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Abstract Uniform bound and convergence for the solutions of elliptic homogenization prob-
lems are concerned. The problem domain has a periodic microstructure; it consists of a
connected subregion with high permeability and a disconnected matrix block subset with
low permeability. Let € € (0, 1) denote the size ratio of the period to the whole domain, and
let w* € (0, 1) denote the permeability ratio of the disconnected matrix block subset to the
connected subregion. For elliptic equations with diffusion depending on the permeability,
the elliptic solutions are smooth in the connected subregion but change rapidly in the discon-
nected matrix block subset. More precisely, the solutions in the connected subregion can be
bounded uniformly in @, € in H6lder norm, but not in the matrix block subset. It is known that
the elliptic solutions converge to a solution of some homogenized elliptic equation as w, €
converge to 0. In this work, the L? convergence rate for p € (2, oo] is derived. Depending
on strongly coupled or weakly coupled case, the convergence rate is related to the factors
w, €, % for the former and related to the factors w, € for the latter.

Keywords Elliptic homogenization problem - Permeability - Two-phase media

Mathematics Subject Classification 35J05 - 35J15 - 35J25

1 Introduction

Uniform bound and convergence for the solutions of elliptic homogenization problems are
presented. The problems have applications in contaminant transport in the subsurface, heat
transfer in two-phase media, the stress in composite materials, and so on (see [3,10,17,18]).
The problem domain 2 C R” (n = 2, 3) contains two subsets, a periodic connected subregion
with high permeability and a periodic disconnected matrix block subset with low permeability.
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Lete € (0, 1) be a parameter, Y = (0, 1)" consist of a subdomain Y, completely surrounded
by another connected subdomain Y s (= Y\Y,), Q(€) = {x € Q|dist(x,dQ) > €}, Q=
{x|x € €e(Y + j) C Q(e) for some j € Z"} be the disconnected matrix block subset of €2,
Q¢ = Q\ Q¢ be the connected subregion of €2, and 92 (resp. 9K25,) be the boundary of €2
(resp. €25,). The problem that we consider is

-V (sz,eKev\pw,e + Vw,e) + Tw,e"l"w,e = Gw,e in €, (1.1)
V,=0 on 9€2, '
1 in Q¢ . ...
where w,e € (0,1),E, = ) Qg forany v > 0, Kc(x) = K(f), K is a positive
v in Qj,

periodic function in R” with period Y, T,, ¢ is anonnegative function, and V,, ¢, G, ¢ are given
functions. Itis known thatif K¢, Ty ¢, Vi, e, G, are smoothin fo UQ¢ ,apiecewise smooth

m?
solution of (1.1) exists uniquely [19]. The H'! norm of the solution in the high-permeability
subregion Q¢ is bounded uniformly in w, € when V,, ¢, G, ¢ are small in Q,. However, that
may not be the case for the solution in the low-permeability subset 25, (see Remark 2.2).
Also the second-order derivatives of the solution of (1.1) may not be bounded uniformly in
w, € in the high-permeability subregion Q¢ even when V,, ¢, G, ¢ are bounded uniformly
in w, € and are small in Q, (see Remark 3.1). By homogenization theory (see [7,17,23]),
if , € become small, the solution of (1.1) approaches to a solution of some homogenized
elliptic differential equation. So it seems that, if both w, € are small, the solution of the
homogenized elliptic differential equation is a good approximation of the solution of (1.1).
We shall see in Sect. 2 that the solution of (1.1) can be approximated by the solution of the
homogenized elliptic differential equation plus some functions, which are the solutions of
mutually independent local problems.

Lipschitz estimate and W27 estimate for the solutions of the uniform elliptic equations
with discontinuous coefficients had been considered in [20,21]. For the uniform elliptic
case of (1.1) (that is, @ = 1), uniform bound and convergence results were also studied.
For example, uniform Holder, WP and Lipschitz estimates in € for uniform elliptic case
of (1.1) with Holder coefficients were proved in [4,5]. Uniform WLP estimate in € for
uniform elliptic case of (1.1) with continuous coefficients was shown in [13], and the same
problem with VMO coefficients could be found in [25]. Uniform Lipschitz estimate in € for
the Laplace equation in periodic perforated domains was studied in [24]. By [7,17,23], the
solution of uniform elliptic case of (1.1) with Dirichlet boundary condition converges to a
solution of some homogenized elliptic equation with convergence rate € in L norm and with
convergence rate €'/2 in H' norm as € closes to 0.

In this work, we consider the non-uniform elliptic case of (1.1) with discontinuous coeffi-
cients. We derive uniform Holder estimates in w, € for the solution of (1.1) as well as derive
L? convergence estimates for p € (2, oo] for the approximation of the solution of (1.1).

One interesting related problem is the study of the equations with contrasting diffusivity
in a fibered medium, that is, a conductivity medium reinforced by an e-periodic lattice of
highly or lowly conducting thin rods (see [6,8,9,11,12,26] and references therein). In [9],
homogenization problem of degenerate Poisson equations in a fiber-reinforced structure was
considered. In [12], the article tried to find a suitable conductivity medium which correspond-
ing the prescribed Dirichlet problem with the non-local term. In [26], the authors analyzed
nonlinear monotone conduction problems in a fibered medium. A two-scale convergence
result to a non-local homogenized equation was shown. In [8], weak convergence of the
solution of a p-Laplacian-type equation in a fiber-reinforced structure was shown. In [6], a
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spectral problem of a Poisson equations in a bounded domain with a high contrast in both
stiffness and density was studied. In [11], the article considered the uniform regularity of the
elliptic solutions in a fibered medium with w = w(€) > 1 and € <K 1. Uniform W10 bound
in € and uniform C¥ convergence estimate in € of the solutions were derived in an interior
region with a distance €* away from the highly conducting thin rods for some v, T > 0 (the
distance constraint is required). Different from [11], we derive uniform Holder estimates in
w, € for the solution of (1.1) in the high-permeability region Qéf (the distance constraint is
not required). Moreover, we obtain the uniform convergence estimates in w, € for the solution
of (1.1) in the whole domain £2.

The rest of the work is organized as follows: Notation and main results are stated in Sect.
2. In Sect. 3, we derive a priori uniform estimates for interface problems. Uniform Holder
estimates for the non-uniform elliptic solutions in heterogeneous media are considered in
Sect. 4. L? convergence estimates for elliptic homogenization problems are presented in
Sect. 5.

2 Notation and main result

If D C R" is a set, D denotes the closure of the set D, Xp is the characteristic function
on D, |D] is the volume of D, 9D is the boundary of D, and D/r = {x|rx € D} for
r > 0. B,(x) denotes a ball centered at x with radius » > 0. If B, B, are Banach spaces,
lot, - . mlls, = lg1lB, + -+ llomllp, and llgls, s, = l¢lls, + ll¢ls, C* denotes
the Holder space with norm || - || cx.«; W7 denotes the Sobolev space with norm || - ||ws.r;
[¢]co. is the Holder semi-norm of ¢; L? (D) = W%P(D); H*(D) = W*%(D) for k > 0,
a e (0,1],s = =1, p € [1, 00] (see [2,16]). C;°(D) is the space of infinitely differentiable
functions with support in D; C7¢, (R") is the space of infinitely differentiable Y -periodic

functions in R"; W,s,}f;(D) is the closure of C;‘E’, (R"™) under the W*? norm fors > 0, p €

L,
[1,00; Hpb, (D) = Wy (D); L%, (D) = WX (D). For p > 2, Wy'(D) = {g €

per per

whr(p)y| ¢ =0onadD} and HOI(D) = WOI’Z(D). For any ¢ € LY(D)andr > 0,

One=f o= Ty O
If n is an outward normal vector on 8Y,,, we define, for any function ¢ and x € 3Y,,,
Pp+(x) = ZEISL px£m), o)) =g +(x) —p_(x). 2.1
Similarly, if i€ is an outward normal vector on 925, we define, for any x € 9Q¢,,
P +(x) = [E%L px£m),  [p](x) = ¢ 1(x) — ¢, (x). (2.2)

Next we recall an extension result in [1].

Remark 2.1 For any € € (0, 1) and p € [1, 00), there are a constant £{ (Y, p) and a linear
continuous extension operator I, : W7 (Qéf) — WP(Q) such that
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(1) ifp e Wl’p(Qef),then

[Tl =¢ in Qjc almost everywhere,

TepllLr) < ﬁlllwlle(Qj),

IVepliLr) < € ||V</J||Ln(ssz),

b =Tep =t3 ifgpeL™(Q%) andlr <¢ <{3,
[lep=¢ inQifp = §|Qef for some linear function ¢ in €2,

(2) ifr >0,¢/r <1,and {(x) = @(rx), then I/, ¢ (x) = (ITe) (rx).

Ifpe wlr(Q) for any p > 1, then l'[€<p|g2; e WP () denotes the extension function of
¢las € WhP(Q5) in Q.

We briefly state our main results. Theorems 2.1-2.2 are uniform bound estimates for the
solution of (1.1). Theorem 2.1 is for the strongly coupled case (i.e.,0 < My < Ty, < Min
2), and Theorem 2.2 is for the weakly coupled case (i.e.,0 < Ej /4 ¢ Top e <Min Q). Proofs
of Theorems 2.1-2.2 are given in Sect. 4. Theorems 2.3-2.5 are convergence estimates for
the solution of (1.1). Theorem 2.3 is for the strongly coupled case, and Theorems 2.4-2.5
are for the weakly coupled case. Proofs of Theorems 2.3-2.5 are given in Sect. 5.

Theorem 2.1 Suppose

Al. Q C R" is a C*' domain for n € {2, 3}, Yy, is a smooth simply connected subdomain
of Y, Y CY,

A2. Ke H;er (R™) is a positive function, | VK| oo vy is small compared with minycy K(x),
and K € C1(Yy) N C1(Y,,) for some o € (0, 1),

A3 w,e€(0,1),8€(0,3), Ve, Gope € L"(Q),

A4. Mo, M > 0, Ty, ¢ (x) € [Mo, M] forall x € Q,

then a H' () solution of (1.1) exists uniquely and there is a constant wq € (0, 1) (depending
oné,K,M, Yy, Q) such that, for o < wy and % > {4 >0,
[\ij»e]co*“(ﬂi?) + S:Z% w[\pw7€]C0-’4(e(Y7m+j)) < C“El/w,e Vw,e» Gw,e ||Ln+8(9), (23)
: j
€(Ym+j)Cy,

where {4 is any number, L = and c is a positive constant independent of , €.

8
n+4’
Theorem 2.2 Besides A1-A3, if

A4’ E1/0,eTwe(x) € [0,M] forall x € 2,

then a H' () solution of (1.1) exists uniquely and there is a constant wgy € (0, 1) (depending
oné,K,M, Yy, Q) such that, for any w < wo,

[ww,e]CO,M(Qiéf) + sup a))‘ [Ww’g]co,;t(e(fm+j))

jezr
€(Ym+j)CQs,
< C(“El/w,e Ve Emax{l,e/w}Gw,e||Lﬂ+5(g2), 2.4
3 .
3 T 0
where 1 = n‘% and c is independent of w, €. In (2.4), . = [f lji Tw’é s 0
14 w,e =
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From Theorem 2.1 and Theorem 2.2, we know that if the right-hand side of (2.3) or (2.4) is
bounded, the Holder norm of the solution of (1.1) in the connected high-permeability region
¢ is bounded uniformly in w, €, but the solution in Qf, may change rapidly when w, € are
small. This is different from uniform elliptic equation case, where the solution is bounded
uniformly in the whole domain. To obtain the uniform Hoélder estimate for the solution of
(1.1), the condition 2 > £4 > 0is needed in strongly coupled case but not in weakly coupled
case. Below is one example to show that the Holder norm and the H' norm of the solution
of (1.1) in €, in general are not be bounded uniformly in w, €.

o0

Remark 2.2 Suppose ¢ € C¢,

define, for any € € (0, 1),

(R™) and ¢ in the cell Y = (0, 1)" has support in Y,,, we

0 ifx € Q%,
lpw,e(x) = X . p
() ifx € QF.

Then ¥, ¢ satisfies

V(B2 VW) =Gue inQ,
Yye=0 on 92,

where Gy e(x) = —w’¢ 2A@(£)Xgg. Note (Yo clconemrijy = € “l@lconm s
IVWoellzzey = € NIVOlay,)> and [Go el ey & @*€ 2 A@]nssy,, Where
§>0,u= n% Here A ~ B means that A is almost like B times a constant when €
is small. If < € < 1, then the right-hand side of (2.4) is finite and (2.4) holds for ¥,, . But

the C%* norm and the H'! norm of Y, ¢ in Q5 are not bounded uniformly in € € (0, 1).

Next we state convergence results. Set A, = {x € R'|x € Ujezn (Y, + )}, Ay =

1 inY i
%n 4 for any v > 0. We find X](f) € Hll,er(R”) for v € (0, 1] and
v inY,

ief{l,2,---,n}satistying

R™A,,,and E, =

V- EpKVXY +8) =0 inv,

, 2.5)
/ X0 (y)dy =0,
Y.
find X € H}o, (Ag) N HJ,, (Ay) fori € (1,2, -+, n) satisfying
-V - (KX +2) =0 inYy,
xy =0 in Yo,
2.6)

KXY +8) . -i=0  ondY,,

/ Xff) (y)dy =0,
L/ Yy
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and find Wg € H), (Ay) N H), (Ay) for >0, T € L, (R"), and T > 0 satisfying

B>V - (KVWg) — TWg =0 in Yy,

2.7

Wg =1 on dYy,,

-1
V. (KVWg) — T = —(/ Tdy +/ TWﬂdy) inYy,

YrI\Jy, n ‘
[EgKVWg] -1i=0 on Yy, 2.8)

Wg(y)dy =0,
Yy

where ¢; is a unit vector in the ith coordinate direction, |Yr| is the volume of Yy, and n is
an outward normal vector on dY,,. See (2.1) for (2.6)3 and (2.8);. Let X,(,'i x) = le(f)()Si)
Ky = (X0, - XU, and Wg i (x) = s'Wg(2) for any v € [0, 11,5 € (0,1), B > 0,
i € Z. By Lax-Milgram Theorem [16], (2.5)—(2.8) are uniquely solvable. Denote by E, for
v € [0, 1] a n x n matrix function whose (i, j)-component is 8,<X1()j). By remark in pages
17-19, 94-95 [17],

K, E/ EK(I + E,(»)dy for velo,1] 2.9)
YUYy
is a constant symmetric positive definite matrix. Here 7 is the identity matrix.

If, in addition to A1-A4,

A5. Tye(x) = T(f) >0and T € Cg’eo;(]R”) for some o > 0,
A6. |E1/0.eGo.ellpnsq) + 1Gw.e ||W1<,,+5(Qef) is bounded independent of w, €,

the solution of (1.1) with V,, . = 0 satisfies [|Eqy c VWy e, Yo ell2() < c (independent of
w, €). Suppose w, € — 0 and % — o € [0, oo], by tracing the proof of Theorem 2.3 [3], we
can extract a subsequence (same notation for subsequence) such that

E, K V¥, — KoV¥
To.eWoe — YT W in L?(£2) weakly, (2.10)
Gope > |Yf|g

where Ky is defined in (2.9) with v = 0, |Y | is the volume of Y, and

1
/Tdy if o = o0,
|Ylf| Y
T, = —(/ Tdy+/ Tngy) if o € (0, 00), (2.11)

|Yf| Yy Yin

1
— Tdy ifo =0.

|Yf| Yy

See (2.7) for W,,. The V¥ in (2.10) satisfies

2.12)

—V - (KoVW) + YT, ¥ = |YfIG in €,
v =0 on 0%2.
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By Theorem 9.19 [16] and A6,

||\D||W3,n+6(g) < C||g||W1.n+6(Q), (213)
where c is a constant depending on Ko, M, |Y |, 2. Now for any w, € € (0, 1) and on any

€Yy + j) C Q, for some j € Z", we consider

-V (w2K6V¢c(r)],)e) + To.e c(u])s =Gye me¥py+j), 2.14)
(E)j)e =V on €(dY,, + j),

where W is the solution of (2.12). By Lax—Milgram Theorem [16], A5-A6, and (2.13), the
d)c(,)], )5 of (2.14) is solvable uniquely in H Ley,, + j)). By Theorem 8.24 and Theorem 8.29
[16], 52 € L®(e(Yim + j)). Moreover,

Theorem 2.3 Suppose AI-A6 and V,, . = 0 in (1.1). There is a constant wo € (0, 1) such
that, for any w € (0, wp) and € € (0, 1),

1. ifw,e — 0and % — 00, the solutions of (1.1), (2.12), and (2.14) satisfy
Epe(Woe = Wl + 1Woe — D 650l

jezn
E(Ym‘i’j)Can

< ¢(Gu,c = Gllni gy +max(o, €/w)),
2. ifw,e > 0and % — o € (0, 00), the solutions of (1.1), (2.12), and (2.14) satisfy

B (Wo,e = (Xor +We  0Xoe )W) o) + 1Yo — D &5kl
' jezn
€(Ym+j)Cy,

< c(IGo.e = Gllrs o) +max{w, €. |w*/ (o) — 1]}),
3. ifw,e > 0and % — 0, the solutions of (1.1) and (2.12) satisfy
Wo,e = (Yoo +We X )Wl q)
< c(IGw.e = Gllnssas) +max{o, €, [we ™! In(weH|2 ),
where c is a constant independent of w, €.

Theorem 2.3, based on Theorem 2.1, is a convergence result for (1.1) in strongly coupled
case. Note that L>° convergence estimate is obtained for ¥ — o > 0 case and that only Le
convergence estimate is available for 2 — 0 case. Next we present convergence estimates
for the solutions of (1.1) in weakly coupled case (that is, Theorems 2.4 and 2.5).

Besides A1-A3, A4’, and A6, if

A7. E1/0,Twe(x) =P(£) >0 and P € L;‘;r(R") N CO'“(Kf) for some o > 0,

the solution of (1.1) with V,, . = O satisfies |[E, VW, ¢, Ti)/z W.ellL2(q) < ¢ (independent
of w, €). By compactness principle [3,17],
E, KVY, e — KoVY
Ty.cVpe — |Yf|7v’\I/ in L2(£2) weakly as w, € — 0, (2.15)
Gype — |Yf|g
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1810 L.-M. Yeh

where ’j'( = |YLf| /Y,» P(y)dy) is a constant vector and Ky is defined in (2.9) with v = 0.
Similar to (2.12)—(2.13), the W in (2.15) satisfies
—V - (KoVW) + Y/ TV = |Yf|G ing,
v =0 on %2, (2.16)
Wl wsnts @y < cllGllwints gy

where |Y¢| is the volume of Yy and c is a constant depending on Ko, M, [Y ¢, 2.
We have the following result:

Theorem 2.4 Assume AI-A3, A4’, A6-A7, and Vy, ¢ = 0 in (1.1). There is a wy € (0, 1)
such that if @ < wo, then the solutions of (1.1), (2.16), and (2.14) with V obtained from
(2.16) satisfy

B2 Woe = Wlie@ + 1Woe— D, 5% lIes)
jean
€(Ym+j)C8,

<c(|Guw,e — g||Ln+8(Q€f) -+ max{w, €}),

where c is a constant independent of w, €. See (2.16) for G.

Under A1-A3 and A6, the solutionof (1.1) with V,, ¢ = Ty, ¢ = Osatisfies [[Ey, e VW el 12(g)
< ¢ (independent of w, €). By compactness principle [3,17],

E,. K VY KoVW
[ wlere V¥ Xwe = 0 in L%(2) weakly as », € — 0, (2.17)

Gop.e = |YrIG
where K is defined in (2.9) with v = 0. The W in (2.17) satisfies
—V - (KoVW) = [Y/IG inQ,
v =0 on 9€2, (2.18)
I lysnrs @y < cllGllwrnes g,
where |Y ¢| is the volume of Y and c is a constant depending on K, |Y¢|, 2. We also have

Theorem 2.5 Assume AI-A3, A6, and V,c = T, = 0in (1.1). There is a wp € (0, 1)
such that if @ < wy, the solutions of (1.1), (2.18), and (2.14) with T, = 0 and ¥ from
(2.18) satisfy

IEoeWoe— Wlie@ + 1Woe— D, oYL=
jezr
e(Yp+j)CR,

<c(|Gw,e — g||Ln+5(fo) -+ max{w, €}),
where c is a constant independent of w, €. See (2.17) for G.

Theorems 2.3,2.4,2.5 imply if w, €, [|Gy.e — Q||Ln+a(Qef) are small enough, the homogenized
solution W of (2.12) or (2.16) or (2.18) is a good approximation of the solution of (1.1) in
the connected subregion Q;, but the ¥ may not be a good approximation of the solution of
(1.1) in the disconnected subset ¢ . In the disconnected subset €2, , the solution of (1.1) can
be approximated by the solution of (2.14). One also notes that > jezn ¢((,)]; )E is obtained

eYm+/)Cpy
by solving mutually independent local problems.
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3 A priori uniform estimates for interface problems

Let I'(x — y) denote the fundamental solution of the Laplace equation in R”; see §6.2 [14].
Define a single-layer and a double-layer potentials as, for any smooth function ¢ on the
boundary 0Y,, of Y,,,

Say, (9)(x) = / Fx — y)o()dy
3Ym forx € 0Y,,,
Loy, (@)(x) = / V,T(x — Wiy o(y)dy

m

where 1, is the unit vector outward normal to 9Y,,. By tracing the argument of Lemma 4.1
[27], we know

Lemma 3.1 Forany p € (1,00),i € {0, 1}, and a € (0, 1), the linear operators
.o . 1
Spy, : WP @Y,) — WP @Y,
. 1 . 1
Loy, : WP @Y,) - WP @0Y,)

Syy, 1 CL¥(@Y,) — CHY(3Yy)
Ly, : C1*(@Y,) — C>*(Y,)

. 1
are bounded; the operator I — £Lyy,, is continuously invertible in Wl+17§’p(8 Y, and in
Cz’“(f) Yy) for £ € [—2,2]; there is a constant c independent of £ so that

i+1-1,
[ AR forg e WPy,

<c|l(I —LL; .
opy = N0 = CLaR)ON iy,
lpllc2ay,, <l —€Lay,) @)l c2agy,) Jor ¢ € C**(0Y,y),
where 1 is the identity operator.

By Al, let us assume

Y, CDCDyCY.
[ chrchhc (3.1)

min{dist(Y,,, 0D1), dist (D1, 0D2), dist(D2, 9Y)} > 0.

Lemma 3.2 Under AI-A2, w € (0,1], p € (n,6), M > 0, and P, (x) € [0, M] for all
x €Y, any solution of

— V- (B 2KVU, + Qo) + EoPolUy = F,  inY (3.2)
satisfies

||Ew3/2Uw”Wl,p(])l\ﬁ)mwlvp(ym) = C(||Uw||L2(Yf) + ”El/w Qw”LZ(Y)
HE1 0 Follg-1vy + 1B/ /e QullLr ) + 1B joFollw-1r(r))s (3.3)
where c is a constant independent of w. See Sect. 2 for E,,.

Proof Let p € (n, 6) and ¢ denote a constant independent of w.
Step 1: Assume Q,, € Wy’ (Y;) N Wy'"(YV,n), F,y € LP(Y), and consider

3.4)

=V - (E,2KV@, + 0p) + EuPupw = Fu in D,
%o =0 on dD,.

@ Springer



1812 L.-M. Yeh

The unique existence of a solution of (3.4) in H!(D») is known by Lax—Milgram Theorem
[16]. By Theorem 7.26 and Poincaré inequality [16],

190l o7 + @I Gl w10,y < CNBL V0, B2 > 00l 12m,)
< ¢(IE1jw QullL2m,) + 1E1/0 Foll p-1D,)
+ ||E1/\/5Qw||LF(D2) + ||E1/\/5Fw||wfl-11(nz)) = cZy. (3.5)
By (3.4)—(3.5) and [22], we have
lewllwirmap;) = Zo- (3.6)
See (3.1) for D;. Let ¢ in Y, be the solution of

[—v (0kVG + 0* (K =KV, + 00) = Fy — 0Pppe  in Yy, a7)

?lay, =0,

and @ in D, \ Y,, be the solution of

[—V RV + (K = K)Vg, + 00) = Fu — Py inDy\Y,, 58)

?lamy\7, =0

where K, Kk are two constants in the interval (miny K, maxy K). By [22] and (3.5),

[wzﬁnanwl,p(ym) < c(0'?Z, + (K =K VeullLry,)). 59)

K@l y1omy v < (Zo + 1K = K)Vul p)7))-
If we define ¢ = ¢, — @ in D, then (3.4) and (3.7)—(3.8) imply
AG =0 inD>\3Y,,
lgl =0 ondY,,
IEVG] -ty = F/K ondY,,
=0 on 0D;,

(3.10)

where E =
1 inYy

(3.10)2.3. Since Q, € Wy (Y ) N Wy (V)

. [o*®)/K iny,
and n, is the unit vector outward normal to 9Y;,. See (2.1) for

F = (0’kVe— —KVG 4 + 0> (K —K) Vg, - — (K- K)Vg, 1) - fiylsy, .
By (3.9),

(Eal <c(Zo + @*IK = Kl 22 v, |90l w1y,

WP (0
+HIK = Kl oo p,\7;) llwwllwl.p(nz\ﬁ))- (3.11)
By Green’s formula, (3.10), and Theorem 6.5.1 [14], we see that

/24 Lsy,, (@) = Spy,, (3n,®,—ay,,)
’ on dY,,,

¢/2 = Lyy, (@) = —Ssy,, (0n, ¢ +ov,,) + Sop, (3n,¢loD,)
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where 9p, ¢|sp, is the normal derivative of ¢ on 9D5. So we have

ondY,, (3.12)

(1 20 —d))ﬂ ) . 2Syp,(0n,9lo,) 28y, (H)
1+ ~Ofm 1+ 1+ oK

where & = »?k/K. Then (3.6), (3.9), (3.12), and Lemma 3.1 imply

||¢||W1_%,,,(/ < c(lFI )

1 1
E)) WP Py, WP P (9Dy)
< ¢(Zo + 1K =K)Veoll 1pp, 7))

+ [|3n, &
' ) (3.13)
I2n, @11

“P(aDy)
(3.10)=(3.11) and (3.13) imply
1910 7wt ey < €(To + O 1K =Kl Loy, 100l wip )
+IK = Kl oo o 7 120l wi.o 7))
Together with (3.9), we obtain
B2 @0l i oy e,y < €(Zo + @2 1K =Kl o v, 190l w7,
+IK = Kl oo o7 120 1w 10y 7)) -
By A2, we obtain

||Ew3/2§0a)||lep(])z\ﬁ)mwl.p(ym) < Zy. (3.14)

Step 2: Note WOI’P(Yf) (resp. Wol’p(Ym)) is dense in LP(Yy) (resp. L”(Y),)) as well as
LP(Y) is dense in W17 (Y). By a limiting argument, we see that if Q, € LP(Y) and
F,, € W=L-P(Y), the solution of (3.4) still satisfies (3.14).

Step 3: Let n be a smooth function satisfying n € Cj°(D2), n € [0,1], » = 1 in Dy,
IVllwieop,) < c. Multiply (3.2) by 1 to obtain

—V - (B KV(Uyn) — KU,V + Qun) + EuPuUyun
= Fon— KVU, + 0,)Vn in Dy,
Uy,n=0 on 0D».
By the result of Step 2, we have

1Eu32Uollwrrmpvmnwt e, < CUUollLr@npy) + 1By, & QullLr )
HIE, oFollw-1r@) + 1E1/0 Qollr2(ry + 1E1/0 Follg-1(v))- (3.15)

Let 7 be another smooth function satisfying 7 € C°(Y), 7 € [0,1], 7 = 1 in Dy,
IVAllw1.coyy < c. Multiply (3.2) by 7 and then use energy method to get

1UwllLrm\Dy) = C(||Uw||L2(1/_/») T 1E1/0 Qullr2(y) + I1E1j0Foll g-1cr))-
Together with (3.15), we obtain (3.3).
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1814 L.-M. Yeh

Modifying the argument for Lemma 3.2 and employing Lemma 3.1, we see
Lemma 3.3 Under A1-A2, w € (0, 1], and p € (n, 00), any solution of
-V - (EKVU,+Q0,) =F, inY
satisfies
B Uollw .o Tyt o r,)
< c(lUslli2qr,) + 1Egi-2 QullLrvy + 1Egi-2 Follw-1(r)).
Wollwzr@nwaw2r o,
= C(||Uw||L2(Y_,») + [|E,-2 Qw||W1v11(Yf)mwl,p(ym) + 1Ey2FollLr)),
1B Uoll c2e drgmncze@y) = ¢WUoll2gy) + I1Bwi—2 Qollcre@pncred,)
+ |E, i Fw||co,a(7f)ﬁco.a(7m)), (3.16)
wherei € {0, 1}, « € (0, 1), and c is a constant independent of w. See (3.1) for Dy.
Under A1-A2 and v € (0, 1], the solution of (2.5) satisfies, by Lemma 3.3,
X 2 ync2 i < € (3.17)

where ¢ is independent of v. Under A1-A2, the solution of (2.6) satisfies, by Theorem 6.30
[16],

X6 27, < € (3.18)

where c is a constant. By (3.17) and (3.18), it is not difficult to see that there are positive
constants wy, £s, £ such that the symmetric positive definite matrix /C, for v € [0, 1]in (2.9)
satisfies

61 < K, < lgl,
[5— v="6 (3.19)

Ky, — Ko| < cv where ¢ is independent of v.

Define a part of boundary of Y by Y, = {y € Y|y = (31, ¥2, - » Yn—1,0)} and
consider the following problem

—V (B2 KVU, + Q) + EoPolU, = F,, in?,
[ (B, KVU, + Qu) + U in (320,

U, = Up, on 3.

Let Y, C D3 C Y satisfy min{dist(Y,,, 90D3), dist (D3, dY \ 8?,,)} > (. By an analogous
argument as that for Lemma 3.2, we see

Lemma 3.4 Under AI-A2, w € (0,1], p € (n,6), M > 0, and P, (x) € [0, M] for all
x €Y, any solution of (3.20) satisfies

”Ew3/2 UC{)”Wl.]’(D3\m)ﬁW|,P(Y’n) < C(”Ubw”Wl,P(Yf) + ||Ua)||L2(Yf)
HIE1/0Qullz2yy + IE1j0 Follg-1vy + 1B/ /a QullLr vy + 1By s Follw-1rr))s

where c is a constant independent of .
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Under AI-A2, w € (0, 1], and p € (n, 00), any solution of (3.20) with P,, = 0 satisfies
||Ewa||Wl,p(1)3\ﬁ)mwl<p(ym) = C(”Uba,”Wl,p(Yf) + ||Uw||L2(Yf)
HIE1 /0 QullLryy + 1E1/0 Follw-10(v))
where c is a constant independent of w.

One example below shows that the second-order derivatives of the solution of (1.1) may
not be bounded uniformly in w, € in the high-permeability subregion Q;

Remark 3.1 Assume that By (0) C Q(w) and n is a bell-shaped smooth function satisfying
n e C3°(B1(0)), n € [0,1], and n(x) = 1 in By,2(0). Employ (2.5), 1, and XS,),U for
w € (0, 1) to obtain

1 1 >
~V - (B2, Ko (VIXG0) — X00 V1 + 1é1))
=—E,» K, (VX'), + &)V in Q,
X, =0 on 992,

where €] is a unit vector in the first coordinate direction. By (3.17), we see that
1 = 1 -
X5, Vi = néillwroe s, oy + 1OVXS, + €DVl s, 0))

is bounded uniformly in o, but ||nx§})w||wz,p(31(omu;) for p € [1, oo] is not bounded uni-
formly in w. '

4 Uniform Holder estimate

A1-A2 are assumed in this section. We shall derive uniform Holder estimates for non-uniform
elliptic equations, that is, Theorem 2.1 and Theorem 2.2. The Holder estimate in the interior
region is considered in Sect. 4.1, and the estimate around the boundary is in Sect. 4.2.

4.1 Interior estimate

For convenience, we let B;(0) C .

Lemma 4.1 For any §,M > 0, there are 01,0, € (0, 1) (depending on §, M, K, Y ) with
0 < 922 and there is a wy € (0, 1) (depending on 61, 6>, §, M, K) such that if

=V (E,2 KyVUy v + Qo) + Egp Py vUpy =Fp in B1(0), 4.1
and if
w,v € (0,wp), 6 €lb1,62], Py, .(x) e [0, M]forall x € B1(0),
max{[|Eq,vUw vl 128, 0)) ||wale,quzj;. + 0 Qu,v Xy, Il 145, 0)) - 4.2)
@y 1Fo,vXay + o™ max{w, v)Fo,vXay Il s s, 0)) < 1.
then

2
][ ‘ana),vm; - (Hva,vm;)O,G‘ dx < 92115
By (0)
5 4.3)
][ 0 |Uow = (MUl os| dx < 6%,
By (0)NQ,
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where u = n%. See Sect. 2 for (I1,U,,,, |Q;_)0,9, the average value of the extension function

Han),vkl; in By (0).
Proof Consider the following problem
— V- (KoVU)+PU=0 in B3;4(0), (4.4)

where Ky is defined in (2.9) and P(x) € [0, M] for x € B3/4(0). Any solution U of (4.4)
satisfies, by Theorem 9.11 [16] and (3.19),

”U”Cl*“(Bl/z(O)) = c”U||L2(33/4(0))’
where o € (0, 1) and ¢ only depends on Ko, M. If ji satisfies u < ft < 1, then, by Theorem
1.2 in page 70 [15],
][ U — (U)g9)dx < 92,1][ U%dx 4.5)
By (0) B3/4(0)

for 6 (depending on 8, Ko, M) sufficiently small. Let us fix 61, 6> € (0, %) so that ) < 922
and (4.5) holds for any 6 € [0y, 6].

Now we claim (4.3);. If not, there is a sequence {6y, v, Py v, Uy v, Qu v, Fo v} satisfying
(4.1) and, as w, v — 0,

Ow,v — 0 € [01,02],
P,.»(x) € [0, M] for all x € B;(0),
max{[[Ew v Usvll 25,0y @ 1Qw.vll Ln+3 By )y} = 1. 4.6)

wligo 1Qe,vs Fw,v||L”+5(Bl(0)nQ;.) + o~ max{w, VHIFw, v ll 48 3y 0)ngz) = 0

2
2
][ MU sley = (MUl )oa,., | dx > 16,0,
By, (0) ’

By energy method and A2, there is a constant ¢ independent of w, v such that
1/2p1/2
”U(u,v“Hl(BMS(O)ﬂQ“;,) + [[@wVUp,v, / Pw/,va,v||L2(B4/5(O)ﬁQzl) =c

By compactness principle and by tracing the proof of Theorem 2.3 [3], we can extract a
subsequence (same notation for subsequence) such that

M,Up ey — U in L%(B3/4(0)) strongly
E,» K, VU,,, = KoVU in L?(B3/4(0)) weakly ~as®,v — 0, 4.7
Ey, Py, Uy, — PU in L2(B3,4(0)) weakly

where P(x) € [0, M] forall x € B3/4(0), Ko is a constant symmetric positive definite matrix,
{5 < Ko < €6, and {5, {4 are positive constants (see (2.9) and (3.19)). The U in (4.7) satisfies
(4.4). Equations (4.5)—(4.7) then imply

2
2 : 2, :
0°* = lim |00, vl H < lim ‘Han),vkz? - (nuUa),vlﬁ"f)O,Ow_v
w,v—>0 w,v—>0 Bo,,.» (0)

2
=][ U2 — ][ U =][ U — (U)g.0]? 592“][ U?dx.
By (0) By (0) By (0) Bs/4(0)

If 6, is small enough, then we get contradiction. Therefore, we prove (4.3);.
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Set ¢ = giu(Han),ka} - (Hva,vm;)O,G) and n = Giﬂ(Ua},v - (Hva,v|Q?)O,9)~
(4.1) implies, for any smooth function ¢ with support in v(Y,,, + j) C Bg(0) N €2, for some
jez,

w2/ 1=V - (K, Vo) — w/ Pov (1= 59
v(¥m+)) v(¥m+j)
= / (szVV§ + Qiqu,v)V(p + eiu(wpw,vnvww,AQ} - Fw,v)(p~ (48)
v(Ym+j)

If ¢ is the solution of

[—wZV-(KUWme,Vwc—n inv(Y + j), “9)

(p:O OHV(aym +.])»

then Clv—1w2|l¢||L2(U(Ym+j)) < 0)2 ||V(p||L2(l)(Ym+])) < C2U||T] — ; ||L2(U(Ym+j))’ where Ccl1,C2
are independent of v. (4.8) and (4.9) imply

2 2 2 2 2
/ W —¢| EC/ PV |VE|
v(Y+j) v(¥p+j)

_ _ 2 _
+c/ V07 (0™ Qo P + V7B [ Usley |” + Vo™ Fo o’ (4.10)
V(Y +j)

Summing (4.10) over all v(Y,, + j) C By(0) N 2,, for j € Z", we obtain (4.3), if wy is
small enough. O

Lemmad4.2 For any § € (0,3) and M > O, there are 01,0, € (0, 1) (depending on
8, M,K, Yy) with 6; < 922 and there is a wy > 0 (depending on 0y, 0,8, M, K) such
that if

-V. (sz,éKEVUw,G + Ou.e) + VEw ePw . cUne = Foe in B1(0), (4.11)
and if w,€ € (0, wp), 0 € [01,02], y € [0, 1], Py c(x) € [0, M] for all x € B1(0), and k

satisfying € /0% < wy, then

2
dx < 0%, %,

][ ‘Her,ekZ‘f - (ner,ekZ‘f)O,ek

Bor © (4.12)
s .

dx < 0T, 2,

][ a)2 ‘Uw,e — (e Uw,é|$25f)0,0k
By ()N,

where | = n% and
—1 —1
Jo.e =30y ([Eo,cUs.elli20) + @ | Qu.e. max{w, €}Fy el 1n+s 5, 0)n0s,)

Qo Foell Lo 0ne)-

Proof Let ¢ denote a constant independent of w, €, y. This proof is done by induction. For
k =1, we define Uy, = UL-:, Qu.e = %, Fope= I;L*:, P,.e = yP, .. Then they satisfy

w,€

(4.1) and (4.2) with v = €. By Lemma 4.1,
2
][ MW clor, — (MU clag o | dx < 6%,
By (0)

2
][ 0 |Uo.c = (MeUp elos)oa| dr < 6%
By (0)N<, :
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This implies (4.12) for k = 1. By energy method and A2, any solution of (4.11) satisfies

1Ue.e ”H1(B4/5(0)ﬂ9§) = C(”Ea),eUa),GHLZ(Bl(())) + ”E]/w,e Qw,e”L2(Bl(0))

+ 1 Fo.ell2s, 0y co! [ Fo.ell L2, 0)neg,)) = I

By Theorem 7.26 [16] and Remark 2.1,

<cZ. (4.13)

| MeUoelgs |

2n
L11=2(By5(0))
Suppose (4.12) holds for some k satisfying € /6% < wy, we define, in By (0) \ 9, /6F,

Ugefot (1) = J 107 (Uo,e (0x) — (MeUu,elas ).t )

Qe jor () = T 10171 (0F),

Fopejot (1) = 15 L0527 (F c04) = VB, gt (0P« (055) (T Ui el o, )
Py, /gt () = 07y P e (8 ).

Then they satisfy
=V (Ep2 ot Ke ok VU, ¢k + Qo c/06) + By )0k Py e ok Uy e ok = Fop ¢ gx 0 B1(0).

By triangle inequality,

IFo,c /0l L3 By o)ne %)
ok ' 9kG—n—n/2 M
< JoollFoe ”L"”(ng(O)ﬂQ;) + [ Her,e|§2; ||L2n/(n—2)(39k(0))a

¥y, ok 1 +o (B, 0)nge, /6%)

91{ wek(3fufn/2)M
< JoclWFwellms oneg) + 57— HHeUa),dQ;

L2/0=2) (B (0)°
By induction, (4.13), and small 0,

P, /0t (x) € [0,M] forall x € B1(0),

1Eq /6t Up epotll 280y = 1o
1 1
llog " Qe /0% X jor + @™ Qo e 0k Xag, ok Lt 8,0y = 1

(,()61 ||]Fw’€/9k XQ;/QI( + (,()_l max{a), 6/91( }]F(u,G/QkXQf”/Gk ”L"'HS(B] 0)) < 1.
By Lemma 4.1 (take v = €/6%), we obtain

2
][ ’ne/BkUw’E/QHQG//Gk — (ne/BkUa),E/Ok'Qef/Gk)O.@’ dx < 92,“«’
o0 (4.14)

2
][ o’ ‘U(u,e/Qk — (g jgr Uy ¢ 0k I e /0k)0.0‘ dr < 67,
By (0)N, /0 !
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Note, by Remark 2.1,

2
]i ©) ‘He/gkww efoclas o = (MejorUo, ¢ ol s jor)o, 9‘ dx
6
|l_[ Uo, E|§25 — (I Uy, e|§2é )() gk+1 |
:][ | e |2 021 dx,
ng+| (U] w,€ ) (415)
]ég(O)ﬂQ;n/ek Ug,epok — (I jgr Uy, ¢ jpk |fo/9k)02,9‘ dx
][ |Uwa€ - (Her,e|Q;)07@k+1 |
- Bk+1 (00N, [Jor.e |2 21
Equations (4.14)—(4.15) imply the inequality (4.12) for k + 1 case. O

Lemmad4.3 For any § € (0,3) and M > O, there is a w, € (0,1) (depending on
8, M, K, Yy)suchthatifw, € € (0, ), y € [0, 1], and P, «(x) € [0, M] for all x € B(0),
then any solution of (4.11) satisfies
[Ua) E]CO /L(W) + SUP a)3/2[Ua),e]C0.u(€(m+j)) S C-’a),ev (416)
jezn
€(Yim+j)CB12(0)NQ,

where c is a constant independent of w, €, y. See Lemma 4.2 for [u, J, c.

Proof Let 6, 62, wo be same as those in Lemma 4.2, define w,, = wpb>/2,andlet w, € < w,.
Denote by ¢ a constant independent of w, €, . Because of 9; < 62, for any r € [€/wo, 02],
thereare € [0, 6] andk € Nsatisfyingr = 9".Lemma4.2implies,f0r anyr € [€/wo, 02],

2
dx < r2M|Jw,e|2»

][ ’ner,ekZ; - (ner,e|Q;)0,r
B (0)

4.17)
2 2 21 2
w ‘Uw,e - (Her,ekZ;)O,r dx <r |Jw,e| .
B, ()N,
Now we define, in Bz/wo (0) \ 025, /€,
Uy, 1(x) = M(Ua) elex) — (HEU(A),€|Q§)O,2€/LU0)9
Qu,1(x) = J, L€ 1 Q4 e (€x),
Fo1(x) = ;Lez—“( Foe(ex) = YEu1(0)Pu.e (€x)(TMe Ve |25 )0.2¢ /un)
Py1 = ezwa,e(ex).
Then they satisty
V. (sz,lKVUa),l + Qa),]) + Ea),lpa),lU(u,l = IFIa),l in BL (0)
(1)0
2 .
Take r = aTZ in (4.17) to get
Py,1 € [0,M] forall x € By/u,(0),
||Ew,1Uw,l||L2(Bz/w0(o)) + 1E1/0.1Q0.1, El/w,l]Fw,l||Ln+5(32/w0(())) <c
By (3.3) of Lemma 3.2,
[Uw,1]co0, 1 (Bt g 525 /) + @ [Uy,1]c0. (B g )2, /€)= (4.18)
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(4.18) implies that (4.17); also holds for r < €/wp. So (4.17)1 holds for » < 6,. Next we shift
the origin of the coordinate system to any point z € Bj,2(0) and repeat above argument to
see that (4.17); with O replaced by any z € Bj,2(0) also holds for r € (0, 6>). Together with
Theorem 1.2 in page 70 [15], we obtain the Holder estimate of 1 U, ¢ in By2(0). Holder
estimate of U, ¢ in €(Y,, + j) C B1,2(0) N QS, is from (4.18). So (4.16) is proved. O

Remark 4.1 Let w, be same as thatin Lemma 4.3. By (3.3) of Lemma 3.2 with p = n+§, we
know thatif § € (0,3),M > 0, € € [w4, 1], w € (0, wy), ¥y € [0, 1], and P,, (x) € [0, M]
for all x € B;(0), any solution of (4.11) satisfies (4.16). Together with Lemma 4.3, we know
that any solution of (4.11) satisfies (4.16) if § € (0,3), M > 0, € € (0, 1), w € (0, wy),
y €[0, 1], and P, (x) € [0, M] for all x € B1(0).

Let us consider the solutions of (4.11) with P, . = 0. By tracing the arguments of Lemma
4.2, Lemma 4.3, and Remark 4.1 as well as employing (3.16) of Lemma 3.3, then we have

Lemma 4.4 Foranyd > 0, thereisaw, > 0(dependingond, K, Yy )suchthatifw € (0, wy)
and € € (0, 1), then any solution of (4.11) with P, = 0 satisfies

[Uw,e]co,u(BI/T)nQef) + js:% DU o jyy < e
€(Ym+)CB12(0)NQ,

where c is a constant independent of w, €. See Lemma 4.2 for |4, Jy e.

4.2 Boundary estimate

In this subsection, we assume 0 € 9. By Al, there is a C2! function o R 5 R
satisfying

p0) =1Vp(0)] =0,
B1(0) N2/t = B1(0) N {(x', x,) € R"| tx,, > p(tx")} ifr € (0, 1].

If t = 0, we define B;(0) N 2/t = B1(0) N {(x, x,) € R"| x, > 0}. Set

1 in Q;/t
Ever = . fort € (0, 1]. (4.19)
v in /¢

Lemma 4.5 For any §, M > 0, there are 51, §2 € (0, 1) (depending on 6, M, K, Yy, Q)
satisfying 0 < 522 and there is a @y > 0 (depending on 01,62, 8, MK, Q) satisfying
@y < wo (wg is that in Lemma 4.1) such that if

V. (ng’e’sKE/S v]Ua),e,s + Qw,e,s)
+5w,6,xpw,€,an),€,s = Fu,es in B1(0) N Q2/s, (4.20)
Up,e,s =0 on B1(0) N 9d2/s,

and if
w, < € (0,a0), s €(0,1], 6 € [01, 0], Py.cs(x) € [0,M] for x € B{(0) N Q/s,
max{”gw,e,s[uw,s,s||L2(Bl(0)m§2/s), ”%()Qm,e,sxﬂj./s + %Qm,e,x-Xan/x||L"+3(Bl(0))7

%OHFw,e,sstff/s + %max{a), VFo.e.sXae /s s gy 0} < 1
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then
2 52
][ He/sUa),e,s|Q;/s dx <6,
B;(0)NS/s
(4.21)
][ @*|Up,e.sPdx < 67,
B;(0)N, /s
where u = ni_‘_s.
Proof Consider the following problem
V- (KoVU) +PU =0 in B3,4(0) N Q/t, 4.22)
U=0 on B3/4(0) N 082/, '

where ¢ € [0, 1], P(x) € [0,M] for x € B3,4(0) N /¢, and Ky is defined in (2.9). Any
solution U of (4.22) satisfies, by Theorem 9.13 [16] and (3.19),

Ul cre @ mmern = NUNL2B5 0002/ (4.23)

where @ € (0, 1) and ¢ is a constant depending on M, Ky, €2 but independent of 7. If /i
satisfies u < 1 < 1, by (4.23),

][ U2dx < 62~ ][ U%dx (4.24)
Bé(O)ﬂQ/t B3/4(0)ﬂ§2/t

for small 9 (depending on §, M, Ky, 2). Fix 81,6, € (0, %) such that §; < 522 and (4.24)
holds for any 6 e [9~1, 9~2].

We claim (4.21);. If not, there is a sequence {s,.e, éw,e, Po.c.swecr Unesoer Quierspes
Fo.e.50. ) satisfying (4.20) and, as w, € — 0,

€/Swe —> 0, Swe — 5x €[0,11, Gpc — b5 € [0, 6],
Po,e 50 (X) € [0, M] for x € B1(0) N Q2/s¢.e,
max{”fsw,e,swa,e,sw,e ||L2(Bl (0N /Sw.c)?

0 Qo e, Il Ln+s By O)NQE, /50,008 = 15

(4.25)

w’g/lg:i% 1Q0.€.50.e» Foresie L2+ (810025 /50.0)

—1
+o~ " max{w, f/sw,e}||Fa),e,xw,€ ||L"+5(1_!;1 (0N, /5w.c) — 0,

2
) 2
f Me/sy Vool s | 0 > 18l
ng,e (O)QQ/S(U,G X

By energy method and A2, there is a constant ¢ independent of w, €, s, ¢ such that
We€.50 11 (B2 50,0

1/2mp1/2
HloVUy e,s, ., ® / Poe 5w Un,e 50 ||L2(B4/5(0)ns2;,,/sw,€) =c

By compactness principle and by tracing the proof of Theorem 2.3 [3], we can extract a
subsequence (same notation for subsequence) such that, as w, €/s,, — 0,

Me/s,  Uneso e |Q§,/Swye - U in L2(B3/4(0) N Q/s) strongly,
ot sy Kessoe VU ersne = KoVU in L?(B34(0) N ©/s,) weakly, (4.26)
Ev.50 Pare.syUmes, . — PU in L?(B3,4(0) N Q/s.) weakly,
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1822 L.-M. Yeh

where KCp is a constant symmetric positive definite matrix, £5s < Ko < £¢ (see (2.9) and
(3.19)), and P(x) € [0, M] for x € B3/4(0) N 2/s4.In (4.26), function U satisfies (4.22) with
t = s4. By (4.24)—(4.25), we conclude

de

~ 5 .
|0« H< lim ‘He/swygIUw,e,sa,,g|§25f/sa,_€
®.€/50.c=>0) B, (O)NQ/50,e T

= ][ U?dx < |6, ][ U2dx. 4.27)
B;, (0)NQ/s. B4 (0)NQ /s

But (4.27) is impossible if we take 52 small enough. Therefore, there is a @g such that (4.21);
holds for w, € /s < @p. Clearly, @g can be chosen so that @y < wg (see Lemma 4.1 for wy).
The proof of (4.21), is similar to that of (4.3),, so we skip it. O

Lemma 4.6 For any §, M > 0, there are 51, éz € (0, 1) (depending on 6, M, K, Yy, Q)
satisfying 51 < 522 and there is a @y > 0 (depending on 51,52, 8, M, K, Q) satisfying
@y < wo (wg is that in Lemma 4.2) such that if

(4.28)

-V (EwZ,gKeVUw,e + Qw,e) + Ew,st,e w,e = Fw,e in B1(0) N €,
Upe=0 on B1(0) N 3%,

and if w, € € (0,dx), 0 € [01,62], Pyc(x) € [0.M] for x € B1(0) N Q, and k satisfying
€/9k < @y, then

2
Aok o2
dx <07 | Jo.el”,

Fo | MeUela
By (0)NQ

2 2 A2k, 72
w |Uw,e} dx <6 M|Jw,s| s
B ()N,

(4.29)

where J, e = ||Ew,er,e||L2(Bl(0)mQ) + w™! 1Quw,e- (;%0 max{w, E}Fw,e||L”"'5(Bl(0)ﬁQ§,,) +

1 _ 5
50 1Qo.e Fw,e||Ln+5(Bl(o)mQ‘f) and p = 575.

Proof The proof is similar to that of Lemma 4.2 and is done by induction on k. For k = 1,
(4.29) is deduced from Lemma 4.5 with s = 1. Suppose (4.29) holds for some k with
6/9k < @, we define

U, gt () = g L0750, (6% x)
Qe () = I 0% =1 9, (6% x)
]Fwyevék x) = J:;iék(z*“) Fw,e(ékx)
P, gt (x) = 6%P,, (0" x)

in By (0) \ 992, /6%

Then they satisfy

-V (ng,e,ékKe/ékVUu),e,ék + Qw,e,é")
+gw,e,ékpw,e,9~kUw,e,0~k = Fw,e,ék in B1(0) N Q/Gk’

U =0 on By (0) N9 /6k.

w,€,0

Following the argument of Lemma 4.2 and employing Lemma 4.5 with s = 6%, we obtain
(4.29) with k + 1 in place of k. ]
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Uniform bound and convergence for elliptic homogenization... 1823

Lemma 4.7 For any § € (0,3) and M > O, there is a @, € (0,1) (depending on
8, M,K, Yy, Q) such that if w, e < @4 and P, (x) € [0,M] for x € B1(0) N 2, then
any solution of (4.28) satisfies

3 n
[U‘”*G]CO*“(BUZ(O)MQ?) + SuZp @ /Z[Uw»e]CO=“(e(Tm+j)) =< CJw,ev (430)
J ]e n
€(Ym+j)CB1/2(0)NQ,

where L = ¢ is a constant independent of , €; J,, ¢ is defined as

S5 .
n+6’

Jo,.e = Z(HEw,e w.ellz20ne) T 1 Qe Fw,e||Ln+6(Bl(0)mQ€f)
%
+ 07 Qu.e. max{w, €} Fy el s (3, 0 ))- (4.31)

Proof Let 01, 03, o, fw,e be same as those in Lemma 4.6, set @0, = min{cboéz/3, wy} where
®x 1s the one in Lemma 4.3, and let , € < @,. Denote by ¢ a constant independent of w, €.
By energy method and A2, any solution of (4.28) satisfies

||Uw,e||H1(B3/4(0)mef) < c(|[Ep.cUs.e ||L2(Bl(0)msz) + ”El/w,e Qw,e||L2(B,(0)nQ)

+ 1 Foell 28, 0png) + €07 1 Foell 2, 0)nag)) = oZ.
By Theorem 7.26 [16] and Remark 2.1,

v

In.u ¢ n <cT. 4.32

H € a),é|§2f HL%(B3/4(O)DQ) =cC ( )

For any x € B@2/3(0) N Q¢ define n(x) = |x — xo| where xo € 9 satisfying |x — x| =
i 2 2

Let us consider case (1). Because of §; < 62, for any r € [€/@o, 62], there are 6 € [0y, 6>]

minyepq |x — y|. Then we have either case (1) n(x) >

or case (2) n(x) <

and k € N satisfying r = 6%. Since 1(x) € [ %), by Lemma 4.6,

3wg’
][ ‘He Uw,e |Qéf
By (x0)NS2

2 2 2u) 72
][ w |Uw,e| dy<r u|-’w,e|
By (x0)N&,

2 ~
dy < rzﬂl']w,5|2

3 -
forr e [En(x), 62].

M(iz]

So, fors € [ 5 3

2 ~
dy =< 052M|Jw,e |27

][ IMeaclas = (MeUa,clor s
By (x)NS2 ’
(4.33)
2 ~
][ @*|Us.e = (MeUo,elgs)xs| dy < es™|J .
B, (x)N2,

Next we shift the coordinate system such that x is located at the origin and we define, in
By (x) \ 982, /n(x),

Up.e m(x)y)—(Me Uy e |Q‘/ )x.n(x)

Uw,s,r/(x) ) =

’

0 )j;:.e nH(x)
= LoclW)y)
waeyn(x) (y) = jw,e nh=1(x)’
Fu)_e(r](x)}')_Ew,G/ﬂ(X) (MNPu,e((x)y)TTeUgy e ‘Qef)x,fi(x)
Fo,eneo(y) = Joe nP72(x) | ’

Pu.enex) ) =Pye(mx)y).
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1824 L.-M. Yeh

See (4.31) for JA@,E. Then these functions satisfy
=V (Eu2 ¢ /nin Ke/n) VUo,enx) + Qu,en))
+|77(x)|2Ea),e/r[(x)Pw,e.n(x)Ua),e,n(x) = Fw,e,n(x) in B (x). (4.34)

Take s = n(x) < 11in (4.33) to see, by (4.32),

Py,enx)(y) € [0, M] forall y € By(x).

~—1

w (”Ew,s/n(x)Uw,e,n(x)”LZ(Bl(x)) + ”Qw,e,n(x)v IE‘a),e,ﬂ(x) “L"+5(Bl(x)095f/n(x))

0™ Qu.e.n(x)» max{w, €/1(x)}Fo.e ) l Ln+8 By (0N, /n o)) =< €-

Apply Lemma 4.3 to (4.34) to obtain

[Uo.e.ncon @, 200nes /e
+ sup w3/2[Uw,e,n(x)]C0,u(L(Tm+j)) =<c. (4.35)
jezn 1(x)
767 Y+ CB1 200N, /n(x)
Which implies

2 N
dy < es?*|Jp.c|? fors < @ (4.36)

][ ’ner,ekZ; - (ner,e|Q;)x,s
By (x)NQ

Next we consider case (2). Because of 0 < 522, for any r € [€/wo, 52], there are § €
[51, 52] and k € N satisfying r = ok, By Lemma 4.6,

][ ’ns Up,e |§25f
By (x0)N$2

2 2 215 2
][ w |Uw,e| dy <cr M|Jw,e|
By (x0)NE2s,

2 ~
dy < cr?|Jy.el?

for r € [€/dy, 6] 4.37)

2
< &)

This implies, for s € [3(;)0,

2 -
dy < es™|Jy.el?,

][ ‘He Uw,e |S25f — (I Uw,e |S2€f)x,s
B, ()N

][ 0)2 ‘Uw,e — (MeUp,ele)x,s
By (1N, 4

Again we shift the coordinate system such that x is located at the origin. Define, in (B g, (x)N
Q2/e)\ 0, /€,

) (4.38)
dy < s |Jp el

Voo, 1) = Jg e (Une(€y) = (MeUo,elas x.e /i)

Qua(y) = JyLe! ™1 Q0 e (ey),

Fu 1 (5) = Jg e (Fie(€)) = Eu,e.c ()P, (€9) (MeUo el @ ) e i)
Pu,1()) = €°Py e (),

and define

Up, = —ja:leiﬂ(ner,e|Q‘/.)x,e/cbo in B (x)NQ/e.

(0}

See (4.19) for £y ¢ e
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By (4.37)1, Uy, is a constant independent of @, €. Then these functions satisfy

V. (ng,gngVUw,l + Qw,l) + gw,e,e]P)w,lUw,l = IIfTw,l in Bhi (x) n Q/E,
@0

Uw,1 = Up, on B (x) N32/e.
Q)

Take s = cﬁio in (4.38) to see, by (4.37);,

Py,1 € [0, M] forall x € By/g,(x) N Q/e,

I€0.6.Un,1 ||[‘2(31/5J0 (X)N/€) + ”gl/w,e,e(@w,h gl/w,e,er,l ||Ln+3(31/a-,0(x)mg/g)

FlUp, w148 By 5 ON027€) = €

By Lemma 3.4,
[ 3/2 -
[Uw,l]CO.M(Bl/MO ONQ /e) +w [Uw’l]CO’M(Bl/MO (ONKE, J€) <c. (4.39)

(4.39) imply (4.38); holds for s < 22)0.
The Holder estimate of I1. U, ( follows from (4.33), (i36), (4.38)1, (4.39), and Theorem
1.2 in page 70 [15]. The Holder estimate of Uy, ¢ in €(Y), + j) C By,2(0) N ¢, is from

m

(4.35) and (4.39). O

Remark 4.2 Let @, be same as that in Lemma 4.7. By Lemma 3.4 with p = n + §, we
know that if 6 € (0,3), M > 0, € € [@«, 1], ® € (0, @), and Py, (x) € [0, M] for all
x € B1(0)N <2, any solution of (4.28) satisfies (4.30). Together with Lemma 4.7, any solution
of (4.28) satisfies (4.30) if § € (0,3),M > 0,¢€ € (0, 1), w € (0, @), and P, (x) € [0, M]
for all x € B;(0) N 2.

Let us consider the solutions of (4.28) with P, = 0. By tracing the arguments of Lemma
4.7 and Remark 4.2 and employing Lemma 3.4, then we have

Lemma 4.8 Forany § > 0, there is a . € (0, 1) (depending on 8, K, Yy, Q) such that, if
w € (0, @x) and € € (0, 1), then any solution of (4.28) with P,, . = 0 satisfies

[Uw,e]COJt(W)ﬂQ}) + jS;lZIZl w[Uw7€]C0‘M(6(ﬁ+j)) < CJw,a
€Yy +j)CB12(0)NQE,

where c is a constant independent of w, €. See Lemma 4.7 for ., fw,e.

By energy method, partition of unity, Remark 4.1, Remark 4.2, Lemma 4.4, Lemma 4.8,
and Poincaré inequality [16], we conclude

Lemma 4.9 Under AI-A2, for any § € (0,3) and M > 0, there is a constant @, € (0, 1)
(depending on 6, M, K, Y, ) such that if

-V (sz,gKeVUwﬁs + Qu.e) T Ew PUpe = Fpe inQ,
Upe =0 on 0%,
and if o € (0,®,), € € (0, 1), and Py, (x) € [0, M] for all x € , then
[Ua),e]CO,M(Qiéf) + Sup w)\[U“)’e]CO'“(G(YTnJrJ'))
jezn
e(ym+.i)CQ;z

-1
=l Qo.e: FoellLnsag) + @ 1 Qo.e, max{w, €} Fo.ell s ),
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where i = n% and c is a positive constant independent of w, €. Here A is % ifPy.c #0and
is 1 ifP,=0.

Under A1-A4, we multiply (1.1) by |W,, |97%W,, . for ¢ > 2 and integrate over Q to
obtain

Wo.ellLa@) < cllE1jw,eVo,er Go,ellLa(@)s (4.40)
where c is independent of w, €. Then we write (1.1) as

V. (EwZ,eKeV“Ijm,e + Vw,e) = Gw,e - Tw,e“pw,e in ,
“ij,e =0 on 082.

Theorem 2.1 follows by energy method, (4.40) for ¢ = n + 6, and Lemma 4.9 for P,, . = 0.
Theorem 2.2 is a direct consequence of energy method and Lemma 4.9.
5 Convergence estimates

In this section, we prove Theorems 2.3,2.4,2.5. Foreachv € (0, 1) and iy, i € {1,2,--- , n},
we find Y{12) ¢ nge, (R") satisfying

V- (B K(VYY? 4+ x(78))

Ky (i2) :
= TJ"‘XYf — Esz(ai,XU + (Si],iz) inY, (51)
viR (y)dy =0,
Yy
where ¢€;, is a unit vector in the i;th coordinate direction, §;, ;, is 1 if ij = iy and is 0 if

i1 # iy, and K72 is the (i1, ip)th component of KC,.. See (2.5) for X% and (2.9) for K. By
Lax-Milgram Theorem [16], A1-A2, and (3.17), Y™ is uniquely solvable. By Lemma
3.3,

VSl 22 < € (5.2)
where c is a constant independent of v. Define n x n matrices Y, = (ij“iz} )and Y, s (x) =
52Y, (%) forv, s € (0, 1).

5.1 Proof of Theorem 2.3

A1-A6 are assumed. This subsection consists of two parts. The first part is for w, e — O,

% — 00, and the second part is for w, € — 0, % — o € [0, 00).

5.1.1 Part I: w, € — 0, 2 — oo.

For each v € (0, 1), we find W, € H;er (R") satisfying

V- (Eq2KVW,) =T - Too Xy, in?,

W, (y)dy = 0. 6

Yy
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See (2.11) for T. By Lax—Milgram Theorem [16], W,, is uniquely solvable. By Lemma 3.3
and A5,

IE W llc2pyneag < €/vs (5.4)

where c is independent of v. Define WU,S(x) = szwv(f) forv,s € (0, 1).
Let W, ¢ be the solution of (1.1) with V,, « = 0, ¥ be the solution of (2.12), and

Goe=Vpe—V-—W, ¥ —-X, V¥V -Y, VW inQ.
See (2.5) for X, ¢ and (5.1) for Y,, . By (2.12)~(2.13), (3.17), (3.19), and (5.1)~(5.4),
~V (B2 Ke(Vou,e + W e VU + Yy, V3W)) + Top e,
= 01(@ +€/w) + Gp,e = GXas in Q,
Pu.e = O2(e + €% /w?) on L2,

where O} (v) denotes a function satisfying |O1(v) || n+5(q) < cv and O2(v) denotes a func-
tion satisfying ||O2(v)|| L= (@) < cv for some constant ¢ independent of w, €. See (2.12) for
G. Decompose ¢y, ¢ S Po.c = Puw.c + Pu.c» Where @, ¢ satisfies

V(B Ke (Ve + Wep e VW + Yo, e VIW)) + Toy e P e
=01(w+€/w)+ Gy —QXQ; in , (5.9
Pw.ec=0 on 9%2,

and ¢,  satisfies

[—v (B KV ) + Toc@pe =0 inQ, 56
Guw.e = O2(€ + €2 /w?) on 0Q2.
By Theorem 2.1, A6, (2.13), (5.2), and (5.4), the solution of (5.5) satisfies
IEw,e@uw,ellLe@) < cmax{o, €/w} + 1Gop,e — GllLr+s @e))s (5.7
where ¢ is independent of w, €. By Theorem 8.1 [16], the solution of (5.6) satisfies
I@w.cllzo@) = o cllLepa) < cle+ e /o), (5.8)

where ¢ is a constant independent of w, €.
From (5.7) and (5.8), we see that the difference between the solution of (1.1) with V, = 0
and the solution of (2.12) satisfies

1Bo.e(Wo,e =Wl = c(max{w, €/w} + 1Go,e = Gl as)), (5.9

where ¢ is a constant independent of w, €. Now let us consider (2.14). We note that the
solution of (1.1) with V,, = 0 and the solution of (2.14) satisfy, for any €(Y,, + j) C Q,
and j € Z",
~0?V - (KeV(Yoe = 00) + Toe(Woe — $50) =0 ine(Vy + ).
e = W — W on de (Y + j).
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By (5.9) and Theorem 8.1 [16], we conclude

Woe = Do @kl < cmax{w, e/} + [Go.e = Gllpsgs)). (5.10)
jezn ’
e(Y+j)cRs,

where c is independent of w, €. (5.9)—(5.10) imply Theorem 2.3 for w, ¢ — 0, % — 00.

5.1.2 Part 2: w,e — 0, % — o € [0, 00).

Forv € (0,1), B € (0,00), and i1, ir € {lI,---,n}, we find X(”) Y(”ﬂ”) e H' (RM

per
satisfying
V. (IE K(VEY + (y, +WﬁXYM)611)) =0 inY,
(5.11)

/‘ﬁmomy—O
Yy
V- (ERKEVTLY +E08))

/C(l' \i2)

= S Ay, — EK (0, %03 + (B, + Wpdy)800) Y. (5.12)

/ FIL2 (y)dy =0,
Yy

where é;,, §;, ;, are same as those in (5.1), Wp is from (2.7)—~(2.8), and E(U’;‘ﬂ’iz) is defined as
K2 = / E,.K (a X0 + (X, + Wpy, )5, ,2) dy. (5.13)
Y

X(”ﬁ) Y(” 2) in (5.11)—(5.12) are uniquely solvable by Lax—Milgram Theorem [16].

Lemma 5.1 Under AI-A2 and A4, the solution Wg of (2.7)-(2.8) satisfies

Wg(x) € [0, 1] forany x € Y,,, B € (0, 00),
||]E/32Wﬁ||W2.p(Yf)mw24p(Ym) <c forany p < (1, OO), ﬂ € (0, OO), (514)

/ TWgdy < cy/|B1n ] if B € (0, 8%,
YNI
where B* is a constant depending on K, T and diam|S2|, and c is independent of .

Proof Corollary 3.2 [16] implies (5.14);. Theorems 9.11, 9.15 [16], extension method in
Theorem 7.25 [16], and (5.14); imply (5.14),. For any x € Y,,,, we set n, = mincyy,, |2 — x|
and & = max;eyy,, |2 — x|. Next we fix r € R and x € Y, as well as define ¢(y) =
exp((|ly — x|* — nf)t) for y € Y,,. Then ¢ satisfies

B>V - (KVg) — To = B2p(41’K|y — x|> 4+ 2t (y — x)VK + 21Kn — T/?).

We find that there are * < 1 and ¢* > 0 (depending on K, T, diam|2| but not x € Y,,)
such that if 8 € (0, 8*),t = ¢*/B, and x € Y, then
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B>V - (KVg) —Tg <0 in Bz, (x) N Yy, (5.15)
p>1 in Y, \ By, (x). '
Corollary 3.2 [16], (2.7), and (5.15) imply
0<=Wg=<o on Y. (5.16)

For any v > 0, define Y,,(v) = {y € Yjy| min;eyy,, |2 — y| = v}. By (5.16), it is easy to see
that if 8 € (0, B*), then, for any x € Y,,(y/2|B1n B8]/c*),

0<Wg<pB onB, ). (5.17)
Soif B € (0, ﬁ*),/ TWgdy < ¢/|B1n B] by (5.14); and (5.17). O
Y

By Lemma 3.3, Lemma 5.1, and energy method, there is a wg € (0, 1) such that, for any
v € (0, wp) and B € (0, 00),

(i) yi1.i2)

Iy g lwrrpawto s 105 lwzepow e, < €
(i) (ll i2) ¢

X Y || 2,0 2,0

1%, 5 c <Yf>mc T = B2

) /c(()” )| < C(E 02 asv -0, (5.18)
cl% —1] ift — o € (0, 00),

T
| c/|tlnt] ift -0 =0,

where p € (n,00), a € (0,1), IC(“ 2) s the (i1, i2)th component of Ky (see (2.9)),
and ¢ is a constant independent of v, B, t, 0. See (5.13) for IEI()"IIS"Z), and see (2.11) for
T,. Define Ky pe(xr) = €Xpp(2) Vop = (?{2}52)) and ¥, pe(x) = €25, 4(2) for
B € (0,00),w,e €(0,1),i1,i € Z.

Let W, ¢ be the solution of (1.1) with V,, ¢ = 0, ¥ be the solution of (2.12), and

Cue = Voo — (Ko + We 0Xgg )W — W WXge =K, 0 VW =T, 0 VW

in . See remark after (2.8) for W%G,i. By (2.7)-(2.8), (5.11)—(5.12), (5.18), and Lemma
5.1 with 8 = %, we obtain

V- (B2 Ke(VPoe + W VW Xge +Y,, 0 (VW)
4T cPoe = Goe + (;“)l/f vzwge — To W g + (91(6) in Q\ 09Q¢,
[E,2 K (VP e + We 2 VW Xae +Y,, V \IJ)J =0 ondQs, (5.19)
[Poel = —We  ,WXoe on 9Q,,
Do,e = O2(€) on 32,

where O1(v), O2(v) are same as those in Part 1. See (2.2) for (5.19), 3. Let us define

f’

Dy e+ We  ,WXqe on Q5
Pw,e = e !
D, . on .

@ Springer



1830 L.-M. Yeh

By (2.12)—(2.13), (5.18), and Lemma 5.1, ¢, ¢ satisfies

-V (sz,eKG (Vgow,é + 01 (6))) + Tw,ggﬂw,g = Gwﬁg - Q’ngf + .)E in ,
Pw,e = 0z(¢) on 0%2,

where

2 .
P 01(e+|ﬁ—11|) if 2 — 0 €(0,00),
O1e +12In2)2) if 2 — 0.

We write the ¢, ¢ a5 Qo.c = Gu,e + Pu,e, Where ¢, ¢ satisfies

jv : (Eaﬂ,sKeV(z’w,s) + Ta),e(l)a).e =0 inQ, (5.20)
Yuw.e = O2(€) on 9€2,
and @y, ¢ satisfies
=V (Ea)Z_eKe (Vaa),e + O (6))) + To.ePw.e = Go,e — gXSZ; +X inQ, (5.21)
Pwe =0 on 0L2. '
By Theorem 8.1 [16], the solution of (5.20) satisfies
Po.ellLo@) = 1fw.ellLe@a) < ce, (5.22)

where c is independent of w, €. Next we consider (5.21) for % — o € (0, 00) and % —- 0
separately.

Case 1: % — o € (0, 00). By Theorem 2.1 and A6, the solution of (5.21) satisfies
1Bl < cmax{o, €, [02/(©@€)* = 11} + [ Ga.e = Gllmsge)s (5:23)

where c is independent of w, €. Employing (5.22)—(5.23) and modifying the argument of Part

1, we obtain Theorem 2.3 for w, € — 0, % — o0 € (0, o0) case.

Case2: 2 — 0.1f @, is the solution of (5.21), we multiply (5.21) by @] >@y,c and
integrate by part to see, by A6,

—~ ®w. o1

1@w.ell pr+s (@) < c(max{w, €, |; In ;| 21+ 1Gpe — g||Lﬂ+5(fo.))v (5.24)

where c is independent of w, €. By (5.22) and (5.24), we obtain Theorem 2.3 for w, e —
, % — 0 case.

5.2 Proof of Theorem 2.4

The proof is similar to that of Theorem 2.3. Let us assume that A1-A3, A4’, A6, and A7

hold. For each v € (0, 1), we find WV S H[]w (R™) satisfying

V- (E.KVW,) = (E,P - T)Xy, inY,

W, (y)dy = 0.
Yy

See 1§7 for P, and (2.15) for constant T. By Lax—Milgram Theorem [16], Lemma 3.3, and
A7, W, is uniquely solvable and

(5.25)

Wyl c27pynezcrg < © (5.26)
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where ¢ is a constant independent of v. Define Wm(x) = szwv(f) forv,s € (0, 1).
Let ¥, ¢ be the solution of (1.1) with V,, . = 0, W be the solution of (2.16), and

Goe=Vpe—V-—W, ¥ -X, V¥ -V, V¥ Q.

See (2.5) for X, ¢ and (5.1) for Y,, . By (2.16), (3.17), (3.19), (5.1)—(5.2), and (5.25)—(5.26),
we obtain

-V (sz,eKé (V¢w,e + 01(62))) + Tw,eﬁow,e
— O1(e + W)Xy + 01@)Xey, + (Gone — D)Xy, i,
Yw,e = Oz(€) on 9%2,

where O1(v), Oz (v) are defined as those in Part 1. See (2.15) for G. Modifying the argument
of Part 1 in Sect. 5.1 and employing Theorem 2.2, we obtain Theorem 2.4.

5.3 Proof of Theorem 2.5

We assume A1-A3 and A6. Let W,  be the solution of (1.1) with V,, c = Ty, ¢ = 0, W be
the solution of (2.18), and define

Goe=Vpe—V—X, V¥V Y, VU inQ.
See (2.5) for X, ¢ and (5.1) for Y,, . By (2.18), (3.17), (3.19), and (5.2), ¢, ¢ satisfies

-V (sz,sKe (Vgaw,s + O (62)))
=0O1(e + w)/‘-’sz; + O1(0)Xqs, + (Gw.e — Q)stff in 2,
Yo, = O2(€) on 9Q2.

Modifying the argument of Part 1 in Sect. 5.1 and employing Theorem 2.2, we obtain Theorem
25.
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