
Annali di Matematica (2017) 196:309–323
DOI 10.1007/s10231-016-0573-8

On strongly condensing operators

Nina A. Erzakova1 · Martin Väth2

Received: 5 December 2015 / Accepted: 15 April 2016 / Published online: 26 April 2016
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2016

Abstract Given a set-functionψ defined on bounded subsets of a Banach space with certain
properties, necessary and sufficient criteria forψ(A(U )) = 0 are given, when A is positively
homogeneous of some order and U is bounded. The results are applied to give necessary
and sufficient criteria for the compactness and weak compactness of a Fréchet derivative (in
some point or at ∞) and when an operator is improving.
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1 Introduction

Let X and Y be Banach spaces, and let B(Y ) be the family of all bounded subsets of Y .
For U, V ⊆ Y and Λ ⊆ R, we use the notations U + V := {u + v : u ∈ U, v ∈ V }
and ΛU := {λu : λ ∈ Λ, u ∈ U }, and similarly, we put for u ∈ U and λ ∈ R also
u +U := {u} +U and λU := {λ}U . We call a function ψ : B(Y ) → [0,∞)
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310 N. A. Erzakova, M. Väth

(1) monotone, if U ⊆ V ∈ B(Y ) implies ψ(U ) � ψ(V ).
(2) even, if ψ(−U ) = ψ(U ) for all U ∈ B(Y ).
(3) algebraically semi-additive, if

ψ(U + V ) � ψ(U ) + ψ(V ) for all U, V ∈ B(Y ).

This will be essentially the only properties which we use in our main result. For explanations
and examples, we also recall some further notionswhich are used in the literature, see, e.g., [1,
1.2], [3, 2.1], or [4, 3.1]. We call ψ

(4) positively homogeneous, if ψ(ρU ) = ρψ(U ) for all ρ > 0, U ∈ B(Y ).
(5) translation invariant, if ψ(u +U ) = ψ(U ) for all u ∈ Y , U ∈ B(Y ).
(6) conical invariant, if ψ([0, 1]U ) = ψ(U ) for all U ∈ B(Y ).
(7) nonsingular, if ψ(U ∪ {u}) = ψ(U ) for all u ∈ Y , U ∈ B(Y ).
(8) regular, if ψ(U ) = 0 iff U is precompact (in the uniform structure of Y ).
(9) convex invariant, if ψ(convU ) = ψ(U ) for all U ∈ B(Y ).

(10) closed convex invariant or measure of noncompactness, if ψ(convU ) = ψ(U ) for all
U ∈ B(Y ).

Remark 1 If ψ is monotone, convex invariant, and nonsingular, then ψ is conical invariant,
because [0, 1]U ⊆ conv(U ∪ {0})

A trivial example of a function ψ on Y satisfying most of the above properties is given
by

diamY (U ) := sup {‖u − v‖ : u, v ∈ U } , diamY (∅) := 0.

The only properties which fail to be satisfied by diamY are conical invariance, nonsingularity,
and regularity. Another example, also satisfying the conical invariance but not the translation
invariance, is diamY,0(U ) := diamY (U ∪ {0}).

An example of a functionψ onY which satisfies all of the above properties is theHausdorff
measure of noncompactness χY , defined as

χY (U ) := inf

{
r > 0 | ∃ N ⊆ Y finite with U ⊆

⋃
u∈N

(u + Br )

}
, (1.1)

see, e.g., [1, 1.1.4], [3, 2.3], [4, 3.1.2], or [23, 3.2]. Here and throughout, we denote the balls
and spheres with center 0 in a normed space X by

Bρ := {u ∈ X : ‖u‖ � ρ} and Sρ := {u ∈ X : ‖u‖ = ρ} .
Given k ∈ [0,∞), we call a map A : X → Y positively homogeneous of order k if

A(ρu) = ρk A(u) for all ρ � 0, u ∈ X.

Recall that a bounded linear map A : X → Y is called a Fréchet derivative of F : X → Y
at u0 ∈ X if

F(u0 + u) = F(u0) + A(u) + r(u) for all u ∈ X (1.2)

with r(u)/ ‖u‖ → 0 as u → 0; in particular,

lim
ρ→0

ψ
(
F(u0) + r(Bρ)

)
ρ

= 0 (1.3)
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when, e.g.,ψ = χY orψ = diamY .With the choice A0(u) := F(u0)+r(u), the equality (1.2)
means

F(u0 + u) = A(u) + A0(u) for all u ∈ X. (1.4)

We will consider a more general situation: We require only (1.4) with A being positively
homogeneous of some order k, actually even only positively homogeneous with respect to
ψ in a sense which will be made precise below. Moreover, we require that the remainder
function A0 is only “small” near 0 (or near∞) with “smallness” being measured with respect
to ψ similar to (1.3); the precise requirement will be formulated in the next section. (Note
that we keep u0 fixed, throughout; the functions A and A0 will depend on u0, in general.)

Under this hypothesis, we are interested in necessary and sufficient criteria forψ(A(U )) =
0 for every U ∈ B(X).

For instance, if F is Fréchet differentiable at u0, and if ψ denotes the Hausdorff measure
of noncompactness, then the mentioned smallness hypothesis will be satisfied due to (1.3),
and so, we obtain in particular necessary and sufficient criteria for the compactness of the
Fréchet derivative A = F ′(u0).

Such criteria have a long tradition. Sufficient criteria for the compactness of the Fréchet
derivative have already been obtained by Krasnosel’skiı̆ [14]. Further sufficient conditions
were obtained in [9,17], and they have been extended to various necessary and sufficient
criteria in [11,12]. Our results contain both of these criteria, and moreover, they apply also
in a sense if A is not necessarily linear but only positively homogeneous of some order
k ∈ [0,∞). Actually, we do not even require that A is positively homogeneous, but only
either

ψ (A(ρU )) = ρkψ(A(U )) for all ρ > 0, A(U ) ∈ B(Y ), (1.5)

or sometimes additionally

ψ (A ([0, r ]U )) = rkψ(A(U )) for all r > 0, A(U ) ∈ B(Y ), (1.6)

which are indeed both weaker requirements:

Proposition 1 (i) Suppose that ψ is positively homogeneous. If A is positively homoge-
neous of some order k ∈ [0,∞), then (1.5) is satisfied.

(ii) Suppose that ψ is positively homogeneous and conical invariant. If A is positively
homogeneous of some order k ∈ [0,∞), then (1.6) holds.

None of these two implications can be reverted.

Proof If A is positively homogeneous of order k, then A(ρU ) = ρk A(U ) for every ρ > 0.
Moreover, for every r > 0 there holds A([0, r ]U ) = rk[0, 1]A(U ). This implies (1.5)
or (1.6), respectively, ifψ has the required properties. For a counterexample, considerψ = χY

and redefine a positively homogeneous map A of order k at only one point. ��

Remark 2 If A : X → Y satisfies (1.5) andψ(A(Br )) = 0 for some r > 0, thenψ(A(Bρ)) =
(ρ/r)kψ(A(Br )) = 0 for all ρ > 0. In particular, if ψ is also monotone, then ψ(A(U )) = 0
for every U ∈ B(X).

Similarly, if A : X → Y satisfies (1.5) and ψ(A(Sr )) = 0 for some r > 0, then
ψ(A(Sρ)) = (ρ/r)kψ(A(Sr )) = 0 for all ρ > 0.

The principal aim of the paper is to apply these notions to obtain necessary and sufficient
conditions for ψ(A(U )) = 0 for U ∈ B(X) if A satisfies (1.5).
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312 N. A. Erzakova, M. Väth

2 Locally strongly condensing maps

The following criteria had been used in [11] if k = 1. Given k ∈ (0,∞), we call F : X → Y
locally strongly ψ-condensing of order k for balls at u0 ∈ X , if

lim
r→0

ψ (F(u0 + Br ))

rk
= 0, (2.1)

and locally strongly ψ-condensing of order k for balls at ∞ if

lim
r→∞ sup

R>r

ψ (F(BR\Br ))
Rk

= 0. (2.2)

For simplicity, we assume here and throughout that ψ(U ) := ∞ if U ⊆ Y is unbounded, so
that, e.g., the limit (2.1) contains the requirement that F(u0 + Br ) ∈ B(Y ) for small r > 0.

Remark 3 If ϕ : B(X) → [0,∞) is positively homogeneous and translation invariant with
ϕ(B1) > 0, then (2.1) means that for every ε > 0 there is R > 0 with

ψ(F(M)) � εϕ(M)k if M = u0 + Br , 0 < r < R.

Similarly, if ϕ is positively homogeneous and conical invariant with ϕ(B1) > 0, then (2.2)
means that for every ε > 0 there is r0 > 0 with

ψ(F(M)) � εϕ(M)k if M = BR\Br , r0 < r < R.

This explains the terminology “condensing of order k for balls” and the equivalence with the
notion from [11] for k = 1.

There is actually a stronger relation to condensing maps:

Remark 4 Suppose that ψ = χY and ϕ = χX , and χX (B1) > 0. If (2.1) holds with k = 1
uniformly in u0 for all u0 ∈ X in a neighborhood of some u1, then for every ε > 0 there is a
neigborhood N ⊆ X of u1 such that

ψ(F(M)) � εϕ(M) for every M ⊆ N .

In particular, F is condensing in a neighborhood of u1, and so, if F is continuous and u1 is an
isolated fixed point of F , the topological fixed point index of F can be defined in a standard
way. This has been shown in [12, Theorem 2].

The following criteria, similar to the above ones, had been used in [12]. Given k > 0, we
call a map F : X → Y locally strongly ψ-condensing of order k for spheres at u0 ∈ X , if

lim
r→0

ψ (F(u0 + Sr ))

rk
= 0, (2.3)

and locally strongly ψ-condensing of order k for spheres at ∞, if

lim
r→∞

ψ (F(Sr ))

rk
= 0. (2.4)

In [9,11,12], the above classes of maps were studied thoroughly, and many examples have
been given in case k = 1. Let us just give one remark which follows rather immediately from
the definition:
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On strongly condensing operators 313

Remark 5 Suppose that ψ is monotone, positively homogeneous, and algebraically semi-
additive, k > 0, and u0 ∈ X . Then the four families of maps F : X → Y satisfying (2.1)–
(2.4), respectively, are linear vector spaces.

Even in case k = 1, these families contain maps which are not necessarily (ϕ, ψ)-
condensing and not even necessarily (ϕ, ψ)-bounded in the sense of [1] in any neighborhood
of u0 (or ∞), respectively.

3 Main results

Let ψ : B(Y ) → [0,∞) satisfy (1)–(3).

Theorem 1 Let k0 ∈ (0,∞).

(i) Suppose that F, A, A0 : X → Y and u0 ∈ X satisfy (1.4). Suppose also that (1.5) holds
with some k ∈ [0, k0], and that A0 is locally strongly ψ-condensing of order k0 for
balls at 0.
Then ψ(A(B1)) = 0 if and only if F is locally strongly ψ-condensing of order k0 for
balls at u0.

(ii) Suppose that F, A, A0 : X → Y satisfy

F(u) = A(u) + A0(u), for all large u ∈ X. (3.1)

Suppose also that (1.5) holds with some k ∈ [k0,∞), and that A0 is locally strongly
ψ-condensing of order k0 for balls at ∞.
Then ψ(A(B1\Bρ)) = 0 for every ρ ∈ (0, 1) if and only if F is locally strongly
ψ-condensing of order k0 for balls at ∞.

Proof (i) Suppose ψ(A(B1)) = 0. By Remark 2, we have ψ(A(Bρ)) = 0 for all ρ > 0.
Using (1.4), monotonicity and algebraic semi-additivity of ψ , we obtain for small ρ > 0

ψ
(
F(u0 + Bρ)

)
� ψ

(
A(Bρ) + A0(Bρ)

)
� ψ

(
A(Bρ)

) + ψ
(
A0(Bρ)

) = ψ
(
A0(Bρ)

)
,

hence

ψ
(
F(u0 + Bρ)

)
ρk0

�
ψ

(
A0(Bρ)

)
ρk0

.

Since A0 is locally strongly ψ-condensing of order k0 for balls at 0, this implies that F is
locally strongly ψ-condensing of order k0 for balls at u0. The proof of the necessity of (i) is
completed.

It remains to prove the sufficiency of (i). By (1.4), there holds A(Bρ) ⊆ F(u0 + Bρ) −
A0(Bρ). Using that ψ is monotone, algebraic semi-additive, and even, we obtain

ψ
(
A(Bρ)

)
� ψ

(
F(u0 + Bρ)

) + ψ
(
A0(Bρ)

)
.

Using (1.5), we have thus shown that

ρk−k0ψ (A(B1)) = ψ
(
A(Bρ)

)
ρk0

�
ψ

(
F(u0 + Bρ)

)
ρk0

+ ψ
(
A0(Bρ)

)
ρk0

.

Since F and A0 are locally stronglyψ-condensing of order k0 for balls at u0 or 0, respectively,
the right-hand side converges to 0 as ρ → 0. But ρk−k0 � 1 for small ρ � 1, because k � k0,
so we must have ψ(A(B1)) = 0. Part (i) of Theorem 1 is proved.
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(ii) Let ψ(A(B1\Br )) = 0 for all 0 < r < 1. By (1.5), we have ψ(A(Bρ\Bρr )) =
ρkψ(A(B1\Br )) = 0 for all 0 < r < 1, ρ > 0 and thus ψ(A(BR\Br )) for all 0 < r < R.
By (3.1), we obtain F(BR\Br ) ⊆ A(BR\Br )+ A0(BR\Br ) for R > r with sufficiently large
r . Using that ψ is monotone and algebraic semi-additive, we conclude

ψ (F(BR\Br )) � ψ (A(BR\Br )) + ψ (A0(BR\Br )) = ψ (A0(BR\Br ).
Dividing this inequality by Rk0 , taking the supremum over all R > r and letting r → ∞,
we obtain that F is locally strongly ψ-condensing of order k0 for balls at ∞, because A0 has
this property.

Conversely, suppose that F is locally strongly ψ-condensing of order k0 for balls at ∞.
We obtain from (3.1) with M := BR\Br for R > r and sufficiently large r > 0 that
A(M) ⊆ F(M) − A0(M). Since ψ is monotone, algebraic semi-additive, and even, we thus
find

ψ(A(M)) � ψ(F(M)) + ψ(A0(M)).

Using (1.5), we thus have shown for all R > r with large r that

Rk−k0ψ
(
A(B1\Br/R)

) = ψ (A(BR\Br ))
Rk0

�
ψ (F(BR\Br ))

Rk0
+ ψ (A0(BR\Br ))

Rk0
. (3.2)

Since F and A0 are locally strongly ψ-condensing of order k0 for balls at ∞ and since
Rk−k0 � 1 for R � 1, because k � k0, we conclude

lim
r→∞ sup

R>r
ψ

(
A(B1\Br/R)

) = 0.

Given 0 < ρ < 1 and choosing R := r/ρ in this limit, we obtain

lim
r→∞ ψ

(
A(B1\Bρ)

) = 0.

Since the expression under this limit is independent of r , we conclude ψ(A(B1\Bρ)) = 0,
and Theorem 1 is proved. ��

Remark 6 Since ψ is monotone, we have ψ(A(S1)) � ψ(A(B1)) and ψ(A(S1)) �
ψ(A(B1\Bρ)) for every ρ > 0. In particular, Theorem 1 thus provides sufficient criteria
for ψ(A(S1)) = 0.

Moreover, if (1.6) holds, then

ψ (A(S1)) = ψ (A([0, 1]S1)) = ψ (A(B1)),

so that in view of the monotonicity of ψ there holds for 0 < r < 1 even

ψ (A(S1)) = 0 iff ψ (A(B1)) = 0 iff ψ (A(B1\Br )) = 0.

Thus, Theorem 1 provides for such A and ψ even necessary and sufficient criteria for
ψ(A(S1)) = 0 which are simultaneously necessary and sufficient for ψ(A(U )) = 0 for
every U ∈ B(X).

A further necessary and sufficient condition forψ(A(S1)) = 0 is provided by the following
result.
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On strongly condensing operators 315

Theorem 2 Let k0 ∈ (0,∞).

(i) Suppose that F, A, A0 : X → Y and u0 ∈ X satisfy (1.4). Suppose also that (1.5)
holds with some k ∈ [0, k0] and that A0 is locally strongly ψ-condensing of order k0
for spheres at 0.
Then ψ(A(S1)) = 0 if and only if F is locally strongly ψ-condensing of order k0 for
spheres at u0.

(ii) Suppose that F, A, A0 : X → Y satisfy (3.1). Suppose also that (1.5) holds with some
k ∈ [k0,∞), and that A0 is locally strongly ψ-condensing of order k0 for spheres at
∞.
Then ψ(A(S1)) = 0 if and only if F is locally strongly ψ-condensing of order k0 for
spheres at ∞.

Proof The proof of (i) is analogous to that of Theorem 1(i) if one replaces Br by Sr . Similarly,
(ii) follows essentially by replacing BR\Br by SR in the proof of Theorem 1 (ii), noting
that (3.2) becomes

Rk−k0ψ (A(S1)) = ψ (A(SR))

Rk0
�

ψ (F(SR))

Rk0
+ ψ (A0(SR))

Rk0
.

��
Remark 7 All results in this section hold true if X and Y are not necessarily complete.
Moreover, it suffices that Y is a topological vector space and that X is quasi-normed, that is
instead of the triangle inequality we need only

‖u + v‖ � cX (‖u‖ + ‖v‖) for all u, v ∈ X

with some cX ∈ [1,∞). Moreover, instead of the algebraic semi-additivity of ψ , it suffices
to assume that

ψ(U + V ) � cψ (ψ(U ) + ψ(V )) for all U, V ∈ B(Y ) (3.3)

with a constant cψ ∈ [1,∞). In particular, the Hausdorff measure of noncompactness in
a quasi-normed space has the latter property, see [19]. All of our previous assertions and
remarks hold in quasi-normed spaceswith the following exception: IfY is quasi-normed, none
of diamY , diamY,0, or χY is conical invariant, convex invariant, or closed convex invariant,
in general.

Remark 8 Wewrite F : X � Y if F is a multivalued map from X into Y , that is if F(u) ⊆ Y
for every u ∈ X . For such maps, we use the customary notations F(U ) := ⋃

u∈U F(u) for
U ⊆ X , and D(F) := {u ∈ X : F(u) 
= ∅}.

All previous results (and their proof) hold unchanged for multivalued maps if D(F) =
D(A) = D(A0) = X . However, with slight modifications, they hold even in the case
D(F), D(A), D(A0) ⊆ X as we discuss now. Note that even for single-valued maps the
subsequent discussion includes the case that the maps are only defined on subsets of X .

We first extend the definition of a positively homogeneous map A : X � Y to such a case.
We call A positively homogeneous of order k ∈ [0,∞) if

A(ρu) = ρk A(u) for all ρ > 0, u ∈ X, and A(0) = {0} .

Note that the equality is not required for ρ = 0 so that D(A) can indeed be a nontrivial
(conical) set. If D(A) 
= X , we have to require for Proposition 1(ii) in addition thatψ({0}) =
ψ(∅) (because A([0, 1]M) = {0} if A(M) = ∅ 
= M). We have to require (1.4) and (3.1)
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316 N. A. Erzakova, M. Väth

only for all small or large ‖u‖, respectively, but we have to endow them with the additional
requirement that

u0 + u ∈ D(F) �⇒ u ∈ D(A) for all small ‖u‖ (3.4)

or
u ∈ D(F) �⇒ u ∈ D(A) for all large ‖u‖ , (3.5)

respectively. With the above changes, all previous results (and proofs) carry over.

4 Applications to Fréchet derivatives and “homogenizations”

Given k > 0, we call a map F : X → Y k-homogenizable at u0 ∈ X if there are maps
A, ω : X → Y with A being positively homogeneous of order k such that

F(u0 + u) = F(u0) + A(u) + ω(u) (4.1)

and

lim‖u‖→0

ω(u)

‖u‖k = 0. (4.2)

We call then A the k-homogenization of F at u0 ∈ X . For the case that A is a bounded linear
operator and k = 1, this extends the usual definition of the Fréchet derivative A = F ′(u0),
see, e.g.,[14, Chapter II, 4.8]. Note that A is indeed uniquely defined:

Remark 9 We obtain from (4.1)

F (u0 + ru) − F(u0)

rk
= A(u) + ω(ru)

rk
if u 
= 0. (4.3)

Letting r → 0+, we obtain in view of (4.2) that A(u) is uniquely determined.

For k > 0, we say that F : X → Y is k-homogenizable at ∞ with k-homogenization
A : X → Y if A is positively homogeneous of order k and if there is ω : X → Y with

F(u) = A(u) + ω(u) (4.4)

and

lim‖u‖→∞
ω(u)

‖u‖k = 0. (4.5)

Again, if A is a bounded linear operator and k = 1, this extends the usual definition of an
asymptotically linear operator with derivative A at ∞, see, e.g.,[1, 3.3.3].

We recall that two functionsψ, ψ̃ : B(Y ) → [0,∞) are equivalent if there exist constants
c1, c2 > 0 such that

c1ψ(U ) � ψ̃(U ) � c2ψ(U ) for all U ∈ B(Y ).

We call A : X → Y compact if A(U ) is precompact for every U ∈ B(X).

Theorem 3 Let ψ : B(Y ) → [0,∞) be equivalent to χY . Let F : X → Y and k ∈ (0,∞)

(i) Suppose that F is k-homogenizable at u0 ∈ X with k-homogenization A. Then the
following assertions are equivalent:

(a) A is compact.
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On strongly condensing operators 317

(b) F is locally strongly ψ-condensing of order k for balls at u0.
(c) F is locally strongly ψ-condensing of order k for spheres at u0.

(ii) Suppose that F is k-homogenizable at∞ with k-homogenization A. Then the following
assertions are equivalent:

(a) A is compact.
(b) F is locally strongly ψ-condensing of order k for balls at ∞.
(c) F is locally strongly ψ-condensing of order k for spheres at ∞.

Proof Since none of the assertions changes when we pass to an equivalentψ , we can assume
without loss of generality that ψ = χY . Now we observe that Remarks 2 and 6 imply that

A is compact iff ψ (A(B1)) = 0 iff ψ (A(B1\Br )) = 0 iff ψ (A(S1)) = 0

for every 0 < r < 1. Hence, the assertion (i) follows from Theorems 1(i) and 2(i) with
k0 = k if we can show that A0(u) := F(u0) + ω(u) with ω from (4.1) is locally strongly
ψ-condensing of order k for balls and spheres at u0. However, in view of (4.2) this follows
straightforwardly from

ψ (A1(U )) � ψ (F(u0)) + ψ (ω(U )) = ψ (ω(U )) � sup {‖v‖ : v ∈ ω(U )},
where for the last inequality we have chosen N := {0} in (1.1).

In a similar manner, one obtains assertion (ii) from Theorems 1(ii) and 2(ii) with k0 =
k, because A0 := ω with ω from (4.5) is locally strongly ψ-condensing of order k for
balls/spheres at ∞. The latter follows from (4.5) and

ψ (A1(U )) � sup {‖v‖ : v ∈ ω(U )},
where we used again the choice N := {0} in (1.1). ��
Remark 10 All above results hold if X and Y are only quasi-normed and not necessarily
complete. However, be aware that in case of incomplete Y the precompactness of A(U )

means by definition only that the completion of the metric space A(U ) is compact.

There are many “natural” examples of regular measures of noncompactness known, for
instance, the Kuratowski or the Istrǎţescu measures of noncompactness (see, e.g., [1,23]),
but all of these are easily seen to be equivalent to the Haudorff measure of noncompactness.

This is different when we pass to weak topologies. Recall that the De Blasi measure of
noncompactness in Y is defined as

βY (U ) = inf

{
r > 0 | ∃ N ⊆ Y weakly compact with U ⊆

⋃
u∈N

(u + Br )

}
,

see, e.g., [6]. In contrast to the case of the norm topology, there are “natural” measures of
noncompactness known which possess the regularity property for the weak topology

ϕ(U ) = 0 iff U is relatively weakly compact

but which fail to be equivalent to βY , see [2].
We call an operator A : X → Y weakly compact, if A(U ) is relatively weakly compact

for every U ∈ B(X).
With the existence of nonequivalent “weak” measures of noncompactness in mind, the

special role of the De Blasi measure of noncompactness in the following characterization of
operators with weakly compact derivatives is rather remarkable.
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318 N. A. Erzakova, M. Väth

Theorem 4 Let ψ : B(Y ) → [0,∞) be equivalent to βY . Let F : X → Y and k ∈ (0,∞).

(i) Suppose that F is k-homogenizable at u0 ∈ X with k-homogenization A. Then the
following assertions are equivalent:

(a) A is weakly compact.
(b) F is locally strongly ψ-condensing of order k for balls at u0.
(c) F is locally strongly ψ-condensing of order k for spheres at u0.

(ii) Suppose that F is k-homogenizable at∞ with k-homogenization A. Then the following
assertions are equivalent:

(a) A is weakly compact.
(b) F is locally strongly ψ-condensing of order k for balls at ∞.
(c) F is locally strongly ψ-condensing of order k for spheres at ∞.

Proof The proof is completely analogous to that of Theorem 3. ��
Remark 11 All results in this sectionhold also if F, A, ω : X � Y aremultivalued, and in this
case, we have to require (4.1) or (4.4) only for all u ∈ X with small or large ‖u‖, respectively.
To include the case D(F), D(A), D(ω) 
= X , we require in addition that u ∈ D(ω) for all
small or large ‖u‖, respectively, Moreover, (4.2) and (4.5) have to be replaced by

lim‖u‖→0

sup {‖v‖ : v ∈ ω(u)}
‖u‖k = 0

and

lim‖u‖→∞
sup {‖v‖ : v ∈ ω(u)}

‖u‖k = 0,

respectively. For the assertion of Remark 9, we assume in addition that F(u0) is a singleton,
and we note that (4.3) holds only for sufficiently (depending on ‖u‖) small r > 0 (because
we require (4.1) only for small ‖u‖ in the multivalued case). For Theorems 3(i) and 4(i), we
assume that F(u0) is precompact or relatively weakly compact, respectively.

The assumption that F(u0) is a singleton holds for multivalued maps of course only at
exceptional points u0. Nevertheless, a concept of “homogenization/differentiability” of a
multivalued map F at a certain distinguished point u0 can be quite convenient and natural in
some applications, see, e.g., [20–22].

5 The ψ-spherical property

For Theorems 1 and 2, we do not have to require that A is k-homogeneous: The weaker
requirement (1.5) is sufficient. However, to obtain the desired conclusion ψ(A(U )) = 0 for
every U ∈ B(X) = 0, we need a further requirement, e.g., (1.6) for Remark 6.

Following [13], we introduce now a weaker property which gives the same conclusion.

Definition 1 An operator A : X → Y has the ψ-spherical property if for every R > 0
satisfying ψ(A(BR)) > 0 there is some r ∈ (0, R] with ψ(A(Sr )) > 0.

This property indeed gives the conclusion of Remark 6:

Lemma 1 Suppose thatψ is monotone. If A has theψ-spherical property and satisfies (1.5)
with some k ∈ [0,∞), then the following assertions are equivalent:
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(i) ψ(A(U )) = 0 for every U ∈ B(X).
(ii) ψ(A(B1)) = 0.
(iii) ψ(A(B1\Br )) = 0 for every r ∈ (0, 1).
(iv) ψ(A(S1)) = 0.

Proof In view of Remark 2 and the monotonicity, it suffices to show that ψ(A(S1)) = 0
implies ψ(A(B1)) = 0. Thus, assume by contradiction that ψ(A(B1)) > 0 and ψ(A(S1)) =
0. By Remark 2, it follows that ψ(A(Sr )) = 0 for every r > 0, contradicting the hypothesis
that A has the ψ-spherical property. ��
Theorem 5 Let ψ : B(Y ) → [0,∞) satisfy (1)–(3), and suppose that A : X → Y has the
ψ-spherical property and satisfies (1.5) with some k ∈ [0,∞). Let k0 ∈ (0,∞).

(i) Suppose that F, A, A0 : X → Y and u0 ∈ X satisfy (1.4), k � k0, and that A0 is
locally strongly ψ-condensing of order k0 for balls at 0. Then the following assertions
are equivalent.

(a) ψ(A(U )) = 0 for every U ∈ B(X).
(b) F is locally strongly ψ-condensing of order k0 for balls at u0.
(c) F is locally strongly ψ-condensing of order k0 for spheres at u0.

(i) Suppose that F, A, A0 : X → Y and u0 ∈ X satisfy (3.1), k � k0, and that A0 is locally
strongly ψ-condensing of order k0 for balls at ∞. Then the following assertions are
equivalent.

(a) ψ(A(U )) = 0 for every U ∈ B(X).
(b) F is locally strongly ψ-condensing of order k0 for balls at u0.
(c) F is locally strongly ψ-condensing of order k0 for spheres at u0.

Proof Sinceψ is monotone and A0 is locally stronglyψ-condensing of order k0 for balls at 0
or∞, A0 is also locally stronglyψ-condensing of order k0 for spheres at 0 or∞, respectively.
In view of Lemma 1, the assertion thus follows from Theorems 1 and 2. ��

The ψ-spherical property is indeed implied by (1.6):

Proposition 2 If A satisfies (1.6)with some k ∈ [0,∞), then A has theψ-spherical property.

Proof Using (1.6) with U = Sρ and r = R/ρ, we find ψ(A(BR)) = (R/ρ)kψ(A(Sρ))). In
particular, ψ(A(BR)) > 0 implies ψ(A(Sρ)) > 0 for every ρ > 0. ��

Proposition 2 implies in view of Lemma 1 again the assertion of Remark 6.
It is natural to ask whether the ψ-spherical property holds under a different type of

hypotheses than (1.6). Here is such a result.

Proposition 3 Suppose that ψ : B(Y ) → [0,∞) has the following properties:

(i) ψ is monotone.
(ii) ψ(U ) = 0 for every compact U ⊆ Y .
(iii) Every U ∈ B(Y ) with ψ(U ) > 0 contains a sequence vn such that every bounded

sequence wn ∈ Y with lim(wn − vn) = 0 satisfies ψ({w1, w2, . . .}) > 0.

Then every map A : X → Y which is uniformly continuous on bounded sets has the ψ-
spherical property.
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320 N. A. Erzakova, M. Väth

Proof If ψ(A(BR)) > 0, let vn ∈ U := A(BR) be the sequence required in (iii), and let
un ∈ BR be such that A(un) = vn . Using the compactness of [0, R] we can assume, passing
to a subsequence if necessary, that ‖un‖ → r ∈ [0, R].

We must have r > 0. Indeed, if r = 0, then un → 0 implies in view of the continuity of
A at 0 that the sequence wn := A(un) is convergent to A(0) and thus ψ({w1, w2, . . .}) = 0
by (ii), contradicting wn − vn = 0.

In view of r > 0, we can assume without loss of generality that un 
= 0 for every n. Then
ũn := r

‖un‖un ∈ Sr satisfy ũn − un → 0. Since A is uniformly continuous on bounded sets,
we obtain that A(̃un) − A(un) → 0. Thus, the sequence zn := A(̃un) satisfies zn − vn → 0,
and so ψ(A(Sr )) � ψ({z1, z2, . . .}) > 0.

The requirement concerning ψ in Proposition 3 is not very restrictive. A large class of
examples is contained in the following observation, and a further example will be given later.

Lemma 2 Everymonotone regular functionψ : B(Y ) → [0,∞) has the properties required
in Proposition 3.

Proof Only property (iii) requires a proof. Thus, assume that ψ(U ) > 0, that isU fails to be
precompact. Then the Istrǎţescu measures of noncompactness ofU is positive (see, e.g., [23,
Proposition 3.23]) which means that there is a sequence vn ∈ U with ‖vn − vm‖ > r > 0
for every n 
= m. Hence, for every sequence wn satisfying lim(wn − vn) = 0 there is a
subsequence satisfying ‖wnk − wn j ‖ > r for all k 
= j , and so C = {w1, w2, . . .} fails to be
precompact; in particular, ψ(C) > 0. ��

It is not sufficient to require in Proposition 3 only that A is continuous. Indeed, even under
weaker hypotheses about ψ , one can construct a large class of counterexamples:

Proposition 4 Suppose that ψ : B(Y ) → [0,∞) has the following properties.

(i) ψ is monotone.
(ii) ψ(U ) = 0 for every compact U ⊆ Y .
(iii) There is a bounded sequence wn ∈ Y with ψ({w1, w2, . . .}) > 0.

If X has infinite dimension, then there is a continuous bounded map A : X → Y without the
ψ-spherical property.

Proof Since X has infinite dimension, Riesz’s lemma implies that there is a sequence en ∈ S1
satisfying ‖en − em‖ � 1/2 for all n 
= m.

Put λn := 1 − 2−n and rn := 2−n/8. Then the balls Kn = λnen + Brn are pairwise
disjoint, and moreover, every sphere Sr with center 0 intersects at most one Kn .

Now define A : X → Y for u ∈ Kn as A(u) = (1 − r−1
n ‖u − λnen‖)wn , and A(u) = 0

for u /∈ ⋃
n Kn .

Then A is continuous with A(B1) ⊇ {w1, w2, . . .}, hence ψ(A(B1)) > 0. Moreover, for
every r > 0 there holds: Since Sr intersects at most one Kn , we have A(Sr ) ⊆ A(Kn) =
[0, 1]wn which is compact and thus ψ(A(Sr )) = 0. ��

Now we intend to give another example of a function ψ satisfying the hypotheses of
Proposition 3 which does not fall into the large class of examples of Lemma 2.

Let (Ω,Σ,μ) be some nonnegative measure space with μ(Ω) < ∞.
We consider an ideal spaceY of (classes of) real-valuedmeasurable functions onΩ . Recall

that this means that Y is a Banach space, and v ∈ Y implies for every measurable function
u : Ω → R satisfying |u(x)| � |v(x)| for almost all x ∈ Ω that u ∈ X and ‖u‖ � ‖v‖.
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We call Y a regular space if additionally each function u ∈ X has absolutely continuous
norm:

lim
μ(D)→0

‖PDu‖ = 0,

where

PDu(x) :=
{
u(x) if x ∈ D,

0 if x /∈ D.

Examples of regular spaces are, for instance, Lebesgue spaces L p(Ω) with 1 � p < ∞,
Lorentz spaces, or Orlicz spaces generated by a Δ2-function (see, e.g., [7,10,15,16,18]).

We consider in regular spaces the measure of nonequiabsolute continuity ν which is
defined by

ν(U ) = lim
μ(D)→0

sup
u∈U

‖PDu‖ .

The measure ν has all properties (1)–(10) with the exception of regularity. Indeed, U ⊆ X
is precompact if and only if ν(U ) = 0 and U is precompact in measure (see, e.g., [19,
Theorem 3.19]), and the latter cannot be ommitted, see, e.g., [10].

Lemma 3 ψ = ν has all properties required in Proposition 3. Moreover, for every nonempty
U ∈ B(Y ), there is a sequence vn ∈ U such that for every sequence wn ∈ Y satisfying
lim(wn − vn) = 0 there holds ν({w1, w2, . . .}) � ν(U ).

Proof By the previous remarks, it suffices to verify the last assertion. In case ν(U ) = 0,
there is nothing to prove. Thus, let 0 < r < ν(U ). By definition of ν, there are sequences
Dn ⊆ Ω and vn ∈ U with μ(Dn) → 0 and ‖PDnvn‖ > r . If lim(wn − vn) = 0, then

‖PDnwn − PDnvn‖ = ‖PDn (wn − vn)‖ � ‖wn − vn‖
implies lim PDnwn − PDnvn = 0. The triangle inequality thus implies ‖PDnwn‖ > r for
infinitely many n. The latter implies ν({w1, w2, . . .}) > r . ��

In view of Proposition 3, we thus find that every map A : X → Y which is uniformly
continuous on bounded sets has the ν-spherical property, and so Theorem 5 provides criteria
for ν(A(U )) = 0 for every U ∈ B(X) for such maps.

Note that for the case X = Lq(Ω) and Y = L p(Ω) operators A : X → Y satisfy-
ing ν(A(U )) = 0 for every U ∈ B(X) are called improving, and it is natural to use this
terminology also in the general case.

We point out that the notion of improving operators is useful for the investigation of
solvability of an equation in regular spaces, see, for example [5,7,10,18].

In view of Lemma 3, Theorem 5 thus provides criteria when an operator A : X → Y
satisfying (1.5) and uniformly continuous on bounded sets is improving. We recall that
instead of the uniform continuity, we can in view of Proposition 2 also require (1.6) which
holds in particular if A is positively homogeneous of order k ∈ [0,∞).

Remark 12 As was observed in [8], if two operators F and F1 acting from a set G ⊆ X of a
regular space X into a regular space Y are comparable on the set G, i.e., there is b ∈ Y with

|(F(u))(x)| � |b1(s)| + |(F1(u))(x)| for almost all x ∈ Ω

for every b ∈ Y , then ν(F(U )) � ν(F1(U )). Hence, if F1 is locally strongly ν-condensing
operator of order k for balls/spheres at some u0 or ∞, then every operator F comparable to
F1 has the same property.
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6 Further remarks

Proposition 4 is rather disappointing since it shows that either the hypothesis (1.6) or the
uniform continuity of A on bounded sets is probably the only natural hypotheses if we want
to have a result like Theorem 5 only under the assumption (1.5).

It turns out that if we are less ambiguous and do not insist on the last equivalence in the
two assertions of Theorem 5, a mild additional assumption about ψ is enough. We formulate
such a corresponding result now which also takes Remarks 7 and 8 into account.

Theorem 6 Let Y be a topological vector space, and X be a quasi-normed space. Let
ψ : B(Y ) → [0,∞) satisfy (1), (2) and (3.3), and suppose that A : X � Y satisfies (1.5)
with some k ∈ [0,∞). Let k0 ∈ (0,∞).

(i) Suppose that F, A0 : X � Y and u0 ∈ X are such that (3.4) and (1.4) hold for all
small ‖u‖. Assume that k � k0, and that A0 is locally strongly ψ-condensing of order
k0 for balls at 0. Then the following assertions are equivalent.

(a) ψ(A(U )) = 0 for every U ∈ B(X).
(b) F is locally strongly ψ-condensing of order k0 for balls at u0.

(ii) Suppose that F, A0 : X � Y are such that (3.5) and (3.1) hold for all large ‖u‖.
Assume that k � k0, and that A0 is locally strongly ψ-condensing of order k0 for balls
at ∞. Assume in addition that

ψ(U ∪ V ) � cψ (ψ(U ) + ψ(V )) for all U, V ∈ B(Y ). (6.1)

Then the following assertions are equivalent.

(a) ψ(A(U )) = 0 for every U ∈ B(X).
(b) F is locally strongly ψ-condensing of order k0 for balls at ∞, and there is some

r > 0 with A(Br ) ∈ B(Y ).

Proof In view of Remark 2, assertion (i) follows immediately from Theorem 1(i) (with the
generalizations already observed in Remarks 7 and 8). Assertion (ii) follows similarly from
Theorem 1(ii) in view of

ψ (A(B1)) = 0 iff (There is r > 0with A(Br ) ∈ B(Y ), and

ψ
(
A(B1\Bρ)

) = 0 for every ρ ∈ (0, 1)
)
. (6.2)

To see (6.2), note that “⇒” is immediate from the monotonicity of ψ . To see the converse
implication, we use (6.1) and (1.5) to obtain

ψ (A(B1)) � cψ

(
ψ

(
A(B1\Bρ)

) + ψ
(
A(Bρ)

)) = cψψ
(
A(Bρ)

) = cψ(ρ/r)kψ (A(Br )).

Letting ρ → 0, and noting that k � k0 > 0, we obtain ψ(A(B1)) = 0, and so (6.2) is
established. ��

We close with some remarks.
Theorem 3 combines the two results [12, Theorem 1] and [11, Theorem 1] containing

necessary and sufficient conditions for complete continuity of the Fréchet derivative at a
point and the asymptotic derivative, respectively. However, unlike [11] and [12], our result
applies also if the “derivative” is not necessarily linear.

The main results and Propopsition 3 generalize analogous results from [13].
We finally note that two different results on bifurcation points from [14] were generalized

in [11,12] to locally strongly condensing operators.

123



On strongly condensing operators 323

References

1. Akhmerov, R.R., Kamenskiı̆, M.I., Potapov, A.S., Rodkina, A.E., Sadovskiı̆, B.N.: Measures of Noncom-
pactness and Condensing Operators. Birkhäuser, Basel (1992)

2. Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topol. Appl. 156, 1412–
1421 (2009)

3. Ayerbe Toledano, J.M., Domínguez Benavides, T., López Acedo, G.: Measures of Noncompactness in
Metric Fixed Point Theory. Birkhäuser, Basel (1997)
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