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Abstract We obtain an odd 2π-periodic solution ϕ in a driven differential equation

ẍ + g(x) = εp(t),

where g and p are odd smooth functions with g′(0) = n2 for some n ∈ N and g′′′(0) �= 0. The
periodic solution ϕ is obtained by continuation of the equilibrium x ≡ 0 of the unperturbed
problem (ε = 0) for small ε. In order to prove this result, we establish an extension of a
Loud’s version of the implicit function theorem at rank 0. Moreover, we present sufficient
conditions for the existence of one or three odd 2π-periodic continuations and also we give
conditions for their linear stability.

Keywords Periodic solutions · Nonlinear oscillations · Implicit function theorem ·
Lyapunov stability
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1 Introduction

In the sixties, a remarkable paper of Loud [8] studies systematically the perturbation of
equilibria for differential equations of second order of the form

ẍ + g(x, ẋ) = 0, (1)
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where g is a regular function introducing a T -periodic perturbation in (1) (forcing term) in
the following way

ẍ + g(x, ẋ) = ε f (t, x, ẋ, ε), (2)

with f (·, x, ẋ, ε) T -periodic and ε a small parameter (see [1,3] for related results and [10]
when ε is not a small parameter). Starting with an equilibrium x ≡ x0 of (1), the author
searches the existence of a T -periodic solution of (2) (called T -periodic continuation of x0)
of the form

xε(t) = x0 + εx1(t) + O(ε2), ε → 0, (3)

where x1(t) is a T -periodic function. The existence and stability of a continuation like (3)
depends on the properties of the variational equation of (1) around x ≡ x0 given by

ÿ + gx (x0, 0)y + gẋ (x0, 0)ẏ = 0. (4)

Considering (4) like a T -periodic equation, in [8], were studied all the possibilities over
the associated Floquet multipliers by means of several versions of implicit function theorems
[3,7,8]. See for instance the results in [7] when the rank of the associated Jacobian matrix
for the nonlinear system is 0 or 1. For more examples, we recommend to see [6] and Chapter
7 of [2].
If the Floquetmultipliers are both equal to 1 case IV in [8], it is worth tomention the following
version of the Theorems 2.6 and 2.7 there in adapted for a conservative oscillator of pendulum
type.

Theorem 1 [8] Consider the equation

ẍ + g(x) = εp(t),

where g ∈ C2(R), p is a continuous 2π -periodic function and ε is a small real parameter.
Assume that there exists a x0 such that g(x0) = 0, g′(x0) = n2 for some n ∈ N and
g′′(x0) �= 0. Then, there exists a 2π -periodic continuation xε(t) of the equilibrium x ≡ x0
for the unperturbed equation (ε = 0) if the following conditions hold

∫ T

0
p(s) sin ns ds =

∫ T

0
p(s) cos ns ds = 0, (5)

b22n + a2
2n − 2a0a2n − 3a2

0 �= 0, (6)

where ak, bk are the Fourier’s coefficients of p(t). Moreover, if

b22n + a2
2n − 2a0a2n − 3a2

0 > 0, (7)

then xε is unstable in the sense of Lyapunov.

Notice that this result does not provide any information about the existence and stability of
periodic solutions for the paradigmatic n-resonant forced pendulum

ẍ + n2 sin x = ε sin t, (8)

when n ∈ N, because for the equilibrium x ≡ 0 of the unperturbed equation we have
g′′(0) = 0. This motivates the two main questions in this document

• How to proceed for studying the existence of an odd 2π-periodic solution of (8) obtained
by continuation of x ≡ 0?

• What stability properties does the possible odd 2π-periodic continuation have?
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In order to answer these questions, we shall follow the Loudian approach, making clear
the kind of implicit functions theorems that must be used. Thus, for the first question our
objective is double, the first one is to study a special implicit function theorem at rank 0 as an
extension of the results in [7] very general for dynamic applications. This will be stated and
proved in Sect. 2. The second one is to get odd 2π -periodic solutions for resonant oscillators
of the form

ẍ + g(x) = εp(t), (9)

with p(t) an odd 2π-periodic continuous function and g a smooth odd function that satisfies

g′(0) = n2 g′′′(0) �= 0, (10)

for some n ∈ N. This will be established and proved in Sect. 3 giving some sufficient
conditions on p (Theorem 3) for obtaining one or three odd 2π-periodic solutions for small
ε.

The second main question is answered in Sect. 4 (Theorem 4) where we present a stability
criterion of the continuation for (9). Moreover, we prove the existence of a uniqueness of an
odd 2π-periodic continuation of (8) which is linearly stable.

The lay reader may have noticed that the first question is a classical matter with enough
references in the literature which involve several methods of nonlinear analysis at resonance.
Indeed, the Lyapunov–Schmidt method more generally known like the Alternative method,
is the traditional treatment for this type of problems [2]. More explicitly, notice that the Eq.
(8) can be re-written as follows

ẍ + n2x = εp(t) + n2

6
x3 + h.o.t., p(t) = ε sin t, (11)

and the resonant term n2x is the responsible for the non-invertibility ofL : x → ẍ +n2x, the
lineal part at x = 0 of the differential operator associated with (8) on the Banach space of the
2π-periodic continuous functions. In consequence, it is not possible to apply the Schauder
fixed point theorem and it is necessary work on the complementary space of the kernel of L.

The Lyapunov–Schmidt method follows this strategy and enable us to prove the existence
of one, two or three odd 2π -periodic solutions of (11) (one can apply the Theorem 5.1 in [2]
to the boundary problem x(0) = x(π) = 0). These kinds of results are not new; however,
the stability properties of the periodic solutions obtained by this way are an absent matter
in the literature of bifurcations. See for instance the Chapter 8 of [2] for the existence of
even 2π-periodic solutions in a Duffing equation with forcing A cos t , and also see Theorem
5.1 there in for cubic nonlinearities for oscillators like (9) for the corresponding Dirichlet
problems.

Our main goal is to trace a clear path in order to get two objectives for oscillators like
(9) with odd symmetry, namely, to decide the multiplicity and the stability of odd 2π-
periodic solutions in terms of a generic odd periodic forcing p. With this purpose in mind,
it will be necessary revisiting the existence of odd periodic solutions following the Loudian
approach, since their linear stability will strongly depend on the first approximation x1(t) in
the asymptotic approximation (3). Unfortunately, the Lyapunov–Schmidt method does not
provide such approximation.

Finally, it is important to remark some advantages of our methodology over the conven-
tional treatment in [2]:

• First, we focus on the linear stability of the continued periodic solutions.

123



446 D. Núñez et al.

• Second, the treatment given in [2], Chapter 8 for the Duffing equations uses many para-
meters (at least four), instead we use only one, namely ε. The parameter ε is the argument
of the discriminant function which decides the linear stability (see Sect. 4). In [2] the
resonant term is perturbed of the form (n2 − λ1)x and the number of periodic solutions
will depend on the sign of λ1 and its relation with the amplitude of the forcing (Theorem
7.3). In the present paper, the multiplicity is clearly expressed by means of the forcing p
(see Theorem 3).

• Third, the framework in [2] is the implicit function theorem in Banach spaces; in contrast,
our treatment is based on implicit functions in finite dimension with some degeneracy
conditions (rank 0). In these sense, our approach is simpler.

• Fourth, the implicit function theorem version used here is quite degenerated because it
is assumed that all derivatives (including those respect to the parameter) are null up to
the order m ≥ 2 at the bifurcation point. Notice that this degeneracy condition is not
considered in [2]. For instance in this book, the authors have not studied the case when
the first jet nonzero in the Taylor expansion contains a parameter pure term, i.e., a power
in the some parameter. So, the Theorem 2 is not in [2]. Other difference with respect to
[2] is that the Theorem 2 does not require a priori bounds (see Lemmas 3.1, 6.1 and 7.1
therein).

Let us fix some notation to be used in the following: for all multi-index α ∈ N
n+1
0 and

x = (x1, x2, . . . , xn+1) ∈ R
n+1, we define

|α| =
n+1∑
i=1

|αi | and xα =
n+1∏
i=1

xαi
i .

For a function f : Rn+1 → R, we define the α-partial derivative Dα f like

Dα f = ∂ |α| f

∂xα1
1 · · · ∂xαn+1

n+1

.

In the whole document, ‖·‖ denotes the Euclidean norm in R
l , Dk

ε denotes the kth higher

total derivative respect to the parameter ε and ∂
j

u denotes the j th derivative respect to the real
variable u.

2 Implicit functions with rank 0

In this section, we present the first main result in this document related with a special version
of implicit functions theorem

Theorem 2 Let F ∈ C∞(Rn×R;Rn), with F(0) = 0and Dα F(0) = 0 forα = 1, . . . , m−1
for certain m ≥ 2. Define H(x, ε) as the homogeneous Taylor’s polynomial of F at x = 0
of degree m and let P(x) = H(x, 1). Assume that there exists y0 such that P(y0) = 0 and
det D P(y0) �= 0. Then, there exist δ > 0 and an unique function ϕ ∈ C∞(Iδ,Rn), Iδ =
] − δ, δ[ such that for all ε ∈ Iδ it holds:

ϕ(0) = 0, ϕ′(0) = y0 and F(ϕ(ε), ε) = 0 for all ε ∈ Iδ .

Proof From the Taylor’s formula we have:

F(x, ε) = H(x, ε) + R(x, ε),

123
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in the (n + 1)-ball in Bρ = {
(x, ε) ∈ R

n × R : ‖(x, ε)‖ < ρ
}
for certain ρ > 0 with

R(x, ε) =
∑

|α|=m+1

∫ 1

0
Dα F(t (x, ε))

(t − 1)m+1

(m + 1)! (x, ε)αdt.

Notice that for each ε �= 0 we have

ε−m F(x, ε) = 0 ⇔ P
( x

ε

)
+ ε−mR(x, ε) = 0,

because the homogeneity property of H . This suggests the change of variables x = εy.
Therefore, for each R > 0 we consider the auxiliary equation

G(y, ε) = P(y) + ε−mR(εy, ε) = 0,

in the domain UR =
{
‖y‖ < R, |ε| < ρ/

√
R2 + 1

}
. A straightforward computation shows

that UR is transform into a sub-domain of Bρ via the previous change of variables. Observe
that

ε−mR(εy, ε) =
∑

|α|=m+1

ε−m(εy, ε)α
∫ 1

0
Dα F(t (εy, ε))

(t − 1)m+1

(m + 1)! dt,

=
∑

|α|=m+1

ε|α|−m(y, 1)α
∫ 1

0
Dα F(tε(y, 1))

(t − 1)m+1

(m + 1)! dt,

in consequence

G(y, ε) = P(y) + εM(y, ε), (12)

with

M(y, ε) =
∑

|α|=n+1

(y, 1)α
∫ 1

0
Dα F(tε(y, 1))

(t − 1)m+1

(m + 1)! dt.

From the Leibnitz’s rule of derivation under the integral sign, it can be proven that M ∈
C∞(UR) then G ∈ C∞(UR). Furthermore, we can choose R > 0 such that ‖y0‖ < R which
implies (y0, 0) ∈ UR . Under these conditions, we can apply the standard implicit function
theorem to the equation G(y, ε) = 0 on UR at the point (y0, 0). In fact, from (12) it follows

G(y0, 0) = P(y0) = 0,

and

Dy G(y, ε)

∣∣∣
(y0,0)

= (
D P(y) + εDy M(y, ε)

) ∣∣∣
(y0,0)

= D P(y0),

which is a non-singularmatrix by hypotheses. Then, there exists δ > 0 and an unique function
ψ ∈ C∞(Iδ,Rn), Iδ =] − δ, δ[ such that

ψ(0) = y0 and G(ψ(ε), ε) = 0, ∀ε ∈ Iδ.

This implies that F(εψ(ε), ε) = 0 for all ε ∈ Iδ . Takingϕ(ε) = εψ(ε), the proof is complete.
�
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Corollary 1 Let F ∈ C∞(R2,R), F = F(x, ε) such that

F(0, 0) = 0 and DF(0, 0) = 0, D2F(0, 0) = 0.

Assume that Fxxx (0, 0) �= 0. We define

a = 3Fxxε

Fxxx
, b = 3Fxεε

Fxxx
, c = Fεεε

Fxxx
,

where all the coefficients are evaluated at (0, 0). Let D =
(q

2

)2 +
( p

3

)3
, with

p = 3b − a2

3
q = 2a3 − 9ab + 27c

27
.

1. If D > 0 then there exist δ > 0 and an unique function ϕ ∈ C∞(Iδ,R), Iδ =] − δ, δ[
such that ϕ(0) = 0, F(ϕ(ε), ε) = 0 for all ε ∈ Iδ .

2. If D < 0 then there exist three different functions ϕi ∈ C∞(Iδ,R), i = 1, 2, 3 such that
ϕi (0) = 0, F(ϕi (ε), ε) = 0, for all ε ∈ Iδ . In both cases i) and ii) ϕ′

i (0) is computed as
the real root of the polynomial y3 + ay2 + by + c.

Proof For this case, the polynomial P(x) of Theorem 2 is given by

P(y) = H(y, 1) = Fxxx (0, 0)

6

(
y3 + ay2 + by + c

)
.

Applying the criteria to obtain simple real roots in a polynomial of degree three based on the
Cardano’s formula (see [5]), and Theorem 2 the conclusions follows directly. �

3 Continuation under resonance

This section is devoted to study the existence andmultiplicity of the odd 2π-periodic solutions
for the oscillator (9) that bifurcates from the equilibrium x ≡ 0 in the unperturbed case
(ε = 0). The key idea is to establish an appropriate implicit equation in two variables, namely
the initial velocity at rest and the parameter ε improving the symmetries of the oscillator (9).
Let x(t, η, ε) be the solution of (9) satisfying the initial conditions

x(0) = 0, ẋ(0) = η. (13)

From now on, we assume that the function g is good enough to guarantee that all the solutions
are globally defined in ] − ∞,∞[ (for example consider g bounded). In [4] Hamel shows
that the existence of odd 2π -periodic solutions of (9) can be reduced to study the boundary
value problem

ẍ + g(x) = εp(t), x(0) = x(π) = 0, (14)

this follows by performing odd and 2π -periodic extension improving the symmetries of the
equation (9) and its periodicity. The original idea of Hamel in [4] is what we known nowadays
as the shooting method. Therefore, the problem (14) can be reduced to the study of zeros of
the function F ∈ C∞(R2,R) defined by the implicit equation

F(η, ε) := x(π, η, ε) = 0. (15)
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In this frame, we have an implicit function problem at (η, ε) = (0, 0) with rank 0. Indeed,
notice that xη(t, 0, 0) is the unique solution of the Cauchy problem

ÿ + n2y = 0, y(0) = 0, ẏ(0) = 1,

i.e., xη(t, 0, 0) = sin nt

n
therefore Fη(0, 0) = 0. In consequence if we are looking for solu-

tions (η(ε), ε) of (15) with η = η(ε) a regular function of ε, such that η(0) = 0, then

Fη(η(ε), ε)η′ + Fε(η(ε), ε) = 0,

which involves the following necessary condition

Fε(0, 0) = (−1)n+1

n

∫ π

0
p(s) sin(ns)ds = 0,

this means, the n-Fourier sine coefficient of p(t) must be null. With the aim to apply the
Corollary 1 to F(η, ε), we need to compute the derivatives of F up to the third order at (0, 0).
For this purpose, we present two preliminary lemmas that will be proved in the “Appendix”
section.

Lemma 1 The unique solution of the problem

ẍ + ω2x = f (t), x(0) = ẋ(0) = 0,

where f ∈ C[0, T ], and ω > 0, is given by

x(t) = 1

ω

∫ t

0
sin(ω(t − s)) f (s) ds.

Lemma 2 Let x(t, ξ, η, ε) the general solution of (9) that satisfies the initial conditions

x(0) = ξ, ẋ(0) = η.

Then, for ∀α ∈ N
4
0 with α1 = 0, |α| = k, k = 2, 3, y(t) = Dαx(t; 0, 0, 0) where satisfies

the Cauchy Problem {
ÿ + n2y = −gk(0)(xξ , xη, xε)

α

y(0) = ẏ(0) = 0,

where α = (α2, α3, α4).

Combining the Lemmas 1 and 2, we obtain the following results over the function F(η, ε)

Fηη(0, 0) = Fηε(0, 0) = Fεε(0, 0) = 0, (16)

and

Fηηη(0, 0) = κ

∫ π

0
sin4(ns) ds = 3κπ

8
,

Fηηε(0, 0) = κ

∫ π

0
sin3(ns)

∫ s

0
sin(n(s − u))p(u) du ds

Fηεε(0, 0) = κ

∫ π

0
sin2(ns)

(∫ s

0
sin(n(s − u))p(u) du

)2

ds

Fεεε(0, 0) = κ

∫ π

0
sin(ns)

(∫ s

0
sin(n(s − u))p(u) du

)3

ds (17)
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with κ = (−1)ng′′′(0)
n4 �= 0.

Now, we are able to present the second main result.

Theorem 3 Consider the n-resonant oscillator (9) with g a smooth function satisfying (10)
and p an odd continuous 2π -periodic function satisfying∫ π

0
p(s) sin(ns)ds = 0. (18)

Let

a = 8

π

∫ π

0
sin3(ns)

(∫ s

0
sin(n(s − u))p(u) du

)
ds,

b = 8

π

∫ π

0
sin2(ns)

(∫ s

0
sin(n(s − u))p(u) du

)2

ds,

c = 8

3π

∫ π

0
sin(ns)

(∫ s

0
sin(n(s − u))p(u) du

)3

ds. (19)

and p, q,D defined as in Corollary 1. Then

I. If D > 0 there exist an odd, 2π -periodic continuation xε(t) of the equilibrium x ≡ 0.
II. If D < 0 there exist three different odd 2π -periodic continuations xi,ε(t), i = 1, 2, 3, of

the equilibrium x ≡ 0.

Moreover, if xε(t) is one continuation given by the cases I ) or I I ) then xε(t) is of the form
(3) with x1(t) the solution of the initial value problem{

ÿ + n2y = p(t),
y(0) = 0, ẏ(0) = y0

, (20)

where y0 is a real root of the polynomial

Q(y) = y3 + ay2 + by + c.

Proof From the previous discussions, the existence of odd 2π-periodic solutions for (9) is
reduced to study (14). By (15) and (16), the Taylor’s expansion of the function F(η, ε) at the
origin is given by

F(η, ε) = κπ

16
η3 + Fηηε

2
η2ε + Fηεε

2
ηε2 + Fεεε

6
ε3 + · · ·

This is equivalent to

F(η, ε) = κπ

16

(
η3 + aη2ε + bηε2 + cε3 + · · ·

)
,

with a, b and c are given by (19). Applying the Corollary 1, the conclusions in (I) and (II)
follow directly. Notice that,

xε(t) = εx1(t) + O(ε2), ε → 0,

where x1(t) = dxε(t)

dε

∣∣∣∣
ε=0

. Besides, by construction xε(t) = x(t, η(ε), ε) with η(ε) a C∞

function such that η(0) = 0. Thus

dxε(t)

dε

∣∣∣∣
ε=0

= xη(t, 0, 0)η
′(0) + ∂x

∂ε
(t, 0, 0),
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but

xη(t, 0, 0) = sin nt

n
, and

∂x

∂ε
(t, 0, 0) = 1

n

∫ t

0
sin(n(t − s))p(s) ds,

then

x1(t) = sin nt

n
η′(0) + 1

n

∫ t

0
sin(n(t − s))p(s) ds,

So, x1(t) satisfies all the required conditions with η′(0) = y0 like a straightforward compu-
tation shows. �

Example 1 Consider the resonant forced pendulum

ẍ + n2
0 sin x = ε sin t, (21)

Notice that in this case, p(t) = sin t is an odd, 2π -periodic function for which the orthog-
onality condition (18) is satisfied for all n0 ≥ 2, n0 ∈ N. Then, the formulas given in (17)

with κ = (−1)n0+1

n2
0

became

Fηηη(0, 0) = 3κπ

8
, Fηηε(0, 0) = −3

8

κπ

n2
0 − 1

,

Fηεε(0, 0) = 1

8

(2n2
0 + 3)κπ

(n2
0 − 1)2

, Fεεε(0, 0) = −3

8

(2n2
0 + 1)κπ

(n2
0 − 1)3

.

In consequence, the function F(η, ε) has the Taylor’s expansion

F(η, ε) = 3κπ

48
η3 − 3

16

κπ

n2
0 − 1

η2ε + 1

16

(2n2
0 + 3)κπ

(n2
0 − 1)2

ηε2

− 3

48

(2n2
0 + 1)κπ

(n2
0 − 1)3

ε3 + · · · ,

and this implies that the auxiliary polynomial Q(y) of the Theorem 3 takes the form

Q(y) = y3 − 3

n2
0 − 1

y2 + (2n2
0 + 3)

(n2
0 − 1)2

y − (2n2
0 + 1)

(n2
0 − 1)3

. (22)

The Cardano’s formula gives D > 0 and roots

y0 = 1

n2
0 − 1

,
(1 ± n0

√
2i)

n2
0 − 1

. (23)

In consequence, we get an odd 2π -periodic continuation xε(t) of the equilibrium x ≡ 0 with
asymptotic expansion

xε(t) = ε
( sin n0t

n0(n2
0 − 1)

+
∫ t

0

sin(n0(t − s)) sin s

n0
ds

)
+ O(ε2),

= ε sin t

n2
0 − 1

+ O(ε2).
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4 Linear stability

In order to study the linear stability of the continuation xε(t) obtained in Theorem 3, we shall
consider the classical method (see [9]) throughout the discriminant function �(ε) defined
by

�(ε) = φ1(2π, ε) + φ̇2(2π, ε),

where φi (t, ε), i = 1, 2 are the solutions (called canonical solutions) of the variational
equation

ÿ + g′(xε(t))y = 0, (24)

satisfying the initial conditions

φ1(0, ε) = φ̇2(0, ε) = 1, φ̇1(0, ε) = φ2(0, ε) = 0, (25)

TheEq. (24) is a typicalHill’s equationwith 2π -periodic coefficientaε(t) = g′(xε(t)). Notice
that for ε = 0 the canonical solutions are

φ1(t, 0) = cos nt, φ2(t, 0) = sin nt

n
,

therefore �(0) = 2. On the other hand, it is a well-known fact that the Floquet multipliers
λ1,λ2 of (24) satisfy λ1λ2 = 1 and are related with the discriminant in this way:

i. Elliptic Case: |�(ε)| < 2 ⇔ λ1 = λ2 /∈ R, |λ1,2| = 1,
ii. Parabolic Case: |�(ε)| = 2 ⇔ λ1 = λ2 = ±1,
iii. Hyperbolic Case: |�(ε)| > 2 ⇔ λ1,2 ∈ R, |λ1| < 1 < |λ2|.
The Eq. (24) is only stable (i.e., all the solutions are bounded) in the Elliptic case or in the
Parabolic case with monodromy matrix equal to ±Id where Id is the identity matrix, i.e.,
φ̇1(2π, e) = φ2(2π, e) = 0.

Lemma 3 �(k)(0) = 0, for k = 1, 2, 3. Moreover, in the case p(t) = sin t we have

�(4)(0) = − 3π2

2(n2 − 1)4
. (26)

Proof Observe that ∂k
ε φi satisfies

∂2t

(
∂k
ε φi

)
+ Dk

ε

(
g′(xε(t))φi

) = 0

for all k ∈ N, i = 1, 2, where

Dk
ε

(
g′(xε(t))φi

) = g′(xε(t))∂
k
ε φi + Fk,φi (t, ε),

where

Fk,φi (t, ε) =
k∑

j=1

(
k
j

)
D j

ε (g′(xε(t)))∂
k− j
ε φi (t, ε).

In consequence y(t) = ∂k
ε φi (t, 0) satisfies{

ÿ+ n2y + Fk,φi (t, 0) = 0,
y(0) = 0, ẏ(0) = 0.

(27)
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From the method of variation of parameters, we have

∂k
ε φi (t, 0) = −1

n

∫ t

0
sin(n(t − s))Fk,φi (s, 0)ds,

∂k
ε φ̇i (t, 0) = −

∫ t

0
cos(n(t − s))Fk,φi (s, 0) ds. (28)

Since F1,φi (t, 0) = 0 follows from (28) that�′(0) = 0. Besides, it can be proved for k = 2, 3

Fk,φi (t, 0) = μk(t)φi (t, 0),

for certain continuous function μk(t). Replacing this into (28) we have

�(k)(0) = −1

n

∫ 2π

0
sin(2nπ)μk(s)ds = 0, for k = 2, 3.

Now, for k = 4 we have the following computations

μ4(t) := D4
ε (g

′(xε))
∣∣
ε=0 = g(5)(0)x41 + 3g′′′(0)

[
d2xε

dε2

∣∣∣∣
ε=0

]2
+ 4g′′′(0)x1

d3xε

dε3

∣∣∣∣
ε=0

,

where x1(t) is the solution of (20) and therefore

F4,φi (t, 0) = 6g′′′(0)x21 (t)∂
2
ε φi (t, 0) + μ4(t)φi (t, 0).

Henceforth

�(4)(0) = I1 + I2 − 1

n

∫ 2π

0
sin(2nπ)μ4(s)ds,

= I1 + I2,
with

I1 = −6g′′′(0)
n

∫ 2π

0
sin(n(2π − s))x21 (s)∂

2
ε φ1(s, 0),

I2 = −6g′′′(0)
∫ 2π

0
cos(n(2π − s))x21 (s)∂

2
ε φ2(s, 0).

On the other hand, ∂2ε φi (t, 0) satisfies for i = 1, 2
{

ÿ + n2y + g′′′(0)x21 (t)φi (t, 0) = 0,
y(0) = 0, ẏ(0) = 0,

(29)

therefore

∂2ε φi (t, 0) = − g′′′(0)
n

∫ t

0
sin(n(t − s))x21 (s)φi (s, 0) ds. (30)

This implies

I1 = −6

(
g′′′(0)

n

)2 ∫ 2π

0
sin ns x21 (s)

∫ s

0
sin(n(s − u)) cos nu x21 (u) du ds,

I2 = 6

(
g′′′(0)

n

)2 ∫ 2π

0
cos ns x21 (s)

∫ s

0
sin(n(s − u)) sin nu x21 (u) du ds. (31)
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Applying the Fubini’s theorem on the triangle

�2π = {
(u, s) ∈ R

2 : 0 < u < s, 0 < s < 2π
}
,

it can be prove that the above integrals are equal, then from now on we denote I = I1 = I2.
In the particular case p(t) = sin t we get x1(s) = sin s

n2 − 1
. After several computations on the

above double integrals, we arrive at

I = − 3π2

4(n2 − 1)4
,

and this completes the proof. �
Now, we are able to state and prove the main result of this section

Theorem 4 Let xε(t) be a continuation given by the Theorem 3 for the oscillator (9) and

x1(t) = dxε(t)

dε

∣∣∣∣
ε=0

. Let I = I1 with I1 given by (31).

a) If I > 0 then xε(t) is unstable,
b) If I < 0 then xε(t) is linearly stable.

Proof By Lemma 3 for small ε, the discriminant function �(ε) has the form

�(ε) = 2 + I
12

ε4 + O(ε4),

thus�(ε) has a local minimum (local maximum) at ε = 0 if I ≷ 0 respectively. This finishes
the proof.

Corollary 2 In the forced pendulum (21)with n0 ≥ 2, there exists an unique odd 2π-periodic
continuation of the lower equilibrium x ≡ 0 which is linearly stable for small ε.

Proof Applying the conclusions of Example 1, Lemma 3 and Theorem 4 the proof follows
directly.
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5 Appendix

In this appendix, we present the proof of the Lemmas 1 and 2

Proof of Lemma 1. Applying the method of the variation of parameters the proof follows
directly. �
Proof of Lemma 2. First we consider the case |α| = 2. Then exists i : αi ≥ 2, such that
αi = 0. Therefore, we can write

Dα(g ◦ x) = Dα∗
(g′(x)xμ),

with α∗ = α − e j , ( j �= i), μ = ξ, η or ε. As |α∗| = 1 the chain rule implies

Dα(g ◦ x) = Dα∗
(g′(x))xμ + g′(x)Dα∗

xμ = g′′(x)(Dα∗
x)xμ + g′(x)Dαx,
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Notice that (Dα∗
x)xμ = (xξ , xη, xε)

α, where α = (α2, α3, α4). Then

Dα(g ◦ x) = g′′(x)(xξ , xη, xε)
α + g′(x)Dαx . (32)

At the point ξ = η = ε = 0 we have

Dα(g ◦ x) = g′′(0)(xξ , xη, xε)
α + g′(0)Dαx .

From the differentiability of the flow x(t, ξ, η, ε), we can apply the differential operator Dα

over (9) to obtain

d2

dt2
(Dαx) + n2Dαx + g′′(0)(xξ , xη, xε)

α = 0.

This concludes the proof when |α| = 2.
Now suppose |α| = 3 and g(x) odd. We can write

Dα(g ◦ x) = ∂

∂μ
(Dα∗

(g ◦ x)),

where α∗ ∈ N
4
0, |α∗| = 2 and μ = ξ, η, or ε. Applying (32) we have

Dα(g ◦ x) = ∂

∂μ

(
g′′(x)(xξ , xη, xε)

α∗ + g′(x)(Dα∗
x)

)
,

in consequence

Dα(g ◦ x) = g′′′(x)xμ(xξ , xη, xε)
α∗ + g′′(x)

∂

∂μ
(xξ , xη, xε)

α∗

+g′′(x)xμ(Dα∗
x) + g′(x)

∂

∂μ
(Dα∗

x).

Evaluating at ξ = η = ε = 0 and taking into account that g is odd we conclude

Dα(g ◦ x) = g′′′(0)(xξ , xη, xε)
α + g′(0)Dαx . (33)

One again, applying the differential operator Dα over (9) the conclusion follows. �
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