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Abstract We prove that a 4-dimensional compact manifold M4 with harmonic Weyl tensor
must be either locally conformally flat or isometric to a complex projective space CP

2,

provided that the biorthogonal (sectional) curvature satisfies a suitable pinching condition.
In particular, we improve the pinching constants considered by some preceding works on a
rigidity result for 4-dimensional compact manifolds.
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1 Introduction

It plays an important role in geometry to classify 4-dimensional compactmanifolds in the cat-
egory of either topology, diffeomorphism or isometry. This is because dimension four enjoys
a privileged status. For instance, the bundle of 2-forms can be invariantly decomposed as
a direct sum; further relevant facts may be found in [2,24]. There has been a considerable
amount of research on 4-dimensional manifolds involving some pinching curvature condi-
tion. We underline the next ones: nonnegative or positive sectional curvature (cf. [22,25]),
nonnegative or positive Ricci curvature (cf. [19,28]), nonnegative or positive scalar curvature
(cf. [12,13,17]), nonnegative or positive isotropic curvature (cf. [4,5,21,23,26]) and non-
negative or positive biorthogonal (sectional) curvature (cf. [3,7,25]). In order to set up the
notation, M4 will denote a compact oriented 4-dimensional manifold and g is a Riemannian
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metric on M4 with scalar curvature sg, or simply s, sectional curvature K and volume form
dVg .

We recall that (M4, g) is called Einstein if the Ricci curvature is given by

Ric = λg,

for some constant λ. This means that M4 has constant Ricci curvature. In such a case, a
classical result due to Berger [1] combined with Synge’s theorem allows us to conclude that
if M4 has positive sectional curvature, then it satisfies

2 ≤ χ(M) ≤ 9,

where χ(M) stands for the Euler characteristic of M4. Furthermore, Gursky and LeBrun
showed that M4 must satisfy

χ(M) ≥ 15

4
|τ(M)|,

where τ(M) denotes the signature of M4. This result improves the famous Hitchin–Thorpe
inequality (cf. [16,30]). On the basis of these comments we may conclude that most 4-
dimensional manifolds cannot carry any Einstein structure with positive or nonnegative
sectional curvature.

Tachibana [29] asserts that a compact Einstein manifold with positive curvature operator
is isometric to a spherical space form, while Micallef and Wang [21] extended Tachibana’s
result for dimension 4 by showing that a 4-dimensional compact Einstein manifold with
nonnegative isotropic curvature is locally symmetric. Recently, Brendle [4] proved that a
compact Einstein manifold with positive isotropic curvature must be isometric to a spherical
space form. In 2000, Yang [32] has shown a rigidity result for Einstein structures with positive
sectional curvature on 4-dimensional manifolds. More precisely, he proved the following
result.

Theorem 1.1 (Yang [32]) Let (M4, g) be a 4-dimensional complete Einstein manifold with
normalized Ricci curvature Ric = 1. Suppose that

K ≥
(√

1249 − 23
)

120
≈ 0.102843. (1.1)

Then, M4 is isometric to either

(1) S
4 with its canonical metric, or

(2) CP
2 with the Fubini–Study metric.

As it was pointed out by Yang 0.102843 is apparently not the best possible lower bound
on the sectional curvature to get this conclusion. In fact, from a convergence argument it
is possible to show that there is a constant 0 < β < 0.102843 such that the conclusion of
Theorem 1.1 even is true for K ≥ β. Motivated by this information, in 2004, Costa [6] was
able to show that Yang’s result remains true under weaker condition

K ≥
(
2 − √

2
)

6
≈ 0.09763. (1.2)

It has been conjectured that:

Every 4-dimensional Einstein manifold with normalized Ricci curvature Ric = 1 and
positive sectional curvature must be isometric to either S4 orCP2 with their normalized
standard metrics. For more details, see [32].
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Rigidity of four-dimensional compact manifolds with... 2173

As an attempt to better understand 4-dimensional manifolds with positive sectional cur-
vature, it is natural to investigate other curvature positivity conditions. In order to explain our
assumption in the main result to follow let us recall briefly the concept of biorthogonal cur-
vature. For each plane P ⊂ Tx M at a point x ∈ M4, we define the biorthogonal (sectional)
curvature of P by the following average of the sectional curvatures

K ⊥(P) = K (P) + K (P⊥)

2
, (1.3)

where P⊥ is the orthogonal plane to P. For our purposes, for each point x ∈ M4, we take
the minimum of biorthogonal curvature to obtain the following function

K ⊥
min(x) = min

{
K ⊥(P); P is a 2-plane in Tx M

}
. (1.4)

It should be emphasized that the sum of two sectional curvatures on two orthogonal planes,
which was perhaps first observed by Chern [8], plays an interesting role on 4-dimensional
manifolds. This notion also appeared in works due to Seaman [25], Noronha [22] and LeBrun
[18] (cf. Section 5). Interestingly enough, S1×S

3 with its canonicalmetric shows that the pos-
itivity of the biorthogonal curvature is an intermediate condition between positive sectional
curvature and positive scalar curvature. Moreover, a 4-dimensional Riemannian manifold
(M4, g) is Einstein if and only if K ⊥(P) = K (P) for any plane P ⊂ Tx M at any point
x ∈ M4 (cf. Corollary 6.26 [10,27]). From Costa and Ribeiro [7], S4 and CP

2 are the only
compact simply connected four-dimensional manifolds with positive biorthogonal curvature
that can have (weakly) 1/4-pinched biorthogonal curvature, or nonnegative isotropic curva-
ture, or satisfy K ⊥ ≥ s

24 > 0. For more details on this subject we address to [3,7,22,23,25].
In order to proceed, we recall that the Weyl tensor W which is defined by the following

decomposition formula

Wi jkl = Ri jkl − 1

n − 2

(
Rik g jl + R jl gik − Ril g jk − R jk gil

)

+ R

(n − 1)(n − 2)

(
g jl gik − gil g jk

)
, (1.5)

where Ri jkl stands for the Riemann curvature operator Rm. Moreover, we say that the Weyl
tensor W is harmonic if δW = 0, where δ is the formal divergence defined for any (0, 4)-
tensor T by

δT (X1, X2, X3) = −traceg{(Y, Z) 	→ ∇Y T (Z , X1, X2, X3)},
for some metric g on M4.We remark that metrics with harmonic curvature as well as confor-
mally flat metrics with constant scalar curvature are real analytic in harmonic coordinates;
see [9]. One should be emphasized that every Einstein manifold has harmonicWeyl tensor W
(cf. 16.65 in [2], see also Lemma 6.14 in [10]). Therefore, it is natural to ask which geomet-
ric implications have the assumption of the harmonicity of the tensor W on 4-dimensional
manifolds.

In [7], inspired by Yang’s work, Costa and Ribeiro proved the following result.

Theorem 1.2 (Costa–Ribeiro [7]) Let (M4, g) be a 4-dimensional compact oriented Rie-
mannian manifold with harmonic Weyl tensor and positive scalar curvature. We assume that
g is analytic and

K ⊥
min ≥ s2

8(3s + 5λ1)
, (1.6)
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2174 E. Ribeiro Jr.

where λ1 stands for the first eigenvalue of the Laplacian with respect to g. Then, M4 is either

(1) Diffeomorphic to a connected sum S
4�(R × S

3)/G1� . . . �(R × S
3)/Gn, where each

Gi is a discrete subgroup of the isometry group of R × S
3. In this case, g is locally

conformally flat; or
(2) Isometric to a complex projective space CP

2 with the Fubini–Study metric.

Motivated by the historical development on the study of the rigidity of 4-dimensional
manifolds, in this paper, we use the notion of biorthogonal curvature to obtain a rigidity
result for 4-dimensional compact manifold with harmonic Weyl tensor under a pinching
condition weaker than (1.6).

After these settings we may state our main result as follows.

Theorem 1.3 Let (M4, g) be a 4-dimensional compact oriented Riemannian manifold with
harmonic Weyl tensor and positive scalar curvature. We assume that g is analytic and

K ⊥
min ≥ s2

24(3λ1 + s)
, (1.7)

where λ1 stands for the first eigenvalue of the Laplacian with respect to g. Then, M4 is either

(1) Diffeomorphic to a connected sum S
4�(R × S

3)/G1� . . . �(R × S
3)/Gn, where each

Gi is a discrete subgroup of the isometry group of R × S
3. In this case, g is locally

conformally flat; or
(2) Isometric to a complex projective space CP

2 with the Fubini–Study metric.

It is not difficult to check that

s2

8(3s + 5λ1)
>

s2

24(s + 3λ1)
.

For this, our condition (1.7) considered in Theorem 1.3 is weaker that the former considered
in Theorem 1.2. At the same time, we already know that Einstein metrics are analytic (cf.
Theorem 5.26 in [2]). Also, as we have mentioned a 4-dimensional compact manifold M4

is Einstein if and only if K ⊥ = K . Furthermore, every Einstein metric has harmonic Weyl
tensor. From these comments, we may conclude that Theorem 1.3 generalizes Theorem 1.1
and Theorem 1.2.

One should be emphasized that our arguments designed for the proof of Theorem 1.3 differ
significantly from [7,32]. Our strategy is to use a more refined technique outlined previously
in [14] to assure a lower estimate to the minimum of biorthogonal curvature.

In the sequel, it is well known that Ric ≥ ρ > 0 implies λ1 ≥ 4ρ
3 and s ≥ 4ρ, see, e.g.,

[11,20] for details. Then we can combine Theorem 1.3 with Tani’s theorem [28] as well as
Bonnet–Myers theorem to establish the following result.

Corollary 1 Let (M4, g) be a 4-dimensional complete oriented Riemannian manifold with

harmonic Weyl tensor and metric g analytic. We assume that Ric ≥ ρ > 0 and K ⊥
min ≥ s2

192ρ .

Then, M4 is isometric to either

(1) S
4 with its canonical metric, or

(2) CP
2 with the Fubini–Study metric.

This improves Corollary 3 in [7]. In particular, Corollary 1 shows that the pinching con-
stants used by Yang in (1.1) as well as by Costa in (1.2) can be improved to ≈0.08333. In
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other words, as an immediate consequence of Theorem 1.3, we conclude that Theorem 1.1
remains true under the rather weak pinching condition:

K ≥ 1

12
≈ 0.08333.

The paper is organized as follows. In Sect. 2, we review some classical facts on 4-
dimensional manifolds that will be used here. Moreover, we briefly outline some useful
information on biorthogonal (sectional) curvature. In Sect. 3, we prove the main result.

2 Background

Throughout this section we recall some information and important results that will be useful
in the proof of our main result. In what follows M4 will denote an oriented 4-dimensional
manifold and g is a Riemannian metric on M4. As it was previously pointed out 4-manifolds
are fairly special. In fact, many peculiar features are directly attributable to the fact that
the bundle of 2-forms on a 4-dimensional oriented Riemannian manifold can be invariantly
decomposed as a direct sum

	2 = 	2+ ⊕ 	2−, (2.1)

where 	± is the (±1) eigenspace of Hodge star operator. The decomposition (2.1) is confor-
mally invariant.Moreover, it allowsus to conclude that theWeyl tensorW is an endomorphism
of 	2 such that

W = W + ⊕ W −. (2.2)

For more details see [10,31] p. 46.
Proceeding, since the Riemann curvature tensor R of M4 can be seen as a linear map on

	2, we have the following decomposition

R =

⎛

⎜⎜
⎝

W + + s
12 I d B

B∗ W − + s
12 I d

⎞

⎟⎟
⎠ , (2.3)

where B : 	− → 	+ stands for the Ricci traceless operator of M4 given by B = Ric− s
4g.

For more details see [2,31].
We now fix a point and diagonalize W ± such that w±

i , 1 ≤ i ≤ 3, are their respective
eigenvalues. We stress that the eigenvalues of W ± satisfy

w±
1 ≤ w±

2 ≤ w±
3 and w±

1 + w±
2 + w±

3 = 0. (2.4)

In particular, (2.4) allows us to infer
∣∣W ±∣∣2 ≤ 6

(
w±
1

)2
. (2.5)

In fact, from (2.4) it is easy to see that

(
w±
2

)2 + (
w±
3

)2 = (
w±
1

)2 − 2w±
2 w±

3 .

Therefore, we achieve
∣∣W +∣∣2 = 2

(
w+
1

)2 − 2w+
2 w+

3 .
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2176 E. Ribeiro Jr.

Taking into account that w+
1 w+

3 ≤ w+
2 w+

3 and (w+
1 )2 = −w+

1 w+
3 − w+

1 w+
2 we deduce

|W +|2 ≤ 6(w+
1 )2. In the same way we obtain |W −|2 ≤ 6(w−

1 )2.

For the sake of completeness let us briefly outline the construction of the minimum of
biorthogonal curvature; more details can be found in [7], see also [18] (cf. Section 5). To do
so, we consider a point p ∈ M4 and X, Y ∈ Tp M orthonormal. Whence, the unitary 2-form
α = X ∧ Y can be uniquely written as α = α+ + α−, where α± ∈ 	± with |α+|2 = 1

2 and
|α−|2 = 1

2 . From these settings, the sectional curvature K (α) can be written as

K (α) = s

12
+ 〈α+, W +(α+)〉 + 〈α−, W −(α−)〉 + 2〈α+, Bα−〉. (2.6)

Moreover, we immediately have

K (α⊥) = s

12
+ 〈α+, W +(α+)〉 + 〈α−, W −(α−)〉 − 2〈α+, Bα−〉, (2.7)

where α⊥ = α+ − α−. Combining (2.6) with (2.7) we arrive at

K (α) + K (α⊥)

2
= s

12
+ 〈α+, W +(α+)〉 + 〈α−, W −(α−)〉. (2.8)

Hence, we may use (1.4) to infer

K ⊥
min = s

12
+ min

{
〈α+, W +(α+)〉; |α+|2 = 1

2

}
+ min

{
〈α−, W −(α−)〉; |α−|2 = 1

2

}
.

Furthermore, as it was explained in [7,25], Equation (1.4) provides the following useful
identity

K ⊥
min = w+

1 + w−
1

2
+ s

12
. (2.9)

Proceeding, given a section T ∈ �(E), where E → M is a vector bundle over M, we
already know that

|∇|T || ≤ |∇T |
away from the zero locus of T . This inequality is known as Kato’s inequality. In [15], Gursky
and LeBrun proved a refined Kato’s inequality. More precisely, if W + is harmonic, then away
from the zero locus of W + we have

|∇|W +|| ≤
√
3

5
|∇W +|, (2.10)

for more details see Lemma 2.1 in [14].
We also recall that if δW + = 0, then the Weitzenböck formula (cf. 16.73 in [2], see also

[10]) is given by
�|W +|2 = 2|∇W +|2 + s|W +|2 − 36 det W +. (2.11)

We highlight that our Laplacian differs from “Besse’s book” by a sign. Finally, by a simple
Lagrange multiplier argument it is not difficult to check that

det W + ≤
√
6

18
|W +|3. (2.12)
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3 Proof of the main result

3.1 Proof of Theorem 1.3

Proof To begin with, we assume that (M4, g) is a compact oriented Riemannian manifold
with positive scalar curvature and harmonic Weyl tensor. Since g is analytic, we deduce that
|W ±|2 are analytic. Moreover, supposing W ± �≡ 0 it is easy to see that the set

 =
{

p ∈ M; |W +|(p) = 0 or |W −|(p) = 0
}

is finite.
We now suppose by contradiction that (M4, g) is not half conformally flat. For this, for

some α > 0 (to be chosen later) and any ε > 0, there exists t = t (α, ε) > 0 such that
∫

M

( (|W +|2 + ε
) α
2 − t

(|W −|2 + ε
) α
2

)
dVg = 0.

On the other hand, we notice that

�
((|W +|2 + ε

)α + t2
(|W −|2 + ε

)α
)

= α
(|W +|2 + ε

)α−2
((|W +|2 + ε

)
�|W +|2 + (α − 1)|∇|W +|2|2

)

+ t2α
(|W −|2 + ε

)α−2
((|W −|2 + ε

)
�|W −|2 + (α − 1)|∇|W −|2|2

)
.

We recall that in dimension 4 we have

|δW |2 = |δW +|2 + |δW −|2.
Therefore, since δW ± = 0, we may invoke the Weitzenböck formula (2.11) to arrive at

�
((|W +|2 + ε

)α + t2
(|W −|2 + ε

)α
)

= α
(|W +|2 + ε

)α−2
((|W +|2 + ε

)(
2|∇W +|2 + s|W +|2 − 36 det W +)

+ (α − 1)|∇|W +|2|2
)

+ t2α
(|W −|2 + ε

)α−2
((|W −|2 + ε

)(
2|∇W −|2 + s|W −|2

−36 det W −) + (α − 1)|∇|W −|2|2
)
.

Upon integrating of the above expression over M4 we obtain

0 = α

∫

M

(|W +|2 + ε
)α−1 (

s|W +|2 − 36 det W +)
dVg

+αt2
∫

M

(|W −|2 + ε
)α−1 (

s|W −|2 − 36 det W −)
dVg

+α

∫

M

(|W +|2 + ε
)α−2

(
2

(|W +|2 + ε
) |∇W +|2 + (α − 1)|∇|W +|2|2

)
dVg

+αt2
∫

M

(|W −|2 + ε
)α−2

(
2

(|W −|2 + ε
) |∇W −|2 + (α − 1)|∇|W −|2|2

)
dVg.

(3.1)
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Next, we use the refined Kato’s inequality (2.10) as well as (2.12) into (3.1) to infer

0 ≥ α

∫

M

(
|W +|2 + ε

)α−1
(s|W +|2 − 2

√
6|W +|3)dVg

+ αt2
∫

M

(
|W −|2 + ε

)α−1
(s|W −|2 − 2

√
6|W −|3)dVg

+ α

∫

M

(
|W +|2 + ε

)α−2 (10
3

|W +|2|∇|W +||2 + 10

3
ε|∇|W +||2 + (α − 1)|∇|W +|2|2

)
dVg

+ αt2
∫

M

(
|W −|2 + ε

)α−2 (10
3

|W −|2|∇|W −||2 + 10

3
ε|∇|W −||2 + (α − 1)|∇|W −|2|2

)
dVg .

Easily one verifies that

1

4
|∇|W ±|2|2 = |W ±|2|∇|W ±||2.

From this, we deduce

0 ≥ α

∫

M
|W+|2

(
|W+|2 + ε

)α−1
(s − 2

√
6|W+|)dVg

+ αt2
∫

M
|W−|2

(
|W−|2 + ε

)α−1
(s − 2

√
6|W−|)dVg

+ α

∫

M

(
|W+|2 + ε

)α−2 (5
6
|∇|W+|2|2 + (α − 1)|∇|W+|2|2

)
dVg

+ αt2
∫

M

(
|W−|2 + ε

)α−2 (5
6
|∇|W−|2|2 + (α − 1)|∇|W−|2|2

)
dVg

= α

∫

M
|W+|2

(
|W+|2 + ε

)α−1
(s − 2

√
6|W+|)dVg

+ αt2
∫

M
|W−|2

(
|W−|2 + ε

)α−1
(s − 2

√
6|W−|)dVg

+ α

(
α − 1

6

) ∫

M

( (
|W+|2 + ε

)α−2 |∇|W+|2|2 + t2
(
|W−|2 + ε

)α−2 |∇|W−|2|2
)
dVg .

(3.2)

Moreover, a straightforward computation gives

α
(|W ±|2 + ε

)α−2 |∇|W ±|2|2 = 4

α
|∇ (|W ±|2 + ε

) α
2 |2.

This jointly with (3.2) yields

0 ≥ α

∫

M
|W +|2 (|W +|2 + ε

)α−1
(s − 2

√
6|W +|)dVg

+αt2
∫

M
|W −|2 (|W −|2 + ε

)α−1
(s − 2

√
6|W −|)dVg (3.3)

+
(
4 − 2

3α

) ∫

M

(
|∇ (|W +|2 + ε

) α
2 |2 + t2|∇ (|W −|2 + ε

) α
2 |2

)
dVg.
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On the other hand, we have

|∇
(
|W +|2 + ε

) α
2 |2 + t2|∇

(
|W −|2 + ε

) α
2 |2 = 1

2

{
|∇( (

|W +|2 + ε
) α

2 − t
(
|W −|2 + ε

) α
2 )|2

+ |∇( (
|W +|2 + ε

) α
2 + t

(
|W −|2 + ε

) α
2 )|2

}

≥ 1

2
|∇( (

|W +|2 + ε
) α

2 − t
(
|W −|2 + ε

) α
2 )|2.

(3.4)

At the same time, from Poincaré inequality we get
∫

M
|∇( (|W +|2 + ε

) α
2 − t

(|W −|2 + ε
) α
2

)|2dVg

≥ λ1

∫

M

( (|W +|2 + ε
) α
2 − t

(|W −|2 + ε
) α
2

)2
dVg. (3.5)

So, we combine (3.4) with (3.5) to infer
∫

M
|∇ (|W +|2 + ε

) α
2 |2 + t2|∇ (|W −|2 + ε

) α
2 |2dVg

≥ λ1

2

∫

M

( (|W +|2 + ε
) α
2 − t

(|W −|2 + ε
) α
2

)2
dVg. (3.6)

Hereafter, we compare (3.6) with (3.3) and pick α such that
(
4 − 2

3α

) ≥ 0 to arrive at

0 ≥
∫

M
|W +|2 (|W +|2 + ε

)α−1
(s − 2

√
6|W +|)dVg

+
∫

M
t2|W −|2 (|W −|2 + ε

)α−1
(s − 2

√
6|W −|)dVg

+ 1

α

(
2 − 1

3α

)
λ1

[ ∫

M

( (|W +|2 + ε
)α − 2t

(|W +|2 + ε
) α
2

(|W −|2 + ε
) α
2

)
dVg

+
∫

M
t2

(|W −|2 + ε
)α

dVg

]
.

Moreover, choosing α0 = 1
3 , which maximizes 1

α

(
2 − 1

3α

)
, we get

0 ≥
∫

M

(
|W +|2 (|W +|2 + ε

)α0−1
(s − 2

√
6|W +|)

)
dVg

+
∫

M
t2|W −|2 (|W −|2 + ε

)α0−1
(s − 2

√
6|W −|)dVg + 3λ1

[ ∫

M

(|W +|2 + ε
)α0 dVg

−2
∫

M
t
(|W +|2 + ε

) α0
2

(|W −|2 + ε
) α0

2 dVg +
∫

M
t2

(|W −|2 + ε
)α0 dVg

]
.

Therefore, when ε goes to 0 we obtain

0 ≥
∫

M

(
|W −|2α0(s + 3λ1 − 2

√
6|W −|)t2 − 6λ1|W +|α0 |W −|α0 t

+ |W +|2α0(s + 3λ1 − 2
√
6|W +|)

)
dVg. (3.7)

We now remark that the integrand of (3.7) is a quadratic function of t. Whence, for
simplicity, we set
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P(t) = |W −|2α0(a − 2
√
6|W −|)t2 − 6λ1|W +|α0 |W −|α0 t + |W +|2α0(a − 2

√
6|W +|),

where a = s + 3λ1.
We also notice that the discriminant � of P(t) is given by

� = 36λ21|W +|2α0 |W −|2α0 − 4|W −|2α0 |W +|2α0(a − 2
√
6|W −|)(a − 2

√
6|W +|). (3.8)

We now claim that � is less than or equal to zero. In fact, from (2.5) we already know
that

|W ±|2 ≤ 6(w±
1 )2.

This together with (2.9) provides

|W +| + |W −| ≤ √
6
( s

6
− 2K ⊥

min

)
. (3.9)

Moreover, a straightforward computation using our assumption on K ⊥
min yields

( s

6
− 2K ⊥

min

)
≤ a2 − 9λ21

12a
. (3.10)

Next, we combine (3.9) with (3.10) and (3.8) to deduce

� = |W −|2α0 |W +|2α0
(
36λ21 − 4a2 + 8

√
6a(|W +| + |W −|) − 96|W +||W −|

)

≤ |W −|2α0 |W +|2α0
(
36λ21 − 4a2 + 4(a2 − 9λ21) − 96|W +||W −|

)

= −96|W +|2α0+1|W −|2α0+1

≤ 0,

which settles our claim. Hereafter, we use once more (3.7) to conclude |W +||W −| = 0 in
M4. From this, since  is finite, we arrive at a contradiction. Therefore, this contradiction
argument guarantees that (M4, g) is half conformally flat.

From now on it suffices to follow the arguments applied in the final steps of the proof of
Theorem 6 in [7] (see also [32]). More precisely, we define the following set

A =
{

p ∈ M4; Ric(p) �= s(p)

4
g
}
,

where (Ric − s
4g) stands for the traceless Ricci tensor of (M4, g). Then, if A is empty, we

use Hitchin’s theorem [16] to deduce that M4 is either isometric to S
4 with its canonical

metric or isometric to CP
2 with the Fubini–Study metric. Otherwise, if A is not empty, we

deduce that M4 is locally conformally flat. In other words, one of the following assertions
holds:

(1) M4 is isometric to S
4 with its canonical metric;

(2) M4 is isometric to CP
2 with the Fubini–Study metric;

(3) Or M4 has positive isotropic curvature.

In this last case we can invoke Chen–Tang–Zhu theorem [5] to conclude that M4 is diffeo-
morphic to a connected sum S

4�(R×S
3)/G1� . . . �(R×S

3)/Gn , where each Gi is a discrete
subgroup of the isometry group of R × S

3 (see also [21]).
This is what we wanted to prove. ��
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