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Abstract We consider nonlinear Neumann problems driven by the p-Laplacian plus an
indefinite potential and with a superlinear reaction which need not satisfy the Ambrosetti–
Rabinowitz condition. First, we prove an existence theorem, and then, under stronger
conditions on the reaction, we prove a multiplicity theorem producing three nontrivial solu-
tions. Then, we examine parametric problems with competing nonlinearities (concave and
convex terms). We show that for all small values of the parameter λ > 0, the problem has
five nontrivial solutions and if p = 2 (semilinear equation), there are six nontrivial solutions.
Finally, we prove a bifurcation result describing the set of positive solutions as the parameter
λ > 0 varies.

Keywords p-Laplacian · Superlinear reaction · Multiple solutions · Critical groups ·
Competing nonlinearities · Bifurcation theorem · Indefinite potential · Neumann problem

G. Fragnelli: Member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità a e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), and supported by the
INdAM-GNAMPA Project 2016 Control, regularity and viability for some types of diffusive equations.

D. Mugnai: Member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità a e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), and supported by the
INdAM-GNAMPA Project 2016 Nonlocal and quasilinear operators in presence of singularities.

B Dimitri Mugnai
dimitri.mugnai@unipg.it

Genni Fragnelli
genni.fragnelli@uniba.it

Nikolaos S. Papageorgiou
npapg@math.ntua.gr

1 Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

2 Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia,
Italy

3 Department ofMathematics,NationalTechnicalUniversity, ZografouCampus, 15780Athens,Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-016-0582-7&domain=pdf


480 G. Fragnelli et al.

Mathematics Subject Classification 35J20 · 35J65 · 58E05

1 Introduction

In this paper, we study the following nonlinear Neumann problem

⎧
⎨

⎩

−�pu(z) + β(z)|u(z)|p−2u(z) = f (z, u(z)), in �,
∂u

∂n
= 0, on ∂�.

(1)

In this problem,� ⊂ R
N is a bounded domain withC2− boundary ∂� and n(·) stands for the

outward unit normal on ∂�. By �p , we denote the p-Laplace differential operator defined
by

�pu = div(|Du|p−2Du) for all u ∈ W 1,p(�) (1 < p < ∞).

The potential function β(·) may be sign-changing. So, in problem (1) the differential
operator is not in general coercive. The reaction f (z, x) is a Carathéodory function (that is,
for all x ∈ R the map z �→ f (z, x) is measurable, and for a.e. z ∈ � the map x �→ f (z, x)
is continuous).

The aim of this work is to study the existence and multiplicity of nontrivial solutions for
problem (1), when the reaction x �→ f (z, x) exhibits (p − 1)-superlinear growth near ±∞.
A special feature of our work is that the superlinearity of f (z, x) is not expressed using
the usual (in such cases) Ambrosetti–Rabinowitz condition (the AR-condition for short). In
fact, we employ an alternative condition which includes superlinear reactions with “slower”
growth near ±∞ and which fail to satisfy the AR-condition.

Then, we consider parametric equations with a reaction having the competing effects of
“concave” (sublinear) and “convex” (superlinear) terms, and we prove multiplicity results
for small values of a parameter λ > 0. Finally, we focus on positive solutions and prove
a bifurcation-type result near zero, describing the set of positive solutions as the parameter
λ > 0 varies.

Equationswith theNeumann p-Laplacian plus an indefinite potentialwere studied recently
by Mugnai–Papageorgiou [31], who developed the spectral properties of the indefinite dif-
ferential operator u �→ �pu + β(z)|u|p−2u and studied resonant equations driven by
such operators. Analogous Dirichlet problems were investigated by Cuesta [5], Cuesta–
Ramos Quoirin [6], Del Pezzo–Fernandez Bonder–Rossi [7], Fernandez Bonder–Del Pezzo
[10], Leadi–Yechoui [17] and Lopez Gomez [21]. We mention also the semilinear work of
Gasinski–Papageorgiou [15]. However, none of these works prove multiplicity results pro-
ducing five or six nontrivial solutions or, in the case of parametric problems, provide the
precise dependence on the solutions on the parameter. More precise comparisons with the
existing results in the literature will be given as we develop our existence and multiplicity
results.

Our approach uses variational methods based on critical point theory, together withMorse
theory (critical groups) and truncation, perturbation and comparison techniques. For the
reader’s convenience, in the next section we recall the main mathematical tools which we
will use in the sequel. Finally, we remark that we use Morse theory also to prove uniqueness
results (see Sect. 3), while in general it is used to provide multiplicity results.
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2 Mathematical background

Let X be a Banach space, and let X∗ be its topological dual. By 〈·, ·〉, we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X); we say that ϕ satisfies the “Cerami condition”
(the “C-condition” for short) if the following holds:

every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded
and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.

Using this condition, we can prove the following theorem, known as the “mountain pass
theorem,” due to Ambrosetti–Rabinowitz [3].

Theorem 1 If X is a Banach space, ϕ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X satisfy

max
{
ϕ(x0), ϕ(x1)

} ≤ inf
{
ϕ(x) : ‖x − x0‖ = ρ

} = ηρ, ‖x1 − x0‖ > ρ > 0,

set 
 :=
{
γ ∈ C([0, 1], X) : γ (0) = x0, γ (1) = x1

}
and

c := inf
γ∈


sup
t∈[0,1]

ϕ(γ (t)),

then c ≥ ηρ and c is a critical value for ϕ.

In the analysis of problem (1), we will use the Sobolev spaceW 1,p(�). By ‖·‖, we denote
the norm of this space. So, we have

‖u‖ = (‖u‖p
p + ‖Du‖p

p
) 1
p , for all u ∈ W 1,p(�).

In addition to the Sobolev space W 1,p(�), we will also use the Banach space C1(�̄). The
latter is an ordered Banach space with positive cone

C+ :=
{
u ∈ C1(�̄) : u(z) ≥ 0 for all z ∈ �̄

}
.

This cone above has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �̄

}
.

Let f0 : � × R → R be a Carathéodory function which has subcritical growth, i.e.,

| f0(z, x)| ≤ a0(z)(1 + |x |r−1) for a.e. z ∈ � and all x ∈ R,

with a0 ∈ L∞(�)+ = {
u ∈ L∞(�) : u ≥ 0

}
, and

1 < r < p∗ =
{

Np
N−p if p < N ,

∞ if p ≥ N .

Let F0(z, x) = ∫ x
0 f0(z, s) ds, and consider the C1 functional ϕ0 : W 1,p(�) → R defined

by

ϕ0(u) = 1

p
‖Du‖p

p −
∫

�

F0(z, u(z)) dz for all u ∈ W 1,p(�).

The next result can be found in Motreanu–Papageorgiou [25], and it is the outgrowth of the
nonlinear regularity theory of Lieberman [18].
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Proposition 2 If u0 ∈ W 1,p(�) is a local C1(�̄)-minimizer of ϕ0, i.e., there exists ρ0 > 0
such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(�̄) with ‖h‖C1(�̄) ≤ ρ0,

then u0 ∈ C1,α(�̄) for some α ∈ (0, 1) and it is also a local W 1,p(�)-minimizer of ϕ0, i.e.,
there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(�) with ‖h‖W 1,p(�) ≤ ρ1.

Remark 1 We mention that the first such a result relating local minimizers of functionals
was proved by Brezis–Nirenberg [4] for the space H1

0 (�).

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), v〉 =
∫

�

|Du|p−2(Du, Dv)
RN dz for all u, v ∈ W 1,p(�). (2)

The next proposition summarizes themain properties of thismap (see, for example, Gasinski–
Papageorgiou [14]).

Proposition 3 The map A : W 1,p(�) → W 1,p(�)∗ defined above is bounded (that is, maps
bounded sets to bounded sets), semicontinuous, monotone (thus maximal monotone) and of
type (S)+, i.e.,

if un ⇀ u in W 1,p(�) and lim supn→∞〈A(un), un − u〉 ≤ 0,
then un → u in W 1,p(�).

Let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. As usual, we set ϕc := {u ∈ X : ϕ(u) ≤
c}, Kϕ := {u ∈ X : ϕ′(u) = 0} and Kc

ϕ := {u ∈ Kϕ : ϕ(u) = c}.
Let (Y1, Y2)be a topological pair s.t.Y2 ⊂ Y1 ⊂ X . For every integer k ≥ 0, by Hk(Y1, Y2),

we denote the kth relative singular homology group with coefficients in a fixed field F of
characteristic zero (for example, F = R). Then the singular homology groups Hk(Y1, Y2)
are in fact F-vector spaces, and we denote by dimHk(Y1, Y2) their dimensions. Moreover,
the boundary homomorphism ∂ and the homomorphisms f∗ induced by maps f of pairs are
F-linear.

Consider an isolated element u ∈ Kc
ϕ . The critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U, ϕc ∩U\{u}) for all k ≥ 0,

whereU is a neighborhood of u s.t. Kϕ ∩ϕc∩U = {u}. The excision property of the singular
homology theory implies that the above definition of critical groups is independent of the
particular choice of the neighborhood U .
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Suppose that ϕ ∈ C1(X) satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let c <

inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ≥ 0.

The second deformation theorem (see, for example, Gasinski–Papageorgiou [13](p. 628)),
implies that the above definition of critical groups at infinity is independent of the particular
choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We define

M(t, u) =
∑

k≥0

dimCk(ϕ, u)tk for all t ∈ R and all u ∈ Kϕ,

P(t,∞) =
∑

k≥0

dimCk(ϕ,∞)tk for all t ∈ R.

Then the Morse relation says that
∑

u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), (3)

where Q(t) = ∑
k≥0 βk tk is a formal series in t ∈ R with nonnegative integer coefficients.

Next we consider the following nonlinear eigenvalue problem
⎧
⎨

⎩

−�pu(z) + β(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z), in �,
∂u

∂n
= 0, on ∂�.

(4)

Assuming that β ∈ Lq(�) with q >
Np

p − 1
= Np′, we know (see Mugnai–Papageorgiou

[31]) that (4) admits a smallest eigenvalue λ̂1(β) which is isolated and simple and admits the
following variational characterization:

λ̂1(β) = inf
{
�(u) : u ∈ W 1,p(�), ‖u‖p = 1

}
, (5)

where �(u) = ‖Du‖p
p + ∫

�
β(z)|u(z)|pdz for all u ∈ W 1,p(�). The infimum in (5) is

realized on the corresponding one-dimensional eigenspace. Then, from (5) it is clear that
the eigenfunctions corresponding to λ̂1(β) do not change sign. By û1(β), we denote the
positive, L p-normalized (that is ‖û1(β)‖p = 1) eigenfunction corresponding to λ̂1(β). We
know that û1(β) ∈ C1,α(�) for some α ∈ (0, 1) and if β ∈ L∞(�), then û1(β) ∈ intC+
(seeMugnai–Papageorgiou [31]). Since λ̂1(β) is isolated and the set of eigenvalues is closed,
the second eigenvalue is well defined by

λ̂2(β) = inf
{
λ̂ > λ̂1(β) : λ̂ is an eigenvalue of (4)

}
.

Let V := {
u ∈ W 1,p(�) : ∫

�
û1(β)udz = 0

}
. We define

λ̂V (β) := inf
{
�(u) : u ∈ V, ‖u‖p = 1

}
.

We know that (see Mugnai–Papageorgiou [31, Proposition 3.8])

λ̂1(β) < λ̂V (β) ≤ λ̂2(β).

If β ≥ 0, β �= 0, then λ̂1(β) > 0.
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If β ≡ 0, then we write λ̂1(0) = λ̂1, λ̂V (0) = λ̂V and λ̂2(0) = λ̂2. In this case, we have

λ̂1 = 0 and the corresponding eigenspace is R,

V =
{

u ∈ W 1,p(�) :
∫

�

u(z)dz = 0

}

and û1(0) = û1 = 1

|�|
1
p
N

,

where we have denoted by |·|N the Lebesguemeasure inRN .We alsomention that any eigen-
function corresponding to an eigenvalue λ̂ �= λ̂1(β) of (4) must be nodal (sign-changing).

Finally, let us fix our notations. Given x ∈ R, we set x± := max{±x, 0}. Then for
u ∈ W 1,p(�), we define u±(·) = u(·)±, and we know that u± ∈ W 1,p(�), |u| = u+ +
u−, u = u+ − u−.

If h : � × R → R is a measurable function, then we set

Nh(u)(·) := h(·, u(·)), for all u ∈ W 1,p(�),

the Nemytski map associated with the function h. Evidently, if h is a Carathéodory function,
the map z �→ Nh(u)(z) = h(z, u(z)) is measurable.

3 Existence theorem

In this section, we prove an existence theorem for problem (1). In the special case where
β ≡ 0, our result illustrates the difference between the superlinear Dirichlet and Neumann
problems.

The hypotheses on the reaction f (z, x) are the following:

Hypothesis 1 f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.e.
z ∈ � and

(1) | f (z, x)| ≤ a(z)(1 + |x |r−1) for a.e. z ∈ �, all x ∈ R and with a ∈ L∞(�)+, 1 < p <

r < p∗;
(2) if F(z, x) = ∫ x

0 f (z, s)ds, then

lim
x→±∞

F(z, x)

|x |p = +∞ uniformly for a.e. z ∈ �;

(3) if ξ(z, x) = f (z, x)x − pF(z, x), then there exists β∗ ∈ L1(�)+ := {
u ∈ L1(�) : u ≥

0
}
such that

ξ(z, x) ≤ ξ(z, y) + β∗(z) for a.e. z ∈ � and all 0 ≤ x ≤ y or y ≤ x ≤ 0;
(4) there exist δ > 0 and θ ∈ (λ̂1(β), λ̂V (β)) such that

λ̂1(β)

p
|x |p ≤ F(z, x) ≤ θ

p
|x |p for a.e. z ∈ �, all |x | ≤ δ.

Remark 2 Hypothesis 1.(2) implies that the primitive F(z, ·) is p-superlinear near ±∞.

This hypothesis together with 1.(3) implies that the reaction f (z, ·) is (p − 1)-superlinear
near ±∞. However, note that we do not employ the usual AR-condition. We recall that the
AR-condition says that there exist q > p and M > 0 such that

0 < qF(z, x) ≤ f (z, x)x for a.e. z ∈ � and for all |x | ≥ M (6)

and essinf
�

F(·,±M) > 0 (7)
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(see Ambrosetti–Rabinowitz [3] and Mugnai [26,27]). Integrating (6) and using (7), we
obtain

c1|x |q ≤ F(z, x) for a.e. z ∈ �, all |x | ≥ M, with c1 > 0. (8)

The AR-condition ensures that the C-condition holds for the energy functional associated
with problem (1). From (8), we see that the AR-condition implies that F(z, ·) has at least q-
polynomial growth near ±∞. This fact excludes from consideration p-superlinear potential
functions which have “slower” growth near±∞ (see the examples below). So, instead of the
AR-condition, we employ Hypothesis 1.(3), which fits such nonlinearities in our framework.
An analogous, but global condition, was first used by Jeanjean [16]. More precisely, Jeanjean
[16] assumed the following:

there exists θ > 1 such that

ξ(z, λx) ≤ θξ(z, x) for all (z, x) ∈ � × R and all λ ∈ [0, 1]. (9)

The drawback of condition (9) is that it is global, and so many nonlinearities of interest
fail to satisfy it. More recently, Miyagaki–Souto [22], working on a parametric, semilinear
(that is p = 2) Dirichlet problem, assumed the following:

for all z ∈ �, ξ(z, ·) is increasing on [M,+∞) and decreasing on (−∞,−M]. (10)

In fact, one can show that (10) above is equivalent to saying that

for all z ∈ � the map x �→ f (z, x)

|x |p−2x

is increasing on [M,+∞) and decreasing on (−∞,−M].
(11)

Of course, our Hypothesis 1.(3) is weaker than (10) and (11). It is also weaker than the
condition used by Li–Yang [20], where f (z, x) is continuous on �̄ × R and β∗ is constant.
In Li–Yang [20], the interested reader can find a nice survey of different generalizations of
the AR-condition which exist in the literature and how they are related to each other.

Example 1 The following functions satisfy Hypothesis 1. For the sake of simplicity, we drop
the z-dependence:

f1(x) = λ̂1(β)|x |p−2x + |x |r−2x, with 1 < p < r < p∗,

f2(x) =

⎧
⎪⎨

⎪⎩

λ̂1(β)|x |p−2x, if |x | ≤ 1,

|x |p−2x

(

ln |x | + λ̂1(β)

p

)

, if |x | > 1.

Note that f2 fails to satisfy the AR-condition.

Let ϕ : W 1,p(�) → R be the energy functional for problem (1) defined by

ϕ(u) = 1

p
�(u) −

∫

�

F(z, u(z))dz for all u ∈ W 1,p(�),

where we recall that

�(u) = ‖Du‖p
p +

∫

�

β(z)|u(z)|pdz for all u ∈ W 1,p(�).

Under our assumptions, it is standard to show that ϕ ∈ C1(W 1,p(�)).
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Proposition 4 If Hypothesis 1.(1–3) holds and β ∈ Lq(�) with q > Np′ = Np

p − 1
, then

the functional ϕ satisfies the C-condition.

Proof Let {un}n≥1 ⊆ W 1,p(�) be a sequence such that

|ϕ(un)| ≤ M1 for some M1 > 0, all n ≥ 1 (12)

and
(1 + ‖un‖)ϕ′(un) → 0 in W 1,p(�)∗ as n → ∞. (13)

From (12) and (13), we obtain
∫

�

ξ(z, un)dz ≤ M2 for all n ≥ 1. (14)

Claim {un}n≥1 ⊆ W 1,p(�) is bounded. We argue by contradiction. Thus, suppose that

‖un‖ → ∞ as n → ∞. (15)

Let yn = un
‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

yn ⇀ y in W 1,p(�) and yn → y in Lr (�) as n → ∞. (16)

First suppose that y �= 0 and let �0 := {z ∈ � : y(z) = 0}. Then
|un(z)| → ∞ for a.e. z ∈ �c

0.

Then, Hypothesis 1.(2) and Fatou’s Lemma imply that

lim
n→∞

∫

�

F(z, un(z))

‖un‖p
dz = ∞. (17)

On the other hand, from (12), we have that
∫

�

F(z, un(z))

‖un‖p
dz ≤ M3 for some M3 > 0 and all n ≥ 1, (18)

(note that {�(un)}n≥1 ⊆ R is bounded). Comparing (17) and (18), we reach a contradiction.
Next suppose that y = 0. We fix η > 0 and define

vn = (2η)
1
p yn ∈ W 1,p(�) for all n ≥ 1.

Evidently

vn → 0 in Lr (�)

(see (16) and recall that y = 0). Using Krasnoselskii’s Theorem (see, for example, Gasinski–
Papageorgiou [13, Theorem 3.4.4]), we have

∫

�

F(z, vn)dz → 0, as n → ∞. (19)

Because of (15), we can find n0 ≥ 1 such that

0 < (2η)
1
p

1

‖un‖ ≤ 1 for all n ≥ n0. (20)
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Let tn ∈ [0, 1] be such that
ϕ(tnun) = max

0≤t≤1
ϕ(tun).

From (20), it follows that

ϕ(tnun) ≥ ϕ(vn)

= 2η�(yn) −
∫

�

F(z, vn)dz for all n ≥ 1.
(21)

Since, by assumption, q > Np′ = Np

p − 1
, we have q ′ < (Np′)′ = Np

Np − p + 1
(recall

for any τ ∈ (1,∞),
1

τ
+ 1

τ ′ = 1). So, it follows that pq ′ < p∗. For u ∈ W 1,p(�), from the

Sobolev embedding theorem, we have |u|p ∈ Lq ′
(�). Using Hölder’s inequality, we obtain

∣
∣
∣
∣

∫

�

β(z)|u|pdz
∣
∣
∣
∣ ≤ ‖β‖q‖u‖p

pq ′ . (22)

We have

W 1,p(�) ↪→ L pq ′
(�) ↪→ L p(�)

and the first embedding is compact (recall that pq ′ < p∗). So by Ehrling’s inequality (see,
for example, Papageorgiou–Kyritsi [34] (p. 698)), given ε > 0, we can find c(ε) > 0 such
that

‖u‖p
pq ′ ≤ ε‖u‖p + c(ε)‖u‖p

p for all u ∈ W 1,p(�). (23)

Then, from (22) and (23), we have

(1 − ε‖β‖q)‖u‖p ≤ �(u) + (1 + c(ε)‖β‖q)‖u‖p
p for all u ∈ W 1,p(�). (24)

Now, we return to (21) and use (24). Then

ϕ(tnun) ≥ 2η[(1−ε‖β‖q)−(1+c(ε)‖β‖q)‖yn‖p
p]−

∫

�

F(z, vn)dz for all n ≥ n0

(25)
(recall that ‖yn‖ = 1 for all n ≥ 1).

Choose ε ∈
(

0,
1

‖β‖q
)

and note that

‖yn‖p
p → 0 as n → ∞

(see (16) and recall y = 0), and
∫

�

F(z, vn)dz → 0 as n → ∞

from (19). So, by (25), it follows that given δ ∈
(
0, 2η(1 − ε‖β‖q)

)
, we can find n1 =

n1(δ) ≥ n0 such that

ϕ(tnun) ≥ 2η(1 − ε‖β‖q) − δ for all n ≥ n0.

Since η > 0 and δ > 0 are arbitrary, by letting η → ∞ and δ → 0+, we conclude that

ϕ(tnun) → ∞ as n → ∞. (26)
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Note that

ϕ(0) = 0 and ϕ(un) ≤ M1 for all n ≥ 1

by (12). Therefore, (26) implies that tn ∈ (0, 1) for all n ≥ n1. Hence

d

dt
ϕ(tun) |t=tn= 0 for all n ≥ n1,

�⇒ �(tnun) =
∫

�

f (z, tnun)tnundz for all n ≥ n1.
(27)

Since u+
n and −u−

n have disjoint interior supports and ξ(z, 0) = 0 for a.e. z ∈ �, using
Hypothesis 1.(3) we have

∫

�

ξ(z, tnun)dz ≤
∫

�

ξ(z, un)dz + 2‖β∗‖1 for all n ≥ n1.

Using the definition of ξ , (27) and (14), we obtain

pϕ(tnun) ≤
∫

�

ξ(z, un)dz + ‖β∗‖1 ≤ M4 (28)

for some M4 > 0 and all n ≥ n1. Comparing (26) and (28), we reach a contradiction. This
proves the claim.

By virtue of the claim, we may assume that

un ⇀ u in W 1,p(�) and un → u in Lr (�) and in Lq ′
(�). (29)

We return to (13), choosing un − u ∈ W 1,p(�) as test function, we pass to the limit as
n → ∞ and use (29). Then

lim
n→∞〈A(un), un − u〉 = 0,

and by Proposition 3, un → u ∈ W 1,p(�) as n → ∞.
Therefore, we conclude that the functional ϕ satisfies the C-condition. ��

Proposition 5 If Hypothesis 1.(1–3) holds, β ∈ Lq(�) with q > Np′ = Np

p − 1
and

inf ϕ(Kϕ) > −∞, then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof By virtue of Hypothesis 1.(1, 2), given any η > 0, we can find cη > 0 such that

F(z, x) ≥ η

p
|x |p − cη for a.e. z ∈ � and all x ∈ R. (30)

For u ∈ W 1,p(�), u �= 0 and t > 0, choosing η > 0 big, we have

ϕ(tu) → −∞ as t → ∞. (31)

Hypothesis 1.(3) implies that for all u ∈ W 1,p(�), we have

0 = ξ(z, 0) ≤ ξ(z, u+(z)) + β∗(z) and 0 = ξ(z, 0) ≤ ξ(z,−u−(z)) + β∗(z) for a.e. z ∈ �.

Since u+ and u− have disjoint interior supports, we have

0 = ξ(z, 0) ≤ ξ(z, u(z)) + β∗(z) for a.e. z ∈ �.

Hence,
pF(z, u(z)) − f (z, u(z))u(z) ≤ β∗(z) for a.e. z ∈ �. (32)
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For u ∈ W 1,p(�), u �= 0 and t > 0, we have

d

dt
ϕ(tu) ≤ 1

t
[pϕ(tu) + ‖β∗‖1] (see (32)). (33)

Because of (31), choosing μ0 < −‖β∗‖1
p

, we have

d

dt
ϕ(tu) < 0 for t > 0 large enough. (34)

Let ∂B1 := {u ∈ W 1,p(�) : ‖u‖ = 1}. For u ∈ ∂B1, we can find a maximal θ(u) > 0
such that ϕ(θ(u)u) = μ0, and the implicit function theorem implies that θ ∈ C(∂B1). We
extend θ to all of W 1,p(�)\{0} by setting

θ0(u) = 1

‖u‖θ

(
u

‖u‖
)

for all u ∈ W 1,p(�)\{0}.

Clearly θ0 ∈ C(W 1,p(�)\{0}) and ϕ(θ0(u)u) = μ0 for all u ∈ W 1,p(�)\{0}. Moreover,
ϕ(u) = μ0 implies that θ(u) = 1. We set

θ̂0(u) :=
{
1, if ϕ(u) ≤ μ0,

θ0(u), if ϕ(u) > μ0.
(35)

Then θ̂0 ∈ C(W 1,p(�)\{0}).
Now, we consider the homotopy h : [0, 1]× (W 1,p(�)\{0}) → W 1,p(�)\{0} defined by

h(t, u) = (1 − t)u + t θ̂0(u)u for all (t, u) ∈ [0, 1] × (W 1,p(�)\{0}).
We have

h(0, u) = u, h(1, u) = θ̂0(u)u ∈ ϕμ0 for all u ∈ W 1,p(�)\{0}
and

h(t, ·) |ϕμ0 = id |ϕμ0 for all t ∈ [0, 1] (see (35)).

This shows that ϕμ0 is a strong deformation retract of W 1,p(�)\{0}.
Of course, ∂B1 is a retract ofW 1,p(�)\{0}by the radial retraction r0(u) = u

‖u‖ .Moreover,

using the deformation

ĥ(t, u) = (1 − t)u + tr0(u) for all (t, u) ∈ [0, 1] × (W 1,p(�)\{0}),
we see that W 1,p(�)\{0} is deformable onto ∂B1. Then [9, Theorem 6.5, p. 325] implies
that

∂B1 is a deformation retract of W 1,p(�)\{0}.
Thus, we infer that ϕμ0 and ∂B1 are homotopy equivalent, so that

Hk(W
1,p(�), ϕμ0) = Hk(W

1,p(�), ∂B1) for all k ≥ 0, (36)

see [24, Proposition 6.11].
Since W 1,p(�) is infinite dimensional, ∂B1 is contractible in itself. So, from Motreanu–

Motreanu–Papageorgiou [24, Propositions 6.24 and 6.25], we have

Hk(W
1,p(�), ∂B1) = 0 for all k ≥ 0 �⇒ Hk(W

1,p(�), ϕμ0) = 0 for all k ≥ 0.
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Choosing μ0 < inf ϕ(Kϕ) even more negative if necessary, we conclude that

Ck(ϕ,∞) = 0 for all k ≥ 0 (see Section 2).

��

Next we look at the critical groups of ϕ at u = 0.

Proposition 6 If Hypothesis 1 holds, β ∈ Lq(�) with q > Np′ = Np

p − 1
and 0 is an

isolated critical point for ϕ, then C1(ϕ, 0) �= 0.

Proof Let V =
{
u ∈ W 1,p(�) :

∫

�

û1(β)udz = 0
}
. Then we have the following direct

sum decomposition:

W 1,p(�) = Rû1(β) ⊕ V .

Since the norms on Rû1(β) are equivalent, we can find δ̂ > 0 such that if u ∈ Rû1(β) and
‖u‖ ≤ δ̂, then |u(z)| ≤ δ for all z ∈ �̄. So, for such a u ∈ Rû1(β) (u = σ û1(β)), we have

ϕ(u) = 1

p
�(u) −

∫

�

F(z, u)dz ≤ 1

p
�(u) − λ̂1(β)

p
‖u‖p

p (see Hypothesis 1.(4))

= |σ |p
p

[�(û1(β)) − λ̂1(β)] = 0 (recall that ‖û1(β)‖p = 1).

On the other hand, from Hypotheses 1.(1) and 1.(4) we have

F(z, x) ≤ θ

p
|x |p + c3|x |r for a.e. z ∈ �, all x ∈ R and some c3 > 0. (37)

If u ∈ V , then, from Hypothesis 1.(4),

ϕ(u) = 1

p
�(u) −

∫

�

F(z, u)dz

≥ 1

p
[�(u) − θ‖u‖p

p] − c4‖u‖r for some c4 > 0

≥ c5‖u‖p − c6‖u‖r for some c5, c6 > 0.

Since r > p, it follows that for ρ ∈ (0, 1) small enough, we have

ϕ(u) ≥ 0 for all u ∈ V with ‖u‖ ≤ ρ.

Then, from Motreanu–Motreanu–Papageorgiou [24, Corollary 6.88], we conclude that
C1(ϕ, 0) �= 0. ��

Now, we are ready for our first existence theorem concerning problem (1). As usual, in
what followswe assume that Kϕ is finite (otherwisewe already have infinitelymany solutions
for problem (1).

Theorem 7 If Hypothesis 1 holds and β ∈ Lq(�) with q > Np′ = Np

p − 1
, then problem

(1) admits a nontrivial solution u0 ∈ C1,α(�), α ∈ (0, 1).
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Proof Let ε > 0 be so small that ϕ(Kϕ) ∩ [−ε, ε] = {0 = ϕ(0)}. Pick c < inf ϕ(Kϕ),
c < −ε. We have

dimCk(ϕ, 0) = dimHk(ϕ
ε, ϕ−ε) for all k ≥ 0. (38)

Moreover, by definition, we have

Hk(W
1,p(�), ϕc) = Ck(ϕ,∞) for all k ≥ 0. (39)

We consider the following quadruple of sets

ϕc ⊆ ϕ−ε ⊆ ϕε ⊆ W 1,p(�).

From Motreanu–Motreanu–Papageorgiou [24, Lemma 6.90], we have

dimHk(ϕ
ε, ϕ−ε) ≤ dimHk−1(ϕ

−ε, ϕc)

+ dimHk+1(W
1,p(�), ϕε) + dimHk(W

1,p(�), ϕc) for all k ≥ 0,

�⇒ dimCk(ϕ, 0) ≤ dimHk−1(ϕ
−ε, ϕc) + dimHk+1(W

1,p(�), ϕε)

+ dimCk(ϕ,∞) for all k ≥ 0

(see (38) and (39)).

In particular, for k = 1, by Propositions 5 and 6, we have

1 ≤ dimH0(ϕ
−ε, ϕc) + dimH2(W

1,p(�), ϕε). (40)

From (40) it follows that at least one between H0(ϕ
−ε, ϕc) and H2(W 1,p(�), ϕε) is nontriv-

ial. But H0(ϕ
−ε, ϕc) is trivial, since ϕ satisfies the C-condition and it is not bounded below,

see Motreanu–Motreanu–Papageorgiou [24, Proposition 6.64(b)].
Then, H2(W 1,p(�), ϕε) is nontrivial, so that there is

u0 ∈ Kϕ with ϕ(u0) > 0 = ϕ(0),

see [24, Proposition 6.53].
Thus, u0 �= 0 and it is a solution problem (1). Moreover, the local nonlinear regularity

result of Di Benedetto [8] implies that u0 ∈ C1,α
0 (�) with α ∈ (0, 1). ��

Remark 3 If β ∈ L∞(�), then u0 ∈ C1,α(�̄) (see Lieberman [18]). Suppose that β ≡ 0
and f (z, x) = f (x) = |x |r−2x with p < r < p∗. This reaction satisfies Hypothesis 1.
If we consider the Dirichlet problem with this special reaction, then we know that it has
at least three nontrivial solutions, two of which have constant sign. We refer to Wang [38]
(p = 2, semilinear problem) and to Mugnai–Papageorgiou [32] (for p �= 2 and even for
nonhomogeneous equations). Note that the Neumann problem cannot have constant sign
solutions, since necessarily we have

∫

�
|u(z)|r−2u(z)dz = 0. So, we see that the superlinear

Dirichlet and Neumann problems differ considerably.

4 Multiple solutions

In this section, we look for multiple solutions to problem (1). More precisely, our aim is
to have the “Neumann” analogue of the three solutions theorem of Wang [38], where the
problem is Dirichlet, semilinear (that is p = 2), f (z, x) = f (x) with f ∈ C1(R), the
AR-condition holds and β ≡ 0. The result of Wang [38] was extended to linearly perturbed
problems by Mugnai [27] and Rabinowitz–Su–Wang [36] and to nonlinear and nonhomoge-
neous equations by Mugnai–Papageorgiou [32].
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Now the hypotheses of the reaction f are the following:

Hypothesis 2 f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.e.
z ∈ �, Hypothesis 2.(1–3) is the same as the corresponding Hypothesis 1.(1–4). There exist
θ0 ∈ L∞(�) and η0 > 0 such that

θ0(z) ≤ λ̂1(β) for a.e. z ∈ �, θ0 �= λ̂1(β)

and

−η0 ≤ lim inf
x→0

f (z, x)

|x |p−2x
≤ lim sup

x→0

f (z, x)

|x |p−2x
≤ θ0(z) uniformly for a.e. z ∈ �.

First we produce nontrivial solutions of constant sign.
To this end, we introduce the following truncations-perturbations of the reaction f :

f̂+(z, x) =
{
0, if x ≤ 0,

f (z, x) + γ x p−1, if 0 < x
and

f̂−(z, x) =
{
f (z, x) + γ |x |p−2x, if x < 0,

0, if 0 ≤ x,

(41)

where γ > (1 + c(ε)‖β‖q) (see the proof of Proposition 4), once ε is chosen. We set

F̂±(z, x) =
∫ x

0
f̂±(z, s)ds.

Then, set β̂(z) = β(z) + γ and define

�̂(u) = ‖Du‖p
p +

∫

�

β̂(z)|u(z)|pdz for all u ∈ W 1,p(�).

Finally, we consider the C1-functional ϕ̂± : W 1,p(�) → R defined by

ϕ̂±(u) = 1

p
�̂(u) −

∫

�

F̂±(z, u(z))dz for all u ∈ W 1,p(�).

Proposition 8 If Hypothesis 2 holds and β ∈ Lq(�) with q > Np′ = Np

p − 1
, then u = 0 is

a strict local minimizer for functionals ϕ̂± and ϕ.

Proof We do the proof for the functional ϕ̂+, the proofs for ϕ̂− and ϕ being similar. By virtue
of Hypothesis 2.(1, 4), given ε > 0, we can find c7 = c7(ε) > 0 such that

F(z, x) ≤ 1

p
(θ0(z) + ε)|x |p + c7|x |r for a.e. z ∈ �, all x ∈ R. (42)

Then for u ∈ W 1,p(�) and ε > 0 small, we have

ϕ̂+(u) ≥ c10‖u‖p − c8‖u‖r for some c10 > 0, (43)

see Mugnai–Papageorgiou [31, Lemma 4.11]. Since r > p, from (43) we infer that there
exists ρ > 0 such that

ϕ̂+(u) > 0 = ϕ̂+(0) for all 0 < ‖u‖ ≤ ρ.

This proves that u = 0 is a (strict) local minimizer of ϕ̂+. Similarly for the functionals
ϕ̂− and ϕ. ��
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Using Hypothesis 2.(2), as in the proof of Proposition 5 (see (31)), we show that:

Proposition 9 If Hypothesis 2 holds and β ∈ Lq(�)with q > Np′ = Np

p − 1
, then for every

u ∈ C+\{0}, we have ϕ̂±(tu) → −∞ as t → ±∞.

Since in Proposition 4 we only used Hypothesis 1.(1–3), we immediately have:

Proposition 10 If Hypothesis 2 holds and β ∈ Lq(�) with q > Np′ = Np

p − 1
, then

functionals ϕ̂± satisfy the C-condition.

Now, we are ready to produce two nontrivial solutions of constant sign.

Proposition 11 If Hypothesis 2 holds and β ∈ Lq(�)with q > Np′ = Np

p − 1
, then problem

(1) admits at least two nontrivial solutions of constant sign û, v̂ ∈ C1,α(�) ∩ L∞(�) with
α ∈ (0, 1) such that

v̂(z) < 0 < û(z) for all z ∈ �.

Proof By virtue of Proposition 8 (see (43)), we can find ρ ∈ (0, 1) so small that

ϕ̂+(0) = 0 < inf
{
ϕ̂+(u) : ‖u‖ = ρ

}
:= m̂+. (44)

Then (44), together with Propositions 9 and 10, implies that we can use Theorem 1 (the
mountain pass theorem). So, we can find û ∈ W 1,p(�) such that

ϕ̂+(0) = 0 < m̂+ ≤ ϕ̂+(û) (45)

and
ϕ̂′+(û) = 0. (46)

From (45), we see that û �= 0, while from (46), we have

A(û) + β̂(z)|û|p−2û = N f̂+(û). (47)

On (47), we act with −û− ∈ W 1,p(�). Then

�(û−) + γ ‖û−‖p
p = 0 (see (41)). (48)

From (24) with ε > 0 small, we have

(1 − ε‖β‖q)‖û−‖p − (1 + c(ε)‖β‖q)‖û−‖p
p ≤ �(û−). (49)

Since γ > (1 + c(ε)‖β‖q), from (48) and (49) it follows that

c11‖û−‖p ≤ 0 (50)

for some c11 > 0, which implies

û ≥ 0, û �= 0.

So, (47) becomes

A(û) + β(z)û p−1 = N f (û),
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that is
⎧
⎨

⎩

−�pû(z) + β(z)û(z)p−1 = f (z, û(z)), for a.e. z ∈ �,

∂ û

∂n
= 0, on ∂�.

Using the Moser iteration technique, we have that û ∈ L∞(�) (see Winkert [39]). There-
fore, the local regularity result of Di Benedetto [8], implies that û ∈ C1,α(�)with α ∈ (0, 1).
Moreover, invoking the Harnack inequality of Pucci–Serrin [35, Theorem 7.2.1], we have

0 < û(z) for all z ∈ �.

In a similar fashion, working this timewith the functional ϕ̂−, we obtain another nontrivial
constant sign solution v̂ ∈ C1,α(�) ∩ L∞(�) with v̂(z) < 0 for all z ∈ �. ��

If we strengthen the hypothesis on the potential function β, we can improve the conclusion
of Proposition 11.

Proposition 12 If Hypothesis 2 holds and β ∈ L∞(�), then problem (1) has at least two
nontrivial solutions of constant sign

û ∈ intC+ and v̂ ∈ −intC+.

Proof From Proposition 11, we already have two solutions û, v̂ ∈ C1,α(�) ∩ L∞(�), α ∈
(0, 1), such that

v̂(z) < 0 < û(z) for all z ∈ �.

Using Lieberman [18, Theorem 2], we have that

û, v̂ ∈ C1,α(�̄).

Hypothesis 2.(1, 4) implies that given ρ > 0, we can find ξρ > 0 such that

f (z, x)x + ξρ |x |p ≥ 0 for a.e. z ∈ �, all |x | ≤ ρ. (51)

Then, for ρ = ‖û‖∞ and ξρ > 0 as in (51), we have

�pû(z) ≤ (‖β‖∞ + ξρ)û(z)p−1 a.e. in �,

so that û > 0 in � by Pucci–Serrin [35, Theorem 5.3.1], and then, using the Neumann
condition, û ∈ intC+, see Pucci–Serrin [35, Theorem 5.5.1].

Similarly, we show that v̂ ∈ −intC+. ��
To produce a third solution, we use Morse theory. So, first we compute the critical groups

of functionals ϕ̂± at infinity. The proof follows the steps in the proof of Proposition 5, with
some necessary modifications, and assuming that 0 is the lowest critical value.

Proposition 13 If Hypothesis 2 holds, β ∈ Lq(�) with q > Np′ = Np

p − 1
and ϕ(Kϕ) ≥ 0,

then Ck(ϕ̂+,∞) = Ck(ϕ̂−,∞) = 0 for all k ≥ 0.

Proof We do the proof for the functional ϕ̂+, the proof for ϕ̂− being similar. Recall that
∂B1 = {u ∈ W 1,p(�) : ‖u‖ = 1} and let ∂B+

1 := {u ∈ ∂B1 : u+ �= 0}. We consider the
deformation h+ : [0, 1] × ∂B+

1 → ∂B+
1 defined by
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h+(t, u) = (1 − t)u + t û1(β)

‖(1 − t)u + t û1(β)‖ for all (t, u) ∈ [0, 1] × ∂B+
1 .

Note that

h+(1, u) = û1(β)

‖û1(β)‖ ∈ ∂B+
1 for all u ∈ ∂B+

1 ,

so that
∂B+

1 is contractible in itself. (52)

Hypothesis 2.2 implies that for all u ∈ ∂B+
1 , we have

ϕ̂+(tu) → −∞ as t → ∞. (53)

For every u ∈ ∂B+
1 , we have

d

dt
ϕ̂+(u) ≤ 1

t
[pϕ̂+(tu) + ‖β∗‖1]. (54)

From (53) and (54), it follows that

d

dt
ϕ̂+(tu) < 0 for all u ∈ ∂B+

1 and for all t > 0 large enough. (55)

Now, choose θ ∈ R
− such that

θ < min

{

−‖β∗‖1
p

, inf
B̄1

ϕ̂+
}

(B̄1 = {u ∈ W 1,p(�) : ‖u‖ ≤ 1}). (56)

Using (55) and reasoning as in the proof of Proposition 5, via the implicit function theorem,
we can find a unique function � ∈ C(∂B1), � ≥ 1 such that

ϕ̂+(tu)

⎧
⎪⎨

⎪⎩

> θ, if t ∈ [0,�(u)),

= θ, if t = �(u),

< θ, if t > �(u).

(57)

From (56) and (57), we have

ϕ̂θ+ = {
tu : u ∈ ∂B1, t ≥ �(u)

}
.

We introduce

D+ = {
tu : u ∈ ∂B+

1 , t ≥ 1
}
.

Since � ≥ 1, it follows that ϕ̂θ+ ⊆ D+. We consider the deformation ĥ+ : [0, 1]× D+ →
D+ defined by

ĥ+(s, tu) =
{

(1 − s)tu + s�(u)tu, if t ∈ [1,�(u)],
tu, if t > �(u).

Note that, using the definition of �, one has

ĥ+(0, tu) = tu, ĥ+(1, tu) = �(u)tu ∈ ϕ̂θ+ (see (57))

and

ĥ(s, ·) |ϕ̂θ+= id |ϕ̂θ+ for all s ∈ [0, 1].
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This means that ϕ̂θ+ is a strong deformation retract of D+ and so we have

Hk(W
1,p(�), D+) = Hk(W

1,p(�), ϕ̂θ+) for all k ≥ 0, (58)

see [24, Corollary 6.15(a)].
Therefore, we consider the deformation h̃+ : [0, 1] × D+ → D+ defined by

h̃+(s, tu) = (1 − s)(tu) + s
tu

‖tu‖ .

This implies that D+ is deformable into ∂B+
1 and clearly the latter is a retract of D+.

Therefore, [9, Theorem 6.5] implies that ∂B+
1 is a deformation retract of D+ and so we have

Hk(W
1,p(�), D+) = Hk(W

1,p(�), ∂B+
1 ) for all k ≥ 0. (59)

From (58) and (59), it follows that

Hk(W
1,p(�), ϕ̂θ+) = Hk(W

1,p(�), ∂B+
1 ) = 0 for all k ≥ 0,

see [24, Propositions 6.24 and 6.25], since ∂B+
1 is contractible in itself by (52). Hence, from

the choice of θ in (56), we get

Ck(ϕ̂+,∞) = 0 for all k ≥ 0.

Similarly, we show that

Ck(ϕ̂−,∞) = 0 for all k ≥ 0.

��
Using this proposition, we can compute exactly the critical groups of the two constant sign

solutions û ∈ intC+ and v̂ ∈ −intC+ produced in Proposition 12. As always, we assume
that Kϕ is finite.

Proposition 14 If Hypothesis 2 holds and β ∈ L∞(�), then Ck(ϕ, û) = Ck(ϕ, v̂) =
δk,1F for all k ≥ 0.

Proof We do the proof for û ∈ intC+, the proof for v̂ ∈ −intC+ being similar. Note that
ϕ |C+= ϕ̂+ |C+ (see (41)). Consider the homotopy ĥ(t, u) = (1 − t)ϕ(u) + t ϕ̂+(u) for all
(t, u) ∈ [0, 1] × W 1,p(�). Suppose we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p(�)

such that

tn → t ∈ [0, 1], un → û in W 1,p(�) and ĥ′
u(tn, un) = 0 for all n ≥ 1. (60)

We have
⎧
⎪⎪⎨

⎪⎪⎩

− �pun(z) + β|un |p−2un − tnγ u
−
n (z)p

= (1 − tn) f (z, un(z)) + tn f (z, u
+
n (z))

for a.e. z ∈ �,

∂un
∂n

= 0, on ∂�.

From Lieberman [18, Theorem 2], we know that we can find α ∈ (0, 1) and M5 > 0 such
that

un ∈ C1,α(�̄) and ‖un‖C1,α(�̄) ≤ M5 for all n ≥ 1.
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Exploiting the compact embedding ofC1,α(�̄) intoC1(�̄), from the convergence in (60),
we have

un → û in C1(�̄).

Since û ∈ intC+, we have un ∈ C+\{0} for all n ≥ n0; hence, {un}n≥n0 is a sequence of
distinct solutions of (1), a contradiction to the assumption that Kϕ is finite. So, (60) cannot
happen and then the homotopy invariance of critical groups implies that

Ck(ϕ, û) = Ck(ϕ̂+, û) for all k ≥ 0. (61)

It is easy to check that Kϕ̂+ ⊆ C+ (see (50)). Hence we may assume that Kϕ̂+ = {0, û} or
otherwise we already have a third nontrivial solution distinct from û and v̂ (in fact this third
solution is positive and belongs to intC+).

From the proof of Proposition 11, we know that

ϕ̂+(0) = 0 < m̂+ ≤ ϕ̂+(û) (see (45)).

Let θ < 0 < λ < ϕ̂+(û) and consider the triple of sets

ϕ̂θ+ ⊆ ϕ̂λ+ ⊆ W 1,p(�).

For this triple, we consider the corresponding long exact sequence of homology groups

· · · → Hk(W
1,p(�), ϕ̂θ+)

i∗−→ Hk(W
1,p(�), ϕ̂λ+)

∂∗−→ Hk−1(ϕ̂
λ+, ϕ̂θ+) → · · · (62)

for all k ≥ 1, with i∗ being the group homomorphism induced by the inclusion i : ϕ̂θ+ → ϕ̂λ+
and ∂∗ is the boundary homomorphism. From (62) and the well-known rank theorem, we
have

dimHk(W
1,p(�), ϕ̂θ

λ) = dim ker ∂∗ + dim im∂∗
= dim imi∗ + dim im∂∗ (since (62) is exact).

(63)

Since θ < 0 and Kϕ̂+ = {0, û}, we see that
Hk(W

1,p(�), ϕ̂θ+) = Ck(ϕ̂+,∞) = 0 for all k ≥ 0 (see Proposition 13). (64)

Therefore, from the choice of λ > 0 and since Kϕ̂+ = {0, û}, we have
Hk−1(ϕ̂

λ+, ϕ̂θ+) = Ck−1(ϕ̂+, 0) and Hk(W
1,p(�), ϕ̂λ+) = Ck(ϕ̂+, û) for all k ≥ 1 (65)

(see Motreanu–Motreanu–Papageorgiou [24, Lemma 6.55]).
But from Proposition 8, we have

Ck−1(ϕ̂+, 0) = δk−1,0F = δk,1F for all k ≥ 1. (66)

Then from (65) and (66), it follows that in the chain (62), only the tail k = 1 is nontrivial.
From (63), (64), (65) and (66), we have

dimC1(ϕ̂+, û) = dim im∂∗ ≤ 1. (67)

But recall that û ∈ intC+ is a critical point of mountain pass type for the functional ϕ̂+.
Hence

dimC1(ϕ̂+, û) ≥ 1 (68)

(see Motreanu–Motreanu–Papageorgiou [24, Proposition 6.100]).
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From (67) and (68), we infer that

Ck(ϕ̂+, û) = δk,1F for all k ≥ 0,

�⇒ Ck(ϕ, û) = δk,1F for all k ≥ 0 (see (61)).

In a similar fashion, using this time the functional ϕ̂−, we show that

Ck(ϕ, v̂) = δk,1F for all k ≥ 0.

��
Now we are ready to produce a third nontrivial solution for problem (1).

Theorem 15 If Hypothesis 2 holds and β ∈ L∞(�), then problem (1) has at least three
nontrivial solutions

û ∈ intC+, v̂ ∈ −intC+ and ŷ ∈ C1(�̄)\{0}.
Proof From Proposition 12, we already have two nontrivial constant sign solutions

û ∈ intC+ and v̂ ∈ −intC+.

Suppose that Kϕ = {0, û, v̂}. From Proposition 14, we have

Ck(ϕ, û) = Ck(ϕ, v̂) = δk,1F for all k ≥ 0. (69)

Moreover, from Proposition 5, we have

Ck(ϕ,∞) = 0 for all k ≥ 0. (70)

Finally, from Proposition 8, we have

Ck(ϕ, 0) = δk,0F for all k ≥ 0. (71)

From (66), (69), (70), (71), and the Morse relation with t = −1 (see (3)), we have

2(−1)1 + (−1)0 = 0,

a contradiction. So, there exists ŷ ∈ Kϕ , ŷ /∈ {0, û, v̂}. Therefore, ŷ is the third nontrivial
solution of (1), and the nonlinear regularity theory (see Lieberman [18]) implies that ŷ ∈
C1(�̄). ��

5 Parametric problems with competing nonlinearities

In this section, we study the following parametric nonlinear Neumann problem:
⎧
⎨

⎩

−�pu(z) + β(z)|u(z)|p−2u(z) = λg(z, u(z)) + f (z, u(z)), in �,
∂u

∂n
= 0, on ∂�,

(Pλ)

λ > 0 being a parameter.
We impose the following conditions on the functions g and f involved in the reaction of

problem (Pλ).

Hypothesis 3 g : � × R → R is a Carathéodory function such that g(z, 0) = 0 for a.e.
z ∈ � and
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(1) there exist b ∈ L∞(�)+ and P ∈ (p, p∗) such that

|g(z, x)| ≤ b(z)(1 + |x |P−1) for a.e. z ∈ �, all x ∈ R;

(2) lim
x→±∞

g(z, x)

|x |p−2x
= 0 uniformly for a.e. z ∈ �;

(3) if G(z, x) = ∫ x
0 g(z, s)ds, then there exist τ, q ∈ (1, p), δ > 0 and η̂0, η0 > 0 such

that

0 < g(z, x)x ≤ qG(z, x) for a.e. z ∈ �, all 0 < |x | ≤ δ,

essinf
�

G(·,±δ) > 0,

lim sup
x→0

g(z, x)

|x |q−2x
≤ η̂0 uniformly for a.e. z ∈ � and

η0|x |τ ≤ g(z, x)x for a.e. z ∈ �, all x ∈ R.

Remark 4 According to Hypothesis 3.(3), g(z, ·) exhibits a “superlinear” growth near zero
(concave nonlinearity). In fact, we have ĉ|x |q ≤ G(z, x) for a.e. z ∈ �, all |x | ≤ δ, with
ĉ > 0, see Mugnai [26,27].

Hypothesis 4 f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.e.
z ∈ � and

(1) | f (z, x)| ≤ a(z)(1+|x |r−1) for a.e. z ∈ �, all x ∈ R, with a ∈ L∞(�)+, p < r < p∗;
(2) lim

x→±∞
f (z, x)

|x |p−2x
= ∞ uniformly for a.e. z ∈ �;

(3) lim
x→0

f (z, x)

|x |p−2x
= 0 uniformly for a.e. z ∈ �.

Remark 5 Evidently f (z, ·) is (p − 1)-superlinear near ±∞ and 0 (convex nonlinearity).
So, problem (Pλ) exhibits the competing effects of concave and convex nonlinearities. Such
problems were investigated in the context of Dirichlet problems with β ≡ 0 by Ambrosetti–
Brezis–Cerami [2] (semilinear equations) and by Garcia Azorero–Manfredi–Peral Alonso
[12], Gasinski–Papageorgiou [14] (nonlinear equations driven by the p-Laplacian). The first
two works focus on positive solutions, and the authors prove bifurcation-type results (see
Sect. 6 of this paper). In [14], the authors produce nodal solutions. We mention that in all the
above works the reaction is more restrictive than ours.

Let F(z, x) := ∫ x
0 f (z, s)ds and set

ξλ(z, x) := λg(z, x)x + f (z, x)x − λpG(z, x) − pF(z, x).

As in the previous sections, instead of the AR-condition, we impose a quasi-monotonicity
condition on ξλ(z, ·).
Hypothesis 5 For every λ > 0, there exists β∗

λ ∈ L1(�) such that

ξλ(z, x) ≤ ξλ(z, y) + β∗
λ(z)

for a.e. z ∈ � and all 0 ≤ x ≤ y or y ≤ x ≤ 0.

Remark 6 A simple reaction satisfying the hypotheses above with (β∗
λ =constant) is

λg(x) + f (x) = λ|x |q−2x + |x |r−2x

for all x ∈ R, with 1 < q < p < r < p∗. This is the reaction employed in [2,12].
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In what follows for every λ > 0, by ϕλ : W 1,p(�) → R we denote the energy functional
for problem (Pλ) defined by

ϕλ(u) = 1

p
�(u) − λ

∫

�

G(z, u(z))dz −
∫

�

F(z, u(z))dz

for all u ∈ W 1,p(�). Evidently, ϕλ ∈ C1(W 1,p(�)).
As in Sect. 4, in order to generate nontrivial solutions of constant sign, we introduce

certain truncation perturbations of the map x �→ λg(z, x)+ f (z, x). So, let β ∈ L∞(�) and,
fixed ε > 0, let

γ > (1 + c(ε)‖β‖∞|�| 1q ) ≥ (1 + c(ε)‖β‖q) with c(ε) ≥ 1,

see (23). So, we define

ĥ+
λ (z, x) =

{
0, if x ≤ 0,

λg(z, x) + f (z, x) + γ x p−1, if x > 0,
and

ĥ−
λ (z, x) =

{
λg(z, x) + f (z, x) + γ |x |p−2x, if x < 0,

0, if x ≥ 0.

(72)

Both ĥ±
λ are Carathéodory functions. We set

Ĥ±
λ (z, x) =

∫ x

0
ĥ±

λ (z, s)ds

and consider the C1-functionals ϕ̂±
λ : W 1,p(�) → R defined by

ϕ̂±
λ (u) = 1

p
�(u) + γ

p
‖u‖p

p −
∫

�

Ĥ±
λ (z, u(z))dz for all u ∈ W 1,p(�).

Note that, using Hypotheses 3, 4 and 5 the reaction (z, x) �→ λg(z, x) + f (z, x) satisfies
Hypothesis 1.(1–3), and so from Propositions 4 and 10, we have:

Proposition 16 If Hypotheses 3, 4 and 5 hold, λ > 0 and β ∈ L∞(�), then functionals ϕλ

and ϕ̂±
λ satisfy the C-conditions.

The next two propositions show that for λ > 0 small, the functionals ϕ̂±
λ satisfy the

mountain pass geometry.

Proposition 17 1. There exists λ∗+ > 0 such that for all λ ∈ (0, λ∗+) there exists ρ+
λ > 0

for which we have

inf
{
ϕ̂+

λ (u) : ‖u‖ = ρ+
λ

}
:= m+

λ > 0.

2. There exists λ∗− > 0 such that for every λ ∈ (0, λ∗−] there exists ρ−
λ > 0 for which we

have

inf
{
ϕ̂−

λ (u) : ‖u‖ = ρ−
λ

}
= m−

λ > 0.

Proof Without loss of generality, we assume P ≤ r (otherwise r is replaced by P in the
calculations below).
1. Hypotheses 3 and 4.(1, 3) imply that given θ > 0, we can find c12 = c12(θ) > 0 and
c13 = c13(θ) > 0 such that
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Ĥ+
λ (z, x) ≤ θ

p
(x+)p +λc12(x

+)q + c13(1+λ)(x+)r for a.e.z ∈ � and all x ∈ R,

(73)
since |x |p ≤ |x |q + |x |r for every x ∈ R.

Then, for all u ∈ W 1,p(�), choosing θ > 0 small and using (24) we have

ϕ̂+
λ (u) ≥

(
c16 − λc14‖u‖q−p − c15(1 + λ)‖u‖r−p

)
‖u‖p. (74)

for some c14, c15, c16 > 0.
Now, we consider the function

yλ(t) = λc14t
q−p + c15(1 + λ)tr−p for all t > 0.

Evidently, yλ ∈ C1(0,∞) and since q < p < r (see Hypotheses 3 and 4), we have

yλ(t) → ∞ as t → 0+ and as t → ∞.

So, we can find t0 ∈ (0,∞) such that

yλ(t0) = min
{
yλ(t) : t > 0

}
�⇒ y′

λ(t0) = 0,

that is λc14(p − q) = c15(1 + λ)(r − p)tr−q
0 , and so

t0(λ) =
[

λc14(p − q)

c15(1 + λ)(r − p)

] 1
r−q

.

Then yλ(t0) → 0+ as λ → 0+ and so we can find λ∗+ > 0 such that for every λ ∈ (0, λ∗+)

we have

yλ(t0) < c16.

So, from (74) it follows that

inf
{
ϕ̂+

λ (u) : ‖u‖ = ρ+
λ = t0(λ)

}
= m+

λ > 0 for all λ ∈ (0, λ∗+).

2. In a similar fashion, we show the corresponding result for functional ϕ̂−
λ . ��

For the next result, we set

λ∗ := min{λ∗+, λ∗−}.
Proposition 18 If Hypotheses 3, 4, 5 hold, λ ∈ (0, λ∗) and β ∈ L∞(�), then for every
u ∈ C± with ‖u‖p = 1, we have ϕ̂±

λ (tu) → −∞ as t → ∞.

Proof Hypothesis 3.(1, 2) implies that, given θ > 0, there exists c17 = c7(θ) > 0 such that

λG(z, x) ≥ − θ

p
|x |p − c17 for a.e. z ∈ �, all x ∈ R, all λ ∈ (0, λ∗). (75)

Similarly, Hypothesis 4.(1, 2) implies that given μ > 0, we can find c18 = c18(μ) > 0
such that

F(z, x) ≥ μ

p
|x |p − c18 for a.e. z ∈ �, all x ∈ R. (76)
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Let u ∈ C+ with ‖u‖p = 1 and let t > 0. Then, from (72), (75) and (76), we have

ϕ̂+
λ (tu) ≤ t p

p
[‖Du‖p

p + (‖β‖∞ + θ − μ + c19)] (since ‖u‖p = 1) (77)

for some c19 > 0.
Since θ > 0 and μ > 0 are arbitrary, we can choose θ > 0 so small and μ > 0 so large

that μ − θ > ‖β‖∞ + ‖Du‖p
p + c19. Then, from (77), we infer that

ϕ̂+
λ (tu) → −∞ as t → ∞.

In a similar fashion, we show that if u ∈ C− with ‖u‖p = 1, then

ϕ̂−
λ (tu) → −∞ as t → ∞.

��

Next we will produce two ordered pairs of nontrivial constant sign solutions. To this end,
we will need an additional hypothesis which will allow us to compare solutions:

Hypothesis 6 For every ρ > 0 and λ > 0, there exists ξλ
ρ > 0 such that for a.e. z ∈ �, the

function

x �→ λg(z, x) + f (z, x) + ξλ
ρ |x |p−2x

is nondecreasing on [−ρ, ρ].
Using this hypothesis, we prove the following multiplicity result for nontrivial constant

sign solutions of problem (Pλ).

Proposition 19 If Hypotheses 3, 4, 5 and 6 hold, λ ∈ (0, λ∗) and β ∈ L∞(�), then problem
(Pλ) admits at least four nontrivial solutions of constant sign

u0, û ∈ intC+, u0 ≤ û, u0 �= û

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 �= v̂.

Proof Letμ ∈ (λ, λ∗) and consider the problem (Pμ). Propositions 16, 17 and 18 imply that
we can use Theorem 1 (the Mountain Pass Theorem) and obtain uμ ∈ W 1,p(�) such that

uμ ∈ Kϕ̂+
μ

and ϕ̂+
μ (0) = 0 < m+

μ ≤ ϕ̂+
μ (uμ),

so that uμ �= 0. Since Kϕ̂+
μ

⊆ C+, as we obtain from (50), by (72) we have

A(uμ) + β(z)u p−1
μ = μNg(uμ) + N f (uμ), (78)

that is, uμ is a nontrivial positive solution of problem (Pμ). The nonlinear regularity theory
implies that uμ ∈ C+\{0}. Note that, since g ≥ 0 (see Hypothesis 3.(3)), we get

− �puμ(z) + β(z)uμ(z)p−1 ≥ f (z, uμ(z)) for a.e. z ∈ �. (79)

Hypothesis 4.(1, 3) implies that, given ε > 0, there exists c20 = c20(ε) > 0 such that

f (z, x)x ≥ −ε|x |p − c20|x |r for a.e. z ∈ �, all x ∈ R.
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Using this unilateral estimate in (79), we obtain

�puμ(z) ≤ (‖β‖∞ + ε)uμ(z)p−1 + c20uμ(z)r−1

≤
(
‖β‖∞ + ε + c20‖uμ‖r−p∞

)
uμ(z)p−1 for a.e. z ∈ �.

Hence uμ ∈ intC+ (see, for example, Gasinski–Papageoriou [13, p. 738]).
By (78), we have

A(uμ) + β(z)u p−1
μ = μNg(uμ) + N f (uμ)

≥ λNg(uμ) + N f (uμ) in W 1,p(�)∗ (recall that g ≥ 0).
(80)

With γ > 1+ c(ε)‖β‖∞|�| 1q ≥ 1+ c(ε)‖β‖q > 0 as before, we introduce the following
truncation perturbation of the reaction in problem (Pλ):

ê+
λ (z, x) =

⎧
⎪⎨

⎪⎩

0, if x < 0,

λg(z, x) + f (z, x) + γ x p−1, if 0 ≤ x ≤ uμ(z),

λg(z, uμ(z)) + f (z, uμ(z)) + γ uμ(z)p−1, if x > uμ(z).

(81)

Of course, ê+
λ is aCarathéodory function.We set Ê+

λ (z, x) = ∫ x
0 ê+

λ (z, s)ds and then consider

the C1-functional ψ̂+
λ : W 1,p(�) → R defined by

ψ̂+
λ (u) = 1

p
�(u) + γ

p
‖u‖p

p −
∫

�

Ê+
λ (z, u(z))dz for all u ∈ W 1,p(�).

By (24), the choice of γ > 0 implies that

�(u) + γ ‖u‖p
p ≥ c21‖u‖p for some c21 > 0. (82)

Moreover, from (81) and (82), we see that ϕ̂+
λ is coercive. Finally, using the Sobolev embed-

ding theorem, we can easily check that ϕ̂+
λ is sequentially weakly lower semicontinuous.

Thus, by the Weierstrass theorem, we can find u0 ∈ W 1,p(�) such that

ψ̂+
λ (u0) = inf

{
ψ̂+

λ (u) : u ∈ W 1,p(�)
}

:= m̂+
λ . (83)

By virtue of Hypothesis 4.(3), given ε > 0, we can find δ = δ(ε) ∈ (0,min
�̄

uμ) (recall

that uμ ∈ intC+) such that

− F(z, x) ≤ ε

p
|x |p for a.e. z ∈ �, all |x | ≤ δ. (84)

For t ∈ (0, 1) small enough, we have that t û1(β)(z) ∈ (0, δ] for all z ∈ �̄ (recall that
û1(β) ∈ intC+). Then

ψ̂+
λ (t û1(β)) ≤ t p

p
[λ̂1(β) + γ + ε] − λη0tτ

τ
‖û1(β)‖τ

τ ,

see (5), (81), (84) and Hypothesis 3.(3).
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Since τ < p (see Hypothesis 3.(3)), by choosing t ∈ (0, 1) even smaller if necessary, we
have

ψ̂+
λ (t û1(β)) < 0,

so that from (83)
ψ̂+

λ (u0) = m̂+
λ < 0 = ψ̂+

λ (0), (85)

and hence u0 �= 0.
From (83), we have (ψ̂+

λ )′(u0) = 0, that is

A(u0) + (β(z) + γ )|u0|p−2u0 = Nê+
λ
(u0). (86)

On (86), we act with −u−
0 ∈ W 1,p(�) and by (81) we obtain

�(u−
0 ) + γ ‖u−

0 ‖p
p = 0,

and by (82)

c21‖u−
0 ‖p ≤ 0,

and hence u0 ≥ 0.
Now, on (86) we act with (u0 − uμ)+ ∈ W 1,p(�). Then

〈A(u0), (u0 − uμ)+〉 +
∫

�

(β(z) + γ )u p−1
0 (u0 − uμ)+dz

≤ 〈A(uμ), (u0 − uμ)+〉 +
∫

�

(β(z) + γ )u p−1
μ (u0 − uμ)+dz

since g ≥ 0 and λ < μ. Then there exists c22 > 0 such that

〈A(u0) − A(uμ), (u0 − uμ)+〉 + c22

∫

�

(u p−1
0 − u p−1

μ )(u0 − uμ)+dz ≤ 0,

by the choice of γ > 0. By Proposition 3, we get

|{u0 > uμ}|N = 0, hence u0 ≤ uμ.

So, we have proved that

u0 ∈ [0, uμ] =
{
u ∈ W 1,p(�) : 0 ≤ u(z) ≤ uμ(z) a.e. in �

}
.

Therefore, from (81), (86) becomes

A(u0) + β(z)u p−1
0 = λNg(u0) + N f (u0), (87)

that is

u0 is a positive solution of (Pλ).

The nonlinear regularity theory and the nonlinear maximum principle imply that u0 ∈
[0, uμ] ∩ intC+. Let ρ = ‖u0‖∞ and let ξ

μ
ρ > 0 be as postulated by Hypothesis 6. Let
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ξ̂
μ
ρ > max{ξμ

ρ , ‖β‖∞}. For θ > 0, we set uθ
0 = u0 + θ ∈ intC+. We have

− �pu
θ
0(z) + (β(z) + ξ̂ μ

ρ )uθ
0(z)

p−1 (by the Mean Value Theorem)

= λg(z, u0(z)) + f (z, u0(z)) + ξ̂ μ
ρ u0(z)

p−1 + χ(θ)

with χ(θ) = (p − 1)(u0 + tθ)p−2θ → 0+ as θ → 0+, t ∈ (0, 1),

= μg(z, u0(z)) + f (z, u0(z)) − (μ − λ)g(z, u0(z)) + ξ̂ μ
ρ u0(z)

p−1 + χ(θ)

≤ μg(z, u0(z)) + f (z, u0(z)) − (μ − λ)η0u0(z)
τ−1 + ξ̂ μ

ρ u0(z)
p−1 + χ(θ)

(see Hypothesis 3.(3))

≤ μg(z, u0(z)) + f (z, u0(z)) + ξ̂ μ
ρ u0(z)

p−1 − (μ − λ)η0m
τ−1
0 + χ(θ)

with m0 = min u0 > 0 (recall that u0 ∈ int C+)

≤ μg(z, u0(z)) + f (z, u0(z)) + ξ̂ μ
ρ u0(z)

p−1

for θ > 0 small enough, since ξ → 0+ and μ > λ,

≤ μg(z, uμ(z)) + f (z, uμ(z)) + ξ̂ μ
ρ (z)p−1 for a.e. z ∈ �

(see Hypothesis 6)

= −�puμ(z) + (β(z) + ξ̂ μ
ρ )u0(z)

p−1.

Thus, by the choice of ξ̂
μ
ρ and the comparison principle (see Pucci–Serrin [35, Theo-

rem 2.4.1]), we get

uθ
0 ≤ uμ for θ > 0 small, and hence uμ − u0 ∈ intC+.

So, we have proved that
u0 ∈ intC1(�̄)[0, uμ]. (88)

Now, observe that, by

ϕ̂+
λ |[0,uμ]= ψ̂+

λ |[0,uμ] (see (72) and (81))

�⇒ u0 is a local C
1
0 (�̄) − minimizer of ϕ̂+

λ ,

�⇒ u0 is a local W
1,p(�) − minimizer of ϕ̂+

λ (see Proposition 2).

(89)

We introduce the following truncation of ĥ+
λ (see (72)):

h̃+
λ (z, x) =

{
ĥ+

λ (z, u0(z)), if x ≤ u0(z),

ĥ+
λ (z, x), if x > u0(z).

(90)

This is a Carathéodory function. We also set H̃+
λ (z, x) = ∫ x

0 h̃+
λ (z, s)ds and consider the

C1- functional ϕ̃+
λ : W 1,p(�) → R defined by

ϕ̃+
λ (u) = 1

p
�(u) + γ

p
‖u‖p

p −
∫

�

H̃+
λ (z, u(z))dz for all u ∈ W 1,p(�).

From (72) and (90) we see that there exists ξ+
λ = ∫

�
[H̃+

λ (u) − Ĥ+
λ (u)] such that

ϕ̂+
λ = ϕ̃+

λ + ξ+
λ . (91)

From this, we claim that

Kϕ̃+
λ

⊆ [u0) :=
{
u ∈ W 1,p(�) : u0(z) ≤ u(z) a.e. in �

}
. (92)
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Indeed, let u ∈ Kϕ̃+
λ
. Then

A(u) + (β(z) + γ )|u|p−2u = Nh̃+
λ
(u).

We act on the previous equation with (u0 − u)+ ∈ W 1,p(�) and obtain

〈A(u0) − A(u), (u0 − u)+〉 + c23

∫

�

(u p−1
0 − u p−1)(u0 − u)+dz ≤ 0

for some c23 > 0, from the choice of γ . As a consequence, by Proposition 3,

|{u0 > u}|N = 0, hence u0 ≤ u.

This proves (92).
From (89) and (91), we see that u0 ∈ intC+ is a local minimizer of ϕ̃+

λ . We may assume
that u0 is isolated (otherwise we already have a whole sequence of distinct solutions of (Pλ)

all belonging to intC+, see (72), (90) and (92). Therefore, we can find ρ ∈ (0, 1) so small
that

ϕ̃+
λ (u0) < η̃+

λ := inf
{
ϕ̃+

λ (u) : ‖u − u0‖ = ρ
}
, (93)

see Aizicovici–Papageorgiou–Staicu [1].
From (91) and Proposition 16, we infer that

ϕ̃+
λ satisfies the C-condition. (94)

Therefore, if u ∈ C+ with ‖u‖p = 1, then

ϕ̃+
λ (tu) → −∞ as t → ∞ (95)

see (91) and Proposition 18.
From (93), (94) and (95), we see that we can apply Theorem 1 (themountain pass theorem)

and so we can find û ∈ W 1,p(�) such that

û ∈ Kϕ̃+
λ

and ϕ̃+
λ (u0) < η̃+

λ ≤ ϕ̃+
λ (û). (96)

From (92) and (96), we have

u0 ≤ û, u0 �= û and û is a solution of (Pλ) (97)

(see (72) and (90)). The nonlinear regularity theory implies that û ∈ intC+.
Similarly, working with ϕ̂−

λ , we generate two negative solutions v0, v̂ ∈ −intC+ such that
v0 �= v̂ and v̂ ≤ v0. ��

In the next proposition, we produce a fifth nontrivial solution for problem (Pλ) when
λ ∈ (0, λ∗).

Proposition 20 If Hypotheses 3, 4, 5, 6 hold, λ ∈ (0, λ∗) and β ∈ L∞(�), then problem
(Pλ) has a fifth nontrivial solution

y0 ∈ [v0, u0] ∩ C1(�̄).

Proof Let u0 ∈ intC+ and v0 ∈ −intC+ be the two constant sign solutions from Proposition
19. With γ > 0 as before, we consider the following truncation perturbation of the reaction
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of problem (Pλ):

dλ(z, x) =

⎧
⎪⎨

⎪⎩

λg(z, v0(z)) + f (z, v0(z)) + γ |v0(z)|p−1v0(z), if x < v0(z),

λg(z, x) + f (z, x) + γ |x |p−2x, if v0(z) ≤ x ≤ u0(z),

λg(z, u0(z)) + f (z, u0(z)) + γ u0(z)p−1, if x > u0(z).
(98)

This is a Carathéodory function. Set Dλ(z, x) = ∫ x
0 dλ(z, s)ds and consider the

C1−functional �λ : W 1,p(�) → R defined by

�λ(u) = 1

p
�(u) + γ

p
‖u‖p

p −
∫

�

Dλ(z, u(z))dz for all u ∈ W 1,p(�).

From (82) and (98), it is clear that �λ is coercive. Moreover, it is sequentially weakly
lower semicontinuous. So, we can find y0 ∈ W 1,p(�) such that

�λ(y0) = inf
{
�λ(u) : u ∈ W 1,p(�)

}
. (99)

As in the proof of Proposition 19, we have

�λ(y0) < 0 = �λ(0), hence y0 �= 0.

From (99), we have �′
λ(y0) = 0, that is

A(y0) + (β(z) + γ )|y0|p−2y0 = Ndλ(u0). (100)

On (100) first we act with (v0 − y0)+ ∈ W 1,p(�) and then with (y0 − u0)+ ∈ W 1,p(�) and
obtain y0 ∈ [v0, u0] = {u ∈ W 1,p(�) : v0(z) ≤ u(z) ≤ u0(z) a.e. in �} (as in the proof of
Proposition 19).

Finally, by the nonlinear regularity theory, we conclude that y0 ∈ C1(�̄). ��
So, summarizing the situation for problem (Pλ), we can state the following multiplicity

theorem:

Theorem 21 If Hypotheses 3, 4, 5, 6 hold, and β ∈ L∞(�), then there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗) problem (Pλ) has at least five nontrivial solutions

u0, û ∈ intC+, u0 ≤ û, u0 �= û,

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 �= v̂,

y0 ∈ [v0, u0] ∩ C1(�̄).

In the semilinear case (that is p = 2) and under stronger regularity conditions on the
functions g(z, ·), we can improve the conclusion of Theorem 21 in two distinct ways:

1. We produce six nontrivial solutions;
2. We allow the potential function β to be unbounded.

So, the problem under consideration, is the following:
⎧
⎨

⎩

−�u(z) + β(z)u(z) = λg(z, uz(z)) + f (z, u(z)) in �,
∂u

∂n
= 0, on ∂�.

(Sλ)

We remark that for problem (Sλ) we do not need to assume that β is bounded, since we
can use the regularity result of Wang [37] and infer that the solutions of problem (Sλ) belong
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inC1(�̄). On the other hand, the bound on β+ is needed in order to apply Theorem 21, which
is valid also in this case, as it is clear from its proof, and to prove a stronger order relation
between solutions (see Theorem 22 below).

The hypotheses on the functions f and g are now the following:

Hypothesis 7 g : �×R → R is a measurable function such that for a.e. z ∈ �, g(z, 0) = 0,
g(z, ·) ∈ C1(R\{0}) and
(1) there exists μ ∈ (1, 2∗ − 1) and a ∈ L∞(�) such that

|g′
x (z, x)| ≤ a(z)(1 + |x |μ−1) for a.e. z ∈ �, all x ∈ R\{0};

(2) same as Hypothesis 3.(2) with p = 2;
(3) same as Hypothesis 3.(3) with p = 2.

Hypothesis 8 f : �×R → R is ameasurable function such that for a.e. z ∈ �, f (z, 0) = 0,
f (z, ·) ∈ C1(R) and

(1) there exists r ∈ (2, 2∗) such that | f ′
x (z, x)| ≤ a(z)(1+|x |r−2) for a.e. z ∈ �, all x ∈ R;

(2) lim
x→±∞

f (z, x)

x
= ∞ uniformly for a.e. z ∈ �;

(3) f ′
x (z, 0) = lim

x→0

f (z, x)

x
= 0 uniformly for a.e. z ∈ �.

Remark 7 Observe that in this case the differentiability hypotheses on g(z, ·) and f (z, ·) and
Hypotheses 7.(1) and 8.(1) imply that given ρ > 0 and λ > 0, we can find ξλ

ρ > 0 such that
for a.e. z ∈ �, the function x → λg(z, x) + f (z, x) + ξλ

ρ x is nondecreasing on [−ρ, ρ]. So,
Hypothesis 6 is automatically satisfied.

For every λ > 0, we introduce the energy functional ϕλ : H1(�) → R defined by

ϕλ(u) = 1

2
‖Du‖22 + 1

2

∫

�

β(z)u2dz − λ

∫

�

G(z, u)dz −
∫

�

F(z, u)dz for all u ∈ H1(�).

We have ϕλ ∈ C2−0(H1(�)) (see also Li–Li–Liu [19]).

Theorem 22 If Hypotheses 5, 7, 8, hold, β ∈ L∞(�), then there exists λ∗ > 0 such that for
all λ ∈ (0, λ∗) problem (Sλ) admits at least six nontrivial solutions

u0, û ∈ intC+, û − u0 ∈ intC+,

v0, v̂ ∈ −intC+, v0 − v̂ ∈ intC+,

y0 ∈ [v0, u0] ∩ C1(�̄) and ŷ ∈ C1(�̄).

Proof From Theorem 21, we know that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗)
problem (Sλ) has at least five nontrivial solutions

u0, û ∈ intC+, u0 ≤ û, u0 �= û,

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 �= v̂,

y0 ∈ [v0, u0] ∩ C1(�̄).

Now, we assume by contradiction that Kϕλ = {0, u0, û, v0, v̂, y0}.
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Now, thanks to the bound on β+, we find a stronger order relation between {u0, û} and
between {v0, v̂}. To see this recall that u0 ≤ û. Let ρ = ‖û‖∞ and let ξλ

ρ > 0 be such that
for a.e. z ∈ � the map

x �→ λg(z, x) + f (z, x) + ξλ
ρ x

is nondecreasing on [−ρ, ρ]. Then, we have
�(û − u0)(z) ≤ (β(z) + ξλ

ρ )(û − u0)(z) ≤ (‖β+‖∞ + ξλ
ρ )(û − u0)(z) for a.e. z ∈ �,

and thus

û − u0 ∈ intC+ (see [13, Corollary 6.1.47]).

Similarly, we show that

v0 − v̂ ∈ intC+ and y0 ∈ intC1(�̄)[v0, u0]. (101)

From the proof of Proposition 19, we know that

u0 ∈ intC+ is a local minimizer of ϕ̂+
λ ,

v0 ∈ −intC+ is a local minimizer of ϕ̂−
λ .

Since ϕ̂+
λ |C+= ϕλ |C+ and ϕ̂−

λ |C+= ϕλ |C+ and u0 ∈ intC+, v0 ∈ −intC+, from
Proposition 2, it follows that u0 and v0 are both local minimizers of ϕλ. Hence

Ck(ϕλ, u0) = Ck(ϕλ, v0) = δk,0F for all k ≥ 0, (102)

see [24, Example 6.45].
From the proof of Proposition 19, we know that û ∈ intC+ is a critical point of mountain

pass type for functional ϕ̃+
λ and v̂ ∈ −intC+ is a critical point of mountain pass type for

functional ϕ̃−
λ . From (91), recalling that û > u0, we see that ξ

+
λ is constant near û (precisely

∫

�
[ĥ(z, u0)u0 − Ĥ(z, u0)]), so that

Ck(ϕ̃
+
λ , û) = Ck(ϕ̂

+
λ , û) and Ck(ϕ̃

−
λ , v̂) = Ck(ϕ̂

−
λ , v̂) for all k ≥ 0. (103)

Since C1(�̄) is dense in H1(�) and û ∈ intC+, v̂ ∈ −intC+, we have

Ck(ϕ̂
+
λ , û) = Ck(ϕλ, û) and Ck(ϕ̂

−
λ , v̂) = Ck(ϕλ, v̂) for all k ≥ 0 (104)

(see [24]). Then (103) and (104) with [24, Proposition 6.100] imply that

C1(ϕλ, û),C1(ϕλ, v̂) �= 0,

so that
Ck(ϕλ, û) = Ck(ϕλ, v̂) = δk,1F for all k ≥ 0, (105)

since clearly 0 /∈ σ(A), see Li–Li–Liu [19].
Moreover, recall that y0 is a minimizer of functional �λ (see the proof of Proposition 20)

and �λ |[v0,u0]= ϕλ |[v0,u0] (see (98)). From (101), it follows that y0 is a local minimizer of
ϕλ (see Proposition 2). Hence

Ck(ϕλ, y0) = δk,0F for all k ≥ 0. (106)

Finally, from Proposition 5, we have

Ck(ϕλ,∞) = 0 for all k ≥ 0, (107)
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while Hypotheses 7.(3) and 8.(3) imply that

Ck(ϕλ, 0) = 0 for all k ≥ 0 (see Moroz [23]). (108)

Since we had supposed that Kϕλ = {0, u0, û, v0, v̂, y0}, from (102), (105), (106), (107),
(108) and the Morse relation with t = −1 (see (3)), we have

2(−1)1 + 3(−1)0 = 0,

a contradiction. So, there exists ŷ ∈ Kϕλ, ŷ /∈ {0, u0, û, v0, v̂, y0}. Then, ŷ is a nontrivial
solution of (Sλ)with λ ∈ (0, λ∗), and the nonlinear regularity theory implies that ŷ ∈ C1(�̄).

��

6 Bifurcation theorem for positive solutions

In this section, we focus on the positive solutions of problem (Pλ), andwe prove a bifurcation-
type result describing in a precise way the set of positive solutions of (Pλ) as the parameter
λ varies in (0,∞).

So, let

L :=
{
λ > 0 : problem (Pλ) admits a positive solution

}

and, for every λ > 0, let

S (λ) = set of positive solutions of problem (Pλ).

We introduce the following hypotheses on functions g and f :

Hypothesis 9 g : � × R → R is a Carathéodory function such that g(z, 0) = 0 for a.e.
z ∈ � and

(1) for every ρ > 0, there exists aρ ∈ L∞(�)+ such that

g(z, x) ≤ aρ(z) for a.e. z ∈ � and all x ∈ [0, ρ];

(2) lim
x→∞

g(z, x)

x p−1 = 0 uniformly for a.e. z ∈ �;

(3) if G(z, x) = ∫ x
0 g(z, s)ds for a.e. z ∈ � and all x ≥ 0, then there exist 1 < q ≤ τ <

p, δ > 0 and η̂0, η0 > 0 such that

0 < g(z, x)x ≤ qG(z, x) for a.e. z ∈ �, all x ∈ (0, δ],
lim sup
x→0+

g(z, x)

xq−1 ≤ η̂0 uniformly for a.e. z ∈ �

η0x
τ ≤ g(z, x)x for a.e. z ∈ � and all x ≥ 0.

Hypothesis 10 f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.e.
z ∈ � and

(1) | f (z, x)| ≤ a(z)(1 + xr−1) for a.e. z ∈ �, all x ≥ 0 with a ∈ L∞(�)+, p < r < p∗;
(2) lim

x→∞
f (z, x)

x p−1 = ∞ uniformly for a.e. z ∈ �;

(3) lim
x→0+

f (z, x)

x p−1 = 0 uniformly for a.e. z ∈ �.
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At this point, we introduce the following unilateral versions of Hypotheses 5 and 6:

Hypothesis 11 For every λ > 0, there exists β∗
λ ∈ L1(�)+ such that

ξλ(z, x) ≤ ξλ(z, y) + β∗
λ(z) for a.e. z ∈ � and all 0 ≤ x ≤ y.

Hypothesis 12 For every ρ > 0 and λ > 0, there exists ξλ
ρ > 0 such that for a.e. z ∈ �, the

function

x → λg(z, x) + f (z, x) + ξλ
ρ x

p−1

is nondecreasing on [0, ρ].

We will also need the following hypothesis:

Hypothesis 13 For a.e. z ∈ � and all x ≥ 0, g(z, x)x ≤ pG(z, x).

Remark 8 Since we are looking for positive solutions and all the above hypotheses concern
the positive semiaxis, without any loss of generality wemay assume that g(z, x) = f (z, x) =
0 for a.e. z ∈ �, all x ≤ 0. The hypotheses above incorporate in our framework the classical
“concave–convex” reaction

x �→ λxq−1 + xr−1 for all x ≥ 0 with 1 < q < p < r.

However, they are also satisfied by the nonlinearity

x �→ λxq−1 + xr−1 ln (x + 1) for all x ≥ 0,

which fails to satisfy the AR-condition.
Finally, let us recall that reversedAR-conditions like the one inHypothesis 13 have already

been used also to treat superlinear problems, for instance see [28–30].

Under these conditions, we know that

L �= ∅ and S (λ) ⊆ intC+ (see Section 5);
thus, set λ̂∗ = supL.

Proposition 23 If Hypotheses 9, 10, 12 hold and β ∈ L∞(�), then λ̂∗ < ∞.

Proof From Hypotheses 9 and 10, we see that we can find λ̄ > 0 such that

λ̄g(z, x) + f (z, x) ≥ λ̂1(β)x p−1 for a.e. z ∈ �, all x ≥ 0. (109)

We claim that, if λ > λ̄, then λ /∈ L. Arguing by contradiction, suppose that λ ∈ L. Then
we can find uλ ∈ S (λ) ⊆ intC+. Let t > 0 be the biggest positive number such that

t û1(β) ≤ uλ (110)

(see Filippakis–Kristaly–Papageorgiou [11, Lemma 3.3]).
Set ρ = ‖uλ‖∞ and let ξλ

ρ > 0 be as postulated by Hypothesis 12, and ξ̂ λ
ρ >

max{ξλ
ρ , ‖β‖∞}. For δ > 0 we set ûδ

1 := û1(β) + δ ∈ intC+. Then, since −�pûδ
1(β) =
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−�pû1(β), we have

− �p(t û
δ
1(z)) + (β(z) + ξ̂ λ

ρ )(t ûδ
1(z))

p−1

= λ̂1(β)(t û1(β)(z))p−1 + ξ̂ λ
ρ (t û1(β)(z))p−1 + χ(δ)

with χ(δ) = (p − 1)(β + ξ̂ λ
ρ )(t û1(β) + η)p−2δ → 0+ as δ → 0+, 0 < η < δ,

≤ λ̄g(z, t û1(β)(z)) + f (z, t û1(β)(z)) + ξ̂ λ
ρ (t û1(β)(z))p−1 + χ(δ) (see (109)

≤ λ̄g(z, uλ(z)) + f (z, uλ(z)) + ξ̂ λ
ρ uλ(z)

p−1 + χ(δ) (see Hypothesis 12 and (110))

= λg(z, uλ(z)) + f (z, uλ(z)) + ξ̂ λ
ρ uλ(z)

p−1 − (λ − λ̄)g(z, uλ(z)) + χ(δ)

≤ λg(z, uλ(z)) + f (z, uλ(z)) + ξ̂ λ
ρ uλ(z)

p−1 − (λ − λ̄)η0uλ(z)
τ + χ(δ)

(see Hypothesis 9.(3) and recall that λ > λ̄)

≤ λg(z, uλ(z)) + f (z, uλ(z)) + ξ̂ λ
ρ uλ(z)

p−1 − (λ − λ̄)η0m
τ−1
λ + χ(δ)

with mλ = min
�̄

uλ > 0

≤ λg(z, uλ(z)) + f (z, uλ(z)) + ξ̂ λ
ρ uλ(z)

p−1

for δ > 0 small

= −�puλ(z) + (β(z) + ξ̂ λ
ρ )uλ(z)

p−1 for a.e. z ∈ �.

Thus, uλ ≥ t ûδ
1 for δ > 0 small; hence uλ − t û1 ∈ intC+, which contradicts the maximality

of t . Therefore, λ /∈ L and so λ̂∗ ≤ λ̄ < ∞. ��
Proposition 24 If Hypotheses 9, 10, 11, 12 and β ∈ L∞(�), then (0, λ̂∗) ⊆ L.

Proof Let λ ∈ (0, λ∗); then, we can find μ ∈ (λ, λ∗) ∩ L. Let uμ ∈ S (μ) ⊆ intC+. With
γ > 0 as before, we consider the truncation perturbation of the reaction of problem (Pλ),
given by êλ(z, x), see (81).We consider the correspondingC1−functional ψ̂+

λ as in the proof
of Proposition 19 and via the direct methods, we obtain uλ ∈ [0, uμ] ∩ S (λ). Therefore,
λ ∈ L and so (0, λ̂∗) ⊆ L. ��

Actually, following the argument in the proof of Proposition 19, we can say more:

Proposition 25 If Hypotheses 9, 10, 11, 12 hold, β ∈ L∞(�) and λ ∈ (0, λ̂∗), then problem
(Pλ) has at least two positive solutions

u0, û ∈ intC+, u0 ≤ û, u0 �= û.

Finally, we examine what happens in the critical case λ = λ̂∗:

Proposition 26 If Hypotheses 9, 10, 11, 12, 13 hold and β ∈ L∞(�), then λ̂∗ ∈ L.

Proof Let {λn}n≥1 ⊆ L be such that λn ↑ λ̂∗. From the proof of Proposition 19 (see (85)),
we know that we can find un ∈ S (λn), n ≥ 1, such that ϕλn (un) < 0 for all n ≥ 1, so that

�(un) − λn

∫

�

pG(z, un)dz −
∫

�

pF(z, un)dz < 0 for all n ≥ 1. (111)

Also, we have

A(un) + β(z)u p−1
n = λnNg(un) + N f (un) for all n ≥ 1. (112)
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Acting on (112) with un ∈ W 1,p(�), we obtain

− �(un) + λn

∫

�

g(z, un)undz +
∫

�

f (z, un)undz = 0 for all n ≥ 1. (113)

We add (111) and (113) and obtain
∫

�

ξλn (z, un)dz < 0 for all n ≥ 1;

by Hypothesis 13 and recalling that λn < λ̂∗ for all n ≥ 1, we get
∫

�

ξ
λ̂∗(z, un)dz < 0 for all n ≥ 1. (114)

Using (114) and reasoning as in the proof of Proposition 4 (see the claim), we obtain that
{un}n≥1 ⊆ W 1,p(�) is bounded. So, we may assume that

un ⇀ u∗ in W 1,p(�) and un → u∗ in Lr (�) as n → ∞. (115)

On (112), we act with un − u∗ ∈ W 1,p(�), pass to the limit as n → ∞ and use (115).
Then

lim
n→∞〈A(un), un − u∗〉 = 0,

and by Proposition 3 we get

un → u∗ in W 1,p(�) as n → ∞. (116)

Finally, if in (112) we pass to the limit as n → ∞ and use (116), then we have

A(u∗) + β(z)u p−1∗ = λ̂∗Ng(u∗) + N f (u∗).

We need to show that u∗ �= 0.
Hypotheses 9.(3) and 10.(1),(2),(3) imply that we can find η1 > 0 such that

λ1g(z, x) + f (z, x) ≥ λ1η0x
τ−1 − η1x

r−1 for a.e. z ∈ �, all x ≥ 0. (117)

We consider the following auxiliary Neumann problem
⎧
⎪⎪⎨

⎪⎪⎩

−�pu(z) + β(z)u p−1(z) = λ1η0uτ−1(z) − η1ur−1(z), in �,
∂u

∂n
= 0, on ∂�,

u > 0.

(118)

We show that (118) admits a solution ū ∈ intC+. To this end, let � : W 1,p(�) → R be
the C1−functional defined by

�(u) = 1

p
�(u) + γ

p
‖u‖p

p − λ1η0

τ
‖u+‖τ

τ + 1

r
η1‖u+‖rr − γ

p
‖u+‖p

p

≥ c21
p

‖u−‖p + 1

p
�(u+) + 1

r
η1‖u+‖rr − λ1

τ
η0‖u+‖τ

τ ,

where γ is as in the previous sections, so that (82) holds.
Since τ < p < r andβ ∈ L∞(�), it follows that� is coercive. Therefore, it is sequentially

weakly lower semicontinuous. So, we can find ū ∈ W 1,p(�) such that

�(ū) = inf
{
�(u) : u ∈ W 1,p(�)

}
. (119)
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Exploiting the fact that τ < p, for t ∈ (0, 1) small enough, from the very definition of �,
we have that

�(t û1(β)) < 0,

and from (119)

�(ū) < 0 = �(0),

so that

ū �= 0.

From (119), we have �′(ū) = 0, that is

A(ū) + (β(z) + γ )|ū|p−2ū = λ1η0(ū
+)τ−1 − η1(ū

+)r−1 + γ (ū+)p−1. (120)

On (120) we act with −ū− ∈ W 1,p(�) and obtain

�(ū−) + γ ‖ū−‖p
p = 0,

so that, by (82), ū ≥ 0, and ū �= 0. Therefore, (120) becomes

A(ū) + β(z)ū p−1 = λ1η0ū
τ−1 − η1ū

r−1.

Thus, ū is a nontrivial positive solution of auxiliary problem (118). The nonlinear regularity
theory implies that ū ∈ C+\{0}. In addition,

�pū(z) ≤ (‖β‖∞ + η1‖ū‖r−p∞ )ū(z)p−1 a.e. in �,

so that

ū ∈ intC+,

see [35].
For every n ≥ 1, let tn > 0 be the biggest positive real such that

tn ū ≤ un for all n ≥ 1 (see [11]), (121)

and suppose that tn ∈ (0, 1), n ≥ 1.
By Hypotheses 9.(1),(2) and 10.(1), we can apply Winkert’s regularity result in [39] and

find M∗ > 0 such that
‖un‖∞ ≤ M∗ for all n ≥ 1. (122)

Let ρ = M∗ and let ξ
λn
ρ > 0 be as postulated by Hypothesis 12. Set ξ̂

λn
ρ >

max{ξλn
ρ , ‖β‖∞} and for δ > 0, ūδ

n = tn ū + δ ∈ intC+. Then, as before, for δ > 0
small we have

− �pū
δ
n(z) + (β(z) + ξ̂ λn

ρ )ūδ
n(z)

p−1 (see the proof of Proposition 23)

≤ −�pun(z) + (β(z) + ξ̂ λn
ρ )un(z)

p−1 a.e. in �

(see (112) and recall that λ1 < λn for all n ∈ N).

As a consequence, uδ
n ≤ un for every δ > 0 small enough (see Pucci–Serrin [35, Theo-

rem 2.4.1]), so that

un − tn ū ∈ intC+,
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which contradicts the maximality of tn . Then tn ≥ 1 and so, from (121),

ū ≤ un for all n ≥ 1;
by (116) we get that

ū ≤ u∗,

so that

u∗ �= 0 and so λ∗ ∈ L.

��
So, summarizing the situation for the positive solutions of problem (Pλ), we can state the

following bifurcation near zero result.

Theorem 27 If Hypotheses 9, 10, 11, 12, 13 hold and β ∈ L∞(�), then there exists λ̂∗ > 0
such that

1. for all λ ∈ (0, λ̂∗) problem (Pλ) has at least two positive solutions

u0, û ∈ intC+, u0 ≤ û, u0 �= û;
2. for λ = λ̂∗ problem (Pλ) has at least one positive solution

u∗ ∈ intC+;
3. for λ > λ̂∗ problem (Pλ) has no positive solution.

Remark 9 Theorem 27 extends the results of Ambrosetti–Brezis–Cerami [2] and Garcia
Azorero–Manfredi–Peral Alonso [12] which deal with Dirichlet problems and the reaction
has the form

x �→ λxτ−1 + xr−1 for all x ≥ 0 with τ < p < r,

and moreover, in [2] only the case p = 2 (semilinear equations) was considered. Wemention
also the recent work of Mugnai–Papageorgiou [33], where a bifurcation result is proved for
p-logistic equations in R

N with indefinite weight.
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