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Abstract We give an elementary proof of a family of Hardy–Sobolev-type inequalities
with monomial weights. As a corollary, we obtain a weighted trace inequality related to the
fractional Laplacian.
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1 Introduction

Let N ≥ 1 and p > 1, the famous result of Sobolev [16] says that there exists a constant
C > 0 depending only on N and p such that

(∫
RN

|u(x)|p∗
dx

) 1
p∗ ≤ C

(∫
RN

|∇u(x)|p dx

) 1
p

, (1)

where p∗ = Np
N−p and u is any function in C1

c (R
N ). Later, Gagliardo [6] and Nirenberg [14]

independently found a proof of (1) that also works for p = 1, giving us the now classical
Sobolev–Gagliardo–Nirenberg (SGN) inequality.

Another classical inequality is the Hardy inequality [8]; namely, for p < N there exists a
constant C > 0 such that(∫

RN

|u(x)|p
|x |p dx

) 1
p ≤ C

(∫
RN

|∇u(x)|p dx

) 1
p

, (2)
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580 H. Castro

for all u ∈ C1
c (R

N ). These two classical inequalities can be placed inside a more general
inequality: The so-called Caffarelli–Kohn–Nirenberg (CKN) inequality [5]. A particular case
of this inequality says that if a, b ∈ R satisfy 1 − N

p ≤ a − b ≤ 1 then

(∫
RN

∣∣∣|x |b u(x)
∣∣∣p∗

dx

) 1
p∗ ≤ C

(∫
RN

∣∣|x |a ∇u(x)
∣∣p dx

) 1
p

, (3)

where p∗ ≥ 1 is given by
1

p∗ + b + 1

N
= 1

p
+ a

N
. (4)

Observe that if a = b = 0 we recover (1), and if a = 0 and b = −1 we obtain (2).
Using the CKN inequality as an inspiration, is that we are concerned with the validity

of Hardy–Sobolev-type inequalities with monomial weights of the form x A, where A =
(a1, . . . , aN ) ∈ R

N and

x A := |x1|a1 · |x2|a2 · . . . · |xN |aN .

In particular, we would like to give conditions on A, B ∈ R
N and p ≥ 1, for the existence

of p∗ ≥ 1 and a constant C > 0 such that

(∫
RN

∣∣∣x Bu(x)
∣∣∣p∗

dx

) 1
p∗ ≤ C

(∫
RN

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

(5)

for all u ∈ C∞
c (RN ).

The subject of Hardy–Sobolev (or weighted Sobolev inequalities) like the one above has
been vastly studied in the past.We do not plan to give a comprehensive survey on such results,
but the interested reader might want to check [10,12,15] and the citations therein for further
reference. One important observation about weighted Sobolev inequalities is that the results
vary from very general results dealing with large families of weights (like Ap weights), and
very specific results like the CKN inequality.

In the case of general results, it is usual to find hypotheses that sometimes are restrictive,
because this is that we believe that applying such general results to specific cases tend to
hide some key features that might appear for each particular case. To illustrate this, let us
mention a recent work about general weights that applies to the monomial case we are
studying. Meyries and Veraar [13] proved general embedding theorems between weighted
Sobolev spaces,where theweights belong to theMuckenhoupt classesAp , and in this context,
monomial weights of the form w(x) = x A appear as an application of their result (see [13,
Proposition 4.3]). This result has the great advantage of applying to general weights as
they give necessary and sufficient conditions for the validity of several Sobolev embeddings
between weighted spaces. However, working in such generality has a disadvantage: It does
not give other relevant information on the result itself. For example, when one applies the
result from [13] to obtain (5) we do not receive an answer to other questions pertinent to (5):
What is the best constant C? Are there extremals to the inequality? What happens when one
changes the domain of integration to other subsets of RN ?

If one focuses on a particular case like (5) instead of relying on the general results, one
might obtain alternate proofs and additional insights that might answer some other rele-
vant questions. For example, Cabré and Ros-Oton [2] established a particular case of (5)
in dimension two in their study of the regularity of stable solutions to reaction–diffusion
problems in domains with double revolution symmetry. In a follow-up paper [3], they
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Hardy–Sobolev-type inequalities with monomial weights 581

generalized their previous inequality to higher dimension, namely for A = (a1, . . . , aN ),
ai ≥ 0 ∀i = 1, . . . , N , they showed

(∫
R
N
A

|u(x)|p∗
x A dx

) 1
p∗

≤ C

(∫
R
N
A

|∇u(x)|p x A dx

) 1
p

, (6)

where

R
N
A =

{
(x1, . . . , xN ) ∈ R

N : xi ≥ 0 when ai > 0
}
,

and

p∗ = Dp

D − p
,

where D = N + a1 + · · · + aN . Their proof of (6) is based on first proving an isoperimetric
inequality for the measure dμ = x A dx by using the Alexandroff–Bakelman–Pucci (ABP)
method applied to an associated elliptic equation. As we already mentioned, one of the
advantages of finding alternative proofs to the same results is that each proof provides different
insights on the result itself. In the case of the proof in [3], they are able to expand the parameter
range that the general theory of Muckenhoupt weights gives. Additionally, they also provide
the extremals for (6) and the best constantC , which in turn gave them the possibility to prove
the following Trudinger-type inequality for u ∈ C1

c (Ω)

∫
Ω

exp

⎡
⎣

(
c1 |u(x)|

‖∇u‖LD(Ω,x A dx)

) D
D−1

⎤
⎦ x A dx ≤ c2

∫
Ω

x A dx,

where Ω ⊂ R
N is a bounded domain.

As we mentioned before, the main purpose of this article is to prove (5) for suitable
A, B ∈ R

N , but in addition, we would like to provide an alternative technique to prove such
inequality, namely a proof that uses elementary calculus tools instead of the ABP method,
the theory of Muckenhoupt weights, or other general techniques appearing in the literature
about weighted Sobolev inequalities.

One advantage of the method we use in comparison with the ABP method used in [3]
is that it works not only for domains of the form R

N
A—that is, a domain depending on the

weight—but for any set of the form

R
N
I,+ =

{
(x1, . . . , xN ) ∈ R

N : xi ≥ 0 for i ∈ I
}
,

or

R
N
I,− =

{
(x1, . . . , xN ) ∈ R

N : xi ≤ 0 for i ∈ I
}
,

where I is any subset of {1, 2, . . . , N }. The trade-off is that our proof will not give the best
constant nor the extremals for the inequality.

The main result of this paper is the following

Theorem 1 Consider N ≥ 1, p ≥ 1, A = (a1, . . . , aN ), B = (b1, . . . , bN ) ∈ R
N . Let

a := a1 + · · · + aN and b := b1 + · · · + bN , for p∗ ≥ 1 defined by

1

p∗ + b + 1

N
= 1

p
+ a

N
, (7)
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582 H. Castro

suppose

1. 1
p∗ ai +

(
1 − 1

p

)
bi > 0 for all i = 1, . . . , N,

2. 0 ≤ ai − bi < 1 for all i = 1, . . . , N.
3. 1 − N

p < a − b ≤ 1.

then there exists a constant C > 0 such that for all u ∈ C1
c (R

N )

(∫
RN

∣∣∣x Bu(x)
∣∣∣p∗

dx

) 1
p∗ ≤ C

(∫
RN

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

. (8)

Remark 1 Some remarks are relevant at this point.

– The conditions (1)–(3) are not optimal. For instance, if p = 1, condition (1) says that
ai > 0 for all i ; however, one can allow some of the ai ’s to be equal to 0 if the respective
bi is also 0. See Sect. 2 for an example of this, and Sect. 5 for additional remarks.

– As we announced earlier, inequality (8) remains valid if one changes the domain of
integration from R

N to R
N
I,+ or RN

I,−. We will comment on this later in Sect. 5.

The rest of this paper is divided as follows: In Sect. 2, we establish some preliminary
simplifications for the proof of Theorem 1. In Sect. 3, we prove Theorem 1 in a case that
is not covered in (1)–(3) but that illustrates the main idea behind the proof. In Sect. 4, we
give the proof of the Theorem, and later in Sect. 5, we make some comments regarding the
generalizations mentioned in Remark 1. Finally, in Sect. 6, we prove a weighted Sobolev
trace inequality related to the fractional Laplacian.

2 Prelimaries

Let us begin by saying that in what follows C > 0 will represent various constants that are
universal, in the sense that they might depend on the structural parameters like the dimension
N , the vectors A, B ∈ R

N or the exponent p, but C will not depend on the functions
u ∈ C1

c (R
N ).

Our first remark is that it is enough to prove Theorem 1 for u ≥ 0. Indeed, for any
u ∈ C1

c (R
N ) and δ > 0 consider the function wδ := √

δ2 + u2 − δ and observe that wδ ≥ 0
and wδ ∈ C1

c (R
N ) with

∇wδ = u√
u2 + δ2

∇u,

moreover, the support of wδ is contained in the support of u. Now, if we have proved (8) for
non-negative functions, we can apply it to wδ . Since |∇wδ| ≤ |∇u|, we obtain

(∫
RN

∣∣∣x Bwδ(x)
∣∣∣p∗

dx

) 1
p∗ ≤ C

(∫
RN

∣∣∣x A∇wδ(x)
∣∣∣p dx

) 1
p

≤ C

(∫
RN

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

.

Finally, we use Fatou’s lemma when letting δ go to zero to obtain the desired inequality for u.
Another simplification one can perform is to observe that it is enough to prove Theorem

1 for p = 1 as if this case is handled, then for p > 1 one can consider v = |u|γ−1 u where

γ = 1 + N (p − 1)

N + (a − b − 1)p
.
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Hardy–Sobolev-type inequalities with monomial weights 583

Observe that ∇v = γ |u|γ−1 ∇u and since γ > 1 we deduce that v ∈ C1
c (R

N ). Define the
vectors Ã = (ã1, . . . , ãN ), B̃ = (b̃1, . . . , b̃N ) ∈ R

N in terms of A = (a1, . . . , aN ), B =
(b1, . . . , bN ) ∈ R

N as

ãi = ai + N (p − 1)

N + (a − b − 1)p
bi ,

and

b̃i = p(N + a − b − 1)

N + (a − b − 1)p
bi .

Observe that if ã = ã1 + · · · + ãN and b̃ = b̃1 + · · · + b̃N , then ãi − b̃i = ai − bi and
ã − b̃ = a − b; hence, if A and B satisfy the conditions of Theorem 1 for p > 1, then Ã and
B̃ satisfy the conditions for p = 1. Thus, we can apply Theorem 1 for this particular Ã, B̃,
and v as above, that is

(∫
RN

∣∣∣x B̃v(x)
∣∣∣

N
N+ã−b̃−1 dx

) N+ã−b̃−1
N

≤ C
∫
RN

∣∣∣x Ã∇v(x)
∣∣∣ dx . (9)

Thanks to the choice of γ , Ã and B̃, we observe that the left hand side can be written as

(∫
RN

∣∣∣x B̃v(x)
∣∣∣

N
N+ã−b̃−1 dx

) N+ã−b̃−1
N

=
(∫

RN

∣∣∣x Bu(x)
∣∣∣

Np
N+(a−b−1)p

dx

) N+ã−b̃−1
N

,

and thanks to Hölder inequality, we see that the integral in the right hand of (9) side can be
bounded by ∫

RN

∣∣∣x Ã∇v(x)
∣∣∣ dx = γ

∫
RN

|u(x)|γ−1
∣∣∣x Ã∇u(x)

∣∣∣ dx

≤ C

(∫
RN

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

×
(∫

RN

∣∣∣x Ã−A |u(x)|γ−1
∣∣∣

p
p−1

dx

)1− 1
p

= C

(∫
RN

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

×
(∫

RN

∣∣∣x Bu(x)
∣∣∣

Np
N+(a−b−1)p

dx

)1− 1
p

and the inequality for p > 1 follows as

N + ã − b̃ − 1

N
+ 1

p
− 1 = N + (a − b − 1)p

Np
.

3 A particular case

As we mentioned in Sect. 2 in what follows we will only focus on the case p = 1 and
non-negative functions u ∈ C1

c (R
N ).
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584 H. Castro

In this section, we will begin with a very particular case of Theorem 1, namely the 1-D
version of the theorem. It is important to mention that some of the results we will present
here have been known for a long time (see for instance [1,9], or the book by Kufner and
Persson about Hardy-type inequalities [11] for a vast survey on similar and more general
inequalities), but for the sake of completeness, we will give the proofs of each result.

Proposition 1 Let a > 0 and b ∈ R such that 0 ≤ a − b ≤ 1. If

p∗ = 1

a − b
,

then there exists a constant C > 0 such that
(∫

R

∣∣∣|y|b u(y)
∣∣∣p∗

dy

) 1
p∗ ≤ C

∫
R

∣∣|y|a u′(y)
∣∣ dy, (10)

for all u ∈ C1
c (R).

Proof Take u ∈ C1
c (R) such that u ≥ 0. And consider the following cases:

Case b = a − 1: In this case p∗ = 1. By using the compact support of u we can integrate
by parts to obtain ∫

R

|y|a−1 u(y) dy = 1

a

∫
R

(|y|a−1 y
)′
u(y) dy

= −1

a

∫
R

|y|a−1 yu′(y) dy

≤ 1

a

∫
R

|y|a ∣∣u′(y)
∣∣ dy.

Case b = a: In this case p∗ = ∞, and for y ∈ R, we have

|y|a u(y) = −
∫ ∞

y

(|y|a u(y)
)′ dy

= −
∫ ∞

y

(
a |y|a−2 yu(y) + |y|a u′(y)

)
dy

≤ a
∫
R

∣∣|y|a−1 u(y)
∣∣ dy +

∫
R

∣∣|y|a u′(y)
∣∣ dy

but by the case b = a − 1, we have
∫
R

∣∣|y|a−1 u(y)
∣∣ dy ≤ 1

a

∫
R

∣∣|y|a u′(y)
∣∣ dy so the first

term on the right hand side can be estimated by the second and we obtain

sup
y∈R

∣∣|y|a u(y)
∣∣ ≤ 2

∫
R

∣∣|y|a u′(y)
∣∣ dy.

Case 0 < a − b < 1: Observe that p∗ = 1
a−b , hence bp

∗ + 1 = ap∗ > 0. If we integrate
by parts over R to obtain

∫
R

|y|bp∗
u(y)p

∗
dy =

∫
R

(
|y|bp∗

y

bp∗ + 1

)′
u(y)p

∗
dy

= −1

a

∫
R

|y|bp∗
yu(y)p

∗−1u′(y) dy
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Hardy–Sobolev-type inequalities with monomial weights 585

≤ 1

a

∫
R

|y|bp∗+1 |u(y)|p∗−1
∣∣u′(y)

∣∣ dy

= 1

a

∫
R

∣∣∣∣|y|
bp∗+1−a
p∗−1 u(y)

∣∣∣∣
p∗−1 ∣∣|y|a u′(y)

∣∣ dy
but bp∗ + 1 − a = a(p∗ − 1), and since we already established that

sup
y∈R

∣∣|y|a u(y)
∣∣ ≤ 2

∫
R

∣∣|y|a u′(y)
∣∣ dy

we conclude

∫
R

|y|bp∗
u(y)p

∗
dy ≤ 1

a

(
sup
y∈R

∣∣|y|a u(y)
∣∣
)p∗−1 ∫

R

∣∣|y|a u′(y)
∣∣ dy

≤ 2p
∗−1

a

(∫
R

∣∣|y|a u′(y)
∣∣ dy

)p∗−1 (∫
R

∣∣|y|a u′(y)
∣∣ dy

)

≤ C

(∫
R

∣∣|y|a u′(y)
∣∣ dy

)p∗

.

�
This 1-D result is one of the main ingredients in the proof of Theorem 1. To illustrate the

idea, let us prove first a simplified version; namely, we have

Theorem 2 Let N ≥ 1, a > 0 and b ∈ R such that 0 ≤ a−b ≤ 1, then for p∗ ≥ 1 satisfying

1

p∗ + b + 1

N
= 1 + a

N
. (11)

there exists a universal constant C > 0 such that for all u ∈ C1
c (R

N )

(∫
RN

∣∣∣|y|b u(x̄, y)
∣∣∣p∗

dx̄ dy

) 1
p∗ ≤ C

∫
RN

∣∣|y|a ∇u(x̄, y)
∣∣ dx̄ dy, (12)

where x̄ = (x1, . . . , xN−1) and y = xN .

Remark 2 Observe that this theorem corresponds to the case A = (0, . . . , 0, a) and B =
(0, . . . , 0, b) in Theorem 1. As we mentioned in Remark 1 the restrictions on the vectors A
and B given in Theorem 1 are not optimal as one can allow some of the coordinates of A to
be zero if the respective coordinate in B is also zero as this result shows.

Proof We only need to worry about the case N ≥ 2 as Proposition 1 corresponds exactly to
the case N = 1. Observe that the exponent p∗ is given by

p∗ = N

N + a − b − 1
.

Case b = a − 1: In this case, p∗ = 1. We use the 1-D result to write for fixed x̄ ∈ R
N−1

∫
R

∣∣|y|a−1 u(x̄, y)
∣∣ dy ≤ 1

a

∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy,

hence, the result follows by integrating with respect to x̄ ∈ R
N−1.
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586 H. Castro

Case b = a: In this case, p∗ = N
N−1 , and the proof is just applying the classical Sobolev

inequality to the function |y|a u(x̄, y) and the previous case, that is

(∫
RN

∣∣|y|a u(x̄, y)
∣∣ N
N−1 dy dx̄

) N
N−1 ≤ C

∫
RN

∣∣∇ (|y|a u(x̄, y)
)∣∣ dy dx̄

= C
∫
RN

∣∣a |y|a−2 yu(x̄, y) + |y|a ∇u(x̄, y)
∣∣ dy dx̄

≤ C

(
a

∫
RN

∣∣|y|a−1 u(x̄, y)
∣∣ dy dx̄

+
∫
RN

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄

)

≤ C
∫
RN

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄

Case 0 < a − b < 1: The key is to write the following identity

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1 = ∣∣|y|a u(x̄, y)

∣∣ (1−a+b)(N−1)
N+a−b−1 × ∣∣|y|a−1 u(x̄, y)

∣∣ (a−b)(N−1)
N+a−b−1

×
∣∣∣|y|b u(x̄, y)

∣∣∣
1

N+a−b−1
.

Observe that (1+b−a)(N−1)
N+a−b + (a−b)(N−1)

N+a−b−1 + a−b
N+a−b−1 = 1, and that each term is positive

since we are assuming 0 < a − b < 1. After integrating with respect to the y variable over
R and using the generalized Hölder’s inequality, we obtain

∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1

dy ≤
(∫

R

∣∣|y|a u(x̄, y)
∣∣ dy

) (1−a+b)(N−1)
N+a−b−1

×
(∫

R

∣∣|y|a−1 u(x̄, y)
∣∣ dy

) (a−b)(N−1)
N+a−b−1

×
(∫

R

∣∣∣|y|b u(x̄, y)
∣∣∣

1
a−b

dy

) a−b
N+a−b−1

.

On the one hand, for x̄i = (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄N−1), we can write

∣∣|y|a u(x̄, y)
∣∣ ≤

N−1∏
i=1

(∫
R

∣∣|y|a ∂xi u(x̄i , y)
∣∣ dxi

) 1
N−1

,

hence, by the generalized Hölder inequality, we obtain

(∫
R

∣∣|y|a u(x̄, y)
∣∣ dy

) (1−a+b)(N−1)
N+a−b−1 ≤

N−1∏
i=1

(∫
R

∫
R

∣∣|y|a ∂xi u(x̄i , y)
∣∣ dxi dy

) 1−a+b
N+a−b−1

.

On the other hand, using Proposition 1, we know that there exists a constant C , such that for
all x̄ ∈ R

N−1 ∫
R

∣∣|y|a−1 u(x̄, y)
∣∣ dy ≤ C

∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy (13)

(∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

1
a−b

dy

)a−b

≤ C
∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy, (14)
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Hardy–Sobolev-type inequalities with monomial weights 587

thus

(∫
R

∣∣|y|a−1 u(x̄, y)
∣∣ dy

) (a−b)(N−1)
N+a−b−1

(∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

1
a−b

dy

) a−b
N+a−b−1

≤ C

(∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy

) 1+(a−b)(N−1)
N+a−b−1

,

and as a consequence, we obtain

∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1

dy ≤ C

(∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy

) 1+(a−b)(N−1)
N+a−b−1

×
N−1∏
i=1

(∫
R

∫
R

∣∣|y|a ∂xi u(x̄i , y)
∣∣ dxi dy

) 1−a+b
N+a−b−1

. (15)

Integrating (15) with respect to the x1 variable yields

∫
R

∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1

dy dx1 ≤ C

(∫
R

∫
R

∣∣|y|a ∂x1u(x̄, y)
∣∣ dx1 dy

) 1−a+b
N+a−b−1

×
∫
R

⎡
⎣

(∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy

) 1+(a−b)(N−1)
N+a−b−1

×
N−1∏
i=2

(∫
R

∫
R

∣∣|y|a ∂xi u(x̄i , y)
∣∣ dxi dy

) 1−a+b
N+a−b−1

]
dx1,

but (1−a+b)(N−2)
N+a−b−1 + 1+(a−b)(N−1)

N+a−b−1 = 1, thereforewe can apply the generalizedHölder inequal-
ity once again to obtain

∫
R

∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1

dy dx1 ≤ C

(∫
R

∫
R

∣∣|y|a ∂x1u(x̄, y)
∣∣ dx1 dy

) 1−a+b
N+a−b−1

×
(∫

R

∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy dx1

) 1+(a−b)(N−1)
N+a−b−1

×
N−1∏
i=2

(∫
R

∫
R

∣∣|y|a ∂xi u(x̄i , y)
∣∣ dxi dy dx1

) 1−a+b
N+a−b−1

.

If we continue integrating with respect to the remaining variables x2, . . . , xN and using the
generalized Hölder inequality accordingly we obtain

∫
RN−1

∫
R

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1

dy dx̄ ≤ C

(∫
RN−1

∫
R

∣∣|y|a ∂yu(x̄, y)
∣∣ dy

) 1+(a−b)(N−1)
N+a−b−1

×
N−1∏
i=1

(∫
RN−1

∫
R

∣∣|y|a ∂xi u(x̄, y)
∣∣ dy dx̄

) 1−a+b
N+a−b−1

≤ C

(∫
RN−1

∫
R

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄

) N
N+a−b−1

,

and the result is proved. �
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At this point, we would like to remark that the key idea behind this proof is to “split”
the integrand into three parts: Two corresponding to borderline cases b = a and b = a − 1,
and one to the case 0 < a − b < 1 in dimension less than N . This is the idea we will use
throughout this paper.

As a different, but related application of this idea is to give an alternative proof of a result
of Maz’ya [12, Section 2.1.7] for weights that are radially symmetric only with respect to
part of the vector x ∈ R

N , namely

Theorem 3 Let N ≥ 1, 1 ≤ k ≤ N, a > 1 − k and b ∈ R such that 0 ≤ a − b ≤ 1. If
p∗ ≥ 1 satisfies

1

p∗ + b + 1

N
= 1 + a

N
, (16)

then there exists a universal constant C > 0 such that for all u ∈ C1
c (R

N )

(∫
RN−k

∫
Rk

∣∣∣|y|b u(x̄, y)
∣∣∣p∗

dy dx̄

) 1
p∗ ≤ C

∫
RN−k

∫
Rk

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄, (17)

where x̄ = (x1, . . . , xN−k) and y = (xN−k+1, . . . , yN ).

Proof The proof of this result is completely analogous to the previous one. We only show
the main differences. The case k = N corresponds to the CKN inequality [5, Theorem 1],
and the case k = 1 is the previous result. So in what follows N > 1 and 1 < k < N .

Case b = a − 1: Here we have p∗ = 1, and the inequality follows by using Green’s
theorem: For fixed (x̄, y) ∈ R

N−k × R
k , we have the identity

0 =
∫
Rk

divk
(|y|a−1 u(x̄, y)y

)
dy

=
∫
Rk

(
(a − 1 + k) |y|a−1 u(x̄, y) + |y|a−1 y · ∇ku(x̄, y)

)
dy,

where divk denotes the divergence operator, and ∇k is the gradient operator with respect to
the k variables of y. This identity implies for a > 1 − k∫

RN−k

∫
Rk

|y|a−1 u(x̄, y) dy dx̄ ≤ 1

a − 1 + k

∫
RN−k

∫
Rk

|y|a |∇ku(x̄, y)| dy dx̄,

and the result follows.
Case b = a: Here p∗ = N

N−1 . As in Theorem 2, this case follows directly by applying
the Sobolev inequality to the function v(x̄, y) = |y|a u(x̄, y) with the aid of the previous
case, that is

(∫
RN−k

∫
Rk

∣∣|y|a u(x̄, y)
∣∣ N
N−1 dy dx̄

) N−1
N ≤ C

∫
RN−k

∫
Rk

∣∣∇(|y|a u(x̄, y))
∣∣ dy dx̄

≤ C
∫
RN−k

∫
Rk

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄

+
∫
RN−k

∫
Rk

∣∣a |y|a−1 u(x̄, y)
∣∣ dy dx̄

≤ C
∫
RN−k

∫
Rk

∣∣|y|a ∇u(x̄, y)
∣∣ dy dx̄,

and this case is done.
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Case 0 < a − b < 1: Here p∗ = N
N+a−b−1 , hence we write for (x̄, y) ∈ R

N−k × R
k

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N+a−b−1 = ∣∣|y|a u(x̄, y)

∣∣ (b+1−a)(N−k)
N+a−b−1 × ∣∣|y|a−1 u(x̄, y)

∣∣ (a−b)(N−k)
N+a−b−1

×
∣∣∣|y|b u(x̄, y)

∣∣∣
k

N+a−b−1
.

Hence, by integrating over Rk and using the generalized Hölder inequality, we obtain

∫
Rk

∣∣∣|y|b u(x̄, y)
∣∣∣

N
N−1−b+a

dy ≤
(∫

Rk
|y|a |u(x̄, y)| dy

) (1+b−a)(N−k)
N+a−b−1

×
(∫

Rk
|y|a−1 |u(x̄, y)| dy

) (a−b)(N−k)
N+a−b−1

×
(∫

Rk

∣∣∣|y|b u(x̄, y)
∣∣∣

k
k+a−b−1

dy

) k+a−b−1
N+a−b−1

.

From the CKN inequality [5, Theorem 1] applied for fixed x ∈ R
N−k , we deduce that

(∫
Rk

|y|a−1 |u(x̄, y)| dy
) (a−b)(N−k)

N+a−b−1
(∫

Rk

∣∣∣|y|b u(x̄, y)
∣∣∣

k
k+a−b−1

dy

) k+a−b−1
N+a−b−1

≤ C

(∫
Rk

|y|a |∇ku(x̄, y)| dy
) (a−b)(N−k)+k

N+a−b−1

.

In addition, we also have

(∫
Rk

|y|a |u(x̄, y)| dy
) (1+b−a)(N−k)

N+a−b−1 ≤
N−k∏
i=1

(∫
Rk+1

|y|a ∣∣∂xi u(x̄, y)
∣∣ dxi dy

) (1+b−a)
N+a−b−1

.

The result follows by successive integrations over the variables xi , i = 1, . . . , N − k, and
several applications of the generalized Hölder inequality, where an important observation is
that

(N − k − 1)
1 + b − a

N + a − b − 1
+ (a − b)(N − k) + k

N + a − b − 1
= 1.

�

4 Proof of the main theorem

Having illustrated the idea behind the proof in the previous section, we are ready to give the
proof of Theorem 1 for p = 1.

Proof (Proof of Theorem 1) We consider for ei , the standard basis element in R
N , the

following factorization

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1 =

N∏
i=1

∣∣∣x A−ei u(x)
∣∣∣

γi
N+a−b−1 ×

N∏
i=1

∣∣∣x A−ai ei xbii u(x)
∣∣∣

δi
N+a−b−1

, (18)

123



590 H. Castro

where γi and δi are chosen so that

(ai − 1)γi + ai
∑
j �=i

γ j + biδi + ai
∑
j �=i

δ j = Nbi , i = 1, . . . , N (19)

and
N∑
j=1

γ j + (ai − bi )δi +
∑
j �=i

δ j = N + a − b − 1, i = 1, . . . , N . (20)

Observe that by adding (19) + (20) for i = 1, . . . , N , we deduce

N∑
i=1

γi +
N∑
i=1

δi = N . (21)

To solve the system of Eqs. (19)–(21), we subtract (21) from (20), which gives (recall we are
assuming ai − bi < 1)

δi = 1 + b − a

1 + bi − ai
, i = 1, . . . , N . (22)

To find γi , use (21) in (19) to find

γi = (ai − bi ) (N − δi ) ,

hence, using (22) gives

γi = (ai − bi )

(
N − 1 + b − a

1 + bi − ai

)
, i = 1, . . . , N . (23)

We observe that if (1)–(2) are satisfied, then δi > 0 and γi > 0 for all i . To continue the
proof, we integrate (18) in the x1 variable to obtain

∫
R

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1

dx1

=
∫
R

(
N∏
i=1

∣∣∣x A−ei u(x)
∣∣∣

γi
N+a−b−1 ×

N∏
i=1

∣∣∣x A−ai ei xbii u(x)
∣∣∣

δi
N+a−b−1

)
dx1

But from (20) for i = 1 we see that the exponents satisfy the condition to use the generalized
Hölder inequality, that is

∫
R

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1

dx1 ≤
N∏
i=2

(∫
R

∣∣∣x A−ei u(x)
∣∣∣ dx1

) γi
N+a−b−1

×
N∏
i=2

(∫
R

∣∣∣x A−ai ei xbii u(x)
∣∣∣ dx1

) δi
N+a−b−1

×
(∫

R

∣∣∣x A−e1u(x)
∣∣∣ dx1

) γ1
N+a−b−1

×
(∫

R

∣∣∣x A−a1e1xb11 u(x)
∣∣∣

1
a1−b1 dx1

) (a1−b1)δ1
N+a−b−1

.
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Observe that the second to last term can be estimated using Proposition 1 for b1 = a1 − 1,
that is

∫
R

∣∣∣x A−e1u(x)
∣∣∣ dx1 = x A−a1e1

∫
R

∣∣∣xa1−1
1 u(x)

∣∣∣ dx1
≤ Cx A−a1e1

∫
R

∣∣xa11 ∂x1u(x)
∣∣ dx1

= C
∫
R

∣∣∣x A∂x1u(x)
∣∣∣ dx1.

The last term also corresponds to Proposition 1, this time for 0 < a1 − b1 < 1, that is

(∫
R

∣∣∣x A−a1e1xb11 u(x)
∣∣∣

1
a1−b1 dx1

)a1−b1

= x A−a1e1

(∫
R

∣∣∣xb11 u(x)
∣∣∣

1
a1−b1 dx1

)a1−b1

≤ Cx A−a1e1

(∫
R

∣∣xa11 ∂x1u(x)
∣∣ dx1

)

= C

(∫
R

∣∣∣x A∂x1u(x)
∣∣∣ dx1

)
.

Summarizing, these two estimates yield

∫
R

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1

dx1 ≤ C
N∏
i=2

(∫
R

∣∣∣x A−ei u(x)
∣∣∣ dx1

) γi
N+a−b−1

×
N∏
i=2

(∫
R

∣∣∣x A−ai ei xbii u(x)
∣∣∣ dx1

) δi
N+a−b−1

(24)

×
(∫

R

∣∣∣x A∂x1u(x)
∣∣∣ dx1

) γ1+δ1
N+a−b−1

.

If we now integrate (24) with respect to the x2 variable and use Hölder’s inequality once
again we obtain

∫
R

∫
R

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1

dx1 dx2 ≤ C
N∏
i=3

(∫
R

∫
R

∣∣∣x A−ei u(x)
∣∣∣ dx1 dx2

) γi
N+a−b−1

×
N∏
i=3

(∫
R

∫
R

∣∣∣x A−ai ei xbii u(x)
∣∣∣ dx1 dx2

) δi
N+a−b−1

×
(∫

R

∫
R

∣∣∣x A∂x1u(x)
∣∣∣ dx1

) γ1+δ1
N+a−b−1

×
(∫

R

∫
R

∣∣∣x A−e2u(x)
∣∣∣ dx1 dx2

) γ2
N+a−b−1

×
(∫

R

[∫
R

∣∣∣x A−a2e2 xb22 u(x)
∣∣∣ dx1

] 1
a2−b2

dx2

) (a2−b2)δ2
N+a−b−1

.
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The second to last term corresponds to Proposition 1, this time in the x2 variable for b2 =
a2 − 1, therefore we obtain

∫
R

∫
R

∣∣∣x A−e2u(x)
∣∣∣ dx1 dx2 ≤ C

∫
R

∫
R

∣∣∣x A∂x2u(x)
∣∣∣ dx1 dx2.

For the last term, we first use Minkowski’s inequality for integrals, and use 1-D version of
Proposition 1 for 0 < a2 − b2 < 1 in the x2 variable to write

(∫
R

[∫
R

∣∣∣x A−a2e2 xb22 u(x)
∣∣∣ dx1

] 1
a2−b2

dx2

)a2−b2

≤
(∫

R

x A−a2e2

[∫
R

∣∣∣xb22 u(x)
∣∣∣

1
a2−b2 dx2

]a2−b2

dx1

)

≤ C

(∫
R

∫
R

∣∣∣x A∂x2u(x)
∣∣∣ dx2 dx1

)
.

Summarizing, we have obtained

∫
R

∫
R

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1

dx1 dx2 ≤ C
N∏
i=3

(∫
R

∫
R

∣∣∣x A−ei u(x)
∣∣∣ dx1 dx2

) γi
N+a−b−1

×
N∏
i=3

(∫
R

∫
R

∣∣∣x A−ai ei xbii u(x)
∣∣∣ dx1 dx2

) δi
N+a−b−1

(25)

×
(∫

R

∫
R

∣∣∣x A∂x1u(x)
∣∣∣ dx1 dx2

) γ1+δ1
N+a−b−1

×
(∫

R

∫
R

∣∣∣x A∂x2u(x)
∣∣∣ dx1 dx2

) γ2+δ2
N+a−b−1

.

The rest of the proof consists in integrating with respect to the remaining variables and using
both Hölder and Minkowski inequalities accordingly, together with Proposition 1. We omit
the details. �

5 Comments about the main Theorem

Let us first discuss the fact that when p = 1 the condition ai > 0 for all i = 1, . . . , N in
Theorem 1 is not optimal. As we mentioned in Remark 1 and in Theorem 2, it is possible to
have the Sobolev-type inequality (8) for vectors A if some of the coordinates ai are 0, if the
respective bi are also 0. To see this, let 1 < k < N and consider A = (0, Ā) ∈ R

N−k × R
k

and B = (0, B̄) ∈ R
N−k × R

k . Recall that for x ∈ R
N the identity (18) is

∣∣∣x Bu(x)
∣∣∣

N
N+a−b−1 =

N∏
i=1

∣∣∣x A−ei u(x)
∣∣∣

γi
N+a−b−1 ×

N∏
i=1

∣∣∣x A−ai ei xbii u(x)
∣∣∣

δi
N+a−b−1

,
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but since ai = bi = 0 for all i = 1, . . . , N − k we deduce from (22) and (23) that γi = 0
and δi = 1 + b − a for all i = 1, . . . , N − k, hence identity (18) becomes

∣∣∣x Bu(z)
∣∣∣

N
N+a−b−1 =

N∏
i=N−k+1

∣∣∣x A−ei u(x̄, y)
∣∣∣

γi
N+a−b−1 ×

N∏
i=N−k+1

∣∣∣x A−ai ei xbii u(x̄, y)
∣∣∣

δi
N+a−b−1

×
∣∣∣y Āu(x̄, y)

∣∣∣
δi (N−k)
N+a−b−1

, (26)

where x̄ = (x1, . . . , xN−k) and y = (xN−k+1, . . . , xN ). The proof then continues in the
same fashion as in the proof of Theorem 1 with the observation that the last term in (26) is
bounded by

∣∣∣y Āu(x̄, y)
∣∣∣ ≤

N−k∏
i=1

(∫
R

∣∣∣y Ā∂xi u(x̄i , y)
∣∣∣ dxi

) 1
N−k

,

where x̄i = (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄N−k). �
Another topic we announced in Remark 1 is the changes one can make to the domain

of integration in (8). So far we have only stated and proved Theorem 1 when the domain
of integration is RN ; however, we claimed that Theorem remains valid if one changes the
domain of integration to R

N
I,+ or RN

I,−.
To see this, we first consider the corresponding 1-D result, that is

Proposition 2 Let a > 0 and b ∈ R such that 0 ≤ a − b ≤ 1, then for

p∗ = 1

a − b

there exists a constant C > 0 such that

(∫
R+

∣∣∣|y|b u(y)
∣∣∣p∗

dy

) 1
p∗ ≤ C

∫
R+

∣∣|y|a ∇u(y)
∣∣ dy. (27)

Proof The proof is analogous to the proof of Proposition 1. We only need to be careful with
the integrations by parts we performed, as we now integrate over (0,∞) instead of over R.
Case b = a − 1: When we integrate by parts we do it first over (ε,∞) for ε > 0 to obtain

∫ ∞

ε

|y|a−1 u(y) dy = 1

a

∫ ∞

ε

(|y|a−1 y
)′
u(y) dy

= −1

a
εau(ε) − 1

a

∫ ∞

ε

|y|a−1 yu′(y) dy.

Since a > 0 and u(ε) ≥ 0, we can drop the first term in the last line to obtain

∫ ∞

ε

|y|a−1 u(y) dy ≤ 1

a

∫
R+

∣∣|y|a u′(y)
∣∣ dy,

and we conclude by taking the limit as ε goes to 0.
Case b = a: Analogous to the proof of the respective case in Proposition 1, we only need to
consider y ≥ 0 instead of y ∈ R.
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Case 0 < a − b < 1: We again integrate over (ε,∞) for ε > 0 using bp∗ + 1 = ap∗ > 0
to drop the boundary term at ε, that is

∫ ∞

ε

|y|bp∗
u(y)p

∗
dy =

∫ ∞

ε

(
|y|bp∗

y

bp∗ + 1

)′
u(y)p

∗
dy

= − 1

bp∗ + 1
εbp

∗+1u(ε)p
∗+1 − 1

a

∫ ∞

ε

|y|bp∗
yu(y)p

∗−1u′(y) dy

≤ 1

a

∫ ∞

ε

|y|bp∗+1 |u(y)|p∗−1
∣∣u′(y)

∣∣ dy

≤ 1

a

∫ ∞

0

∣∣∣∣|y|
bp∗+1−a
p∗−1 u(y)

∣∣∣∣
p∗−1 ∣∣|y|a u′(y)

∣∣ dy
and we conclude using the same idea from Proposition 1 and then taking the limit ε → 0.

�
By performing a change of variables y �→ −y, we obtain immediately

Corollary 1 Let a > 0 and b ∈ R such that 0 ≤ a − b ≤ 1, then for

p∗ = 1

a − b

there exists a constant C > 0 such that
(∫

R−

∣∣∣|y|b u(y)
∣∣∣p∗

dy

) 1
p∗ ≤ C

∫
R−

∣∣|y|a ∇u(y)
∣∣ dy. (28)

Using these two results instead of Proposition 1 in the proof of Theorem 1 yield the
generalization where the domain is RN

I,+ or RN
I,−, that is we have

Theorem 4 Let N ≥ 1, p ≥ 1, A = (a1, . . . , aN ), B = (b1, . . . , bN ) ∈ R
N satisfying

1. ai > 0 for all i = 1, . . . , N,
2. 0 ≤ ai − bi < 1 for all i = 1, . . . , N,
3. 0 ≤ 1 + b − a ≤ N

p , where a := a1 + · · · + aN and b := b1 + · · · + bN ,

If p∗ ≥ 1 is such that
1

p∗ + b + 1

N
= 1

p
+ a

N
. (29)

Then there exists a universal constant C > 0 such that for all u ∈ C1
c (R

N ) and all I ⊆
{1, 2, . . . , N } we have

(∫
R
N
I,±

∣∣∣x Bu(x)
∣∣∣p∗

dx

) 1
p∗

≤ C

(∫
R
N
I,±

∣∣∣x A∇u(x)
∣∣∣p dx

) 1
p

, (30)

where RN
I,± is either RN

I,+ or RN
I,−.

Wewill not write the proof of this generalization as it is completely analogous to the proof
of Theorem 1. We just emphasize that whenever i ∈ I and we integrate with respect to the xi
variable we use Proposition 2 or Corollary 1 to obtain the respective estimates, and if i /∈ I
we use Proposition 1.
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6 A Sobolev-type trace inequality

In [3], the authors also proved the following Morrey-type inequality: If

R
N
A := {x ∈ R : xi > 0 if ai > 0},

then we have

Theorem 5 (Theorem 1.6 in [3]) Let N ≥ 1, p ≥ 1, A ∈ R
N satisfying a < 1 − N

p for
a = a1 + · · ·+ aN and ai ≥ 0 for all i = 1, . . . , N. Then there exists a constant C > 0 such
that for all x, y ∈ R

N and all u ∈ C1
c (R

N )

|u(x) − u(y)| ≤ C |x − y|1−a− N
p

∥∥∥x A∇u
∥∥∥
L p(RN

A )
.

A corollary of Theorems 1 and 5 is the following trace theorem

Theorem 6 Let N ≥ 1, p ≥ 1 and A ∈ R
k such that a < 1− k

p for a = a1 + · · · + ak with
ai > 0 for all i = 1, . . . , k. Then for

1

p∗
+ 1

N
= 1

p

(
N + k

N

)
+ a

N

there exists a constant C > 0 such that for all u ∈ C1
c (R

N+k)

(∫
RN

|u(x, 0)|p∗ dx

) 1
p∗ ≤ C

(∫
RN

∫
(R+)k

∣∣∣yA∇u(x, y)
∣∣∣p dy dx

) 1
p

,

where x = (x1, . . . , xN ) and y = (xN+1, . . . , xN+k).

Proof Observe that for every (x, y) ∈ R
N × (R+)k and A ∈ R

k satisfying a < 1 − k
p we

can use Theorem 5 in R
k to obtain

|u(x, y)| ≥ |u(x, 0)| − C0

(∫
(R+)k

∣∣∣s A∇ku(x, s)
∣∣∣p ds

) 1
p |y|1−a− k

p . (31)

Define

ρ(x) =

⎛
⎜⎜⎝ |u(x, 0)|
C0

(∫
(R+)k

∣∣s A∇ku(x, s)
∣∣p ds

) 1
p

⎞
⎟⎟⎠

p
(1−a)p−k

,

and for any q ≥ 1 raise (31) to the power q and integrate over the y variable to obtain
∫

(R+)k
|u(x, y)|q dy ≥

∫
Bρ(x)(0)∩(R+)k

|u(x, y)|q dy

≥
∫
Bρ(x)(0)∩(R+)k

(
|u(x, 0)|
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−C0

(∫
(R+)k

∣∣∣s A∇ku(x, s)
∣∣∣p ds

) 1
p |y|1−a− k

p

)q

dy

= Cq
0

(∫
(R+)k

∣∣sa∇ku(x, s)
∣∣p ds

) q
p

×
∫
Bρ(x)(0)∩(R+)k

(
ρ(x)1−a− k

p − |y|1−a− k
p

)q
dy

= C

(∫
(R+)k

∣∣sa∇ku(x, s)
∣∣p ds

) q
p

ρ(x)
k+q

(
1−a− k

p

)

×
∫ 1

0

(
1 − τ

1−a− k
p

)q
τ k−1 dτ

= C |u(x, 0)|q+ kp
(1−a)p−k

(∫
(R+)k

∣∣∣s A∇ku(x, s)
∣∣∣p ds

)− k
(1−a)p−k

,

hence

|u(x, 0)|q+ kp
(1−a)p−k ≤ C

(∫
(R+)k

|u(x, y)|q dy

)(∫
(R+)k

∣∣∣s A∇ku(x, s)
∣∣∣p ds

) k
(1−a)p−k

,

(32)
for all x ∈ R

N . We use (32) for q = p∗ = (N+k)p
N+k+(a−1)p : let

q0 = p∗ + kp

(1 − a)p − k
= (N + k)p

N + k + (a − 1)p
+ kp

(1 − a)p − k
,

then

|u(x, 0)|p∗ ≤ C

(∫
(R+)k

|u(x, y)|p∗
dy

) p∗
q0

(∫
(R+)k

∣∣∣s A∂yu(x, s)
∣∣∣p ds

) p∗k
q0((1−a)p−k)

,

and observe that

p∗
q0

+ p∗k
q0((1 − a)p − k)

= 1,

therefore we can integrate over x ∈ R
N and use Hölder inequality to obtain

∫
RN

|u(x, 0)|p∗ dx ≤ C

(∫
RN

∫
(R+)k

|u(x, y)|p∗
dy dx

) p∗
q0

×
(∫

RN

∫
(R+)k

∣∣∣yA∂yu(x, y)
∣∣∣p dy dx

) p∗
q0(p(1−a)−1)

≤ C

(∫
RN

∫
(R+)k

∣∣∣yA∇u(x, y)
∣∣∣p dy dx

) p∗ p∗
pq0

×
(∫

RN

∫
(R+)k

∣∣∣yA∇u(x, y)
∣∣∣p dy dx

) p∗
q0(p(1−a)−1)
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≤ C

(∫
RN

∫
(R+)k

∣∣∣yA∇u(x, y)
∣∣∣p dy dx

) p∗
pq0

(
p∗+ p

p(1−α)−1

)

≤ C

(∫
RN

∫
(R+)k

∣∣∣yA∇u(x, y)
∣∣∣p dy dx

) p∗
p

thanks to Theorem 1. �
An important case of the trace theorem above occurs when k = 1, that is

(∫
RN

|u(x, 0)|p∗ dx

) 1
p∗ ≤ C

(∫
RN

∫
R+

∣∣ya∇u(x, y)
∣∣p dy dx

) 1
p

, (33)

for all 0 ≤ a < 1 − 1
p . This kind of inequality is relevant in the context of the localization

of the fractional Laplacian obtained by Caffarelli and Silvestre in [4]. They show that if u
solves {

div(ya∇u(x, y)) = 0 (x, y) ∈ R
N × R+,

u(x, 0) = f (x) x ∈ R
N

then

lim
y→0+ −ya

∂u

∂y
(x, y) = CN ,a(−
)

1−a
2 f (x),

that is, trace operators like u(x, y) �→ u(x, 0) are meaningful for functions u satisfying the
integrability condition ‖ya∇u‖L p(RN×R+) < ∞.

Let us mention at this point that inequality (33) for p = 2 can be deduced with no major
effort from the standard Sobolev inequality in the fractional Sobolev spaces Hs as one can
prove

‖u(x, 0)‖Hσ (RN ) ≤ C
(∥∥y1−2σ u(x, y)

∥∥
L2(RN×R+)

+ ∥∥y1−2σ ∇u(x, y)
∥∥
L2(RN×R+)

)

For the case p > 1, we can mention the work of Grisvard [7] who did a more general study
of the embeddings and interpolation spaces between L p(RN+1+ , dμ) and W 1,p(RN+1+ , dμ)

for dμ = xaN dx , and the traces in L p(RN , dx) of function from W 1,p(RN+1+ , dμ).

Acknowledgements I would like to thank the referee for calling my attention to some typos throughout the
manuscript, and for pointing out a few details that needed to be clarified.
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