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Abstract In this article, we give the integrability conditions for the existence of an isomet-
ric immersion from an orientable simply connected surface having prescribed Gauss map
and positive extrinsic curvature into some unimodular Lie groups. In particular, we discuss
the case when the Lie group is the euclidean unit sphere S3 and establish a correspondence
between simply connected surfaces having extrinsic curvature K , K different from 0 and
−1, immersed in S3 with simply connected surfaces having non-vanishing extrinsic curva-
ture immersed in the euclidean space R3. Moreover, we show that a surface isometrically
immersed in S3 has positive constant extrinsic curvature if, and only if, its Gauss map is a
harmonic map into the Riemann sphere.
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1 Introduction

In the classical theory of surfaces, the existence and uniqueness of a surface with prescribed
Gauss map and for which the first fundamental form is a conformal metric were deeply
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studied. For instance, in the euclidean case R3, Kenmotsu [9] gave a remarkable represen-
tation formula for arbitrary surfaces with non-vanishing mean curvature, which describes
these surfaces in terms of their Gauss map and mean curvature function. For the hyperbolic
spaceH3, the study of such surfaces and their geometry was done in [1], and for the euclid-
ean unit sphere S3, this topic was treated in [15]. The Gauss map of minimal surfaces also
was studied in some tri-dimensional homogeneous spaces; for instance, the Gauss map of
minimal surfaces immersed in H3 or in the solvable Lie group Sol3 is a harmonic map into
S2 endowed with a certain Riemannian metric, see [8] and [10], respectively. For minimal
surfaces immersed in the Heisenberg Lie group Nil3, the Gauss map is a harmonic map into
the upper half sphere S2 equipped with the Poincare metric, see [7]. Recently, for surfaces
having non-constant mean curvature immersed in a tri-dimensional homogeneous space, this
topic was treated in [6]. In particular, those surfaces having constant mean curvature were
object of a huge amount of investigation.

It is well known that surfaces immersed in a space form having nonzero constant mean
curvature are parallel to surfaces having positive Gaussian curvature (see, for instance [16],
Sect. 3). Under this framework, the natural question which arises is about the description
of surfaces in terms of their Gauss map and extrinsic curvature function. In this line, for
the euclidean caseR3, the problem of existence of an immersion from a Riemann surface S
having a givenGaussmap and a prescribed extrinsic curvature was treated in [5]. The study of
this problem for the hyperbolic caseH3 was treated in [14]. Finally, in [2] was treated the case
of immersions in the euclidean sphere S3 having negative extrinsic curvature K , K < −1
and−1 < K < 0. In all these works, the key is to find a partial differential equation involving
the Gauss map and the extrinsic curvature which is equivalent to the integrability conditions.

In this article, in order to define a Gauss map we work on Lie groups, and we focus
our attention on unimodular Lie groups. More precisely, we are interested in the following
unimodular Lie groups, the euclidean spaceR3, the canonical sphere S3, the Berger spheres,
the space ˜PSL2(R, τ ), the Heisenberg space Nil3(τ ), the space Sol3, see Sect. 3.1. The left
invariant Gauss map for surfaces in Lie groups, with bi-invariant metric, was treated in [13].

Using the group structure, we are able to find a partial differential equation involving the
Gaussmapof the immersion and the extrinsic curvaturewhich is equivalent to the integrability
equations for positive extrinsic curvature, see Theorem 3.5.When the extrinsic curvature K is
negative, there is an additional restriction on the values of K , see Theorem 4.4. In particular,
we prove that a surface isometrically immersed in the euclidean sphere S3 has constant
positive extrinsic curvature K if, and only if, the Gauss map g is a harmonic map into the
Riemann sphere S2.

In the casewhen the unimodular Lie groupM is the euclidean sphereS3,we also prove that,
under some hypothesis, there exists a correspondence between simply connected surfaces
immersed in S3 having positive (negative, different from −1) extrinsic curvature K with
simply connected surfaces immersed in R3 having positive (negative) extrinsic curvature
K ∗, see Proposition 3.10 for K positive and Proposition 4.8 for a negative K . We apply these
results to construct an immersion in S3 having constant extrinsic curvature K = −2.

The outline of the article goes as follows. In Sect. 2, we deal with surfaces immersed in
a Riemannian manifold having positive extrinsic curvature. Taking a conformal parameter
for the second fundamental form, we establish a relationship which enable us to recover the
immersion from the normal vector, the extrinsic curvature and the basis point, see Proposition
2.1. In Sect. 3, we define theGaussmap andwe present the Lie groupswhichwe are interested
in. We show the PDE involving the Gauss map and the extrinsic curvature which is satisfied
by an arbitrary immersed surface. Also we give the integrability conditions for the existence
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of such immersion, see Theorem 3.5. We finish Sect. 3 considering the case where the Lie
group is the euclidean sphere S3. In Sect. 4, we consider orientable isometric immersion
having negative extrinsic curvature. Finally in Sect. 5, we construct an example of a surface
having constant extrinsic curvature K = −2.

2 Surfaces with positive extrinsic curvature

Let � be a Riemannian surface and ϕ : � −→ M be an isometric immersion in an oriented
three-dimensionalRiemannianmanifoldM .Assume thatϕ has positive extrinsic curvature K ,
that is, such that the determinant of its shape operator is positive. Then,� must be orientable
and we can choose a global unit normal vector field N such that the second fundamental
form I I is positive definite. Given a local conformal parameter z for the Riemannian metric
I I , the first and second fundamental forms of the immersion can be written as

I := 〈dϕ, dϕ〉 = E dz2 + 2F |dz|2 + E dz2,

I I := 〈−dN , dϕ〉 = 2ρ |dz|2,
where ρ is a positive function and z denotes the conjugate of z. The extrinsic curvature of �

is given by K = −ρ2

D
, where D = |E |2 − F2 < 0.

Thus, the Weingarten equation remains

∇∂z N = ρ

D
(F ∂z − E ∂z), (2.1)

where, for instance, ∂z denotes ∂
∂z .

Since z is a conformal parameter for the second fundamental form, ∂z is simultaneously
orthogonal to N and to ∇∂z N , and so

∂z = α N ×ϕ ∇∂z N ,

for some complex function α, where ×ϕ denotes the cross product at the tangent space T M
of M at the point ϕ(z). Considering the inner product of ∂z with ∇∂z N , we obtain

−ρ = 〈∂z,∇∂z N 〉 = α〈N ×ϕ ∇∂z N ,∇∂z N 〉 = α K 〈N , ∂z ×ϕ ∂z〉
= α K |∂z ×ϕ ∂z | = i α K

√−D,

that is

∂z = i√
K

N ×ϕ ∇∂z N .

Thus, the integrability equation of the immersion, 0 = [∂z, ∂z], is given by

0 = ∇∂z

( −i√
K

N ×ϕ ∇∂z N

)
− ∇∂z

(
i√
K

N ×ϕ ∇∂z N

)

= (−i) N ×ϕ

(
∇∂z

(
1√
K

∇∂z N

)
+ ∇∂z

(
1√
K

∇∂z N

))
.

Summarizing, we have

Proposition 2.1 Let ϕ : � −→ M be an isometric immersion from a Riemannian surface
� into a three-dimensional Riemannian manifold M. Assume that ϕ has positive extrinsic
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curvature K , and let N be a unit normal vector field. Then,

∂z = i√
K

N ×ϕ ∇∂z N , (2.2)

where z is a local conformal parameter for the second fundamental form.
Moreover, the integrability equation, 0 = [∂z, ∂z], is equivalent to

N ×ϕ

(
∇∂z

(
1√
K

∇∂z N

)
+ ∇∂z

(
1√
K

∇∂z N

))
= 0. (2.3)

Observe that when M = R3, the cross product does not depend on the point ϕ(z) and so
the immersion can be recovered, from (2.2), as

ϕz = i√
K

N × Nz,

(see also [4,5]). Moreover, if K is a positive constant, then the integrability equation is
equivalent to N × Nzz = 0, that is, N : � −→ S2 is a harmonic map for the conformal
structure induced by the second fundamental form.

For a general ambient space M , the cross product depends on the point ϕ(z) and so the
same process cannot be followed as inR3. However, when M is a Riemannian Lie group, an
alternative procedure can be used in order to recover the immersion ϕ in terms of its Gauss
map and extrinsic curvature, using (2.2).

3 The Gauss map

From now on, we assume that M is a Riemannian Lie group with a left invariant metric,
and let us choose a left invariant orthonormal frame {E1(q), E2(q), E3(q)}, q ∈ M . For
simplicity, {E1, E2, E3} stands for {E1(e), E2(e), E3(e)}, where e is the identity element
of M ; that is, Ei (q) = q Ei , where we are using the product of the group M . A vector
w = w1E1+w2E2+w3E3 in the Lie algebram of M will be denoted byw ≡ (w1, w2, w3).

Let ϕ : � −→ M be an isometric immersion with positive extrinsic curvature, and N be
the normal vector to � such that the second fundamental form is positive definite.

Given a point p ∈ �, we extend the normal vector N (p) ∈ TpM, to a unique left invariant
vector field. Then, N (p) is associated with a vector Ne(p) in the Lie algebra m of M given
by

Ne(p) :=
3∑

i=1

〈N (p), Ei (ϕ(p))〉Ei ,

or equivalently, using the group structure of M , Ne(p) = ϕ(p)−1 N (p).
Ne : � −→ S2 ⊆ m is called the Gauss map of the immersion. As usual, we will also

call Gauss map to the composition g : � −→ C∪ {∞} of the stereographic projection (with
respect to the north pole) and Ne, that is,

g = N1 + i N2

1 − N3
. (3.1)

Conversely, Ne can be recovered from g as

Ne ≡ (N1, N2, N3) = 1

1 + |g|2
(
g + g, −i (g − g), −1 + |g|2) . (3.2)
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Now, let z be a local conformal parameter for the second fundamental form and write

ϕ(p)−1 ϕz(p) =
3∑

i=1

〈ϕz(p), Ei (ϕ(p))〉Ei =: a1E1 + a2E2 + a3E3,

where ϕz denotes ∂z in the Lie group M .
Since M is a Riemannian Lie group, we can rewrite (2.2) as

(a1, a2, a3) = i√
K

(N1, N2, N3) ×
⎛
⎝(N1)z +

∑
i, j

Nia j�
1
i j , (N2)z

+
∑
i, j

Ni a j�
2
i j , (N3)z +

∑
i, j

Nia j�
3
i j

⎞
⎠ , (3.3)

where �k
i j are the Christoffel symbols associated with the orthonormal basis, that is,

∇Ei (q)E j (q) = ∑3
k=1 �k

i j Ek(q). Observe that �k
i j are real constants since {E1(q), E2(q),

E3(q)} is a left invariant basis. Here, × denotes the standard cross product in the Lie algebra
m.

So, (3.3) can be considered as a system of linear equations in the unknowns a1, a2, a3.
Hence, as long as the discriminant of the above system is different fromzero,we candetermine
ϕ(p)−1 ϕz(p) in terms of the Gauss map and the extrinsic curvature of the immersion. As
we will see, once ϕ(p)−1 ϕz(p) is calculated we can compute the immersion ϕ, up to left
translations. Thus, we will say that the immersion is determined in terms of its Gauss map
and its extrinsic curvature.

Moreover, note that N and K must satisfy the integrability condition (2.3), which can
again be rewritten in terms of Ne and K using left translations in the Riemannian Lie group

M . That is, if we denote by V ≡ (v1, v2, v3) the left translation of ∇ϕz

(
1√
K

∇ϕz N
)
to the

identity element e, then (2.3) is equivalent to

Ne is parallel to Re(V ), withvk =
⎛
⎝ 1√

K

⎛
⎝(Nk)z +

∑
i, j

ai N j�
k
i j

⎞
⎠

⎞
⎠
z

+ 1√
K

∑
i, j,l,m

(
(Nm)z + ai N j�

m
i j

)
al�

k
lm, (3.4)

where Re(·) denotes the real part of a complex number.
Therefore, the Gauss map and extrinsic curvature of the immersion ϕ must satisfy (3.3)

and (3.4). Conversely, we obtain

Theorem 3.1 Let M be a Riemannian Lie group, and {E1(q), E2(q), E3(q)} a left invariant
orthonormal frame with associated Christoffel symbols �k

i j . Consider a simply connected

Riemann surface �, and let Ne : � −→ S2 ⊆ m be a map, and K : � −→ R be a positive
function. Assume that (a1, a2, a3) is a smooth solution to (3.3), so that (3.4) is satisfied.

Then, there exists a unique immersion ϕ : � −→ M , up to left translations, such that Ne

is its Gauss map, K is its extrinsic curvature and the conformal structure of � is that of the
second fundamental form induced by ϕ, with

ϕz(p) = a1(p)E1(ϕ(p)) + a2(p)E2(ϕ(p)) + a3(p)E3(ϕ(p)). (3.5)
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Proof First, assume the existence of an immersion ϕ satisfying (3.5). If we consider the
vector field N (p) = N1(p)E1(ϕ(p)) + N2(p)E2(ϕ(p)) + N3(p)E3(ϕ(p)), then (3.3) is
equivalent to (2.2), that is,

ϕz = i√
K

N ×ϕ ∇ϕz N .

Hence, N is a unit normal vector field and so Ne is its Gauss map. Moreover, K must be its
extrinsic curvature, and the conformal structure of � is that of its second fundamental form
because

〈ϕz,−∇ϕz N 〉 = i√
K

〈N ×ϕ ∇ϕz N ,−∇ϕz N 〉 = 0.

Finally, we want to show existence and uniqueness to the first-order PDE

ϕ(p)−1ϕz(p) = a1(p)E1 + a2(p)E2 + a3(p)E3, (3.6)

in the simply connected surface �. To do this, we apply the classical Frobenius Theorem,
and so we need to prove that [ϕz, ϕz] = 0. But, as we have shown previously, this condition
is equivalent to (3.4). Hence, once we prescribe an initial condition ϕ(p0) = q0 ∈ M ,
there exists a unique immersion ϕ : � −→ M such that (3.6) (or (3.5)) is satisfied with
ϕ(p0) = q0. 
�
Remark 3.2 From the comments previous to the above theorem, it should be observed that if
there is no solution (a1, a2, a3) to (3.3), so that (3.4) is satisfied, then there is no immersion
such that Ne is its Gauss map, K is its extrinsic curvature and the conformal structure of �

is that of its second fundamental form.

3.1 Unimodular Lie groups

Since the Lie bracket and the cross product in the Lie algebram are skew-symmetric bilinear
forms, they are related by a unique endomorphism L : m −→ m satisfying L(X × Y ) =
[X, Y ], for all X, Y ∈ m.

The Lie group M is called unimodular if L is self-adjoint ([11], Lemma 4.1).
From now on, let us assume that M is unimodular. Then, since L is self-adjoint, there

exists a positively oriented orthonormal basis {E1, E2, E3} of m of eigenvalues of L , that is

[E2, E3] = c1E1, [E3, E1] = c2E2, [E1, E2] = c3E3, (3.7)

for constants c1, c2, c3 ∈ R. Throughout this section, we will work with the left invariant
frame {E1(q), E2(q), E3(q)} of M , such that Ei (e) = Ei , i = 1, 2, 3 satisfy (3.7), where e
is the identity element of M .

As usual, we define

μ1 = −c1 + c2 + c3
2

, μ2 = c1 − c2 + c3
2

, μ3 = c1 + c2 − c3
2

.

In terms of these new constants, we can write the connection of M as

∇E1(q)E1(q) = 0 ∇E1(q)E2(q) = μ1E3(q) ∇E1(q)E3(q) = −μ1E2(q)

∇E2(q)E1(q) = −μ2E3(q) ∇E2(q)E2(q) = 0 ∇E2(q)E3(q) = μ2E1(q)

∇E3(q)E1(q) = μ3E2(q) ∇E3(q)E2(q) = −μ3E1(q) ∇E3(q)E3(q) = 0.
(3.8)

In [12], Sect. 2.6 the authors classified, in terms of μi , i = 1, 2, 3, the simply connected
unimodular Lie groups. Here we present some of them:
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• R3, for μ1 = μ2 = μ3 = 0.
• S3, for μ1 = μ2 = μ3 = 1.

• The Berger spheres, for μ1 = μ2 = τ, μ3 = 1 − 2τ 2

2τ
, with τ > 0.

• ˜PSL2(R, τ ), for μ1 = μ2 = −τ, μ3 = 1 + 2τ 2

2τ
, with τ > 0.

• Nil3(τ ), for μ1 = μ2 = τ, μ3 = −τ , with τ > 0.
• Sol3, for μ1 = −1, μ2 = 1, μ3 = 0.

These spaces are simply connected homogeneous three-dimensional manifolds. With excep-
tion of the Berger spheres, these spaces belong to the eight Thurston’s geometries. For further
details about them, see [3].

As a consequence, we obtain the following result for unimodular Lie groups.

Proposition 3.3 Let ϕ : � −→ M be an isometric immersion on a simply connected
unimodular Lie group M and {E1, E2, E3} be a positively oriented orthonormal basis of m
satisfying (3.7). Assume that ϕ has positive extrinsic curvature K and Gauss map g : � −→
C ∪ {∞}. Let z be a conformal parameter for the second fundamental form and denote

ϕ−1ϕz = a1E1 + a2E2 + a3E3 ≡ (a1, a2, a3).

Then,

a1 = gz(AB
√
K − i((A + 2)(B − 2)μ2 + 2gCμ3)) − gz(AB

√
K − i((A + 2)(B − 2)μ2 + 2gCμ3))

B(B2K − C̃2μ2μ3 + μ1(C2μ3 − (B − 2)2μ2) − i
√
K (|A|2μ1 + |A + 2|2μ2 + 4|g|2μ3))

a2 = gz(A(B − 2)μ1 − i B
√
K (A + 2) − 2gC̃μ3) − gz(A(B − 2)μ1 + i B

√
K (A + 2) + 2gC̃μ3)

B(B2K − C̃2μ2μ3 + μ1(C2μ3 − (B − 2)2μ2) − i
√
K (|A|2μ1 + |A + 2|2μ2 + 4|g|2μ3))

a3 = i
(
(μ1 − μ2)(g(gz − g2gz) − g(gz − g2gz)) + LB(ggz − ggz)

)
B(B2K − C̃2μ2μ3 + μ1(C2μ3 − (B − 2)2μ2) − i

√
K (|A|2μ1 + |A + 2|2μ2 + 4|g|2μ3))

,

(3.9)

where, A = g2 − 1, B = 1 + |g|2, C = g − g, C̃ = g + g, L = 2i
√
K + μ1 + μ2.

Proof A straightforward computation gives us that the discriminant of the system of linear
equations (3.3) is

B2K − C̃2μ2μ3 + μ1(−(B − 2)2μ2 + C2μ3) − i
√
K (|A|2μ1 + |A + 2|2μ2 + 4|g|2μ3)

B2K
,

where Ne is written in terms of g and the Christoffel symbols �k
i j are obtained from (3.8).

Since this function does not vanish anywhere, we have a unique solution in the unknowns
a1, a2, a3. Thus, a long, but straightforward, computation gives (3.9). 
�

From the previous expression of the functions ai , we can compute the first and second
fundamental form of the immersion ϕ : � −→ M . Bearing in mind that the expressions are
too long, we will write this calculation for the specially interesting case of simply connected
unimodular Lie groups with an isometry group of dimension larger than or equal to four. In
this case, we can assume μ1 = μ2.

Corollary 3.4 Let ϕ : � −→ M be an isometric immersion in a simply connected unimod-
ular Lie group M such that μ1 = μ2. Assume that � has positive extrinsic curvature K and
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1700 A. Folha, C. Peñafiel

Gauss map g : � −→ C∪{∞}. Let z be a conformal parameter for the second fundamental
form. Then, the coefficients of the first fundamental form are written in terms of g and K as

E = (gz R1 + gz(2i B2
√
K + R2))(gz R1 + gz(2i B

2
√
K + R2))

(B(B2K − 4|g|2μ1μ3 − (B − 2)2μ2
1 − i

√
K R2))2

F = gz(gz R1R2 + gz R3) + gz(gz R2R1 + gz R3))

|B(B2K − 4|g|2μ1μ3 − (B − 2)2μ2
1 − i

√
K R2)|2

.

Moreover, the second fundamental form I I = √−D K |dz|2, where D := |E |2 − F2 is
given by

D = −
4B4

(
R4(|gz |2 − |gz |2) + i

√
K (gzgz R1 − gzgz R1)

)2
|B(B2K − 4|g|2μ1μ3 − (B − 2)2μ2

1 − i
√
K R2)|4

.

Here, A, B,C and C̃ were defined in Proposition 3.3 and

R1 = A2μ1 − (A + 2)2μ1 + 4g2μ3

R2 = |A|2μ1 + |A + 2|2μ1 + 4|g|2μ3

R3 = 2B4K + |A|4μ2
1 + |A + 2|4μ2

1 + 8|g|2(B − 2)2μ1μ3 + 16|g|4μ2
3 − 2C2C̃2μ2

1

R4 = B2K + 4|g|2μ1μ3 + (B − 2)2μ2
1.

Once a1, a2, a3 are computed in terms of the Gauss map and the extrinsic curvature, observe
that Ne and K must satisfy the equation (3.4). For instance, in the case of R3 this fact
determines K in terms of Ne, up to a positive constant, (see [5], Theorem 3). Let us study
this equation for unimodular Lie groups with an isometry group of dimension larger than or
equal to four.

Theorem 3.5 Let ϕ : � −→ M be an isometric immersion in a simply connected uni-
modular Lie group M. Assume that ϕ has positive extrinsic curvature K and Gauss map
g : � −→ C∪{∞}. Let z be a conformal parameter for the second fundamental form. Then,
when μ1 = μ2, the Gauss map satisfies

gzz = G1gzgz +G2gzgz +G3gzgz +G4gzgz +G5Kzgz +G6Kzgz +G7Kzgz +G8Kzgz,
(3.10)

here Gi := Gi (K ) where, for P(m0,m1,m2,m3,m4) =
i=4∑
i=0

mi |g|2i ,

G1(x) = 2g(B6x2 + 2B2x(P(0,4,2,1,1)μ
2
1 + P(1,−5,1,3,0)μ1μ3 + P(0,5,3,0,0)μ

2
3) − 32|g|4(B − 2)μ1μ

3
3)

B3(B4x2 + μ2
1((B − 2)2μ1 + 4|g|2μ3)2 + 2x(P(1,0,6,0,1)μ

2
1 + P(0,4,−8,4,0)μ1μ3 + 8|g|4μ2

3))

− 2gμ1((1 + 6|g|2 − |g|4P(13,−10,3,0,1))μ
3
1 + 2(B − 2)P(−1,−6,18,2,3)μ

2
1μ3 + P(0,2,66,−18,14)μ1μ

2
3)

B3(B4x2 + μ2
1((B − 2)2μ1 + 4|g|2μ3)2 + 2x(P(1,0,6,0,1)μ

2
1 + P(0,4,−8,4,0)μ1μ3 + 8|g|4μ2

3))

G2(x) = 2ig(B − 2)(μ3 − μ1)(2B4x2 + B4xμ2
1 − i B2√x(x + μ2

1)P(μ1,2μ3,μ1,0,0) − μ2
1P

2
(μ1,4μ3−2μ1,μ1,0,0)

)

B3
√
x(x + μ2

1)
(
B4x + P2

(μ1,4μ3−2μ1,μ1,0,0)

)

G3(x) = 2ig(B − 2)(μ1 − μ3)(2B4x2 + B4xμ2
1 + i

√
x B2(x + μ2

1)P(μ1,2μ3,μ1,0,0) − μ2
1P

2
(μ1,4μ3−2μ1,μ1,0,0)

)

B3
√
x(x + μ2

1)
(
B4x + P2

(μ1,4μ3−2μ1,μ1,0,0)

)

G4(x) = −
4g3(B − 2)(μ1 − μ3)

2
(
−3B2x + P(μ2

1,8μ1μ3−6μ2
1,μ

2
1,0,0)

)

B3(x + μ2
1)

(
B4x + P2

(μ1,4μ3−2μ1,μ1,0,0)

)
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G5(x) = G7(x) = B2x + μ1P(μ1,4μ3−2μ1,μ1,0,0)

4x(
√
x + iμ1)

(
B2

√
x + i P(μ1,4μ3−2μ1,μ1,0,0)

)

G6(x) = G8(x) = − ig2(μ1 − μ3)√
x(

√
x + iμ1)

(
B2

√
x + i P(μ1,4μ3−2μ1,μ1,0,0)

) .

Moreover, the integrability equation (2.3) is equivalent to the equation (3.10).

Proof First, once we have the immersion from � to M the vector field U = (u1, u2, u3) =
iϕ−1[ϕz, ϕz] in the Lie algebra m of M is a null vector field, in particular, satisfies trivially
the complex equation u1 + iu2 + gu3 = 0. Then, using this equation and its conjugate we
have a system in the unknowns {gzz, gzz}, whose discriminant

− 16B2K

(B4K 2 + μ2
1((B − 2)2μ1 + 4|g|2μ3)2 + 2K (P(1,0,6,0,1)μ

2
1 + P(0,4,−8,4,0)μ1μ3 + 8|g|4μ2

3))

is different fromzero.After a tedious computation,we can solve the systemobtaining equation
(3.10). So we proved that if ϕ−1[ϕz, ϕz] = (0, 0, 0), then g satisfies equation (3.10).

Reciprocally, observe that it is easy to check that a real vector w ≡ (w1, w2, w3) ∈ m

satisfies that

w is parallel to Ne if, and only if, (|g|2 − 1)(w1 + i w2) − 2gw3 = 0. (3.11)

Hence, if we consider w ≡ Re(V ) in (3.4), then we obtain a unique complex equation in
the unknowns {gzz, gzz}. A direct computation shows that if g satisfies (3.10), then g solves
equation (3.11). 
�

From Theorem 3.1, we note that Proposition 3.3 and Theorem 3.5 also give the sufficient
conditions for amap Ne and a positive function K to be theGaussmap and extrinsic curvature
of an immersion ϕ : � −→ M , for the simply connected Riemann surface �.

Though the previous equations look like difficult to handle, they take an easier form when
we fix M . Thus, we will particularize for the three-sphere and obtain some consequences.

3.2 The canonical Sphere

In this section, we focus our attention on the canonical sphere S3. From the classification of
unimodular Lie groups, μ1 = μ2 = μ3 = 1.

We consider a left invariant orthonormal vector field Ei (q), i = 1, 2, 3, in S3 such that
Ei (e) = Ei , where Ei satisfies (3.7) and e is the identity element of S3.

Let ψ : � −→ S3 be an isometric immersion in S3. As before, we denote by

ai (p) = 〈ψz(p), Ei (ψ(p))〉, i = 1, 2, 3.

Then, as a consequence of Proposition 3.3 and Corollary 3.4, we have

Corollary 3.6 Let ψ : � −→ S3 be an isometric immersion in S3 with positive extrinsic
curvature K and Gauss map g : � −→ C ∪ {∞}. Let z be a conformal parameter for the
second fundamental form, then we have

a1 = (1 − g2)gz + (g2 − 1)gz
(1 + |g|2)2(√K − i)

a2 = − i((1 + g2)gz + (1 + g2)gz)

(1 + |g|2)2(√K − i))

a3 = 2(ggz − ggz)

(1 + |g|2)2(√K − i))
(3.12)
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Moreover, the first and second fundamental forms of the immersions are given by

I = − 4gzgz
(1 + |g|2)2(−i + √

K )2
dz2 + 2(|gz |2 + |gz |2)

(1 + |g|2)2(1 + K )
|dz|2

− 4gzgz
(1 + |g|2)2(i + √

K )2
dz2,

I I = 2

√
K (|gz |2 − |gz |2)

(1 + |g|2)2(1 + K )
|dz|2.

On the other hand, the integrability condition [ψz, ψz] = 0 gives us how the extrinsic
curvature can be recovered in terms of the Gauss map,

Proposition 3.7 Let ψ : � −→ S3 be an isometric immersion in S3. Assume that � has
positive extrinsic curvature K and Gauss map g : � −→ C ∪ {∞}. Let z be a conformal
parameter for the second fundamental form. Then, |gz |2 − |gz |2 > 0 and the equation
[ψz, ψz] = 0 is equivalent to(

log

(
1 − K − 2i

√
K√

K

))
z

= 2

|gz |2 − |gz |2
(
gzgzz − gzgzz + 2gzgz

ggz − ggz
1 + |g|2

)
.

(3.13)

Proof Since the second fundamental form of the immersion is positive definite, we have
from Corollary 3.6 that |gz |2 − |gz |2 must be positive.

On the other hand,

∇ψzψz =
∑
i

ai z Ei ◦ ϕ +
∑
i, j,k

ai a j�
k
i j Ek ◦ ϕ.

Moreover, from (3.8), the Christoffel symbol �k
i j = ±1 when {i, j, k} = {1, 2, 3} and

vanishes otherwise. So,

0 = ψ−1 [ψz, ψz] ≡ (a1z − a1z + 2a2a3 − 2a3a2, a2z − a2z + 2a3a1
−2a1a3, a3z − a3z + 2a1a2 − 2a2a1).

If we denote by V = (V1, V2, V3) the previous vector and use (3.12), then the equality
V1 + iV2 + gV3 = 0 is equivalent to

d1
(−i + √

K )

K (i + √
K )

Kz + d2
(i + √

K )

K (−i + √
K )

Kz + d3 = 0, (3.14)

where

d1 = (1 + |g|2)gz
d2 = (1 + |g|2)gz
d3 = 8g gz gz − 4gzz(1 + |g|2)

Thus, taking equation (3.14) and its conjugated, we obtain a system of linear equations in

the unknowns
(−i + √

K )

K (i + √
K )

Kz ,
(i + √

K )

K (−i + √
K )

Kz . Bearing in mind that

2

(
log

(
1 − K − 2i

√
K√

K

))
z

= (−i + √
K )

K (i + √
K )

Kz, (3.15)
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and that the discriminant of the system is (1 + |g|2)3(|gz |2 − |gz |2), which is different from
zero, we obtain (3.13).

Finally, it is easy to show that if (3.13) is satisfied, then the vector V vanishes identically,
that is, [ψz, ψz] = 0. 
�

As an interesting consequence, we have:

Corollary 3.8 Let ψ : � −→ S3 be an isometric immersion in S3, with positive extrinsic
curvature K , and Gauss map g : � −→ C ∪ {∞}. Then, K is a positive constant if, and
only if, g is a harmonic map for the conformal structure induced by the second fundamental
form.

Proof From(3.13) and (3.15), K is constant if, andonly if, gzgzz−gzgzz+2gzgz
ggz − ggz
1 + |g|2 =

0. Thus, considering this equation and its conjugate in the unknowns gzz and gzz , K to be
constant is equivalent to

gzz − 2gzgz
g

1 + |g|2 = 0,

as we wanted to show. 
�
From Theorem 3.1 and Proposition 3.7, we obtain necessary and sufficient conditions for

the existence of an immersion with positive extrinsic curvature in S3 in terms of its Gauss
map and the conformal structure of the second fundamental form. More concretely:

Corollary 3.9 Let � be a simply connected Riemann surface and g : � −→ C ∪ {∞} a
differentiable map. Then, there exists an isometric immersionψ : � −→ S3 with Gauss map
g and such that the conformal structure induced by the second fundamental form is that of
� if, and only if,

|gz |2 − |gz |2 > 0 (3.16)

and there exists a positive function K solving the equation (3.13).
Moreover, ψ is unique up to left translations.

It is well known that there exists a correspondence between isometric simply connected
surfaces having constant mean curvature H1 in R3 and constant mean curvature H2 in S3,
with H2

1 = H2
2 + 1. On the other hand given a surface � having positive constant mean

curvature in R3 or constant mean curvature in S3, there exists a surface �′ parallel to �

having positive constant extrinsic curvature (probably, with singularities). As a consequence,
one can find a correspondence between simply connected surfaces having positive constant
extrinsic curvature inR3 and simply connected surfaces having constant extrinsic curvature
in S3. The following result is a generalization of this correspondence.

Proposition 3.10 Let ψ : � −→ S3 be an immersion having positive extrinsic curvature K
and Gauss map g. Assume (

Kz

2
√
K (1 + K )

)
z

= 0. (3.17)

Then, there exists an immersion ψ∗ : � −→ R3 having the same Gauss map g, the same
conformal structure for the second fundamental form, and positive extrinsic curvature K ∗,
where K ∗ is a solution of

(log K ∗)z =
(
log

(
(i + √

K )4

K

))
z

. (3.18)
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1704 A. Folha, C. Peñafiel

Conversely, let ψ∗ : � −→ R3 be an immersion having Gauss map g and positive
extrinsic curvature K ∗. If there exists a positive function K : � −→ R, such that (3.18)
is satisfied, then, there is an isometric immersion ψ : � −→ S3 having positive extrinsic
curvature K , the same Gauss map g, and the same conformal structure for the second
fundamental form.

Proof In [5], Theorem3 the authors gave a necessary and sufficient condition for the existence
of an immersion from � in R3 having a given Gauss map and conformal structure for the
second fundamental form. So, if we want to obtain an immersion ψ∗ : � −→ R3 having
the same Gauss map g and the same conformal structure for I I , then g must satisfy

|gz |2 − |gz |2 > 0; (3.19)

and

Im

((
4

|gz |2 − |gz |2
(
gzgzz − gzgzz + 2gzgz

ggz − ggz
1 + |g|2

))
z

)
= 0, (3.20)

where Im(·) denotes the imaginary part of a complex number.
Note that from Proposition 3.7, the equation (3.19) is satisfied. Using equation (3.13), we

show that (3.20) is equivalent to (3.17). In fact, by (3.13) and (3.15), for R = √
K , we have

Im

((
R−i

R(i+R)
2Rz

)
z

)
= Im

((
4

|gz |2−|gz |2
(
gzgzz − gzgzz+2gzgz

ggz − ggz
1 + |g|2

))
z

)

Im

((
R − i

R(i + R)
2Rz

)
z

)
= 0 ⇐⇒ (2RRz Rz) − (1 + R2)Rzz = 0

⇐⇒
(

Rz

1 + R2

)
z
= 0.

The last equality is equivalent to equation (3.17).
The converse is a direct consequence of Corollary 3.9. 
�

4 Surfaces with negative extrinsic curvature

This section is devoted to surfaces having negative extrinsic curvature. Let� be an orientable
smooth surface andϕ : � −→ M be an isometric immersion in an oriented three-dimensional
Riemannian manifold M . Assume that ϕ has negative extrinsic curvature K , that is, such that
the determinant of its shape operator is negative. Then, the second fundamental form is a
Lorentzian metric and � can be considered as a Lorentz surface. So, there exist local proper
null coordinates (u, v), and we can choose N , a global unit normal vector field to � such
that the first and second fundamental forms of the immersion can be written as

I := 〈dϕ, dϕ〉 = Edu2 + 2Fdudv + Gdv2,

I I := 〈−dN , dϕ〉 = 2fdudv,

where f is a positive function. We will say that the unit vector field N is compatible with
such coordinates if f is a positive function.

The extrinsic curvature of the surface � is given by K = − f2

D
, where D = EG −F2 > 0.

And, proceeding as in the previous case, we have
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Lemma 4.1 Let ϕ : � −→ M be an isometric immersion from an orientable Riemannian
surface � into a three-dimensional Riemannian manifold M. Assume that ϕ has negative
extrinsic curvature K . Then, the Weingarten equations are

∇ϕu N = f
D

(Fϕu − Eϕv) and ∇ϕv N = f
D

(−Gϕu + Fϕv), (4.1)

where N is a unit normal vector field compatible with local proper null coordinates (u, v)

for the second fundamental form. Moreover,

ϕu = 1√−K
N ×ϕ ∇ϕu N and ϕv = − 1√−K

N ×ϕ ∇ϕv N , (4.2)

and the integrability equation [ϕu, ϕv] = 0 is equivalent to

N ×ϕ

(
∇∂u

(
1√−K

∇∂v N

)
+ ∇∂v

(
1√−K

∇∂u N

))
= 0. (4.3)

In order to recover the immersion ϕ in terms of its Gauss map and its negative extrinsic
curvature, we assume thatM is a simply connectedRiemannian Lie groupwith a left invariant
vector field {E1(q), E2(q), E3(q)}, q ∈ M . Again, for simplicity, we set Ei := Ei (e), i =
1, 2, 3, where e is the identity element of M .

Let (u, v) be a proper null coordinates for the second fundamental form, and N be a unit
normal vector field compatible with such coordinates. Considering the Lie group structure,
we write

ϕ(p)−1ϕu(p) =
3∑

i=1

〈ϕu(p), Ei (ϕ(p))〉 Ei =: a1E1 + a2E2 + a3E3,

ϕ(p)−1ϕv(p) =
3∑

i=1

〈ϕv(p), Ei (ϕ(p))〉 Ei =: A1E1 + A2E2 + A3E3,

Ne(p) ≡ (N1, N2, N3) =
3∑

i=1

〈N (p), Ei (ϕ(p))〉 Ei .

So, we can rewrite (4.2) as

(a1, a2, a3) = 1√−K
(N1, N2, N3) ×

⎛
⎝(N1)u +

∑
i, j

Nia j�
1
i j , (N2)u

+
∑
i, j

Nia j�
2
i j , (N3)u +

∑
i, j

Nia j�
3
i j

⎞
⎠

(A1, A2, A3) = −1√−K
(N1, N2, N3) × ((N1)v

+
∑
i, j

NiA j�
1
i j , (N2)v +

∑
i, j

NiA j�
2
i j , (N3)v +

∑
i, j

NiA j�
3
i j

⎞
⎠
(4.4)

where �k
i j are the Christoffel symbols associated with the orthonormal basis {E1, E2, E3}.

Here, × denotes the standard cross product in the Lie algebra m.
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1706 A. Folha, C. Peñafiel

The equations in (4.4) can be considered as a system of linear equations in the unknowns
a1, a2, a3. Hence, as long as the discriminant of the above system is different from zero, we
can determine ϕ(p)−1 ϕu(p) and ϕ(p)−1 ϕv(p) in terms of the Gauss map and the extrinsic
curvature of the immersion. As in the case when the extrinsic curvature is positive, the immer-
sion ϕ can be computed, up to left translations, if we have ϕ(p)−1 ϕu(p) and ϕ(p)−1 ϕv(p).
Thus, we will say that the immersion is determined in terms of its Gauss map and its extrinsic
curvature.

The unit normal vector N and the extrinsic curvature K must satisfy the integrability
condition (4.3) which can be rewritten in terms of Ne and K , using the left translations in the

RiemannianLie groupM . That is, ifwe denote byV the left translation of∇∂u

(
1√−K

∇∂v N
)
+

∇∂v

(
1√−K

∇∂u N
)
to the identity element e, the equation (4.3) is equivalent to

Ne is parallel to V . (4.5)

Then, the Gauss map and extrinsic curvature of the immersion ϕ must satisfy (4.4) and (4.5).
Proceeding as in the case of positive extrinsic curvature, we obtain the following results

which we will omit their proofs since they are analogous.

Theorem 4.2 Let M be a simply connected Riemannian Lie group, and {E1(q), E2(q),

E3(q)} a left invariant orthonormal frame with associated Christoffel symbols �k
i j . Consider

a simply connected Lorentz surface �, Ne : � −→ S2 ⊆ m a differential map and K :
� −→ Ranegative function.Assume that (a1, a2, a3)and (A1, A2, A3)are smooth solutions
to (4.4), so that (4.5) is satisfied.

Then, there exists a unique immersion ϕ : � −→ M , up to left translations, such that
Ne is its Gauss map, K is its extrinsic curvature and the structure of � is that of the second
fundamental form induced by ϕ, with

ϕu(p) = a1(p)E1(ϕ(p)) + a2(p)E2(ϕ(p)) + a3(p)E3(ϕ(p)), (4.6)

ϕv(p) = A1(p)E1(ϕ(p)) + A2(p)E2(ϕ(p)) + A3(p)E3(ϕ(p)).

Now, we focus our attention on unimodular three-dimensional Riemannian Lie groups M
with isometry group of dimension larger than or equal to 4.

Proposition 4.3 Let ϕ : � −→ M be an oriented isometric immersion on a simply
connected unimodular Lie group M withμ1 = μ2, and {E1, E2, E3} be a positively oriented
orthonormal basis satisfying (3.7). Assume that ϕ has negative extrinsic curvature K , with

K �= −μ2
1, K �= − ((−1 + |g|2)2μ1 + 4|g|2μ3)

2

(1 + |g|2)4 ,

where (u, v) are proper null coordinates for the second fundamental form and g a Gauss
map of � compatible with such coordinates. Denote

ϕ−1ϕu = a1E1 + a2E2 + a3E3,

ϕ−1ϕv = A1E1 + A2E2 + A3E3.
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Then,

a1 = i(
√−K B(Agu−Agu)+(B−2)(−(A+2)gu+(A+2)gu)μ1 + 2C(ggu + ggu)μ3)

B(
√−K − μ1)(

√−K B2 − (B − 2)2μ1 − 4|g|2μ3)

a2 = −√−K B(gu(A + 2) + gu(A + 2)) + (B − 2)(Agu + Agu)μ1 + 2C̃(ggu + ggu)μ3

B(
√−K − μ1)(

√−K B2 − (B − 2)2μ1 − 4|g|2μ3)

a3 = 2i(−ggu + ggu)√−K B2 − (B − 2)2μ1 − 4|g|2μ3
,

A1 = − i(
√−K B(Agv−Agv)+(B − 2)((A+2)gv − (A + 2)gv)μ1 − 2C(ggv + ggv)μ3)

B(
√−K + μ1)(

√−K B2 + (B − 2)2μ1 + 4|g|2μ3)

A2 =
√−K B(gv(A + 2) + gv(A + 2)) + (B − 2)(Agv + Agv)μ1 + 2C̃(ggv + ggv)μ3

B(
√−K + μ1)(

√−K B2 + (B − 2)2μ1 + 4|g|2μ3)

A3 = − 2i(−ggv + ggv)√−K B2 + (B − 2)2μ1 + 4|g|2μ3
,

where A = g2 − 1, B = 1 + |g|2, C = g − g, C̃ = g + g.

Now, let us present a partial differential equation involving the Gauss map and the nega-
tive extrinsic curvature for the case when the ambient Riemannian manifold M is a simply
connected unimodular Lie groups with an isometry group of dimension larger than or equal
to four.

Theorem 4.4 Let ϕ : � −→ M be an oriented isometric immersion in a simply connected
unimodular Lie group M. Assume that � has negative extrinsic curvature K with

K �= −μ2
1, K �= − ((−1 + |g|2)2μ1 + 4|g|2μ3)

2

(1 + |g|2)4 ,

where (u, v) is a proper null coordinates for the second fundamental form and g : � −→
C ∪ {∞} a Gauss map of � compatible with such coordinates. Then, when μ1 = μ2, the
Gauss map satisfies

guv = G1gugv +G2gugv +G3gugv +G4gugv −G5Kugv −G6Kugv −G7Kvgu −G8Kvgu,
(4.7)

here Gi := Gi (K ), where Gi (x) is defined in Theorem 3.5.

Again we will particularize for the case when M is the three-sphere S3.

4.1 Surfaces with negative extrinsic curvature in S3

In this section, we work with surfaces immersed in S3; for this, let us fix a left invariant
orthonormal frame {E1(p), E2(p), E3(p)} on S3, as before, Ei stands for Ei (e), where e is
the identity element of S3, and {E1, E2, E3} satisfies (3.7).

Let ψ : � −→ S3 be an orientable isometric immersion in S3 having negative extrinsic
curvature K , K �= −1. Let (u, v) be a local proper null coordinates for the second funda-
mental form and g : � −→ C∪ {∞} a Gauss map of � compatible with such coordinates.
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Then, the first fundamental form of � is given by

IS3 = 4gugu
(1 − √−K )2(1 + |g|2)2 du

2

+ 4(gugv + gugv)

(1 + K )(1 + |g|2)2 dudv + 4gvgv

(1 + √−K )2(1 + |g|2)2 dv2.

In the next proposition, the integrability condition [ψu, ψv] = 0 gives a relationship
between the negative extrinsic curvature and the Gauss map.

Proposition 4.5 Let ψ : � −→ S3 be an orientable isometric immersion in S3. Assume
that � has negative extrinsic curvature K , K �= −1. Let (u, v) be a proper null coordinates
for the second fundamental form and g : � −→ C∪{∞} aGauss map of� compatible with
such coordinates. Then, i(gugv − gugv) > 0, and the integrability equation [ψu, ψv] = 0 is
equivalent to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
log

(
(1 + √−K )4

−K

))
u

= 4

gugv − gugv

(
guguv − guguv + 2|gu |2 ggv − ggv

1 + |g|2
)

(
log

(
(−1 + √−K )4

−K

))
v

= − 4

gugv − gugv

(
gvguv − gvguv + 2|gv|2 ggu − ggu

1 + |g|2
) .

(4.8)

As a consequence, we obtain a corollary which also was proved in [2], Theorem 3.1.

Corollary 4.6 Letψ : � −→ S3 be an oriented isometric immersion in S3. Assume that�
has negative extrinsic curvature K , K �= −1. Let (u, v) be a local proper null coordinates
for the second fundamental form and g : � −→ C ∪ {∞} a Gauss map of � compatible
with such coordinates. Then, K is a negative constant if, and only if, g is Lorentz harmonic
map for these proper null coordinates.

From Theorem 4.2 and Proposition 4.5, we obtain necessary and sufficient conditions for
the existence of an immersion with negative extrinsic curvature in S3 in terms of its Gauss
map and the proper null coordinates determined by the second fundamental form. More
precisely:

Corollary 4.7 Let � be a simply connected Lorentz surface and g : � −→ C ∪ {∞} a
differential map. Then, there exists an isometric immersion ψ : � −→ S3 having Gauss
map g, negative extrinsic curvature K and such that the Lorentz structure on � is that one
induced by the second fundamental form if, and only if,

i(gugv − gugv) > 0,

and there exists a negative function K : � −→ R − {−1} solving the equation (4.8).
Moreover, ψ is unique up to left translations.

Finally, we present a correspondence between simply connected surfaces having negative
extrinsic curvature inR3 and simply connected surfaces having negative extrinsic curvature
in S3.

Proposition 4.8 Let � be a simply connected Riemannian surface and ψ : � −→ S3 be
an oriented isometric immersion having negative extrinsic curvature K , K �= −1. Let (u, v)
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be a proper null coordinates for the second fundamental form ofψ and g : � −→ C∪{∞}
a Gauss map of � compatible with such coordinates. Assume

( −4Ku√−K (1 + K )

)
v

= 0. (4.9)

Then, there exists an isometric immersion ψ∗ : � −→ R3 having the same Gauss map
g. The parameters (u, v) are proper null coordinates for the second fundamental form ofψ∗,
and g is compatible with such coordinates. Moreover, the immersion has negative extrinsic
curvature K ∗, where K ∗ is a solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
log

(
(1 + √−K )4

−K

))
u

= (log (K ∗))u(
log

(
(−1 + √−K )4

−K

))
v

= (log (K ∗))v
. (4.10)

Conversely, let ψ∗ : � −→ R3 be an oriented isometric immersion from a simply
connected Riemannian surface, having negative extrinsic curvature K ∗. Let (u, v) be a
proper null coordinates and g a Gauss map compatible with such coordinates. If there exists
a negative function K : � −→ R − {−1}, such that (4.10) is satisfied, then there is an
isometric immersion ψ : � −→ S3 having negative extrinsic curvature K and the same
Gauss map g. Moreover, the parameters (u, v) are proper null coordinates for the second
fundamental form of ψ and the Gauss map g is compatible with such coordinates.

5 Example

In this section, we construct an example of a surface � immersed isometrically in the canon-
ical sphere S3, having constant negative extrinsic curvature K = −2. In order to do that,
we identify S3 with SU(2), the group of 2 × 2 unitary matrix with determinant 1. The
identification is given by

(z, w) ∈ S3 ⊂ R4 = C2 ←→
(

z w

−w z

)
∈ SU(2).

A basis of the Lie algebra su(2) of S3 satisfying (3.7) is

E1 =
(

0 1
−1 0

)
, E2 =

(
0 i
i 0

)
, E3 =

(
i 0
0 −i

)
.

We use Proposition 4.8 to construct a surface in S3 having negative constant extrinsic
curvature. So, we take the pseudosphere in R3 parametrized by

ψR =
(
sech

(
v − u

2

)
cos

(
v + u

2

)
, sech

(
v − u

2

)
sin

(
v + u

2

)
,

v − u

2
− tanh

(
v − u

2

))
.

The pseudosphere in R3 has extrinsic curvature K ∗ = −1, and the parameters (u, v) are
proper null coordinates for the second fundamental form. The unit normal vector compatible
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with this proper null coordinates is

N = (N1, N2, N3) =
√
eu+v(eu − ev)2

(
−e−(u+v)

2
cos

(
u + v

2

)
sech

(
v − u

2

)
,

−e−(u+v)

2
sin

(
u + v

2

)
sech

(
v − u

2

)
,

2

e2u − e2v

)
.

The Gauss map of the pseudosphere is

g = N1 + i N2

1 − N3
= e

(−1+i)(u+v)
2 (eu − ev)

√
eu+v(eu − ev)2

e2v − e2u + 2
√
eu+v(eu − ev)2

.

Note that any negative constant K different from −1 satisfies the equation (4.10), since
K ∗ = −1. In particular, Proposition 4.8 ensures the existence of an immersion ψ in S3

having extrinsic curvature K = −2 and the same Gauss map g of the pseudosphere. From
Proposition 4.3, the vector fields

ψ−1ψu = a1E1 + a2E2 + a3E3,

ψ−1ψu = A1E1 + A2E2 + A3E3,

are determined by

a1 = (1 + √
2)e

u+v
2

(
(eu − ev) cos

( u+v
2

) + (eu + ev) sin
( u+v

2

))
(eu + ev)2

a2 = − (1 + √
2)e

u+v
2

(
(eu + ev) cos

( u+v
2

) − (eu − ev) sin
( u+v

2

))
(eu + ev)2

a3 = (1 + √
2)

2
tanh2

(
u − v

2

)

A1 = (−1 + √
2)e

u+v
2

(
(−eu + ev) cos

( u+v
2

) + (eu + ev) sin
( u+v

2

))
(eu + ev)2

A2 = − (−1 + √
2)e

u+v
2

(
(eu + ev) cos

( u+v
2

) + (eu − ev) sin
( u+v

2

))
(eu + ev)2

A3 = − (−1 + √
2)

2
tanh2

(
u − v

2

)
.

We consider the change of variables 2t = v + u, 2s = v − u. Then

ψ−1ψs = b1E1 + b2E2 + b3E3,

ψ−1ψt = B1E1 + B2E2 + B3E3,

where bi = Ai − ai , Bi = Ai + ai , i = 1, 2, 3. Note that the immersion ψ is a revolution
surface and since b3 does not depend on t , we can assume that

ψ(s, t) = (sin(α(s)) sin(β(s)) cos(t), sin(α(s)) sin(β(s)) sin(t),

cos(α(s)) sin(β(s)), cos(β(s))),

for some real functions α, β. Recall that the vector field ψ−1ψs in the Lie algebra of S3

is the left translation of ψs to the identity of S3. As we identified S3 with SU(2), the left
translation is the product ofmatrices. So, the functionsα(s), β(s) solve the systemψs(s, 0) =
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ψ(s, 0) · ψs(s, 0), with initial condition α(0) = π

2
, β(0) = π

2
. We use the stereographic

projection in order to plot such a surface, see figure below.
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