 0
)

≤ v0(x, y, z)

≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, 0), (1.15)

then, the solution v(x, y, z, t; v0) of (1.5) satisfies

lim
k→∞ sup

(x,y,z)∈R3,t∈[0,T ]
|v(x, y, z, t + kT ; v0) − V (x, y, z, t)| = 0, (1.16)

where l̂ := max1≤ j≤n l j ≥ 0, E j is the two-dimensional V-shaped traveling front defined
in (2.6), Ṽ is the pyramidal traveling front given in Theorem 2.2, X j (−l̂), Y j (−l̂) and
X j (ρ), Y j (ρ) satisfy h(X j (−l̂), Y j (−l̂)) = −τ l̂ and h(X j (ρ), Y j (ρ)) = τρ, respectively.
Furthermore, V enjoys the following properties:

(i) Let h(x, y) be defined in (1.8), h(x, y) := τ max1≤ j≤n(x cos θ j + y sin θ j − l j ) with
min1≤ j≤n l j ≥ 0 and V (x, t) be given in Theorem 1.1, V (x, t) be the traveling fronts
of polyhedral-shape associated with h. If h(x, y) ≥ h(x, y) for any (x, y) ∈ R

2, then it
holds V (x, t) ≥ V (x, t) for all (x, t) ∈ R

4.
(ii) There holds

∂V

∂ν
> 0 in R

4

for

ν = 1
√
1 + t21 + t22

⎛

⎝
t1
t2
1

⎞

⎠ with
√

t21 + t22 ≤ 1

τ
.
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622 W.-J. Sheng

(iii) If h(x, y) = h(|x |, |y|), then one has

V (x, y, z, t) = V (|x |, |y|, z, t), (x, y, z, t) ∈ R
4,

Vx (x, y, z, t) > 0 for (x, y, z, t) ∈ (0,∞) × R
3,

Vx (0, y, z, t) = 0 for (y, z, t) ∈ R
3,

Vy(x, y, z, t) > 0 for (x, y, z, t) ∈ R × (0,∞) × R
2,

Vy(x, 0, z, t) = 0 for (x, z, t) ∈ R
3.

An immediate consequence of this theorem is the following corollary.

Corollary 1.2 Let V (x, t) be the time periodic traveling curved front defined in Theorem 1.1.
If there is a time periodic solution w(x, t) of (1.6) and (1.7) satisfying (1.10), then it holds

w(x, t) ≡ V (x, t) for all (x, t) ∈ R
4.

In what follows, we treat the three-dimensional traveling fronts of (2.1) for any given
g ∈ C∞(S1), where

C∞(S1) := {
g ∈ C∞(R)|g(θ + 2π) = g(θ)

}

for any θ ∈ R. We identify S1 with R/2πZ. Let g ∈ C∞(S1) be any given function with
min0≤θ≤2π g(θ) = 0 and r∗ ≥ 1 be large enough such that

r2∗ + r∗ min
0≤θ≤2π

(
2g(θ) − g′′(θ)

) + min
0≤θ≤2π

(
g(θ)2 + 2g′(θ)2 − g(θ)g′′(θ)

)
> 0.

Setting

R(θ) := r∗ + g(θ) for 0 ≤ θ ≤ 2π,

then,

C := {(R(θ) cos θ, R(θ) sin θ)|0 ≤ θ ≤ 2π}
is a smooth convex closed curve such that

R(0) = R(2π), min
0≤θ≤2π

R(θ) = r∗, 0 < min
0≤θ≤2π

κ(θ) ≤ max
0≤θ≤2π

κ(θ) < ∞,

where κ(θ) is the curvature of C given by

κ(θ) = R(θ)2 + 2R′(θ)2 − R(θ)R′′(θ)

(R(θ)2 + R′(θ)2)
3
2

, θ ∈ [0, 2π].

Define

D := {(r cos θ, r sin θ) ∈ R
2|0 ≤ r < R(θ), 0 ≤ θ ≤ 2π}. (1.17)

Then, C is the corresponding boundary to D. Let

κmin = min
0≤θ≤2π

κ(θ) and κmax = max
0≤θ≤2π

κ(θ).

Then, we have 0 < κmin ≤ κmax < ∞. Set

Rmax := max
0≤θ≤2π

R(θ) ∈ [1,∞) and r∗ ≤ Rmax < ∞.

Let R∗ ∈
(
κ−1
min,∞

)
be large enough such that, for each θ ∈ [0, 2π), there is a circle of

radius R∗ that circumscribes C at (R(θ) cos θ, R(θ) sin θ). Let (ξ∗(θ), η∗(θ)) and B(θ) be
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Time periodic traveling curved fronts of bistable reaction… 623

the center and the interior of this circle for each θ ∈ [0, 2π). It is obvious that D ⊂ B(θ) for
all θ ∈ [0, 2π).

Theorem 1.3 Assume that (H1)–(H4) hold. Let g ∈ C∞(S1) be any given function such
that min0≤θ≤2π g(θ) = 0 and R(θ) = r∗ + g(θ). Then, there exits a solution W̃ (x, t) ∈
C2,1(R3 × R) of (1.6)–(1.7) satisfying

max
0≤θ≤2π

�

(√
(x − ξ∗(θ))2 + (y − η∗(θ))2, z − τ R∗, t

)

≤ W̃ (x, t) ≤ min
0≤θ≤2π

�

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, t

)

(1.18)

for all (x, y, z, t) ∈ R
4. Morevoer, one has

lim
A→∞ sup

x2+y2+z2≥A2,t∈[0,T ]

(
W̃ (x, y, z, t)

− min
0≤θ≤2π

�

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, t

))

= 0. (1.19)

Furthermore, such W̃ (x, y, z, t) is uniquely determined by (1.6) and (1.19). Moreover, if

max
0≤θ≤2π

�

(√
(x − ξ∗(θ))2 + (y − η∗(θ))2, z − τ R∗, 0

)

≤ v0(x, y, z) ≤ min
0≤θ≤2π

�

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, 0

)

(1.20)

for all (x, y, z) ∈ R
3, then the solution v(x, t; v0) of (1.5) with initial value v0 satisfies

lim
t→∞ sup

x∈R3
|v(x, t; v0) − W̃ (x, t)| = 0 (1.21)

or equivalently

lim
k→∞ sup

x∈R3,t∈[0,T ]
|v(x, t + kT ; v0) − W̃ (x, t)| = 0, (1.22)

where � is the cylindrically symmetric traveling front defined in Theorem 2.4.

The rest of this paper is organized as follows. In Sect. 2, we state some preliminaries
including two-dimensional time periodic V-shaped traveling fronts, three-dimensional time
periodic pyramidal-shaped traveling fronts and cylindrically symmetric time periodic trav-
eling fronts. Section 3 is devoted to the existence and stability of time periodic traveling
curved fronts with polyhedral shape, that is, we prove Theorem 1.1. In Sect. 4, we show
Theorem 1.3.

2 Preliminaries

In this section, we recall some results established byWang andWu [44], Sheng et al. [33] and
Wang [42] about two-dimensional time periodic V-shaped taveling fronts, three-dimensional
time periodic pyramidal traveling fronts and time periodic cylindrically symmetric in R

3,
respectively. In the sequel, we write (c, U ) be the planar traveling front defined by (1.4).
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624 W.-J. Sheng

2.1 Two-dimensional V-shaped fronts

Let v̂(ξ, η, t; v̂0) be the solution of the following equation

v̂t − v̂ξξ − v̂ηη + lv̂η − f (v̂, t) = 0 for (ξ, η) ∈ R
2, t > 0,

v̂(ξ, η, 0) = v̂0(ξ, η) for (ξ, η) ∈ R
2.

Then, from [44, Theorem 1.1], we have the following theorem.

Theorem 2.1 Assume that (H1)–(H3) hold and l > c > 0. Then, there exists a unique
V̂ (ξ, η, t) such that

V̂t − V̂ξξ − V̂ηη + l V̂η − f (V̂ , t) = 0 for (ξ, η) ∈ R
2 and t ∈ R,

and

V̂ (ξ, η, t + T ) = V̂ (ξ, η, t) for (ξ, η) ∈ R
2 and t ∈ R.

Moreover, there holds

lim
R→∞ sup

ξ2+η2>R2,t∈[0,T ]

∣
∣
∣V̂ (ξ, η, t) − U

(c

l
(η + τ |ξ |) , t

)∣∣
∣ = 0. (2.1)

One also has

U
(c

l
(η + τ |ξ |) , t

)
< V̂ (ξ, η, t) for (ξ, η) ∈ R

2, t ∈ R (2.2)

inf
W−(t)+δ≤V̂ (ξ,η,t)≤W+(t)−δ,t∈[0,T ]

V̂η(ξ, η, t) > 0 for δ > 0 small enough,

V̂ξ (ξ, η, t) > 0, ∀(ξ, η, t) ∈ (0,∞) × R
2,

V̂ (ξ + ξ0, η, t) ≤ V̂ (ξ, η + η0, t), ∀(ξ, η, t) ∈ R
3, ξ0, η0 ∈ R with η0 ≥ τ |ξ0|.

(2.3)

2.2 Three-dimensional pyramidal traveling fronts

Consider the following problem:

ṽt − ṽxx − ṽyy − ṽzz + lṽz − f (̃v, t) = 0, (x, y, z) ∈ R
3, t > 0,

ṽ(x, y, z, 0) = ṽ0(x, y, z), (x, y, z) ∈ R
3. (2.4)

Set

p j (x, y) := τ(x cos θ j + y sin θ j ),

p(x, y) := τ max
1≤ j≤n

(x cos θ j + y sin θ j ) (2.5)

and

k j := cos

(
θ j+1 − θ j

2

)

> 0, φ j := θ j+1 + θ j

2
, 1 ≤ j ≤ n.

Define

E j (x, y, z, t) = V̂

⎛

⎝x sin φ j − y cosφ j ,
z − τk j (x cosφ j + y sin φ j )√

1 + τ 2k2j

, t

⎞

⎠ . (2.6)
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Time periodic traveling curved fronts of bistable reaction… 625

Substituting E j (x, y, z, t) into (2.4), we obtain that every E j (x, y, z, t) is a time periodic
V-shaped traveling front with speed l√

1+τ 2k2j
> c. By Sheng et al. [33, Theorems 1.1–

1.2 and Lemma 4.6], we get the following theorem.

Theorem 2.2 Assume that l > c > 0 and (H1)–(H3) hold. Let p(x, y) be given by (2.5).
Then, there exists a solution Ṽ (x, y, z, t) of (2.4) such that

U
(c

l
(z + p(x, y)), t

)
< Ṽ (x, y, z, t) < W +(t), (x, y, z, t) ∈ R

3 × [0, T ],
Ṽ (x, t) = Ṽ (x, t + T ), Ṽz(x, t) > 0 for all (x, t) ∈ R

4

and

lim
γ→+∞ sup

(x,y,z)∈D(γ ),t∈[0,T ]

∣
∣
∣Ṽ (x, y, z, t) − U

(c

l
(z + p(x, y)), t

)∣∣
∣ = 0, (2.7)

lim
R→∞ sup

|x|≥R,t∈[0,T ]

∣
∣
∣
∣Ṽ (x, t) − max

1≤ j≤n
E j (x, t)

∣
∣
∣
∣=0, lim

R→∞ sup
|z+p(x,y)|≥R,t∈[0,T ]

|Ṽz(x, t)|=0,

(2.8)

inf
W−(t)+δ≤Ṽ (x,y,z,t)≤W+(t)−δ,t∈[0,T ]

Ṽz(x, y, z, t) > 0 for δ > 0 small enough,

U
(c

l
(z + p(x, y)), t

)
< max

1≤ j≤n
E j (x, t) < Ṽ (x, t), x ∈ R

3, t ∈ [0, T ], (2.9)

lim
γ→∞ sup

x∈D(γ ),t∈[0,T ]

∣
∣
∣
∣ max
1≤ j≤n

E j (x, t) − U
(c

l
(z + p(x, y)), t

)∣∣
∣
∣ = 0. (2.10)

Lemma 2.3 There exists positive constants δ0, σ and β (β < ν0
4 ) such that, for any δ ∈

(0, δ0), the functions w± defined by

w±(x, t) := Ṽ
(
x, y, z ± σδ

(
1 − e−βt) , t

) ± δa(t)

are a supersolution and a subsolution of (2.4) on x ∈ R
3 and t ∈ [0,∞), respectively, where

a(t) = exp

{(
ν+ + ν− − ν0

4

)
t +

∫ t

0
fu(W +(τ ), τ )dτ +

∫ t

0
fu(W −(τ ), τ )dτ

}

and

K0 = max
t∈[0,T ] exp

{

(ν+ + ν−)t +
∫ t

0
fu(W +(τ ), τ )dτ +

∫ t

0
fu(W −(τ ), τ )dτ

}

≥ 1

with the constants ν0, ν+ and ν− are defined as in (H3).

2.3 Cylindrically symmetric traveling fronts

Let

p(m)(x, y)=τ max
1≤ j≤2m

{

x cos
2( j − 1)π

2m
+y sin

2( j − 1)π

2m

}

, m =1, 2, . . . . (2.11)

Clearly,

z = τ

(

x cos
2( j − 1)π

2m
+ y sin

2( j − 1)π

2m

)
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626 W.-J. Sheng

is tangent to

z = τ

√
x2 + y2

for any m ∈ N and 1 ≤ j ≤ 2m . Replacing p(x, y) by p(m)(x, y) in Theorem 2.2, we obtain
a sequence of time periodic pyramidal traveling fronts of (2.4), namely,

Ṽ 1, Ṽ 2, . . . , Ṽ m, . . . ,

where

Ṽ m(x, t) = lim
k→∞ ṽ

(
x, t + kT ; ṽ

m,−
0

)
, ṽ

m,−
0 (x, 0) = U

(c

l
(z + p(m)(x, y)), 0

)

Denote the edge of the pyramid −z = p(m)(x, y) by �m and put

Dm(γ ) :=
⎧
⎨

⎩
(x, y, z) ∈ R

3
∣
∣
∣
∣dist

⎛

⎝(x, y, z),
n⋃

j=1

�m
j

⎞

⎠ > γ

⎫
⎬

⎭
for γ > 0.

Owing to ṽ
m,−
0 (x, 0) is nondecreasing on x ∈ (0,∞) and y ∈ (0,∞) and is even on x ∈ R

and y ∈ R, respectively. It then follows from Theorem 2.2 that

Ṽ 1 ≤ Ṽ 2 ≤ · · · ≤ Ṽ m ≤ · · · , ∀x ∈ R
3, t ∈ R,

∂

∂x
Ṽ m > 0, ∀x ∈ (0,∞) × R

2, t ∈ R,

∂

∂y
Ṽ m > 0, ∀x ∈ R × (0,∞) × R, t ∈ R,

∂

∂ν
Ṽ m > 0, ∀x ∈ R

3, t ∈ R,

where ν = 1√
1+ν21+ν22

⎛

⎝
ν1
ν2
1

⎞

⎠ with
√

ν21 + ν22 ≤ 1
τ
. Thanks to

p(m)(x, y) = p(m)
(

x cos
π

2m−1 + y sin
π

2m−1 ,−x sin
π

2m−1 + y cos
π

2m−1

)
,

one infers

Ṽ m(x, t) = Ṽ m(x, t) = Ṽ m(Bm · (x, y), z, t), ∀(x, t) ∈ R
4,

where

Bm =
(

cos π
2m−1 sin π

2m−1

− sin π
2m−1 cos π

2m−1

)

.

Let zm ∈ R be such that

zm ≥ zm+1 and Ṽ m(0, 0, zm , 0) = θ0 (2.12)

for a given constant θ0 ∈ (α−, α0). Denote

V
m
(x, y, z, t) = Ṽ m(x, y, z + zm, t), ∀(x, t) ∈ R

4.
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It then deduces from the parabolic estimate [24] and Theorem 2.2 that there exists a solution
W (x, t) ∈ C2,1(R3 ×R) of (2.4) (even if up to an extraction of some subsequence) such that

V
m
(x, t) → W (x, t) in ‖ · ‖C2,1

loc (R3×R)
as m → ∞.

Define

�(r, z, t) = �(

√
x2 + y2, z, t) := W (x, t), r =

√
x2 + y2 (2.13)

for any (x, y, z, t) ∈ R
4. Then, one has

(
∂

∂t
− ∂2

∂r2
− ∂2

∂z2
− 1

r

∂

∂r
+ l

∂

∂z

)

� − f (�(r, z, t), t) = 0, ∀r > 0, z ∈ R, t ∈R.

(2.14)

For a given constant θ0 ∈ (α−, α0), we define φ(r) ∈ R by

�(r, φ(r), 0) = θ0. (2.15)

By a shift, one can assume U (0, 0) = θ0 without loss of generality. Then, Wang [42] estab-
lished the following results.

Theorem 2.4 Assume that (H1)–(H4) hold. Suppose c > 0. Then, �(r, z, t) defined by (2.13)
satisfies (2.14) and �(r, z, t + T ) = �(r, z, t) for all (r, z, t) ∈ R

3. Moreover, there hold

(i) ∂
∂r �(r, z, t) > 0 and ∂

∂z �(r, z, t) > 0 for any (r, z, t) ∈ (0,∞) × R
2.

(ii) limz→+∞ ‖�(·, z, t)−W +(t)‖C(R2) = 0, limz→−∞ ‖�(·, z, t)−W −(t)‖Cloc(R
2) = 0.

(iii) ∂
∂ν

�(r, z, t) > 0 for any r > 0, z > 0, t ∈ R, where

ν = 1
√
1 + ν′2

(
ν′
1

)

with ν′ ≥ − 1

τ
.

(iv) limr→∞ φ′(r) = −τ .
(v) limr→∞ ‖�(x + r, z + φ(r), t) − U ( c

l (z + τ x), t)‖C2,1
loc (R2×R)

= 0.

3 Proof of Theorem 1.1

In this section, we study the existence and asymptotic stability of traveling fronts with convex
polyhedral shapes, that is, we prove Theorem 1.1.

Firstly, note that {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron. Indeed, if

−zi ≥ h(xi , yi ) for i = 1, 2, then −zi ≥ h j (xi , yi ) for all 1 ≤ j ≤ n and i = 1, 2. It then
follows from (1.8) that

−az1 − (1 − a)z2 ≥ ah j (x1, y1) + (1 − a)h j (x2, y2)

= h j (ax1 + (1 − a)x2, ay1 + (1 − a)y2)

for all 1 ≤ j ≤ n and any a ∈ (0, 1). Then, one has

−(az1 + (1 − a)z2) ≥ max
1≤ j≤n

h j (ax1 + (1 − a)x2, ay1 + (1 − a)y2)

= h(ax1 + (1 − a)x2, ay1 + (1 − a)y2).

Hence, {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron.
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On the other hand, for any ζ ∈ R and 1 ≤ j ≤ n, let (X j (ζ ), Y j (ζ )) be such that

h j (X j (ζ ), Y j (ζ )) = h j+1(X j (ζ ), Y j (ζ )) = τζ.

Direct computations give
(

X j (ζ )

Y j (ζ )

)

= 1

sin(θ j+1 − θ j )

(
(ζ + c j ) sin θ j+1 − (ζ + c j+1) sin θ j

−(ζ + c j ) cos θ j+1 + (ζ + c j+1) cos θ j

)

.

Here, we would like to point out that, for every ζ ∈ R, the set {(x, y) ∈ R
2|h(x, y) ≤ ζ }

is either an empty set or a nonempty convex closed set in R
2. Indeed, if (xi , yi ) satisfies

h(xi , yi ) ≤ ζ for i = 1, 2, then h j (xi , yi ) ≤ ζ for all 1 ≤ j ≤ n and i = 1, 2 . In view of
(1.8), we have

ah j (x1, y1) + (1 − a)h j (x2, y2) = h j (ax1 + (1 − a)x2, ay1 + (1 − a)y2) ≤ ζ

for all 1 ≤ j ≤ n and any a ∈ (0, 1), whence

h(ax1 + (1 − a)x2, ay1 + (1 − a)y2) = max
1≤ j≤n

h j (ax1 + (1 − a)x2, ay1 + (1 − a)y2) ≤ ζ.

If ζ < −max1≤ j≤n l j with l j given in (1.8), then {(x, y) ∈ R
2|h(x, y) ≤ ζ } is an empty

set. Moreover, it derives from [37, Lemma 3.1] that the set {(x, y) ∈ R
2|h(x, y) ≤ τρ}

is a convex n-polygon in the x-y plane with vertices {(X j (ρ), Y j (ρ))}1≤ j≤n for any fixed
number ρ ∈ (�,∞).

Proof of Theorem 1.1 Thanks to h(X j (ρ), Y j (ρ)) = τρ for all 1 ≤ j ≤ n, one infers that

h(x, y) ≤ τρ + p(x − X j (ρ), y − Y j (ρ)) for all (x, y) ∈ R
2, 1 ≤ j ≤ n,

where h and p are defined in (1.8) and (2.5), respectively. Set

v−(x, y, z, t) := U
(c

l
(z + h(x, y)), t

)
= max

1≤ j≤n
U
(c

l
(z + h j (x, y)), t

)
. (3.1)

Write the solution of (1.5) with v0(x, y, z) = v−(x, y, z, 0) by v(x, t; v−(x, y, z, 0)). Call

V (x, t) = lim
k→∞ v(x, t + kT ; v−(x, y, z, 0)) inC2,1

loc (R4).

Then, the function V (x, t) ∈ C2,1(R4) is a solution of (1.6). Since

v−(x, y, z, t) = v−(x, y, z, t + T ),

then, we have

v(x, t + kT ; v−(x, y, z, 0)) = v(x, t + kT ; v−(x, y, z, T ))

= v(x, t + T + kT ; v−(x, y, z, 0)).

Letting k → ∞, we arrive at

V (x, t) = V (x, t + T ), for all x ∈ R
3 and t ∈ [0, T ].

Moreover, a similar discussion to Sheng [33, Lemma 3.1] yields that there is a supersolution
v+ that converges to v− far away from the set of edges of the given polyhedron. Thus, (1.10)
follows.
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Notice that the function v− defined in (3.1) is a subsolution of (1.6) and the pyramidal
traveling front Ṽ defined in Theorem 2.2 is solution of (1.6). As a result of the comparison
principle, we have

v−(x, y, z, t) < Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t) (3.2)

for all (x, y, z, t) ∈ R
4 and 1 ≤ j ≤ n. This shows that

min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t)

is a supersolution of (1.6) for any (x, y, z) ∈ R
3 and t ∈ [0, T ]. It then follows from the

comparison principle that

v−(x, y, z, t) < V (x, y, z, t) ≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t) (3.3)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ].

On the other hand, since

max{h j (x, y), h j+1(x, y)} ≤ h(x, y) inR2

for all 1 ≤ j ≤ n, then

U
(c

l
(z + max{h j (x, y), h j+1(x, y)}, 0)

)
≤ v−(x, y, z, 0), (x, y, z) ∈ R

3, 1 ≤ j ≤ n.

We consider the left-hand side and the right-hand side as an initial value of (1.5), respectively.
Then the comparison principle yields that

v
(

x, t+kT ; U
(c

l
(z + max{h j (x, y), h j+1(x, y)}, 0)

))
≤ v

(
x, t + kT ; v−(x, y, z, 0)

)

(3.4)

for all 1 ≤ j ≤ n. Notice that

h j (x, y) = p j (x − X j (ρ), y − Y j (ρ)) + τρ.

Sending k → ∞ in (3.4), it then follows from Theorem 2.1, (2.10) and (2.6) that

E j (x − X j (ρ), y − Y j (ρ), z + τρ, t) ≤ V (x, y, z, t), (x, y, z) ∈ R
3, t ∈ [0, T ].

This together with (3.3), we arrive at

max
1≤ j≤n

E j (x − X j (ρ), y − Y j (ρ), z + τρ, t) ≤ V (x, y, z, t)

≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t) (3.5)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ]. As a consequence, (1.11) and (1.12) follow from (2.8),

(2.2) and (3.5).
By (2.3) and (1.11) and applying the Schauder interior estimate to the following equation:

(
∂

∂t
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ l

∂

∂z

)

(V − E j ) = f (V, t) − f (E j , t),

we get

inf
W−(t)+δ≤V (x,t)≤W+(t)−δ,t∈[0,T ]

Vz(x, t) > 0 for any δ > 0 small enough,

that is, (1.13) holds.
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Notice that |z + h(x, y)| → ∞ implies dist(x, � j ) → ∞ for 1 ≤ j ≤ n. In light of
(1.10), we have

lim
R1→∞ sup

|z+h(x,y)|≥R1,t∈[0,T ]

∣
∣
∣V (x, y, z, t) − U

(c

l
(z + h(x, y)), t

)∣∣
∣ → 0.

By the interpolation ‖ · ‖C1 ≤ 2
√‖ · ‖C0‖ · ‖C2 , we get (1.14) due to

lim
R1→∞ sup

|z+h(x,y)|≥R1,t∈[0,T ]

∣
∣
∣Uz

(c

l
(z + h(x, y)), t

)∣∣
∣ → 0.

Now, we show that the time periodic curved front V is asymptotically stable. Set

l̂ := max
1≤ j≤n

l j ≥ 0.

Then, there holds

−τ l̂ + p(x − X j (−l̂), y − Y j (−l̂)) ≤ h(x, y) for 1 ≤ j ≤ n,

whence

U
(c

l
(z − τ l̂+ p(x − X j (−l̂), y − Y j (−l̂))), 0

)
≤U

(c

l
(z + h(x, y)), 0

)
for 1 ≤ j ≤n.

(3.6)

Considering the left-hand side and the right-hand side of (3.6) as initial values of (1.5), we
have

v
(

x, t + kT ; U
(c

l
(z − τ l̂ + p(x − X j (−l̂), y − Y j (−l̂)), 0)

))

≤ v
(

x, t + kT ; U
(c

l
(z + h(x, y)), 0

))

from the comparison principle. Passing k → ∞, one derives that

Ṽ (x − X j (−l̂), y − Y j (−l̂), z − τ l̂, t) ≤ V (x, y, z, t), (x, y, z) ∈ R
3, t ∈ [0, T ]

(3.7)

for 1 ≤ j ≤ n. Combining (3.5) and (3.7), we have

max
1≤ j≤n

Ṽ (x − X j (−l̂), y − Y j (−l̂), z − τ l̂, t)

≤ V (x, y, z, t) ≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t) (3.8)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ].

In view of (3.8), we have

V (x, y, z, 0) ≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, 0), (x, y, z) ∈ R
3.

For all (x, y, z) ∈ R
3, and t ∈ [0, T ], set

V ∗(x, t) := lim
k→∞ v

(

x, t + kT ; min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, 0)

)

.

Then, the comparison principle gives that

V (x, y, z, t) ≤ V ∗(x, y, z, t) ≤ min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z + τρ, t) (3.9)
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and

V ∗(x, y, z, t) = V ∗(x, y, z, t + T )

for all (x, y, z) ∈ R
3, and t ∈ [0, T ]. By (1.11) and (2.8), we infer

lim
R→∞ sup

|x|>R,t∈[0,T ]
∣
∣V ∗(x, y, z, t) − V (x, y, z, t)

∣
∣ = 0.

On the other hand, owing to (1.13), there exists a positive constant σ such that

βσ inf
W−(t)+δ≤V (x,t)≤W+(t)−δ,t∈[0,T ]

Vz(x, y, z, t) > 2K0 sup
W−(t)+δ≤u≤W+(t)−δ,t∈[0,T ]

| fu(u, t)|,

where 0 < δ < δ0 is small enough, δ0, β and K0 are given in Lemma 2.3, fu(u, t) denotes
the partial derivative of f with respect to u. For 0 < δ < δ0, it follows from Lemma 2.3 that

V
(

x, y, z + σδ
(
1 − e−β(t+kT )

)
, t + kT

)
+ δa(t + kT )

is a supersolution to (1.6) on R
3 × [0,∞). In light of the boundedness of V ∗(x, y, z, t) and

the monotonicity of V (x, y, z, t)with respect to z, we can take λ > 0 large enough such that

V ∗(x, y, z, 0) ≤ V (x, y, z + λ, 0) + δ, (x, y, z) ∈ R
3.

Then, the comparison principle implies

V ∗(x, y, z, t + kT ) ≤ V
(

x, y, z + λ + σδ
(
1 − e−β(t+kT )

)
, t + kT

)
+ δa(t + kT )

for (x, y, z) ∈ R
3, t ∈ [0, T ] and k ∈ N. Sending k → ∞, we get

V ∗(x, y, z, t) ≤ V (x, y, z + λ + σδ, t)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ].

Define

� := inf
{
λ ∈ (−∞,+∞)|V ∗(x, y, z, 0) ≤ V (x, y, z + λ, 0) for all (x, y, z) ∈ R

3} .

It is evident that � ≥ 0 from (3.9). If � = 0, then V ∗ ≡ V in R
4. We prove � = 0 by a

contradiction argument. Assume that � > 0. Then, we have

V ∗(x, y, z, 0) ≤ V (x, y, z + �, 0), (x, y, z) ∈ R
3.

It then follows from the strong maximum principle that

V ∗(x, y, z, 0) < V (x, y, z + �, 0), (x, y, z) ∈ R
3.

By (1.14), there exists a constant R0 > 0 large enough such that

2σ sup
|z+h(x,y)|≥R0−�−1,t∈[0,T ]

|Vz(x, y, z, t)| < 1.

Let

k1 ∈
(

0,min

{

δ0,
1

4σ
,

�

4σ

})

be small enough. If |z + h(x, y)| ≤ R0 − � − 1, we have

V ∗(x, y, z, 0) ≤ V (x, y, z + � − 2σk1, 0). (3.10)
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If |z + h(x, y)| ≥ R0 − � − 1, we have

V (x, y, z + �, 0) − V (x, y, z + � − 2σk1, 0)

= 2σk1

∫ 1

0
Vz(x, y, z + � − 2θσk1, 0)dθ ≤ k1. (3.11)

Combining (3.10) and (3.11), we get

V ∗(x, y, z, 0) ≤ V (x, y, z + � − 2σk1, 0) + k1

for all (x, y, z) ∈ R
3. It then follows from the comparison principle and Lemma 2.3 that

V ∗(x, y, z, t + kT ) ≤ V
(

x, y, z + � − 2σk1 + σk1
(
1 − e−β(t+kT )

)
, t + kT

)

+ k1a(t + kT )

for all (x, y, z) ∈ R
3, t ∈ [0, T ] and k ∈ N. Letting k → ∞, we have

V ∗(x, y, z, t) ≤ V (x, y, z + � − σk1, t), (x, y, z) ∈ R
3, t ∈ [0, T ].

This contradicts with the definition of �. Thus, V ≡ V ∗ in R
4. Namely,

lim
k→∞

∥
∥
∥
∥v

(

x, t+kT ; min
1≤ j≤n

Ṽ (x − X j (ρ), y − Y j (ρ), z+τσ, 0)

)

− V (x, y, z, t)

∥
∥
∥
∥

L∞(R4)

=0

By a similar argument to

v

(

x, t + kT ; max
1≤ j≤n

Ṽ (x − X j (−l̂), y − Y j (−l̂), z − τ l̂, 0)

)

,

we have

lim
k→∞

∥
∥
∥
∥v

(

x, t +kT ; max
1≤ j≤n

Ṽ (x − X j (−l̂), y − Y j (−l̂), z − τ l̂, 0)

)

−V (x, y, z, t)

∥
∥
∥
∥

L∞(R4)

=0.

Note that for any fixed x ∈ R
3 and t ≥ 0, v(x, t; ·) is a continuous mapping in BU (R3)

with BU (R3) standing for the set of bounded and continuous functions. By this continuity,
Theorem 2.2 and the comparison principle, we obtain

lim
k→∞ ‖v(x, t + kT ; v0) − V (x, t)‖L∞(R3×[0,T ]) = 0.

In other words, the desired result (1.16) holds. The proof is complete.

4 Proof of Theorem 1.3

Set

A0 :=
{
(ξ, η)

∣
∣
∣D ⊂ B((ξ, η); R∗)

}

=
{

(ξ, η) ∈ R
2
∣
∣
∣
∣

√
(x − ξ)2 + (y − η)2 ≤ R∗ if (x, y) ∈ C

}

and

Am :=
{
(ξ, η)

∣
∣
∣D ⊂

{
(x, y)

∣
∣
∣p(m)(x − ξ, y − η) ≤ τ R∗

}}

=
{
(ξ, η) ∈ R

2
∣
∣
∣p(m)(x − ξ, y − η) ≤ τ R∗ if (x, y) ∈ C

}
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for every m ≥ 2, where D and p(m) are defined as in (1.17) and (2.11), respectively. Since
(ξ∗(θ), η∗(θ)) ∈ A0 for all θ ∈ [0, 2π), and ∂ B(0; R∗) is the inscribed circle of a polygon
{(x, y) ∈ R

2|p(m)(x, y) = τ R∗}, then we have

lim
m→∞ dist(Am,A0) = 0.

For any ε > 0 there holds

dist((ξ, η), C) ≤ R∗ + ε for all (ξ, η) ∈ Am, and sufficiently largem,

namely,

dist(Am, C) ≤ R∗ + ε

as m large enough. It then follows that
√

ξ2 + η2 ≤ Rmax + R∗ + ε for all (ξ, η) ∈ Am

for m sufficiently large.

Proof of Theorem 1.3 Define

h(m)(x, y) := sup
(ξ,η)∈Am

p(m)(x − ξ, y − η) − τ R∗.

Since ∂ B(0; R∗) is the inscribed circle of a polygon {(x, y) ∈ R
2|p(m)(x, y) = τ R∗}, then

one arrives at

h(m)(x, y) = τ max
1≤ j≤2m

(

x cos
2π j

2m
+ y sin

2π j

2m
− R

(
2π j

2m

)

− R∗
)

.

Moreover, it holds

p(m)(x − ξ, y − η) − τ R∗ ≤ p(m)(x − R(θ) cos θ, y − R(θ) sin θ)

for all (ξ, η) ∈ Am and θ ∈ [0, 2π ], whence
sup

(ξ,η)∈Am

p(m)(x − ξ, y − η) − τ R∗

≤ inf
θ∈[0,2π ] p(m)(x − R(θ) cos θ, y − R(θ) sin θ) for all (x, y) ∈ R

2.

It then follows that

p(m)(x − ξ, y − η) − τ R∗ ≤ h(m)(x, y) ≤ p(m)(x − R(θ) cos θ, y − R(θ) sin θ)

for all (ξ, η) ∈ Am , θ ∈ [0, 2π ] and (x, y) ∈ R
2. As a result, one infers that

Ṽ m (
x − ξ, y − η, z + zm − τ R∗, t

) ≤ V (x, y, z + zm, t)

≤ Ṽ m (
x − R(θ) cos θ, y − R(θ) sin θ, z + zm, t

)
(4.1)

for all (ξ, η) ∈ Am and θ ∈ [0, 2π ], where zm is defined as in (2.12) and Ṽ m is the pyramidal-
shaped traveling fronts corresponding to p(m). Combining this inequality with parabolic
estimates [24] and Sobolev imbedding theorem, we obtain that the function W̃ (x, t) defined
by

W̃ (x, t) := lim
m→∞ V (x, y, z + zm, t) inC2,1

loc (R4).
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is a solution of (1.6). Moreover, it holds W̃ (x, t) = W̃ (x, t + T ). On the other hand, by
letting m → ∞ in (4.1), one derives from Theorem 2.4 that

�

(√
(x − ξ)2 + (y − η)2, z − τ R∗, t

)

≤ W̃ (x, y, z, t)

≤ �

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, t

)

(4.2)

for all (ξ, η) ∈ Am and θ ∈ [0, 2π ]. Thus (1.18) follows. Furthermore, we have

W̃z(x, y, z, t) > 0 for all (x, y, z, t) ∈ R
4

and

∂W̃

∂ν
> 0 for ν = (ν1, 1) with |ν1| ≤ τ−1

from the definition of W̃ (x, y, z, t).
In view of Theorem 2.4 (ii), (iv) and (v), we get

lim√
r2+z2→∞

(
�
(√

(r cos θ − R(θ) cos θ)2 + (r cos θ − R(θ) sin θ)2, z, t
)

−�

(√
(r cos θ − ξ∗(θ))2 + (r cos θ − η∗(θ))2, z − τ R∗, t

))

=0 uniformly in t ∈[0, T ]

for all θ ∈ [0, 2π]. It then follows that

lim
A→∞ sup

x2+y2+z2≥A2,t∈[0,T ]

∣
∣
∣
∣ min
0≤θ≤2π

�

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, t

)

− max
0≤θ≤2π

�

(√
(x − ξ∗(θ))2 + (y − η∗(θ))2, z − τ R∗, t

)∣∣
∣
∣ = 0.

Thus, (1.19) follows.
It remains to prove that such W̃ is the unique solution of (1.6) under (1.19) which is also

stable. We first show that

inf
W−(t)+δ≤W̃ (x,t)≤W+(t)−δ,t∈[0,T ]

W̃z(x, y, z, t) > 0 (4.3)

for δ > 0 small enough. We only sketch the proof here, for details one can refer to [33,
Lemma 4.6]. Indeed, we have W̃z > 0 in R

4. Hence, W̃z has a positive minimum on any
compact subset of R4. Thus, we need only to study W̃z(x, t) as |x| → ∞. Assume that
xi = (xi , yi , zi ) satisfies limi→∞ |xi | = ∞ and W −(t) + δ ≤ W̃ (xi , t) ≤ W +(t) − δ for all
t ∈ [0, T ]. It suffices to prove lim inf i→∞,t∈[0,T ] W̃z(xi , t) > 0. It then follows from (1.19)
that

lim
A→∞ sup

x2+y2+z2≥A2,t∈[0,T ]

∣
∣
∣
∣W̃ (xi , yi , zi , t)

− min
0≤θ≤2π

�

(√
(xi − R(θ) cos θ)2 + (yi − R(θ) sin θ)2, zi , t

) ∣
∣
∣
∣ = 0.
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Namely,

lim
i→∞ sup

|xi|∈B(xi ;2),t∈[0,T ]

∣
∣
∣
∣W̃ (xi , yi , zi , t)

− min
0≤θ≤2π

�

(√
(xi − R(θ) cos θ)2 + (yi − R(θ) sin θ)2, zi , t

) ∣
∣
∣
∣ = 0.

By the interpolation ‖ · ‖C1 ≤ 2
√‖ · ‖C0‖ · ‖C2 , we have

∥
∥
∥
∥

∂

∂z
W̃ (xi , t)

− min
0≤θ≤2π

∂

∂z
�

(√
(xi − R(θ) cos θ)2 + (yi − R(θ) sin θ)2, zi , t

)∥∥
∥
∥

C0(B(xi ;2)×[0,T ])
→0.

This together with (2.9) and Theorem 2.4 yields

lim
i→∞ inf

t∈[0,T ] W̃z(xi , t) > 0.

Consequently, (4.3) holds. For 0 < δ < δ0 with δ0 given in Lemma 2.3, it follows from (4.3)
and Lemma 2.3 that

W̃
(
x, y, z + σδ

(
1 − e−βt ) , t

) + δa(t)

is a supersolution of (1.6), where β > 0 sufficiently small and σ > 0 large enough such that

σβ inf
W−(t)+δ≤W̃ (x,t)≤W+(t)−δ

W̃z(x, y, z, t) > 2K0 sup
W−(t)+δ≤u≤W+(t)−δ,t∈[0,T ]

| fu(u, t)|

with K0 given in Lemma 2.3.
Suppose that Ŵ (x, t) satisfies (1.6) and (1.19). We now prove that Ŵ (x, t) ≡ W̃ (x, t) in

R
4.Assume that this is not true.Without loss of generality,we assume that Ŵ (x, 0) ≤ W̃ (x, 0)

but Ŵ (x, 0) �≡ W̃ (x, 0). We can choose a constant λ > 0 large enough such that

Ŵ (x, 0) ≤ W̃ (x, y, z + λ, 0) + δ. (4.4)

Indeed, (4.4) is obviously true if |x|2 < A2 for some constant A > 0 sufficiently large. If
|x|2 ≥ A2, (4.4) follows from (1.19) and Wz(x, y, z, t) > 0 for all (x, y, z, t) ∈ R

4. It then
follows from Lemma 2.3 and the comparison principle that

Ŵ (x, t + kT ) ≤ W̃
(

x, y, z + λ + σδ
(
1 − e−β(t+kT )

)
, t + kT

)
+ δa(t + kT )

for all (x, y, z) ∈ R
3, t ∈ [0, T ] and k ∈ N. Sending k → ∞, we have

Ŵ (x, t) ≤ W̃ (x, y, z + λ + σδ, t)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ].

Define

�1 := inf
{
λ ∈ (−∞,∞)|Ŵ (x, 0) ≤ W̃ (x, y, z + λ, 0) for all (x, y, z) ∈ R

3} .

If �1 = 0, we get Ŵ (x, 0) ≤ W̃ (x, 0). Similarly, we can obtain Ŵ (x, 0) ≥ W̃ (x, 0). Thus,
Ŵ (x, t) ≡ W̃ (x, t) for all (x, y, z) ∈ R

3 and t ∈ [0, T ]. We prove�1 = 0 by a contradiction
argument. Assume that �1 �= 0. Without loss of generality, we assume that �1 > 0. It then
follows from the strong maximum principle that

Ŵ (x, 0) < W̃ (x, y, z + �1, 0) for all (x, y, z) ∈ R
3.
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Fix R1 > 0 sufficiently large such that

2σ sup
|z+φ(

√
x2+y2)|≥R1−�1−1

|W̃z(x, 0)| < 1,

where φ is defined in (2.15). Define

O :=
{

(x, y, z) ∈ R
3
∣
∣
∣
∣

∣
∣
∣
∣z + φ

(√
x2 + y2

)∣∣
∣
∣ ≤ R1 − �1 − 1

}

For (x, y, z) ∈ O, we have

�

(√
x2 + y2, z + �1, 0

)

− �

(√
x2 + y2, z, 0

)

≥ �1 inf
α−+δ≤�≤α+−δ

�z

(√
x2 + y2, z, 0

)

> 0,

where α± are given in the assumption (H2). Then, we have

inf
(x,y,z)∈O

(

�

(√
x2 + y2, z + �1 − 2σε, 0

)

− �

(√
x2 + y2, z, 0

))

> 0.

If x ∈ O and |x| is large enough, say |x| ≥ R0 for some R0 > 0, by (1.20), we get

Ŵ (x, 0) ≤ W̃ (x, y, z + �1 − 2σε, 0)

for ε > 0 small enough. If x ∈ O ∩ B(0; R0), we have

Ŵ (x, 0) ≤ W̃ (x, y, z + �1 − 2σε, 0)

for sufficiently small 0 < ε < δ0 due to the compactness of the set O ∩ B(0; R0) in R
3.

Thus, we obtain that

Ŵ (x, 0) ≤ W̃ (x, y, z + �1 − 2σε, 0) inO. (4.5)

In R
3 \ O, we have

W̃ (x, y, z + �1 − 2σε, 0) − W̃ (x, y, z + �1, 0)

= 2σε

∫ 1

0
−W̃z(x, y, z + �1 − 2θσε, 0)dθ ≥ −ε.

This yields

Ŵ (x, 0) ≤ W̃ (x, y, z + �1 − 2σε, 0) + ε inR3 \ O. (4.6)

Combining(4.5) and (4.6), we have

Ŵ (x, 0) ≤ W̃ (x, y, z + �1 − 2σε, 0) + ε inR3.

It then follows from Lemma 2.3 that

W̃
(
x, y, z + �1 − 2σε + σε

(
1 − e−βt ) , t

) + εa(t)

is a supersolution of (1.6) on R
3 × [0,∞). Hence, we have

Ŵ (x, t + kT ) ≤ W̃
(

x, y, z + �1 − 2σε + σε
(
1 − e−β(t+kT )

)
, t + kT

)
+ εa(t + kT )
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for all x ∈ R
3, t ∈ [0, T ] and k ∈ N. Letting k → ∞, we have

Ŵ (x, t) ≤ W̃ (x, y, z + �1 − σε, t)

for all (x, y, z) ∈ R
3 and t ∈ [0, T ]. This contradicts the definition of �1. Thus, �1 = 0 and

Ŵ (x, t) ≡ W̃ (x, t) in R
4 follows.

Now we prove that (1.21) holds. Define

W (x, y, z, t) := max
0≤θ≤2π

�

(√
(x − ξ∗(θ))2 + (y − η∗(θ))2, z − τ R∗, t

)

and

W (x, y, z, t) := min
0≤θ≤2π

�

(√
(x − R(θ) cos θ)2 + (y − R(θ) sin θ)2, z, t

)

for all (x, y, z, t) ∈ R
4. Then, W (x, y, z, t) and W (x, y, z, t) are a subsolution and a superso-

lutionof (1.6), respectively.Thus, limt→∞ v(x, t; W (x, y, z, 0)) and limt→∞ v(x, t; W (x, y,

z, 0)) are solutions of (1.6) between W (x, y, z, t) and W (x, y, z, t). By the uniqueness
of the solution bounded between W and W , we have limt→∞ v(x, t; W (x, y, z, 0)) =
limt→∞ v(x, t; W (x, y, z, 0)) = W̃ (x, t). Thanks to the continuity of v(x, t; v0)with respect
to v0, we get the desired result from the assumption (1.20). The proof is complete. ��
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