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Abstract Given a p-adic field K and a prime number �, we count the total number of the
isomorphism classes of p�-extensions of K having no intermediate fields. Moreover, for
each group that can appear as Galois group of the normal closure of such an extension, we
count the number of isomorphism classes that contain extensions whose normal closure has
Galois group isomorphic to the given group. Finally, we determine the ramification groups
and the discriminant of the composite of all p�-extensions of K with no intermediate fields.
The principal tool is a result, proved at the beginning of the paper, which states that there is
a one-to-one correspondence between the isomorphism classes of extensions of degree p�

of K having no intermediate extensions and the irreducible H -submodules of dimension �

of F∗/F∗ p , where F is the composite of certain fixed normal extensions of K and H is its
Galois group over K .

Keywords p-adic fields · Isomorphism classes of extensions · Galois theory · Ramification
theory

Mathematics Subject Classification 11S05 · 11S15

1 Introduction

It is well known that a p-adic field K has only a finite number of non-isomorphic algebraic
extensions with given degree [8]. We want to classify these extensions up to K -isomorphism
in the totally and wildly ramified case, which is the only one slightly difficult to treat.

In 1966, Krasner [8] obtained an explicit formula for the total number of extensions of K
with given ramification index and inertial degree. Later, Serre [11] also computed the number
of extensions using a different method in the proof of his famous “mass formula”. In [10],
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458 M. R. Pati

Pauli and Roblot, with a more computational approach, gave another proof for the formula
counting the number of extensions of a given degree and discriminant. A new progress in the
researchwasmade in 2004,whenHou andKeating [6] considered the problemof determining
the number of isomorphism classes of extensions of K with given ramification index e and
inertial degree f ; they found general formulas when p2 � e and, under some additional
assumptions on e and f , also when p2 ‖ e. This question was definitively closed by Monge
in 2011 [9].

In 2007, Dvornicich and Del Corso [3], looking at the isomorphism classes of extensions
of K of degree p, gave a new way to attach the problem of counting extensions: their idea
is to “shift” the p-extensions of K in a more easy environment, where they can be identified
by the action of a certain group on a suitable space. This new method has been used also by
Dalawat [2], who extended it to the case of local fields of characteristic p.

Recently in [4], Del Corso, Dvornicich and Monge, taking inspiration from [3], present
a general and very useful way to study the extensions of degree pk of a p-adic field having
no intermediate extensions. Denoting by F the composite of all normal and tame extensions
of K whose Galois group is a subgroup of GL(k, Fp) and H = Gal(F/K ), they show that
there exists a one-to-one correspondence between the possible extensions L̃/K that appear
as normal closure of extensions L/K of degree pk having no intermediate fields and the
irreducible Fp[H ]-submodules of F∗/F∗ p of dimension k.

This key result allows to classify the extensions of K of p-power degree only by studying
the structure of the filtered Fp[H ]-module F∗/F∗ p; in other words, our problem is reduced
to find the irreducible representation of dimension k of a certain group H acting on a suitable
module F∗/F∗ p . This is practicable in the case in which k is a prime number �, while in the
general case this method is not indeed usable since the number of the possible representations
increases with the number of divisors of k. The author intend to show the application of the
same method to study the first non-prime case k = 4 in a forthcoming paper.

Specializing to the extensions of degree p�, we obtain an improvement of the general the-
orem on the correspondence between isomorphism classes and irreducible modules, showing
that in this case we can substitute F with a smaller field, that is the composite of all normal
extensions of K of degree prime to p whose Galois group is isomorphic to a subgroup of F∗

p�

or to a non-abelian subgroup of F∗
p� �θ Gal(Fp�/Fp) where θ(φp) =: φp |F∗

p�
∈ Aut(F∗

p� )

(φp the Frobenius automorphism).
Using this result, we classify the p�-extensions of K having no intermediate field and

count their total number up to K -isomorphism.
Finally, as a further application of the correspondence theorem, we determine the rami-

fication groups and the discriminant of the composite of all extensions of degree p� of K
having no intermediate fields.

2 Notation

Let p and � be prime numbers. For a p-adic field K , we denote by eK and fK the ramification
index and the inertial degree of K/Qp , respectively, and by nK = eK fK = [K : Qp] the
absolute degree of K . We also denote by πK a uniformizer of K , by κK its residue field and
put qK = |κK |.

If E/K is a finite extension, then eE/K and fE/K are the ramification index and the inertial
degree of the extension; if E/K is Galois with Gal(E/K ) = G then G = G−1 ⊇ G0 ⊇
G1 ⊇ · · · ⊇ {1} is, as usual, the lower numbering ramification filtration. In particular, G0
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Extensions of degree p� of a p-adic field 459

is the inertia group and its fixed field Eur is the maximal unramified subextension of E/K ,
while G1 is the unique p-Sylow subgroup of G0 and its fixed field is the maximal tame
ramified subextension of E/K .

Finally, we shall denote by Cp� the composite of all extensions of K of degree p� having
no intermediate field.

3 The correspondence theorem

Let F = F(K ) be the composite of all normal extensions of K of degree prime to p
whose Galois group is isomorphic to a subgroup of F∗

p� or to a non-abelian subgroup of

F∗
p� �θ Gal(Fp�/Fp) where θ(φp) = φp|F∗

p�
∈ Aut(F∗

p� ) (φp the Frobenius automorphism),

and let H = Gal(F/K ). Then

Theorem 1 There exists a one-to-one correspondence between the isomorphism classes of
extensions of degree p� of K having no intermediate extensions and the irreducible H-
submodules of dimension � over Fp of F∗/F∗ p.

Remark 1 Since the degree of K (ζp) over K divides p − 1, we have K (ζp) ⊆ F .

Proof Wefirst show that to an extension L/K of degree p� having no intermediate extensions,
one can associate an irreducible H -submodule of dimension � of F∗/F∗ p . In order to obtain
this, we will prove that LF/F is an elementary abelian extension of degree p�. It is easy
to see that [LF : F] = p� since L and F are linearly disjoint over K . Observe that the
extension L/K cannot be unramified, because otherwise it would be abelian and hence
admit intermediate fields; in particular it is totally ramified, since otherwise it would have
a proper subextension given by the maximal unramified subextension. Let L̃ be the normal
closure of L/K and G = Gal(L̃/K ). As usual, G has the lower numbering ramification
filtration G = G−1 ⊇ G0 ⊇ G1 ⊇ · · · ⊇ {1}, where for every i the subgroup Gi is normal
in G and for every i ≥ 1 the quotient Gi/Gi+1 is an elementary abelian p-group.

Let H̃ ⊆ G be the subgroup fixing L . Since L̃ is the normal closure of L/K , no subgroup
of H̃ is normal in G; it follows that the intersection of all its conjugates (which is normal if
not trivial) is trivial. Moreover, since L/K has no intermediate extensions, H̃ is a maximal
subgroup of G and hence there is a unique t such that Gt+1 ⊆ H̃ and Gt H̃ = G; observe
that we must have t ≥ 1 since L/K is a totally and wildly ramified extension.

Now,Gt is clearly a H̃ -module (the action given by conjugation) and, since the centralizer
CH̃ (Gt ) of Gt in H̃ is trivial (being contained in the intersection of all conjugates of H̃ ), it is
a faithful H̃ -module. Moreover,Gt+1 = {1} since H̃ has no subgroup normal inG, therefore
Gt is an elementary abelian p-group, while from CH̃ (Gt ) = {1} we have Gt ∩ H̃ = {1}.
It follows that G 	 Gt � H̃ and |Gt | = p�. This implies that Gt is also irreducible as
H̃ -module since otherwise there would exists a proper H̃ -submodule A of Gt and then a
proper subgroup A� H̃ of G containing H̃ , which is a contradiction to the maximality of H̃ .

Let L1 be the subfield of L̃ fixed by Gt , so Gal(L1/K ) 	 H̃ . We will show that the order
of H̃ is prime to p. Since Gt is a faithful H̃ -module, H̃ can be embedded in Aut(Gt ) 	
GL(�, Fp). Let H̃1 be the ramification group of H̃ , then either H̃1 = {1} or H̃1 is the unique
p-Sylow of H̃0, and it is normal in H̃ . But if H̃ has a non-trivial normal p-subgroup, then Gt

would have a proper H̃ -submodule, contradicting its irreducibility. So necessarily p � o(H̃).
Now we prove that L1 is contained in F .
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460 M. R. Pati

Since p � o(H̃), H̃ = Gal(L1/K ) is the Galois group of a tame extension, therefore it is
of the form

〈v, τ | vτv−1 = τ q , τ e = 1, v f = τ r 〉
where e = eL1/K , f = fL1/K , q = p fK and r is the smallest positive integer such that
v f = τ r (see [7]). Such an extension is not necessarily split, but it is always contained in a
split one, say L2/K , i.e. in a tame extension whose Galois group is a semidirect product of
the inertia subgroup and its complement. In particular, we can take L2 such that L2/L1 is the

unramified extension of L1 of degree e
(e,r) = o(v f ). Let ˜̃H = Gal(L2/K ) and ˜̃L = L̃ L2.

Since ˜̃H is the Galois group of a split tame extension, we have

˜̃H = 〈τ̃ 〉 � 〈ṽ〉
with o(τ̃ ) = eL2/K = eL1/K , o(ṽ) = fL2/K and ṽτ̃ ṽ−1 = τ̃ q . The particular choice of L2

implies that Gal(L2/L1) = 〈ṽ f 〉.

It easy to see that Gal( ˜̃L/L2) 	 Gt 	 (Z/pZ)�,Gal( ˜̃L/L) 	 ˜̃H and thus Gal( ˜̃L/K ) 	
Gt �ρ

˜̃H . This means that there exists a representation ρ of H̃ of dimension � over Fp which

factors through H̃ 	 ˜̃H/〈ṽ f 〉 and the induced map ρ̄ : H̃ → GL(�, Fp) must give the action
of H̃ on Gt . ρ is irreducible, since otherwise Gt would have a proper H̃ -submodule, but not
necessarily faithful. Nevertheless, since the action of H̃ on Gt is faithful and being L2/L1

the unramified extension of L1 degree e
(e,r) , ρ is still faithful in 〈τ̃ 〉 and Kerρ = 〈ṽ f 〉. In

fact, since ρ factors through H̃ ,Kerρ ⊇ 〈ṽ f 〉 and since ρ̄ is injective being the action of H̃
faithful on Gt ,Kerρ = 〈ṽ f 〉.

The advantage of passing from H̃ to ˜̃H is explained by the following

Lemma 1 Every irreducible representation V over Fp of 〈ν〉 �μ 〈η〉, where μ(η) is the
elevation to p fK and which is faithful on 〈ν〉, is the sum of the conjugates of an irreducible
representation over Fp, which is induced from a 1-dimensional representation of 〈ν〉 � 〈ηc〉,
where 〈ηc〉 = C〈η〉(〈ν〉) and ν and ηc act as multiplication by α and β, respectively.

Moreover, the following equation holds

dimFp V = lcm

(
rw

(r, fK )
, r

)
(1)

where r = [Fp(α) : Fp] and w = [Fp(β) : Fp].
Proof See for example [4]. �
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Extensions of degree p� of a p-adic field 461

By Lemma 1, there exist α, β ∈ F
∗
p such that ρ is the sum of the conjugates of the

representation obtained by induction from the 1-dimensional representation on which τ̃ and
ṽc (with 〈ṽc〉 = C〈ṽ〉(〈τ̃ 〉) act as multiplication by α and β, respectively. Moreover, by Eq.
(1), α and β are such that

� = lcm

(
rw

(r, fK )
, r

)
.

Therefore, we must have r = 1 or r = � (and also w = 1 or w = �). This means
that our representations over Fp are either the sum of the � conjugates of a 1-dimensional
representation defined over Fp� , or it is the only conjugate of an induced representation from
a 1-dimensional one.

Since H̃ is isomorphic to ˜̃H/kerρ, we are interested in the image of ˜̃H under ρ.

If r = 1 then α ∈ F∗
p , i.e. e = o(τ̃ ) = o(α) | p−1, therefore τ̃ q = τ̃ so that ˜̃H is abelian.

It follows that the image of ˜̃H under ρ is cyclic, isomorphic to the subgroup of F∗
p� generated

by α and β. Therefore, in this case L1 ⊆ F .
If r = �, then we have to distinguish two cases: � | fK and � � fK . In the first case, we

have again τ̃ q = τ̃ and hence ˜̃H abelian; since r = �, by the same argument of the previous

case, H̃ is isomorphic to a subgroup of F∗
p� . If � � fK , then ṽ acts as elevation to p and ˜̃H

is not abelian. But 〈τ̃ 〉 � 〈ṽ�〉 is abelian and its image under ρ is cyclic, isomorphic to the

subgroup C of F∗
p� generated by α and β. The group ˜̃H has a subgroup isomorphic to the

quotient
˜̃H

〈τ̃ 〉�〈ṽ�〉 	 〈ṽ〉
〈ṽ�〉 	 Z/�Z, which acts on 〈τ̃ 〉� 〈ṽ�〉 as elevation to p so that the image

of ˜̃H under ρ is isomorphic to a subgroup of

C � Gal(Fp�/Fp)

with C < F∗
p� . Therefore again, we find that L1 is contained in F .

It follows that L̃ = LL1 ⊆ LF . L̃/L1 is totally andwildly ramified since L/K is, therefore
L̃∩F = L1 andGal(LF/F) 	 Gt . Thismeans that LF/F is an elementary abelian extension
of degree p�. Thus, by Kummer theory, LF = F(

p
√

�) for some subgroup � of F∗/F∗ p of
dimension � as Fp-vector space. Moreover, LF/K is Galois because LF = L̃ F and L̃/K
and F/K are Galois, so � is a H -module (the action of H being that induced by the action
on F∗) and it is irreducible because otherwise Gt would have a proper H̃ -submodule.

Note that the conjugates of L over K are exactly the extensionswhich lead to the H -module
�with this construction. Thus we can define amapΨ from the set of the isomorphism classes
of p�-extensions of K havingno intermediate fields to the set of the irreducible H -submodules
of F∗/F∗ p of dimension � over Fp .

Conversely, we show that each irreducible H -submodule of dimension � of F∗/F∗ p corre-
sponds to the isomorphism class of an extension of degree p� of K having no subextensions.
Note that p � o(H) since F is the composite of normal extensions of degree prime to p.

Let � be an irreducible H -submodule of F∗/F∗ p which has dimension � as vector space
over Fp . Put M = F(

p
√

�), then M/K is a Galois extension and S = Gal(M/F) is a H -
module which is irreducible because � is. Let G be the Galois group of M/K . Since S is a
normal subgroup ofG of order p� andG/S 	 H has order prime to p, by Schur-Zassenhaus
theorem we haveG 	 S� H . Let L be the fixed field of H ; the fields fixed by the conjugates
of H in G form the isomorphism class of the extension L/K . Each of these extensions has
degree p� and has no intermediate extensions. In fact, let T be such that K ⊆ T ⊆ L; T is the
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462 M. R. Pati

field fixed by a subgroup C ofG, and since L ⊇ T we have C ⊇ H . Therefore, C 	 S0 � H
with S0 < S, but S is irreducible as H -module so S0 = {1} or S0 = S i.e. T = L or T = K .

It follows that we can define a map Φ from the set of the irreducible H -submodules of
dimension � of F∗/F∗ p to the set of the isomorphism classes of p�-extensions of K having
no intermediate fields.

Finally, it is easily seen that Ψ and Φ are inverse to each other.

3.1 Example

We now give a concrete example of the field F that appears in Theorem 1, in particular we
determine F when � = 2. Let F = F(K ) be the composite of all normal extensions of K of
degree prime to p whose Galois group is isomorphic to a subgroup of F∗

p2
or to a non-abelian

subgroup of F∗
p2

�θ Gal(Fp2/Fp) where θ(φp) = φp|F∗
p2

∈ Aut(F∗
p2

) (φp the Frobenius

automorphism), and let H = Gal(F/K ) (note that if p �= 2 the hypothesis about the degree
is redundant). Then

Proposition 1 If p �= 2 or, p = 2 and 2 | fK , one has F = K (ζ
q p2−1
K −1

, π) where

π p2−1 = πK , [F : K ] = (p2 − 1)2 and

H 	
{

Z/(p2 − 1)Z × Z/(p2 − 1)Z i f 2 | fK

Z/
p2−1
2 Z × Z/(p2 − 1)Z � Z/2Z i f 2 � fK

where in the case 2 � fK , the nonzero element of Z/2Z acts trivially on Z/
p2−1
2 Z and as

multiplication by p on Z/(p2 − 1)Z.
If p = 2 and 2 � fK , one has F = K (ζq3K−1), [F : K ] = 3 and H 	 Z/3Z.

Proof The case p = 2 and 2 � fK is simple because F∗
4 � Gal(F4/F2) 	 S3 has only one

subgroup of odd order, that is the cyclic group of order 3, and since ζ3 /∈ K there is only one
normal extension of degree 3 of K , that is the unique unramified one. The claim about the
Galois group is then trivial.

To prove the remaining part of the proposition it is useful to distinguish two cases: 2 | fK
and, 2 � fK and p �= 2.

If 2 | fK then K contains the (p2−1)th roots of unity. Therefore, the unramified extension
K (ζ

q p2−1
K −1

)/K and the totally ramified extension K (π)/K are both cyclic of order p2 − 1,

so that K (ζ
q p2−1
K −1

, π) ⊆ F . We must show the inverse inclusion. Let L/K be a normal

extension with Galois group isomorphic to a subgroup of F∗
p2

or to a non-abelian subgroup of

F∗
p2

�Gal(Fp2/Fp), and let e and f be its ramification index and inertial degree, respectively.

By basic theory, L = K (ζ
q f
K−1

, πL)whereπL is a root of the polynomial Xe−uπK , for some

root of unity u in K (ζ
q f
K−1

). The thesis follows if we show that K (ζ
q f
K−1

) ⊆ K (ζ
q p2−1
K −1

)

and that u is a eth power in K (ζ
q p2−1
K −1

), i.e. K (ζ
q p2−1
K −1

) contains the e(q f
K − 1)th roots

of unity. This last is equivalent to show that e(q f
K − 1) | q p2−1

K − 1. If L/K is cyclic, then
e f | p2 − 1, and in particular e | p2 − 1 and f | p2 − 1 therefore K (ζ

q f
K−1

) ⊆ K (ζ
q p2−1
K −1

).

Moreover, q p2−1
K − 1 = qef tK − 1 = (q f

K − 1)((q f
K )et−1 + · · · + 1) and the factor to the right

is the sum of et addends, each of which is congruent to 1 modulo e because qK ≡ 1(mod e)
since 2 | fK and p2 ≡ 1(mod e). Sowe have proved that L ⊆ K (ζ

q p2−1
K −1

, π). Nowwe show
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that if 2 | fK , then there exists no extension L/K such that Gal(L/K ) 	 D � Gal(Fp2/Fp)

with D < F∗
p2

\F∗
p , thus proving that F ⊆ K (ζ

q p2−1
K −1

, π). If p = 2, this is trivial since

F∗
4 � Gal(F4/F2) 	 S3 has no not cyclic subgroup of odd order. If p �= 2, it suffices to

observe that every quotient Gal(L/K )/G0 acts trivially on the inertia subgroup G0. This is
true because one can easily see that, since D � F∗

p the only normal and cyclic subgroups of
D � Gal(Fp2/Fp) are the subgroups of D ⊆ F∗

p2
, therefore G0 can be embedded in F∗

p2
and

the Frobenius φqK = φp fK acts trivially on it since fK is even.
Thus F = K (ζ

q p2−1
K −1

, π) and, since the extensions K (ζ
q p2−1
K −1

)/K and K (π)/K are

linearly disjoint, we have [F : K ] = (p2 − 1)2 and H 	 (Z/(p2 − 1)Z)2.
If 2 � fK and p �= 2 then K does not contain the (p2 − 1)th roots of unity. The unram-

ified extension K (ζ
q p2−1
K −1

)/K is again cyclic of order p2 − 1, while the totally ramified

extension K (π)/K is not cyclic (it is not even Galois). Nevertheless, K (ζ
q p2−1
K −1

, π)/K is

the composite of K (ζ
q p2−1
K −1

)/K with the normal extension K (ζp2−1, π), and this last is of

the type asked because Gal(K (ζp2−1, π)/K ) 	 F∗
p2

� Gal(Fp2/Fp).

So again K (ζ
q p2−1
K −1

, π) ⊆ F , it remains to prove the inverse inclusion. Let L/K be a

normal extension with Gal(L/K ) isomorphic to a subgroup of F∗
p2

or to a non-abelian sub-

group of F∗
p2

�Gal(Fp2/Fp), e and f its ramification index and inertial degree, respectively.

As usual we can write L = K (ζ
q f
K−1

, πL) where πL is a root of the polynomial Xe − uπK ,

for some root of unity u in K (ζ
q f
K−1

), thus we must show that K (ζ
q f
K−1

) ⊆ K (ζ
q p2−1
K −1

) and

that K (ζ
q p2−1
K −1

) contains the e(q f
K − 1)th roots of unity. If L/K is cyclic, then e f | p2 − 1,

therefore K (ζ
q f
K−1

) ⊆ K (ζ
q p2−1
K −1

) and, like the previous case, q p2−1
K − 1 = qef tK − 1 =

(q f
K −1)((q f

K )et−1+· · ·+1)with the factor to the right divisible by e since it is the sum of et

addends, eachofwhich is congruent to 1modulo e becauseq f
K ≡ 1(mod e) since L/K (ζ

q f
K−1

)

is cyclic and thus K (ζ
q f
K−1

) contains the eth roots of unity. So L ⊆ K (ζ
q p2−1
K −1

, π). Suppose

now that Gal(L/K ) 	 D�Gal(Fp2/Fp)with D < F∗
p2

\F∗
p . Since the only normal and cyclic

subgroup of D�Gal(Fp2/Fp) are those of D, the inertia subgroupG0 is contained in D ⊆ F∗
p2

so |G0| = e | p2−1;moreover, Gal(L/K )/G0 is a cyclic group of order f , and therefore it is
contained in the biggest abelian quotient of D�Gal(Fp2/Fp) whose order, as one can easily
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464 M. R. Pati

see, divides p2−1. It follows that necessarily f | p2−1 and thus K (ζ
q f
K−1

) ⊆ K (ζ
q p2−1
K −1

).

From e | p2 − 1, we also have 2 | f ; it follows that K (ζ
q f
K−1

) (and hence L) contains the

cyclic subextension K (ζp2−1)/K of order 2 and Gal(K (ζ
q f
K−1

, πL)/K (ζp2−1)) 	 D; there-

fore, for the previous case K (ζ
q f
K−1

, πL) is contained in K (ζ
q p2−1
K −1

, π). This concludes the

proof that F ⊆ K (ζ
q p2−1
K −1

, π).

Finally, observe that F is the composite of the Galois extensions K (ζ
q p2−1
K −1

)/K

and K (ζp2−1, π)/K and that K (ζ
q p2−1
K −1

) ∩ K (ζp2−1, π) = K (ζp2−1). We have that

K (ζ
q p2−1
K −1

)/K (ζp2−1) is cyclic of order
p2−1
2 and K (ζp2−1, π)/K (ζp2−1) is cyclic of order

p2 − 1, thus [F : K ] = p2−1
2 (p2 − 1)2 = (p2 − 1)2 and Gal(F/K ) 	 Gal(F

q p2−1
K

/Fq2K
) ×

F∗
p2

� Gal(Fq2K
/FqK ); taking into account that 2 � fK it is easy to see that this group is

isomorphic to that in the claim. �

4 Counting the isomorphism classes

We now return to the general case in which � is an arbitrary prime number.
Theorem 1 says that to count the number of isomorphism classes of extensions of K of

degree p� it suffices to count the number of irreducible representations of H of dimension �

in the Fp-vector space F∗/F∗ p . To do this, we need some information about H .
Note that H is the Galois group of a finite tame extension therefore, as observed in the

proof of the Theorem 1, it has the following form

〈v, τ | vτv−1 = τ q , τ e = 1, v f = τ r 〉
where e := eF/K , f := fF/K , q := p fK and r is the smallest positive integer such that
v f = τ r , and the extension F/K is always contained in a split one, i.e. in a tame extension
whose Galois group is a semidirect product of the inertia subgroup and its complement. Since
this tame split extension is of degree prime to p and unramified over F , the Theorem 1 still
holds if we put it in place of F , as one can easily see by the proof of the same Theorem. With
abuse of notation, we continue to denote by F this split tame extension of K and by H its
Galois group over K .

So we can suppose that H = H0 � U where H0 = 〈τ 〉 and U = 〈v〉 are cyclic of order
e and f , respectively, (e, p) = 1, e | q f − 1 and v acts on H0 via the map x �→ xq . This
group satisfies the hypothesis of Lemma 1, which describes its representations over Fp .

For convenience, we now describe in more details the irreducible representations of H
over Fp .

The irreducible representations of such a group over Fp are easy to describe; using this
description we determine that contained in the module obtained from F∗/F∗ p by extension
of scalar, and from these we recover the irreducible representation of H over Fp contained
in F∗/F∗ p .

First of all, we can observe that to study the irreducible representation ρ of H0 � U one
can study the irreducible representation ρ̄ of H̄0 � U , where H̄0 = H0/ker(ρ|H0).

As one can easily see for example in [4], all irreducible representations ρ of H0 � U
in a Fp-vector space are induced from 1-dimensional representations of the abelian group
H0�Ũ , where Ũ = 〈ṽ〉 is the centralizer of H̄0 inU . In particular, if ρ : H0�U −→ GL(W )
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is an irreducible representation, then ρ = IndH0�U
H0×Ũ

(Wχ ) where Wχ is a 1-dimensional Fp-

subspace of W on which H0 × Ũ acts by the character χ . Moreover, if α = χ(τ) and
β = χ(ṽ), then there is a basis of W with respect to τ and v act on W via the matrices

Tα =

⎛
⎜⎜⎜⎜⎜⎜⎝

α

αq

αq2

. . .

αqs−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Vβ =

⎛
⎜⎜⎜⎜⎜⎝

β

1
1

. . .

1

⎞
⎟⎟⎟⎟⎟⎠

where s is the index of Ũ in U .
It easy to see that conjugate characters lead to the same representation on W .
Now, the second step is to pass from the irreducible representations over Fp to the

irreducible representations over Fp . These last are sums of the conjugates of irreducible
representations over Fp . If ϕ is an irreducible representation of H0 � U over an Fp-vector
space V , then it is the sum of the conjugates of an irreducible representation over Fp which,
as written above, is induced from a 1-dimensional one, and one has

dimFp V = lcm

(
rw

(r, fK )
, r

)
(2)

where r = [Fp(α) : Fp] and w = [Fp(β) : Fp].
Finally, it remains to identify the irreducible representations of H0 �U over the Fp-vector

space F∗/F∗ p . For what we have said above, we first identify those over the Fp-vector space
F∗/F∗ p ⊗Fp Fp obtained from F∗/F∗ p by extension of scalar and then recover from these
the irreducible representations over F∗/F∗ p .

4.1 The structure of F∗/F∗ p as F p[H]-module

This section is due to the work of Del Corso et al. [4], so for more details one can see their
paper.

We describe the irreducible representations of H of any dimension k ≥ 2 contained in
F∗/F∗ p , while in the next section we specialize to k = � prime.

Recall that we are interested in representations of H = H0 �U = 〈τ 〉� 〈v〉 in a subspace
of dimension k of F∗/F∗ p , that is to say in the Fp[H ]-submodules of F∗/F∗ p of dimension
k.

If π is a uniformizer of F and U1 denotes the group of principal units of F , it is well
known that

F∗ 	 〈π〉 × κ∗
F ×U1

as H - modules, and that U1 has a filtration {Ui }i≥1, where Ui = {u ∈ F∗|u ≡ 1(mod π i )}.
It follows that

F∗/F∗ p 	 〈π〉/〈π〉p ×U1/U
p
1

as Fp[H ]-modules. The filtration {Ui }i≥1 of U1 induces the filtration {UiU
p
1 /U p

1 }i≥1 of
U1/U

p
1 and, asUi+1 is complemented inUi as H -module, alsoUi+1U

p
1 /U p

1 is complemented
in UiU

p
1 /U p

1 as Fp[H ]-module. So one has

F∗/F∗ p 	 〈π〉/〈π〉p ⊕
∞⊕
i=1

UiU
p
1 /Ui+1U

p
1 .
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The nonzero terms in the right-hand side are those with i = peF/(p − 1) and, 0 < i <

peF/(p − 1) with (i, p) = 1 (see for example [5]). Then the above relation can be written
as

F∗/F∗ p 	 〈π〉/〈π〉p ⊕
⊕

i∈�0,IF �

UiU
p
1 /Ui+1U

p
1 ⊕UIFU

p
1 /U p

1 .

where IF = peF/(p − 1) and �0, IF � is the set of integers prime with p in the interval
]0, IF [.

We want to describe the representations of H contained in F∗/F∗ p . To do this, observe
that the action of H on 〈π〉/〈π〉p 	 Fp is clearly trivial and that UIFU

p
1 /U p

1 corresponds
via Kummer theory to the Galois unramified extension of degree p, so the action of H on
this submodule of dimension 1 of F∗/F∗ p is given by the cyclotomic character ω. Since we
are interesting in the irreducible subrepresentations of dimension k ≥ 2, we can reduce to
consider those contained in

⊕
i∈�0,IF � UiU

p
1 /Ui+1U

p
1 .

Weneed to study the structure ofUiU
p
1 /Ui+1U

p
1 asFp[H ]-module. Since F/K is a tamely

ramified extension, we can choose as a uniformizer π of F an eth root of a uniformizer of K ,
where clearly e = eF/K . Then for i ≥ 1, each element ofUi/Ui+1 can be written as 1+ επ i

with ε ∈ U0 (U0 = O∗
F is the multiplicative subgroup of the ring of the integers of F). The

action of H on it is given by

τ(1 + επ i ) = 1 + ζ iεπ i + · · · , v(1 + επ i ) = 1 + εqπ i + · · · ,

where ζ = τ(π)/π is a primitive eth root of 1. As usual, one can identify Ui/Ui+1 with κF
via the map

1 + επ i �→ ε̄

and this induces on κF the following action of H

τ(ε̄) = ζ̄ i ε̄, v(ε̄) = ε̄q .

Denote by Mi the Fp[H ]-module formed by the Fp-module κF with the above action of H .
It is clear that

UiU
p
1 /Ui+1U

p
1 	 Mi

as Fp[H ]-modules. So we search the irreducible Fp[H ]-submodules of
⊕

i∈�0,IF � Mi or,
equivalently, the irreducible representations of H over Fp contained in

⊕
i∈�0,I� Mi (viewed

as Fp-vector space). To do this, we first extend the Fp-representation Mi of H to an
Fp-representation, identify its Fp subrepresentations and from each of these find the Fp

subrepresentations via the sum of its conjugates.
Let Mi = Mi ⊗Fp Fp be the extension of Mi to the algebraic closure of Fp .
It can be shown that

Mi 	
⊕
β∈Fp

β f/s=1

J(α,β)
fK (3)

where f = fF/K , s = [U : Ũ ] and J(α,β) = IndH
H0×Ũ

(V(α,β)) is the irreducible s-

dimensional representation over Fp induced from the 1-dimensional representation on which
τ and ṽ act via multiplication by α = ζ i and β, respectively.
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Let Y = ⊕
i∈�0,IF � Mi , then J(α,β) appears nK = [K : Qp] times in Y . In fact, the i’s

such that ζ i = α have equal remainder modulo e; being (e, p) = 1 those in ]0, IF [ and prime
with p are exactly eK . Multiplying by the exponent of J(α,β) that appears in (3) we have the
claim.

Moreover, as observed in the previous section, the s conjugated pairs (αqi , β) yield the
same representation, therefore the multiplicity of J(α,β) in Y is snK .

It is easy to see that the representation J(α,β) has

d = lcm(w, (r, fK ))

conjugates over Fp , where r = [Fp(α) : Fp] and w = [Fp(β) : Fp] as above, and so it is
defined over D = Fpd . Moreover, a short reflection leads to observe that s = [U : Ũ ] is
equal to r

(r, fK )
since U acts on H0 as elevation to q and therefore s is the smallest power of

q such that e | qs − 1.
Let X be an irreducible subrepresentation of Y defined over Fp and containing a unique

copy of J(α,β). From each copy of J(α,β) contained in Y and defined over D, we obtain a
representation isomorphic to X . Consequently, to count the subrepresentations isomorphic
to X and defined over Fp is the same as to count the subrepresentations that are isomorphic
to J(α,β) and defined over D. This can be made counting the subrepresentations contained in
(J(α,β))

snK and working over D. Let us consider the immersions

J(α,β) −→ (J(α,β))
snK

which are defined over D. Using Schur lemma, we find that the number of immersions is
|D|snK − 1 and this number must be divided by |D| − 1 when taking into account that two
immersions have the same image if and only if they differ by multiplication by a constant. It
follows that the number of representations defined over Fp and containing a representation

isomorphic to J(α,β) is
pdsnK −1
pd−1

.

4.2 The total number of isomorphism classes of extensions of degree p� of K

Let V be an irreducible Fp[H ]-submodule of F∗/F∗ p of dimension �. From what we have
said above, viewing V as irreducible representation of H over Fp , it is isomorphic to the
sum of the conjugates over Fp of an irreducible representation of H over Fp , which we have
denoted by J(α,β). If r = [Fp(α) : Fp] and w = [Fp(β) : Fp], by Eq. (2), we have

dimFp V = lcm

(
rw

(r, fK )
, r

)
= �, (4)

therefore r = 1 or r = �. It follows that s = r
(r, fK )

= 1 or s = �. We must distinguish two
cases: � | fK and � � fK .

If � | fK , then r and w must be equal to 1 or � and at least one of them must be equal
to �. It follows that we have exactly (p� − 1)2 − (p − 1)2 possible pairs (α, β); moreover,

since s = r
(r, fK )

= 1, for each of them there are p�nK −1
p�−1

representations over Fp containing
a representation isomorphic to J(α,β). Finally, we have to take in account that the pairs

(α, β), (α p, β p), . . . , (α p�−1
, β p�−1

) lead to the same representation over Fp .
Collecting all the information, we find that if � | fk , there are exactly

1

�

p�nK − 1

p� − 1
((p� − 1)2 − (p − 1)2)
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isomorphism classes of extensions of degree p� of K having no intermediate fields.
If � � fK then Eq. (4) says that one of r and w must be 1 and the other �.
For r = 1 and w = �, we have again s = dimJ(α,β) = 1 and d = � therefore, for each of

the (p−1)(p�−1)−(p−1)2 possible choices of (α, β), there are p�nK −1
p�−1

Fp-representations
containing a representation isomorphic to J(α,β), and for the same reason as above this number

must be divided by �. So forα ∈ F∗
p andβ ∈ F∗

p� wehave
1
�
p�nK −1
p�−1

(p−1)(p�− p) irreducible

representations of H of dimension � over the Fp-vector space F∗/F∗ p .
To these, we have to add that obtained from r = � andw = 1. In this case, s = � and d = 1

i.e. J(α,β) is already defined over Fp , therefore for each of the (p� − 1)(p − 1) − (p − 1)2

possible pairs (α, β) there are p�nK −1
p−1 representations isomorphic to J(α,β). This value needs

to be divided by � because from the definition of J(α,β) one has J(α,β) = J(α p,β) = · · · =
J
(α p�−1

,β)
. It follows that for α ∈ F∗

p� and β ∈ F∗
p there are

1
�
(p�nK − 1)(p� − p) irreducible

representations of H of dimension � over F∗/F∗ p .
Adding the two contributions one finds

1

�
(p�nK − 1)(p� − p) + 1

�

p�nK − 1

p� − 1
[(p − 1)(p� − 1) − (p − 1)2]

= 1

�

p�nK − 1

p� − 1
[(p� − 1)2 − (p − 1)2]

isomorphism classes of extensions of degree p� of K having no intermediate fields.
Note that we have obtained the same number of isomorphism classes of extensions as in

the case � | fK .

Examples Using the above formula, we find that there are 16 classes of extensions of degree
23 = 8 of the field Q2 with no intermediate extensions, and 224 classes of extensions of
degree 33 = 27 of the field Q3 with no intermediate extensions.

4.3 The number of isomorphism classes of extensions whose normal closure has a
prescribed Galois group

In the previous section, we have counted all the isomorphism classes of extensions of degree
p� of K having no intermediate fields. To each of them, we can associate a group, that is the
Galois group of the normal closure of the extensions over K . It turns that some isomorphism
classes are associated with the same group, i.e. non-isomorphic p�-extensions of K can have
normal closure with the same Galois group.

In this section, we identify all possible groups that can appear as the Galois group of the
normal closure of a p�-extension of K having no intermediate fields, and for each of them
we count the number of isomorphism classes of extensions which are associated with it.

First of all observe that if L/K is a p�-extension having no intermediate fields and L̃ is
its normal closure then, by Theorem 1,

Gal(L̃/K ) 	 V �ρ̄ H̄

where ρ̄ is the map induced on the quotient H̄ = H/kerρ and the pair (V, ρ) is the rep-
resentation of dimension � of H in F∗/F∗ p , which correspond to the class of L/K under
the correspondence of Theorem 1. In other words, Gal(L̃/K ) is the semidirect product of V
with the biggest quotient of H acting faithfully on it.
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Fixing a basis of the Fp-vector space V , we can identify the image of ρ with a subgroup
of GL(�, Fp), so that Gal(L̃/K ) 	 (F+

p )� � Hρ where Hρ represents the action of H̄ on V
given by ρ̄, expressed with respect to the fixed basis.

Now observe that for what we have said above, our representations are sums of the con-
jugates of s-dimensional representations J(α,β), where s = 1 or s = � and α, β ∈ F∗

p� : if

s = 1 then J(α,β) is defined over Fp� and H̄ is abelian, so Hρ = H(α,β) is cyclic since it is
isomorphic to the homomorphic image of a finite group in GL(1, Fp� ) = F∗

p� ; if s = �, then
J(α,β) is already defined over Fp , but the group H(α,β) of the matrices which describes the
action of H̄ is not abelian.

The normal closures of two isomorphism classes have the same Galois group if and only
if

(F+
p )� � H(α,β) 	 (F+

p )� � H(α′,β ′)

and this happens if and only if the two subgroupsH(α,β),H(α′,β ′) ofGL(�, Fp) are conjugated
over GL(�, Fp). In fact, if σ : (F+

p )� � H(α,β) −→ (F+
p )� � H(α′,β ′) is an isomorphism then

for every A ∈ H(α,β) the following diagram must be commutative

F�
p

σ |
F
�
p

A
F�
p

σ |
F
�
p

F�
p

σ(A)
F�
p

where σ |
F�
p

∈ Aut(F�
p) and thus can be expressed as an invertible matrix in GL(�, Fp).

To classify the various case depending on the value of s = r/(r, fK ), we must distinguish
two different situations: � | fK and � � fK .

For what will follow, it is convenient to introduce the function ψ(a, b) that maps (a, b) ∈
N × N to the number of elements of order a in the group Ca × Cb. It can be expressed as

ψ(a, b) = a · (a, b) ·
∏

l prime
l|(a,b)

(
1 − 1

l2

)
·

∏
l prime
l|a

l�(a,b)

(
1 − 1

l

)
.

Moreover, for every c dividing p� − 1 we define the function λ(c, p) as

λ(c, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if p ≡ 2, . . . , � − 1 (mod �)or

p ≡ 1 (mod �)and, v�(c) = 0 or v�(c) = v�(p� − 1)
1
�

if p ≡ 1 (mod �)andv�(p − 1) < v�(c) < v�(p� − 1)
1

�+1 if p ≡ 1 (mod �)andv�(c) ≤ v�(p − 1)

(5)

CASE � | fK .

Theorem 2 Let K be a p-adic field, fK its inertial degree over Qp and nK its absolute
degree. Let � be a prime number and suppose that � | fK . Then the Galois group of the
normal closure of a p�-extension of K having no intermediate fields is of type F+

p� � C,

where C is a subgroup of F∗
p� not contained in F∗

p with the natural action on F+
p� .

Moreover, for every integer c dividing p� − 1 but not p − 1, if C is the cyclic subgroup of
F∗
p� of order c, then there are
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n(c) = 1

�
ψ(c, p� − 1)

p�nK − 1

p� − 1

classes of isomorphic p�-extensions of K having no intermediate fields whose normal closure
has Galois group isomorphic to F+

p� � C.

Proof Since � is a prime number, from (2) it follows that in this case for the dimension to be
� we need r, w equal to 1 or � and at least one to be equal to �. Moreover, for every α and β

satisfying this condition, we always have dimJ(α,β) = s = r
(r, fK )

= 1. It follows thatH(α,β)

is generated by the diagonal matrices⎛
⎜⎜⎜⎝

α

α p

. . .

α p�−1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

β

β p

. . .

β p�−1

⎞
⎟⎟⎟⎠

and therefore it is isomorphic to the cyclic subgroup of F∗
p� generated by α and β. Therefore,

the only case in which (F+
p )��H(α,β) 	 (F+

p )��H(α′,β ′) is when {α, β} and {α′, β ′} generate
groups of the same order.

Note that if α and β generate the cyclic subgroupC of F∗
p� then (F+

p )��H(α,β) 	 F+
p� �C ,

where C acts in the natural way on F+
p� .

Let c | p� −1 but c � p−1, then the number of pairs (α, β) in F∗
p� ×F∗

p� having order c is

equal toψ(c, p�−1). Since s = 1 for each of them, the number of representations in F∗/F∗ p
defined over Fp and containing a representation isomorphic to J(α,β) is (p�nK −1)/(p� −1).

Observe that we need to count together (α, β), (α p, β p) . . . (α p�−1
, β p�−1

) since they lead
to the same representation over Fp , so we must divide by �.

It follows that ifC is the cyclic group of order c in F∗
p� , the number of classes of extensions

whose normal closure has Galois group isomorphic to F+
p� � C (where C acts naturally on

F+
p� ) is exactly

1

�
ψ(c, p� − 1)

p�nK − 1

p� − 1
.

The groups of type F+
p� �C withC < F∗

p� are the only groups that can appear as Galois group

of the normal closure of a p�-extension of K having no intermediate fields when � | fK . �
CASE � � fK .

Theorem 3 Let K bea p-adic field, fK its inertial degree overQp andnK its absolute degree.
Let � be a prime number and suppose that � � fK . Then theGalois group of the normal closure
of a p�-extension of K having no intermediate fields is either of type F+

p� � C, where C is a

subgroup of F∗
p� not contained in F∗

p (with the natural action on F+
p� ), or of type

(
Fp

)�
� H,

where H ⊆ GL(�, Fp) is isomorphic to a non-abelian subgroup of F∗
p� � Gal(Fp�/Fp).

Moreover,

– for every integer c dividing p� − 1 but not p − 1, if C is the cyclic subgroup of F∗
p� of

order c, then there are

n(c) = 1

�
ψ(c, p − 1)

p�nK − 1

p� − 1
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classes of isomorphic p�-extensions of K having no intermediate fields whose normal
closure has Galois group isomorphic to F+

p� � C;

– for every non-abelian subgroup H ⊆ GL(�, Fp) isomorphic to a subgroup Z of F∗
p� �

Gal(Fp�/Fp), if C = Z ∩ F∗
p� has order c then there are

n(H) =
{

λ(c, p)ψ(c, p − 1) 1
�
p�nK −1
p−1 i f C → Z spli ts

1−λ(c,p)
�−1 ψ(c, p − 1) 1

�
p�nK −1
p−1 i f C → Z doesnotspli t

classes of isomorphic p�-extensions of K having no intermediate fields whose normal

closure has Galois group isomorphic to
(
Fp

)�
� H.

Proof Since � � fK from (2), the dimension of a representation of a quotient H̄ over Fp is �

when one of r, w is 1 and the other �.
For r = 1 and w = �, i.e. for the pairs α, β with α ∈ F∗

p and β ∈ F∗
p� , it turns out again

dim J(α,β) = s = 1 so, as above, the group H(α,β) acting in the representation is cyclic of
order equal to the order of (α, β) in (F∗

p × F∗
p� )\(F∗

p × F∗
p) and for each pair (α, β) there are

(p�nK − 1)/(p� − 1) representations over Fp containing a unique copy of J(α,β).
Let c | p�−1 but c � p−1, the possible pairs (α, β) in F∗

p×F∗
p� of order c areψ(c, p−1).

Thus, similarly to above, if C is the cyclic group of order c in F∗
p� , then the number of classes

of extensions whose normal closure has Galois group isomorphic to F+
p� � C is

1

�
ψ(c, p − 1)

p�nK − 1

p� − 1
.

For r = � and w = 1, we have dim J(α,β) = s = r
(r, fK )

= � and J(α,β) is already defined
over Fp . It follows that the groupH(α,β) coincides with the group of matrices which describe
the action on J(α,β).

Recalling that q = p fK and � � fK , from the study of the representations of H , we have
made at the beginning of Sect. 4, we find that the action on J(α,β) is described by the matrices

Tα =

⎛
⎜⎜⎜⎝

α

α p

. . .

α p�−1

⎞
⎟⎟⎟⎠ , Vβ =

⎛
⎜⎜⎜⎝

β

1
. . .

1

⎞
⎟⎟⎟⎠ .

So H(α,β) = 〈Tα, Vβ〉 is a non-abelian group. Moreover, the number of representations
contained in F∗/F∗ p isomorphic to J(α,β) is exactly (p�nK − 1)/(p− 1). This number must

be divided by � when taking into account that the pairs (α, β), (α p, β) . . . (α p�−1
, β) in

F∗
p� × F∗

p give the same representation.

It remains to multiply by the number of pairs (α′, β ′) such that (F+
p )� � 〈Tα′ , Vβ ′ 〉 	

(F+
p )� � 〈Tα, Vβ〉. For what we have remarked above, this means that we have to count the

number of pairs (α′, β ′) ∈ F∗
p� × F∗

p such that 〈Tα′ , Vβ ′ 〉 and 〈Tα, Vβ〉 are conjugated in
GL(�, Fp) (note that this is equivalent to require that they are conjugated in GL(�, Fp� )).

It turns out that H(α,β) is conjugated to H(α′,β ′) if only if there exists a matrix M ∈
GL(�, Fp) such that M−1H(α,β)M = H(α′,β ′) and diagonal matrices are sent in diagonal
matrices.

In fact, the subgroup of the diagonalmatrices ofH(α,β) is generated by Tα andV �
β , and it is a

maximal cyclic subgroup 〈Tγ 〉 ofH(α,β) of order equal to o(γ ) = lcm(o(α), o(β)) and index
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�. Suppose that H(α,β) and H(α′,β ′) are conjugated, and then the maximal cyclic subgroups
of the diagonal matrices have the same order, and in particular they are equal since they are
isomorphic to the same subgroup of F∗

p� via the same map. Therefore, H(α,β) = 〈Tγ , Vβ〉
and H(α′,β ′) = 〈Tγ , Vβ ′ 〉.

Now, H(α,β) and H(α′,β ′) have either only one maximal cyclic subgroup, that is the sub-
group of the diagonal matrices, or � + 1 maximal cyclic subgroups (one of which is that
of the diagonal matrices). In the first case, there is nothing to prove since clearly all the
conjugations send diagonal matrices in diagonal matrices. For the second case, observe that
by the proof of Theorem 1,H(α,β) is isomorphic to 〈(γ, id), (γ, φp)〉 ⊆ F∗

p� �Gal(Fp�/Fp),
i.e. it is isomorphic to a subgroup of the normalizer of a Cartan subgroup of GL(�, Fp).

The key point is to observe that there always exists a basis under which (γ, id) and (γ, φp)

are represented by the generators of any two cyclic subgroups of index � ofH(α,β) and every
pairs of these matrices generate the whole groupH(α,β). This is enough to prove that we can
suppose not only 〈Tγ 〉 is sent in 〈Tγ 〉 but also that 〈Tα� , Vβ〉 goes in 〈Tα′� , Vβ ′ 〉.

Therefore, there exists a diagonal matrix D = T i
αV

�j
β ∈ H(α,β) such that M−1(DVβ)M =

Vβ ′ . This leads to

β ′ = γ p�−1+···+p+1β,

where recall that γ ∈ F∗
p� has order lcm(o(α), o(β)) = lcm(o(α′), o(β ′)).

Consequently, the Galois group is identified by the order of the cyclic group C = 〈γ 〉 ⊆
F∗
p� and the class of β in (C ∩ F∗

p)/C
p�−1+···+p+1.

Let c be the order of C . Since

(p − 1, p�−1 + · · · + p + 1) =
{

� if p ≡ 1 (mod �)

1 if p ≡ 2, . . . , � − 1 (mod �) or p = �

we have

∣∣∣∣ C ∩ F∗
p

C p�−1+···+p+1

∣∣∣∣ =
{

� if p ≡ 1 (mod �) and 0 < v�(c) < v�(p� − 1)

1 otherwise.

Clearly, if |(C ∩ F∗
p)/C

p�−1+···+p+1| = 1, then there is only one class mod C p�−1+···+p+1,
therefore every pairs (α, β) such that α and β generate C give (class of) extensions with
isomorphic Galois groups.

We now consider the case |(C ∩ F∗
p)/C

p�−1+···+p+1| = �.

Suppose �k ‖ c, then β ∈ C p�−1+···+p+1 if and only if its order is not divisible by a power
of � greater than �k/(�k, p�−1 + · · · + p + 1).

On the other hand, we have that β ∈ C p�−1+···+p+1 if and only if the map C ↪→ 〈Tα, Vβ〉
splits (with abuse of notation, we have identified C we its image in 〈Tα, Vβ〉). In fact, this
map splits if and only if β has an �-root in C , i.e. there exists t ∈ C such that t� = β. This is
equivalent to say that there exists r ∈ C such that r p

�−1+···+p+1 = β since C p�−1+···+p+1 =
(C ∩ F∗

p)
p�−1+···+p+1 = (C ∩ F∗

p)
�.

We write F∗
p� × F∗

p as direct sum of l-groups for each prime l and chose the components
of (α, β) in this sum among the elements of the correct order. For what we have said above,
for l �= � the choice of the l-component of (α, β) has no effect on the condition β ∈
C p�−1+···+p+1.
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For l = �, the �-part of F∗
p� × F∗

p is C�m+z × C�z where �m ‖ p�−1 + · · · + p + 1

and �z ‖ p − 1. Recall that �k ‖ c for some 1 ≤ k < m + z. Since we are in the case
(p − 1, p�−1 + · · · + p + 1) = �, we have z = 1 or m = 1.

If z = 1, thenC p�−1+···+p+1 is trivial, therefore β ∈ C p�−1+···+p+1 when the �-component

of (α, β) is of type (x, 1), and this happens for φ(�k )

�φ(�k )
= 1

�
of the possible �-components

when k > 1 and for �−1
�2−1

= 1
�+1 of the possible �-components when k = 1.

If m = 1, then β ∈ C p�−1+···+p+1 if its order is not divisible by a power of � greater than
�k−1, therefore the �-component of (α, β) must be of type (x, y) with the order of x greater

than the order of y; this is true for φ(�k )�k−1

2φ(�k )�k−φ(�k )
2 = 1

�+1 of the elements with correct order.

Recollecting all the information achieved, we have that if λ is the function defined in (5),
then λ(c, p)ψ(c, p − 1) is the number of pairs (α, β) such that the group C generated by α

and β has order c and β ∈ C p�−1+···+p+1, while (1 − λ(c, p))ψ(c, p − 1) counts the same
pairs but with β /∈ C p�−1+···+p+1.

Finally, to conclude the proof it remains to observe that the β’s not contained in
C p�−1+···+p+1 are equally distributed in each of the �−1 non-trivial classmodC p�−1+···+p+1.

�

5 Ramification groups and discriminant of the composite of all
p�-extensions of K

We know that there is a one-to-one correspondence between the isomorphism classes of
extensions of degree p� of K having no intermediate extensions and the irreducible H -
submodules of dimension � of F∗/F∗ p , or equivalently, the abelian p�-extensions of F of
exponent p, Galois over K , having no intermediate subextensions that are Galois over K .

Denote by Cp� the composite of all extensions of degree p� of K having no intermediate
fields. Clearly Cp�/K is Galois, we want to determine the ramification groups of its Galois
group.

Let G = Gal(Cp�/K ), as usual for i ≥ −1 we denote by Gi the i th ramification group of
G .

Lemma 2 One has

Cp� = A
(p�)
F

whereA (p�)
F is the composite of all abelian p� extensions of F of exponent p having no other

subextensions that are Galois over K .

Proof If L/K is a p�-extension having no intermediate fields, then LF is contained inA (p�)
F

(see proof of Theorem 1), therefore Cp� ⊆ A
(p�)
F .

Conversely, let E be an abelian p�-extension of F of exponent p, Galois over K but having
no subextensions that are Galois over K . As seen in the proof of Theorem 1, Gal(E/K ) 	
� � H where � is the Fp[H ]-submodule of F∗/F∗ p of dimension � which corresponds to
E/K , EH is contained in Cp� and EH F = E .

The Galois closure of EH over K is also contained in Cp� (being Cp�/K Galois), and
it is the composite of EH with a suitable subextension of F/K , which is then contained in
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Cp� . Since as E varies through the elements of A (p�)
F with E/K Galois these subextensions

generate F , we have F ⊆ Cp� and hence E ⊆ Cp� .

Finally, observe that these extensions E are sufficient to generate A
(p�)
F , thus we have

A
(p�)
F ⊆ Cp� . �

Lemma 2 implies that Cp�/F is a subextension of AF/F , where AF is the maximal abelian
extension of F of exponent p. Thus [Cp� : F] = pt for some t ≤ nF + 2 (see [3]). By
Kummer theory, we know that Cp� corresponds to a subgroup of F∗/F∗ p and [Cp� : F] is
equal to the order of this subgroup (clearly F contains the pth roots of 1).

Proposition 2 One has

[Cp� : F] =
{
p((p�−1)2−(p−1)2)nK i f � | fK
p(�+1)(p�−p)(p−1)nK i f � � fK

.

Proof By Lemma 2, [Cp� : F] = [A (p�)
F : F] andA (p�)

F = F(
p
√

Δ), where Δ is the Fp[H ]-
submodule of F∗/F∗ p generated by the irreducible submodules of dimension �. It follows
that [Cp� : F] is the order of Δ.

Δ can be generated by a finite number of disjoint irreducibleFp[H ]-submodules of dimen-
sion �, clearly if m is this number then [Cp� : F] = p�m .

We know that

F∗/F∗ p 	 Fp ⊕
⊕

i∈�0,IF �

Mi ⊕ Mω

asFp[H ]-modules; theFp[H ]-modules of dimension � are contained in
⊕

i∈�0,IF � Mi .More-
over, we know that a similar module V is the sum of the conjugates of a certain J(α,β) which is
an Fp[H ]-submodule of Mi = Mi ⊕Fp Fp; as α and β vary in F∗

p� we find all the irreducible

representation of dimension � contained in F∗/F∗ p . The multiplicity of V in
⊕

i∈�0,IF � Mi

is equal to that of J(α,β) in Y = ⊕
i∈�0,IF � Mi , it counts the number of disjoint Fp-vector

space (resp. Fp-vector space) in F/F∗ p on which H acts as on V (resp. J(α,β)).
In particular, if � | fK , then to achieve Fp-representation of dimension � we must have

(α, β) ∈ (F∗
p� × F∗

p� )\(F∗
p × F∗

p) and for each of these pairs J(α,β) has dimension 1 and
multiplicity nK . As usual observe that the Fp-representation containing J(α,β) is equal to that
containing its other �− 1 conjugates that is J(α p,β p), . . . , J(α p�−1

,β p�−1
)
. Therefore, we have

m = 1

�
[(p� − 1)2 − (p − 1)2]nK .

If � � fK , then only one between α and β is in F∗
p�\F∗

p and the other in F∗
p . The J(α,β)’s

with α ∈ F∗
p� and β ∈ F∗

p have no conjugates different from itself and multiplicity �nK ,

but J(α,β) = J(α p,β) = · · · = J
(α p�−1

,β)
. While the J(α,β)’s with α ∈ F∗

p and β ∈ F∗
p� have

multiplicity nK and � conjugates like the previous case. Thus we have

m = (p� − p)(p − 1)nK + 1

�
(p − 1)(p� − p)nK .

Substituting in [Cp� : F] = p�m , we obtain the thesis. �
Observe that by the Theorem 1 G 	 G � H , where G is the Galois group of Cp� over F . It
is well known that G−1 = G ,G0 is the inertia subgroup of G and G1 is the p-Sylow subgroup
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of G0. Since Cp�/F has no unramified subextensions being the composite of totally ramified
extensions, G0 is isomorphic toG�H0 where H0 is the inertia subgroup of H , while Gi 	 Gi

for all i ≥ 1 since F/K is tame.
It is suitable to search the upper numbering ramification groups because, if L is a Galois
extension of F contained in Cp� and GL = Gal(Cp�/L), then for all v one has (G/GL)v 	
GvGL/GL (see [12], Ch. IV, §3, Prop. 14) and, in our case, if also L has degree p� over F
and is Galois over K the groups (G/GL)v are easy to describe.

Lemma 3 Let

d =
{

((p� − 1)2 − (p − 1)2)nK i f � | fK
(� + 1)(p� − p)(p − 1)nK i f � � fK

One has

dimFpG
v =

⎧⎪⎪⎨
⎪⎪⎩
d i f − 1 ≤ v ≤ 1

d −
(
�v� −

⌈
v
p

⌉)
fF i f 1 < v ≤ peF

p−1 − 1

0 i f v >
peF
p−1 − 1

Proof First of all observe that Cp�/F is a totally and wildly ramified extension, therefore
G−1 = G0 = G1 = G; moreover, a simple calculation of the Herbrand’s function (see [12],
Ch. IV, §3) yields to G1 = G1 so that for −1 ≤ v ≤ 1 one has Gv = G = Gal(Cp�/F) and
dimFpG

v = d . Moreover, since Cp�/F is an elementary abelian p-extension, by Theorem
12 of [1], for every v > peF/p − 1 we have Gv = 1, i.e. dimFpG

v = 0. It remains to
determine dimFpG

v when 1 < v ≤ peF/p − 1.
Let L be an abelian p�-extension of F of exponent p having no subextensions that are

Galois over K and let GL = Gal(Cp�/L).
As remarked before, we know that for all v one has (G/GL)v 	 GvGL/GL , hence

Gv =
⋂

(G/GL )v=1

GL .

Via Galois theory, this group corresponds to C Gv

p� = ∏
L , with the composite taken over the

abelian p�-extensions L/F satisfying the previous condition, i.e. such that (G/GL)v = 1. It
follows that dimFpG

v is equal to d minus the dimension of the Fp-vector space associated
to

∏
L by Kummer theory.

Since G/GL 	 Gal(L/F) 	 (Z/pZ)�, by Proposition 7 in [1] L/F has an upper ram-
ification jump in t if and only if there exists a subextension N/F of degree p with upper
ramification jump equal to t ; moreover, the jumps can only appear in the integers t such that
1 ≤ t ≤ peF/p − 1 and (t, p) = 1. Therefore, for all v > peF/p − 1, (G/GL)v = 1 for
every abelian p�-extension L/F .

Let v be a real number such that 1 < v ≤ peF/p − 1, then Gv = G�v� and G�v� is
the subgroup of G fixing the composite of all the abelian p�-extensions L/F which have a
jump in J = {1, . . . , �v� − 1}. Using Proposition 14 of [1] and the analysis of the possible
representation associated to L , we have made in Sect. 4.1, we find that there are fF disjoint
extensions L/F which has a jump in a fixed t ∈ J and (t, p) = 1. Since the possible t are

�v� −
⌈

v
p

⌉
, we have the thesis. �

Note that our results are in agreement with Lemma 9 of [3].
We can now prove the following
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Proposition 3 Let d be as in previous Lemma 3. The ramification groups Gi of Cp�/K are:

G−1 = G = G � H

G0 = G � H0

Gi = (Z/pZ)d−k fF i f t (k − 1) < i ≤ t (k)

Gi = {e} i f i > t (eF − 1)

where t (−1) = 0, t (0) = 1 and for every 1 ≤ k ≤ eF − 1,

t (k) =
{
t (k − 1) + pk fF i f k �≡ 0 (mod p − 1)

t (k − 1) + 2pk fF i f k ≡ 0 (mod p − 1)

Therefore, there are eF + 2 jumps in the lower ramification groups.

Proof The claim for G−1 andG0 is clear by the considerations we havemade before,G1 = G1

since Cp�/F is wildly ramified and so F/K is the maximal tame subextension. The rest of
the Proposition follows by Lemma 3 with simple calculations, recalling that Gi = Gi for all
i ≥ 1 and the Herbrand’s function (see [12], Ch. IV, §3)

Gv = Gψ(v) with ψ(v) =
∫ v

0
(G0 : Gw)dw

which relates the upper and the lower ramification filtrations.
Lemma 3 says that G has jumps in the upper ramification in every integers of �0, peF

p−1 �,

i.e. in the integers of the set {1 ≤ v ≤ peF
p−1 − 1 | v �≡ 0 (mod p)}; every such jump of G

gives a jump in the lower ramification of G , and these together with −1 and 0 are exactly the
eF + 2 jumps of G . �
Finally, we determine the discriminant dCp� /K of Cp�/K .

Proposition 4 If πK is a uniformizer of K and d = [Cp� : F] as in the previous Lemma 3
then

dCp� /K = (πK )α

where

α = fF/K

((
[F : K ] − 1 + p(eF + 1) − 1

p − 1

)
pd − 1 − pnF − 1

p fF − 1
− pnF − 1

p(p−1) fF − 1

)
.

Proof Using the well known formula

vCp�
(DCp� /K ) =

∞∑
i=0

(|Gi | − 1)

where DCp� /K is the different of Cp�/K , one gets

vCp�
(DCp� /K ) = [F : K ]pd − 1 +

eF−1∑
k=0

(pd−k fF − 1)pk fF

+
eF−1∑
k=1

k≡0 (mod p−1)

(pd−k fF − 1)pk fF .
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The conclusion follows by a simple calculation, recalling that dCp� /K = NCp� /K (DCp� /K )

where NCp� /K is the norm map and observing that, since Cp�/F is totally ramified,

NCp� /K (πCp�
) = (πK ) fF/K (πCp�

a uniformizer of Cp� ). �

References

1. Capuano, L., Del Corso, I.: A note on upper ramification jumps in Abelian extensions of exponent p. Riv.
Math. Univ. Parma (N.S.) 6(2), 317–329 (2015)

2. Dalawat, C.: Serre’s formule de masse in prime degree. Monatshefte für Mathematik 166, 73–92 (2012)
3. Del Corso, I., Dvornicich, R.: The compositum of wild extensions of local fields of prime degree. Monat-

shefte für Mathematik 150, 271–288 (2007)
4. Del Corso, I., Dvornicich, R., Monge, M.: On wild extension of p-adic field. J. Number Theory 174,

322–342 (2017)
5. Fesenko, I., Vostokov, S.: Local Fields and Their Extensions, Translations of Mathematical Monographs,

vol. 121, 2nd edn. American Mathematical Society, Providence (2002)
6. Hou, X., Keating, K.: Enumeration of isomorphism classes of extensions of p-adic fields. J. Number

Theory 104, 14–61 (2004)
7. Iwasawa, K.: On galois groups of local fields. Trans. Am. Math. Soc. 80, 448–469 (1955)
8. Krasner, M.: Nombres des extensions d’un degré donné d’un corps p-adic. In: Les Tendances Géom. en

Algèbre et Théorie des Nombres, pp. 143–169. Editions du Centre national de la Recherche Scientifique,
Paris (1966)

9. Monge, M.: Determination of the number of isomorphism classes of extensions of a p-adic field. J.
Number Theory 131, 1429–1434 (2011)

10. Pauli, S., Roblot, X.: On the computation of all extensions of a p-adic field of a given degree. Math.
Comput. 70, 1641–1659 (2001)

11. Serre, J.: Une formule de masse pour les extensions totalement ramifiées de degré donné d’un corps local.
C. R. Acad. Sci. Paris Sér. A B 286, A1031–A1036 (1978)

12. Serre, J.: Local Fields, Graduate Texts in Mathematics, vol. 67. Springer, New York (1979)

123


	Extensions of degree pell of a p-adic field
	Abstract
	1 Introduction
	2 Notation
	3 The correspondence theorem
	3.1 Example

	4 Counting the isomorphism classes
	4.1 The structure of F*/F*p as mathbbFp[H]-module
	4.2 The total number of isomorphism classes of extensions of degree pell of K
	4.3 The number of isomorphism classes of extensions whose normal closure has a prescribed Galois group

	5 Ramification groups and discriminant of the composite of all pell-extensions of K
	References




