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Abstract In this paper we study the multiplicity of weak solutions to (possibly resonant)
nonlocal equations involving the fractional p-Laplacian operator. More precisely, we consider
a Dirichlet problem driven by the fractional p-Laplacian operator and involving a subcritical
nonlinear term which does not satisfy the technical Ambrosetti–Rabinowitz condition. By
framing this problem in an appropriate variational setting, we prove a multiplicity theorem.
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1 Introduction

In the standard framework of the p-Laplacian operator, there are a lot of interesting problems
widely studied in the literature. A natural question is whether or not the results got in this
classical context can be extended to the nonlocal case in the presence of fractional-type
operators. Nonlocal fractional equations appear in many fields, and after the seminal works
by Caffarelli and Silvestre [8–10], an increasing interest has been devoted to these topics;
we refer, for instance, the recent papers [7,12], the monograph [21] for several results on
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fractional variational problems and related topics, and [25–27] as well as references therein
for some existence and multiplicity results involving the fractional p-Laplacian operator.

In most of the papers concerning with fractional Laplacian equation, it is assumed that the
right-hand side has a superlinear, but subcritical growth (cf., e.g., [5,22,28,29] and references
therein). In the recent papers [3,14] it has been firstly studied in the nonlocal setting the
so-called asymptotically linear case: as it is well known, the lack of the classical Ambrosetti–
Rabinowitz assumption requires more efforts in order to obtain a compactness Palais–Smale-
type condition.

Further difficulties arise in the so-called resonant case (cf., e.g., [1] and references therein):
indeed, the resonance affects both the compactness property and the geometry of the Euler–
Lagrange functional arising in a suitable variational approach. For the local case we recall
the contributions [2,18,24].

Motivated by this interest in the current literature, we would like to focus here our attention
on p-fractional “asymptotically linear” problems, also in the presence of resonance. Indeed,
we look for solutions of the nonlocal elliptic problem

{
(−Δ)s

pu = λ|u|p−2u + f (x, u) in �,

u = 0 on R
N \�,

(1.1)

where 1 < p < +∞, s ∈]0, 1[, (−Δ)s
p denotes the fractional p-Laplacian which (up to

normalization factors) may be defined for any x ∈ R
N as

(−Δ)s
pϕ(x) = 2 lim

ε↘0+

∫
RN \Bε(x)

|ϕ(x) − ϕ(y)|p−2 (ϕ(x) − ϕ(y))

|x − y|N+sp
dy

along any ϕ ∈ C∞
0 (RN ), where Bε(x) := {

y ∈ R
N : |x − y| < ε

}
, � is an open bounded

domain of RN (N > sp) with Lipschitz boundary ∂� and f : �×R → R is a Carathéodory
function such that:

(h1) sup
|t |≤a

| f (·, t)| ∈ L∞(�) ∀ a > 0;
(h2) there exist

lim|t |→+∞
f (x, t)

|t |p−2t
= 0 (1.2)

and

lim
t→0

f (x, t)

|t |p−2t
= α ∈ R (1.3)

uniformly with respect to a.e. x ∈ �.

Here we also deal with the resonant case, under the following further assumption (cf.,
e.g., [18]):

(h3) there exists

lim|t |→+∞

(
f (x, t)t − pF(x, t)

)
= +∞

uniformly with respect to a.e. x ∈ �, where, as usual, we set

F(x, t) :=
∫ t

0
f (x, τ ) dτ.
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Asymptotically linear fractional p-Laplacian equations 429

In order to state our multiplicity result we introduce some notations. Recalling that the
Gagliardo seminorm of a measurable function u : RN → R is defined by

[u]s,p :=
(∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+sp
dxdy

) 1
p

,

the fractional Sobolev space is defined by

W s,p(RN ) := {u ∈ L p(RN ) : [u]s,p < +∞}
and is equipped with the norm

‖u‖s,p := (|u|p
p + [u]p

s,p
) 1

p ,

where | · |p denotes the norm on L p(RN ).
Our problem is set in the closed linear space

X (�) := {u ∈ W s,p(RN ) : u(x) = 0 a.e. in R
N \�}

endowed with the norm ‖·‖ = [·]s,p . The space (X (�), ‖·‖) is uniformly convex and setting

p∗
s := pN

N − sp

it results:

X (�) ↪→ Lμ(�) continuously for μ ∈ [1, p∗
s ]

and

X (�) ↪→↪→ Lμ(�) compactly for μ ∈ [1, p∗
s [. (1.4)

Let us recall that λ ∈ R is an eigenvalue for (−Δ)s
p if there exists a nontrivial weak

solution on X (�) of the problem{
(−Δ)s

pu = λ|u|p−2u in �,

u = 0 on R
N \�,

(1.5)

that is u ∈ X (�)\{0} such that
∫∫

RN ×RN

|u(x) − u(y)|p−2 (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

− λ

∫
�

|u(x)|p−2 u(x)ϕ(x)dx = 0,

for every ϕ ∈ X (�).
As usual, the set of the eigenvalues is named spectrum and it is denoted by σ((−Δ)s

p)).
It is well known that if p = 2 the spectrum of (−Δ)s in X (�) consists of a diverging

sequence {λn}n∈N of eigenvalues, repeated according to their multiplicity, satisfying 0 <

λ1 < λ2 ≤ · · · ≤ λk ≤ · · · (see [29]). Moreover, for p = 2 the structure of σ((−Δ)s) is
very closed to that of the local operator −Δ and also provides a decomposition by means of
the eigenfunctions.

On the other hand, when p 
= 2 the full spectrum of (−Δ)s
p is still almost unknown,

even if some important properties of the first eigenvalue and of the higher-order (variational)
eigenvalues have been established in [15,19]. We also point out that a sequence of eigenvalues
has been introduced in [17] by means of the cohomological index.
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As we shall see in the proof of our main result, the definition of the quasi-eigenvalues
proposed here and inspired to that in [11] fits in with our purposes, as a suitable decomposition
of X (�) can be introduced and it turns out to be the known one for p = 2 (cf. Sect. 2 for the
details).

Thus, the interaction of the nonlinearity f with the spectrum σ((−Δ)s
p) of the fractional

p-Laplacian operator must be taken into account. To our knowledge the only contribution in
this direction is by [17], where the authors obtain existence results via Morse theory.

Now we state our main result.

Theorem 1.1 Let s ∈]0, 1[, N > sp and � be an open bounded subset ofRN with continuous
boundary. Assume that (h1)–(h2) hold, f (x, ·) is odd for a.e. x ∈ � and that

(h4) there exist h, k ∈ N with k ≥ h such that

α + λ < βh ≤ γk < λ,

where {βn}n∈N, {γn}n∈N are, respectively, as in (2.11) and (2.13) below.

Then, problem (1.1) has at least k −h+1 distinct pairs of nontrivial weak solutions, provided
either

(a) λ /∈ σ((−Δ)s
p) or

(b) λ ∈ σ((−Δ)s
p) and (h3) holds true.

For the sake of completeness we recall here that a function u ∈ X (�) is a weak solution of
problem (1.1) if

∫∫
RN ×RN

|u(x) − u(y)|p−2 (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

− λ

∫
�

|u(x)|p−2 u(x)ϕ(x)dx

−
∫

�

f (x, u(x))ϕ(x)dx = 0,

for every ϕ ∈ X (�).
This paper is organized as follows. In Sect. 2 we introduce the sequences of quasi-

eigenvalues and depict some properties; then, in Sect. 3 we prove Theorem 1.1 by making
use of a pseudo-index result recalled in Appendix as well as other classical tools.

2 Splitting of the fractional space X (�)

In this section we adapt the arguments in [11, Section 5] to the nonlocal setting, thus con-
structing a first sequence of quasi-eigenvalues for (−Δ)s

p on X (�). Let us define the subset

S :=
{
v ∈ X (�) :

∫
RN

|v(x)|pdx = 1

}
, (2.1)

the functional � : X (�) → R by

�(u) := ‖u‖p = [u]p
s,p (2.2)

and

β1 := inf
v∈S �(v) > 0
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Asymptotically linear fractional p-Laplacian equations 431

(β1 is indeed the first eigenvalue of the p-fractional operator). Let us remark that

• X (�) is a reflexive Banach space;
• S is weakly closed in X (�) (by (1.4));
• � is coercive on X (�);
• � is weakly lower semicontinuous on X (�).

Then, by the generalized Weierstrass theorem, there exists a function ψ1 ∈ X (�) such that∫
RN

|ψ1(x)|pdx = 1, �(ψ1) = [ψ1]p
s,p = β1; (2.3)

therefore,

β1|u|p
p ≤ �(u) for all u ∈ X (�).

Let us consider the linear operator L1 : L p(RN ) → R related to ψ1 (ψ1 ∈ W s,p(RN ) ⇒
ψ1 ∈ L p(RN ) thus |ψ1|p−1 ∈ L p′

(RN ), where p′ is the conjugate of p) defined by

L1u :=
∫
RN

|ψ1(x)|p−2ψ1(x)u(x) dx .

By definition, L1 ∈ L p′
(RN ), while (2.3) implies L1ψ1 = 1, then ‖L1‖L p′ = 1. Denoting

again by L1 the restriction to the subspace X (�), it is also L1 ∈ (X (�))′.
Now, we define the new constraint

S1 := {v ∈ S : L1v = 0} = ker(L1|S)

and the corresponding constrained infimum

β2 := inf
v∈S1

�(v).

We have that β2 > β1 (the first eigenvalue is isolated). We claim that also S1 is weakly closed
in X (�). In fact, taking a sequence {vm}m∈N ⊂ S1 and v ∈ X (�) such that

vm ⇀ v weakly in X (�),

by (1.4) it follows that

vm → v strongly in L p(RN )

and, since L1 ∈ L p′
and vm ∈ S1 for each m ∈ N, we get that

∫
RN

|v(x)|pdx = 1 and

L1vm → L1v; therefore, v ∈ S1.
Thus, the generalized Weierstrass theorem applies again and there exists ψ2 ∈ S1 such that
�(ψ2) = β2, i.e., ∫

RN
|ψ2(x)|pdx = 1, L1ψ2 = 0, �(ψ2) = β2.

The procedure can be repeated, so fixing any n ∈ N we can define some positive numbers

β1 < β2 ≤ · · · ≤ βn

and some functions

ψ1, ψ2, . . . , ψn ∈ S
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432 R. Bartolo, G. Molica Bisci

such that, for each i ∈ {1, . . . , n}, related to ψi we can consider the linear operator Li ∈ L p′

defined by

Li u :=
∫
RN

|ψi (x)|p−2ψi (x)u(x)dx (2.4)

such that

[ψi ]p
s,p = βi (2.5)

and

Liψi =
∫
RN

|ψi (x)|pdx = 1, (2.6)

hence

‖Li‖L p′ = 1,

while L jψi = 0 for all j ∈ {1, . . . , i − 1}, thus

ψi ∈
i−1⋂
j=1

ker(L j |S), if i ≥ 2.

Therefore, we can define S0 := S,

Sn := {v ∈ S : L1v = · · · = Lnv = 0} =
n⋂

i=1

ker(Li |S) if n ∈ N,

and the corresponding constrained infimum

βn+1 := inf
v∈Sn

�(v) if n ≥ 0. (2.7)

We claim that there exists ψn+1 ∈ Sn such that

[ψn+1]p
s,p = βn+1. (2.8)

To this aim, arguing as above, it is enough proving that each Sn is weakly closed. Indeed,
if {vm}m∈N ⊂ Sn weakly converges to v ∈ X (�), by (1.4) and Li ∈ L p′

, it follows that
|v|p = 1 and Livm → Liv for all i ∈ {1, . . . , n}, hence v ∈ Sn . Thus, � attains its infimum
on Sn and (2.8) holds.

Summing up, by induction, we construct a sequence of positive numbers {βn}n∈N, of
functions {ψn}n∈N ⊂ X (�) and of linear operators {Ln}n∈N ⊂ L p′

such that (2.4)–(2.6)
hold for all n ∈ N; furthermore, it is

0 < β1 ≤ β2 ≤ · · · ≤ βn ≤ · · ·
and ψn 
= ψm if n 
= m.

Now we recall that if V ⊆ X is a closed subspace of a Banach space X , a subspace W ⊆ X
is a topological complement of V , briefly X = V ⊕ W , if W is closed and every x ∈ X can
be uniquely written as v + w, with v ∈ V and w ∈ W ; furthermore, the projection operators
onto V and W are linear and continuous; hence, there exists L := L(V, W ) > 0 such that

‖v‖ + ‖w‖ ≤ L‖v + w‖. (2.9)

When X = V ⊕ W and V has finite dimension, we say that W has finite codimension,
with codim W = dim V .
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Asymptotically linear fractional p-Laplacian equations 433

By using again (1.4), the proofs of [11, Lemmas 5.2 and 5.3 and Proposition 5.4] can be
adapted with minor changes to our setting; thus, the following properties can be stated:

• the increasing sequence {βn}n∈N diverges positively;
• fixing any n ≥ 1 and setting

Xn : = span{ψ1, . . . , ψn} =
{

v ∈ X (�) : ∃ b1, . . . , bn ∈ R s.t. v =
n∑

i=1

biψi

}
,

Yn : =
n⋂

i=1

ker(Li ) = {w ∈ X (�) : L1w = · · · = Lnw = 0},

we have

X (�) = Xn ⊕ Yn; (2.10)

• taking n ≥ 1, for all w ∈ Yn we get

βn+1

∫
RN

|w(x)|pdx ≤ [w]p
s,p; (2.11)

• the sequence {ψn}n∈N generates the whole space X (�).

Now, following [18] we introduce another sequence of positive numbers. For all n ∈ N,
taking ψ1 as in (2.3), we set

Wn = {Z : Z is a subspace of X (�), ψ1 ∈ Z and dim Z ≥ n} (2.12)

and

γn := inf
Z∈Wn

sup
u∈S∩Z

�(u), (2.13)

with S as in (2.1). By the previous definitions, it follows that β1 = γ1 and Wn+1 ⊆ Wn ;
hence, {γn}n∈N is an increasing sequence of quasi-eigenvalues.

Remark 2.1 For p = 2 the sequences {βn}n∈N and {γn}n∈N reduce to the known sequence
of eigenvalues {λn}n∈N of (−Δ)s (see, for instance, the paper [29]).

By using the genus we can construct a sequence of eigenvalues {μn}n∈N for the nonlinear
operator (−Δ)

p
s on X (�), alike in the case of local p-Laplacian as in [16,20].

Let us consider the nonlinear eigenvalue problem (1.5) and set

μn := inf
A∈�n

sup
u∈A\{0}

�(u)∫
RN

|u(x)|p dx
, n ∈ N (2.14)

where (cf. Sect. 1) �n := {A ∈ � : γ (A) ≥ n} with � as in (2.2),

� := {A ⊆ X (�), closed and symmetric w.r.t. the origin} (2.15)

and consider the even functional

�(u) := �(u)∫
RN

|u(x)|p dx
on X (�)\{0}.

The critical values and the critical points of � restricted to the manifold S defined in
(2.1) are eigenvalues and eigenfunctions of (−Δ)s

p on X (�), respectively. We can state the
following proposition.
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434 R. Bartolo, G. Molica Bisci

Proposition 2.2 For every n ∈ N the numbers μn in (2.14) are eigenvalues for the nonlinear
operator (−Δ)s

p on X (�).

Proof By [13, Lemma 4] and (1.4) the functional �
∣∣S satisfies the Palais–Smale condition.

Then, by using a suitable version of the deformation lemma (cf., e.g., [6]), standard mini–max
arguments give the result. ��

Furthermore, we point out that μ1 = β1 = γ1. Slight changes in the proof of [2, Proposi-
tion 2.9] and in [18, Remark 1.1(4)] provide the following proposition stating a comparison
among the sequence {μn}n∈N and the sequences of quasi-eigenvalues {βn}n∈N and {γn}n∈N
of (−Δ)s

p .

Proposition 2.3 For all n ∈ N we have that βn ≤ μn ≤ γn.

Remark 2.4 The properties of {βn}n∈N and Proposition 2.3 imply that {μn}n∈N and {γn}n∈N
are diverging sequences. Moreover, as {γn}n∈N is increasing, we have also βh ≤ γk for
k ≥ h ≥ 1; therefore, this inequality is not an assumption in (h4).

3 Proof of Theorem 1.1

From (h1) and (1.2) for all ε > 0 there exists Kε > 0 such that

| f (x, t)| ≤ ε|t |p−1 + Kε for a.e. x ∈ � and for all t ∈ R. (3.1)

The weak solutions of problem (1.1) are the critical points of the C1-functional

Jλ(u) := 1

p
‖u‖p − λ

p

∫
�

|u(x)|p dx −
∫

�

F(x, u(x))dx (3.2)

on X (�) whose derivative is given by

dJλ(u)[ϕ] =
∫∫

RN ×RN

|u(x) − u(y)|p−2 (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

− λ

∫
�

|u(x)|p−2 u(x)ϕ(x)dx

−
∫

�

f (x, u(x))ϕ(x)dx,

for any ϕ ∈ X (�).
For the sake of simplicity we introduce the operator A : X (�) → (X (�))∗, defined for

all u, ϕ ∈ X (�) by

〈A(u), ϕ〉 :=
∫∫

RN ×RN

|u(x) − u(y)|p−2 (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy.

In next proposition we prove that the functional J satisfies the (C) condition (cf. Appendix)
both in the nonresonant case and in the resonant one, up to assume also assumption (h3).

Proposition 3.1 Assume that (h1)–(h2) hold. Then

(i) if λ /∈ σ((−Δ)s
p), the functional Jλ in (3.2) satisfies (C) in R;

(ii) if λ ∈ σ((−Δ)s
p) and (h3) holds, the functional Jλ in (3.2) satisfies (C) in R.
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Proof (i) Let c ∈ R and {um}m∈N be a sequence in X (�) such that (3.30) holds; then in
particular

〈A(um), ϕ〉 − λ

∫
�

|um(x)|p−2um(x)ϕ(x)dx

−
∫

�

f (x, um(x))ϕ(x)dx = o(1),

(3.3)

for every ϕ ∈ X (�), where o(1) denotes an infinitesimal sequence.
In order to prove the statement, it is enough to show that {‖um‖}m∈N is bounded (cf. [23,

Proposition 1.3]). Then, arguing by contradiction, let us assume that

‖um‖ → +∞ as m → +∞. (3.4)

Setting wm := um

‖um‖ , {wm}m∈N is bounded in X (�) and there exists w ∈ X (�) such that,

up to subsequences, we have

wm ⇀ w weakly in X (�) (3.5)

and

wm → w strongly in L p(�). (3.6)

Evaluating (3.3) in wm − w and dividing by ‖um‖p−1, we get

〈A(wm), wm − w〉 = λ

∫
�

|wm(x)|p−2wm(x) (wm − w)(x) dx

+
∫

�

f (x, um(x))

‖um‖p−1 (wm − w)(x) dx + o(1). (3.7)

Let us analyze this last equation. Firstly, by (3.6) it follows that∣∣∣∣
∫

�

|wm(x)|p−2wm(x)(wm − w)(x)dx

∣∣∣∣ ≤ |wm |p−1
p |wm − w|p = o(1).

Furthermore, (3.1), (3.4) and (3.6) imply that∣∣∣∣
∫

�

f (x, um(x))

‖um‖p−1 (wm − w)(x)dx

∣∣∣∣ ≤ ε|wm |p−1
p |wm − w|p

+ Kε

‖um‖p−1 |wm − w|1 = o(1). (3.8)

Hence, by (3.7)

〈A(wm), wm − w〉 = o(1)

and by [23, Proposition 1.3]

wm → w strongly in X (�). (3.9)

Thus, by the definition of wm it follows w 
= 0.
Now, dividing (3.3) by ‖um‖p−1, for all ϕ ∈ X (�) we have that

〈A(wm), ϕ〉 = λ

∫
�

|wm(x)|p−2wm(x)ϕ(x)dx

+
∫

�

f (x, um(x))

‖um‖p−1 ϕ(x)dx + o(1). (3.10)
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Again (3.1), (3.4) and (3.6) give

lim
m→+∞

∫
�

f (x, um(x))

‖um‖p−1 ϕ(x)dx = 0 for all ϕ ∈ X (�). (3.11)

Therefore, by (3.9) and (3.11), passing to the limit in (3.10), we get

〈A(w), ϕ〉 = λ

∫
�

|w(x)|p−2w(x)ϕ(x)dx for all ϕ ∈ X (�).

But this means that λ ∈ σ((−Δ)s
p), against our assumption; thus, the proof is complete.

(ii) Let c ∈ R and {um}m∈N be a sequence in X (�) such that (3.30) holds. Set

g(x, t) := λt + f (x, t) for a.e. x ∈ �, ∀ t ∈ R. (3.12)

By using (3.12) we have that

1

p
‖um‖p −

∫
�

G(x, um(x))dx = c + o(1) (3.13)

and

‖um‖p −
∫

�

g(x, um(x))um(x)dx = o(1), (3.14)

with G(x, t) :=
∫ t

0
g(x, τ )dτ.

By assumption (h3) there exists η1 > 0 such that

g(x, t)t − p G(x, t) ≥ 0 if |t | ≥ η1, for a.e.x ∈ �. (3.15)

On the other hand, by using condition (h1) there exists C1 = C1(η1) > 0 such that∫
{|um |≤η1}

(g(x, um(x))um(x) − p G(x, um(x))) dx ≥ −C1, (3.16)

for every m ∈ N. Fixing ε > 0, by (3.12) in addition to (1.2) of (h2), there exists ηε > 0
such that

|g(x, t)| ≤ (|λ| + ε)|t | if |t | > ηε, for a.e.x ∈ �. (3.17)

Now, taking q ∈]p, p∗
s [, there exists C > 0 such that

|u|q ≤ C
1
p ‖u‖ for all u ∈ X (�) (3.18)

(cf. (1.4)). Hence, let us set

κ := (2c + C1)(2(|λ| + ε)C)
q

q−p , (3.19)

with c as in (3.13) and C1 as in (3.16).
Again by (h3) we get the existence of η2 := η2(κ) > max{η1, ηε} such that

g(x, t)t − p G(x, t) ≥ κ if |t | ≥ η2, for a.e.x ∈ �. (3.20)

Then, for η2 as above, we define

Am := {x ∈ � : |um(x)| ≥ η2}
and

Bm := {x ∈ � : |um(x)| ≤ η2},
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for every m ∈ N.
By (3.13)–(3.16) and (3.20) it follows that

pc + o(1) =
∫

�

(g(x, um(x))um(x) − p G(x, um(x))) dx

=
∫

Am

(g(x, um(x))um(x) − p G(x, um(x))) dx

+
∫

{|um |≤η1}
(g(x, um(x))um(x) − p G(x, um(x))) dx

+
∫

{η1≤|um |≤η2}
(g(x, um(x))um(x) − p G(x, um(x))) dx

≥ κ meas(Am) − C1.

Hence, from the above inequality, one has

meas(Am) ≤ 2c + C1

κ
+ o(1) for all m ∈ N. (3.21)

Taking r > p, by (3.13) and (3.14) we have that(
1

p
− 1

r

)
‖um‖p −

∫
�

(
G(x, um(x)) − 1

r
g(x, um(x))um(x)

)
dx

= c + o(1).

(3.22)

Moreover, by (h1) there exists C2 := C2(�, g, η2, r) > 0 such that∣∣∣∣
∫

Bm

(
G(x, um(x)) − 1

r
g(x, um(x))um(x)

)
dx

∣∣∣∣ ≤ C2, ∀m ∈ N. (3.23)

Hence, by (3.22) and (3.23) we infer that

c + o(1) ≥
(

1

p
− 1

r

)
‖um‖p

−
∫

Am

(
G(x, um(x)) − 1

r
g(x, um(x))um(x)

)
dx − C2.

Further, by (3.15) and (3.17) it follows that

c + o(1) ≥
(

1

p
− 1

r

)
‖um‖p

−
∫

Am

(
1

p
g(x, um(x))um(x) − 1

r
g(x, um(x))um(x)

)
dx − C2

≥
(

1

p
− 1

r

) (
‖um‖p −

∫
Am

(|λ| + ε)|um(x)|p dx

)
− C2.

Now, by the Hölder inequality, (3.18), (3.19) and (3.21) we have that

c + o(1) ≥
(

1

p
− 1

r

) (
‖um‖p − (λ + ε) |um |p

q meas(Am)
q−p

q

)
− C2

≥
(

1

p
− 1

r

)
‖um‖p

⎛
⎝1 − (|λ| + ε)C

(
1

(2(λ + ε)C)
q

q−p
+ o(1)

) q−p
q

⎞
⎠

− C2.

123



438 R. Bartolo, G. Molica Bisci

Thus, the sequence {‖um‖}m∈N is bounded in X (�). ��
Lemma 3.2 Assume that (h1)–(h2) hold. Let βh be as in (h4) and Yh−1 as in (2.10). Then,
there exist ρ > 0 and c0 > 0 such that, setting Sρ := {u ∈ X (�) : ‖u‖ = ρ}, the functional
Jλ in (3.2) verifies

Jλ(u) ≥ c0 for all u ∈ Sρ ∩ Yh−1. (3.24)

Proof By (h2) it follows that, uniformly with respect to almost every x ∈ �, there exist

lim|t |→+∞
F(x, t)

|t |p
= 0

and

lim
t→0

F(x, t)

|t |p
= α

p
.

Therefore, for every ε > 0 there exist Rε, δε > 0 such that, for almost every x ∈ �,

|F(x, t)| ≤ ε

p
|t |p if |t | > Rε (3.25)

and ∣∣∣∣F(x, t) − α

p
|t |p

∣∣∣∣ ≤ ε

p
|t |p if |t | < δε, (3.26)

without loss of generality with Rε ≥ 1. On the other hand, by (h1), taking any l ∈ [0, p∗
s − p[,

there exists kRε > 0 such that, for almost every x ∈ �,

|F(x, t)| ≤ kRε |t |l+p if δε ≤ |t | ≤ Rε. (3.27)

The inequalities (3.25)–(3.27) imply that for any ε > 0 there exists kε > 0 such that

F(x, t) ≤ α + ε

p
|t |p + kε|t |l+p for a.e.x ∈ �, for all t ∈ R.

We infer that ∫
�

F(x, u(x))dx ≤ α + ε

p
|u|p

p + kε|u|l+p
l+p for all u ∈ X (�).

For a suitable k′
ε > 0 we have

Jλ(u) ≥ 1

p
‖u‖p − λ + α + ε

p
|u|p

p − k′
ε‖u‖l+p for all u ∈ X (�). (3.28)

Let us recall that by the decomposition (2.10) it is X (�) = Xh−1 ⊕ Yh−1, where Xh−1 :=
span{ψ1, . . . , ψh−1} and Yh−1 is its complement. Thus by (2.11) and (3.28) it follows that

Jλ(u) ≥ 1

p

(
1 − λ + α + ε

βh

)
‖u‖p − k′

ε‖u‖l+p for all u ∈ Yh−1

and by (h4), for a suitable ε, there exists k′′
ε > 0 such that

Jλ(u) ≥ k′′
ε ‖u‖p − k′

ε‖u‖l+p for all u ∈ Yh−1.

Thus we conclude that if ρ is small enough there exists c0 > 0 such that (3.24) holds. ��
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Lemma 3.3 Assume that (h1) and (1.2) hold. Let γk as in (h4), Wk as in (2.12) and c0 as
in Lemma 3.2. Then, there exist a k-dimensional space V ∈ Wk and c∞ > c0 such that the
functional Jλ in (3.2) verifies

Jλ(u) ≤ c∞ for all u ∈ V . (3.29)

Proof By (3.1), fixing any ε > 0 there exists Cε > 0 such that

Jλ(u) ≤ 1

p
‖u‖p − λ

p
|u|p + ε

2p
|u|p

p + Cε|u|p for all u ∈ X (�).

Let γk be as in (h4) and take ε > 0 such that γk + ε < λ. From definition (2.13), for such a
fixed ε > 0 there exists a subspace V ε

k in Wk , with dim V ε
k ≥ k, such that

γk ≤ sup
u∈V ε

k \{0}
‖u‖p

|u|p
< γk + ε

2
.

Thus it results that

Jλ(u) ≤ 1

p
(γk + ε − λ) |u|p + Cε|u|p for all u ∈ V ε

k

and, as without loss of generality we can assume that V ε
k is a k-dimensional subspace, the

functional Jλ tends to −∞ as ‖u‖ diverges in V ε
k , so there exists c∞ = c∞(ε) (with c∞ > c0),

such that (3.29) holds. ��

Proof of Theorem 1.1. (a) Firstly, by Proposition 3.1—part (i) the functional Jλ in (3.2)
satisfies (C) in R, and by assumption, it is even.

Let us consider βh , Yh−1, ρ, c0 as in Lemma 3.2 and γk,Wk , V ε
k , c∞ as in Lemma 3.3.

Then, we consider the pseudo-index theory (Sρ ∩ Yh−1,H∗, γ ∗) related to the genus and
Sρ ∩ Yh−1. By Remark 3.7 applied to V := V ε

k , ∂ B := Sρ and W := Yh−1, we get

γ
(
V ε

k ∩ h
(
Sρ ∩ Yh−1

)) ≥ dim V ε
k − codim Yh−1 for all h ∈ H∗,

which implies

γ ∗(V ε
k ) ≥ k − h + 1.

The proof is then complete: in fact Theorem 3.6 applies with Ã := V ε
k and S := Sρ ∩ Yh−1

and J has at least k −h +1 distinct pairs of critical points corresponding to at most k −h +1
distinct critical values ci , where ci is as in (3.32).

(b) In the resonant case, by Proposition 3.1—part (ii) the functional Jλ satisfies (C), and
we can proceed as above. ��

Remark 3.4 We point out that Theorem 1.1 holds also with slight changes in the proof when
(h4) is replaced by

λ < βh ≤ γk < α + λ.
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Appendix: Abstract framework

Throughout this paper (X, ‖ · ‖X ) is a Banach space, (X ′, ‖ · ‖X ′) its dual, I a C1 functional
on X , I b := {u ∈ X : I (u) ≤ b} the sublevel of I corresponding to b ∈ R and

Kc := {u ∈ X : I (u) = c, dI (u) = 0}
the set of the critical points of I in X at the critical level c ∈ R.

In Sect. 3 we have seen that problem (1.1) has a variational structure; thus, next we recall
some abstract tools used before.

Firstly, we recall the so-called Cerami’s variant of the Palais–Smale condition; even if
it is a condition weaker than the classical one, it is enough in order to state a deformation
theorem and some critical point theorems (cf. [1]).

Definition 3.5 The functional I satisfies the Cerami’s variant of the Palais–Smale condition
at level c (c ∈ R), if any sequence {um}m∈N ⊆ X such that

{I (um)}m∈N is bounded and lim
m→+∞ ‖dI (um)‖X ′(1 + ‖um‖X ) = 0 (3.30)

converges in X , up to subsequences. In general, if −∞ ≤ a < b ≤ +∞, I satisfies (C) in
]a, b[ if so is at each level c ∈]a, b[.

In the proof of our main theorem we use [1, Theorem 2.9] rewritten on Banach spaces
where the index theory related to the genus acts. The proof is based on the use of a pseudo-
index theory, and before introducing such a definition, we recall some notions of the index
theory on Banach spaces X for an even functional with symmetry group Z2 := {id,−id}.

Define

� := {A ⊆ X closed and symmetric w.r.t. the origin}
and

H := {h ∈ C(X, X) : h odd}.
Taking A ∈ �, A 
= ∅, the genus of A is

γ (A) := inf{k ∈ N : ∃ψ ∈ C(A,Rk\{0}) s.t. ψ(−u) = −ψ(u) for all u ∈ A},
if such an infimum exists, otherwise γ (A) = +∞. Assume γ (∅) = 0.
The index theory (�,H, γ ) related to Z2 is also called genus (we refer for more details, e.g.,
to [30, Section II.5]).

According to [4], the pseudo-index related to the genus, an even functional I : X → R

and S ∈ � is the triplet (S,H∗, γ ∗) such that H∗ is a group of odd homeomorphisms and
γ ∗ : � −→ N ∪ {+∞} is the map defined by

γ ∗(A) := min
h∈H∗ γ (h(A) ∩ S) for all A ∈ �.

Since

γ (h(A) ∩ S) = γ (A ∩ h−1(S)) for all h ∈ H∗,

then

γ ∗(A) = min
h∈H∗ γ (A ∩ h(S)) for all A ∈ �. (3.31)

The following mini–max theorem was proved in [1, Theorem 2.9] in the setting of Hilbert
spaces; the same proof holds on Banach spaces.
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Theorem 3.6 Consider a, b, c0, c∞ ∈ R̄, −∞ ≤ a < c0 < c∞ < b ≤ +∞. Let I be
an even functional, (�,H, γ ) the genus theory on X, S ∈ �, (S,H∗, γ ∗) the pseudo-index
theory related to the genus, I and S, with

H∗ = {h ∈ H : h bounded homeomorphism s.t. h(u) = u if u /∈ I −1(]a, b[)}.
Assume that:

(i) the functional I satisfies (C) in ]a, b[;
(ii) S ⊆ I −1([c0,+∞[);

(iii) there exist k̃ ∈ N and Ã ∈ � such that Ã ⊆ I c∞ and γ ∗( Ã) ≥ k̃.

Then the numbers

ci := inf
A∈�∗

i

sup
u∈A

I (u), i ∈ {1, . . . , k̃}, (3.32)

with �∗
i := {A ∈ � : γ ∗(A) ≥ i}, are critical values for I and

c0 ≤ c1 ≤ · · · ≤ ck̃ ≤ c∞.

Furthermore, if c = ci = · · · = ci+r , with i ≥ 1 and i + r ≤ k̃, then γ (Kc) ≥ r + 1.

Remark 3.7 In order to apply the theorem above, we need a lower bound for the pseudo-index
of a suitable Ã as in (iii) of Theorem 3.6. Thus, let us consider the genus theory (�,H, γ )

on X and V, W two closed subspaces of X . If

dim V < +∞ and codim W < +∞,

then, for every odd bounded homeomorphism h on X and every open bounded symmetric
neighborhood B of 0 in X , it results

γ (V ∩ h(∂ B ∩ W )) ≥ dim V − codim W

(cf. [1, Theorem A.2] and [2, Theorem 2.7]).
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