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Abstract Uniform bound and convergence for the solutions of elliptic homogenization prob-
lems are concerned. The problem domain has a periodic microstructure; it consists of a
connected subregion with high permeability and a disconnected matrix block subset with
low permeability. Let ε ∈ (0, 1) denote the size ratio of the period to the whole domain, and
let ω2 ∈ (0, 1) denote the permeability ratio of the disconnected matrix block subset to the
connected subregion. For elliptic equations with diffusion depending on the permeability,
the elliptic solutions are smooth in the connected subregion but change rapidly in the discon-
nected matrix block subset. More precisely, the solutions in the connected subregion can be
bounded uniformly inω, ε in Hölder norm, but not in the matrix block subset. It is known that
the elliptic solutions converge to a solution of some homogenized elliptic equation as ω, ε

converge to 0. In this work, the L p convergence rate for p ∈ (2,∞] is derived. Depending
on strongly coupled or weakly coupled case, the convergence rate is related to the factors
ω, ε, ω

ε
for the former and related to the factors ω, ε for the latter.

Keywords Elliptic homogenization problem · Permeability · Two-phase media

Mathematics Subject Classification 35J05 · 35J15 · 35J25

1 Introduction

Uniform bound and convergence for the solutions of elliptic homogenization problems are
presented. The problems have applications in contaminant transport in the subsurface, heat
transfer in two-phase media, the stress in composite materials, and so on (see [3,10,17,18]).
The problemdomain� ⊂ R

n (n = 2, 3) contains two subsets, a periodic connected subregion
with highpermeability and aperiodic disconnectedmatrix block subsetwith lowpermeability.
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Let ε ∈ (0, 1) be a parameter, Y ≡ (0, 1)n consist of a subdomain Ym completely surrounded
by another connected subdomain Y f (≡ Y\Ym), �(ε) ≡ {x ∈ �|dist (x, ∂�) > ε}, �ε

m ≡
{x |x ∈ ε(Ym + j) ⊂ �(ε) for some j ∈ Z

n} be the disconnected matrix block subset of �,
�ε

f ≡ � \ �ε
m be the connected subregion of �, and ∂� (resp. ∂�ε

m) be the boundary of �

(resp. �ε
m). The problem that we consider is

{
−∇ · (Eω2,εKε∇�ω,ε + Vω,ε) + Tω,ε�ω,ε = Gω,ε in �,

�ω,ε = 0 on ∂�,
(1.1)

where ω, ε ∈ (0, 1), Eν,ε ≡
{
1 in �ε

f

ν in �ε
m

for any ν > 0, Kε(x) ≡ K( x
ε
), K is a positive

periodic function inRn with periodY ,Tω,ε is a nonnegative function, andVω,ε, Gω,ε are given
functions. It is known that ifKε,Tω,ε, Vω,ε, Gω,ε are smooth in�ε

f ∪�ε
m , a piecewise smooth

solution of (1.1) exists uniquely [19]. The H1 norm of the solution in the high-permeability
subregion �ε

f is bounded uniformly in ω, ε when Vω,ε, Gω,ε are small in �ε
m . However, that

may not be the case for the solution in the low-permeability subset �ε
m (see Remark 2.2).

Also the second-order derivatives of the solution of (1.1) may not be bounded uniformly in
ω, ε in the high-permeability subregion �ε

f even when Vω,ε, Gω,ε are bounded uniformly
in ω, ε and are small in �ε

m (see Remark 3.1). By homogenization theory (see [7,17,23]),
if ω, ε become small, the solution of (1.1) approaches to a solution of some homogenized
elliptic differential equation. So it seems that, if both ω, ε are small, the solution of the
homogenized elliptic differential equation is a good approximation of the solution of (1.1).
We shall see in Sect. 2 that the solution of (1.1) can be approximated by the solution of the
homogenized elliptic differential equation plus some functions, which are the solutions of
mutually independent local problems.

Lipschitz estimate and W 2,p estimate for the solutions of the uniform elliptic equations
with discontinuous coefficients had been considered in [20,21]. For the uniform elliptic
case of (1.1) (that is, ω = 1), uniform bound and convergence results were also studied.
For example, uniform Hölder, W 1,p , and Lipschitz estimates in ε for uniform elliptic case
of (1.1) with Hölder coefficients were proved in [4,5]. Uniform W 1,p estimate in ε for
uniform elliptic case of (1.1) with continuous coefficients was shown in [13], and the same
problem with VMO coefficients could be found in [25]. Uniform Lipschitz estimate in ε for
the Laplace equation in periodic perforated domains was studied in [24]. By [7,17,23], the
solution of uniform elliptic case of (1.1) with Dirichlet boundary condition converges to a
solution of some homogenized elliptic equation with convergence rate ε in L2 norm and with
convergence rate ε1/2 in H1 norm as ε closes to 0.

In this work, we consider the non-uniform elliptic case of (1.1) with discontinuous coeffi-
cients. We derive uniform Hölder estimates in ω, ε for the solution of (1.1) as well as derive
L p convergence estimates for p ∈ (2,∞] for the approximation of the solution of (1.1).

One interesting related problem is the study of the equations with contrasting diffusivity
in a fibered medium, that is, a conductivity medium reinforced by an ε-periodic lattice of
highly or lowly conducting thin rods (see [6,8,9,11,12,26] and references therein). In [9],
homogenization problem of degenerate Poisson equations in a fiber-reinforced structure was
considered. In [12], the article tried to find a suitable conductivitymediumwhich correspond-
ing the prescribed Dirichlet problem with the non-local term. In [26], the authors analyzed
nonlinear monotone conduction problems in a fibered medium. A two-scale convergence
result to a non-local homogenized equation was shown. In [8], weak convergence of the
solution of a p-Laplacian-type equation in a fiber-reinforced structure was shown. In [6], a
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spectral problem of a Poisson equations in a bounded domain with a high contrast in both
stiffness and density was studied. In [11], the article considered the uniform regularity of the
elliptic solutions in a fibered medium with ω = ω(ε) � 1 and ε 	 1. Uniform W 1,6 bound
in ε and uniform C1,ν convergence estimate in ε of the solutions were derived in an interior
region with a distance ετ away from the highly conducting thin rods for some ν, τ > 0 (the
distance constraint is required). Different from [11], we derive uniform Hölder estimates in
ω, ε for the solution of (1.1) in the high-permeability region �ε

f (the distance constraint is
not required).Moreover, we obtain the uniform convergence estimates inω, ε for the solution
of (1.1) in the whole domain �.

The rest of the work is organized as follows: Notation and main results are stated in Sect.
2. In Sect. 3, we derive a priori uniform estimates for interface problems. Uniform Hölder
estimates for the non-uniform elliptic solutions in heterogeneous media are considered in
Sect. 4. L p convergence estimates for elliptic homogenization problems are presented in
Sect. 5.

2 Notation and main result

If D ⊂ R
n is a set, D denotes the closure of the set D, XD is the characteristic function

on D, |D| is the volume of D, ∂ D is the boundary of D, and D/r = {x |r x ∈ D} for
r > 0. Br (x) denotes a ball centered at x with radius r > 0. If B1,B2 are Banach spaces,
‖ϕ1, · · · , ϕm‖B1 ≡ ‖ϕ1‖B1 + · · · + ‖ϕm‖B1 and ‖ϕ‖B1∩B2 ≡ ‖ϕ‖B1 + ‖ϕ‖B2 . Ck,α denotes
the Hölder space with norm ‖ · ‖Ck,α ; W s,p denotes the Sobolev space with norm ‖ · ‖W s,p ;
[ϕ]C0,α is the Hölder semi-norm of ϕ; L p(D) ≡ W 0,p(D); Hs(D) ≡ W s,2(D) for k ≥ 0,
α ∈ (0, 1], s ≥ −1, p ∈ [1,∞] (see [2,16]). C∞

0 (D) is the space of infinitely differentiable
functions with support in D; C∞

per (R
n) is the space of infinitely differentiable Y -periodic

functions in R
n ; W s,p

per (D) is the closure of C∞
per (R

n) under the W s,p norm for s ≥ 0, p ∈
[1,∞]; H1

per (D) ≡ W 1,2
per (D); L∞

per (D) ≡ W 0,∞
per (D). For p ≥ 2, W 1,p

0 (D) ≡ {ϕ ∈
W 1,p(D)| ϕ = 0 on ∂ D} and H1

0 (D) = W 1,2
0 (D). For any ϕ ∈ L1(D) and r > 0,

(ϕ)x,r ≡ −
∫

D∩Br (x)

ϕ(y)dy ≡ 1

|D ∩ Br (x)|
∫

D∩Br (x)

ϕ(y)dy.

If n is an outward normal vector on ∂Ym , we define, for any function ϕ and x ∈ ∂Ym ,

ϕ,±(x) ≡ lim
t→0+ ϕ(x ± t n), �ϕ�(x) = ϕ,+(x) − ϕ,−(x). (2.1)

Similarly, if nε is an outward normal vector on ∂�ε
m , we define, for any x ∈ ∂�ε

m ,

ϕ,±(x) ≡ lim
t→0+ ϕ(x ± t nε), �ϕ�(x) = ϕ,+(x) − ϕ,−(x). (2.2)

Next we recall an extension result in [1].

Remark 2.1 For any ε ∈ (0, 1) and p ∈ [1,∞), there are a constant �1(Y f , p) and a linear
continuous extension operator �ε : W 1,p(�ε

f ) → W 1,p(�) such that
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1806 L.-M. Yeh

(1) if ϕ ∈ W 1,p(�ε
f ), then⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�εϕ = ϕ in �ε
f almost everywhere,

‖�εϕ‖L p(�) ≤ �1‖ϕ‖L p(�ε
f )

,

‖∇�εϕ‖L p(�) ≤ �1‖∇ϕ‖L p(�ε
f )

,

�2 ≤ �εϕ ≤ �3 if ϕ ∈ L∞(�ε
f ) and �2 ≤ ϕ ≤ �3,

�εϕ = ζ in � if ϕ = ζ |�ε
f
for some linear function ζ in �,

(2) if r > 0, ε/r < 1, and ζ(x) ≡ ϕ(r x), then �ε/r ζ(x) = (�εϕ)(r x).

If ϕ ∈ W 1,p(�) for any p ≥ 1, then �εϕ|�ε
f

∈ W 1,p(�) denotes the extension function of

ϕ|�ε
f

∈ W 1,p(�ε
f ) in �.

We briefly state our main results. Theorems 2.1–2.2 are uniform bound estimates for the
solution of (1.1). Theorem 2.1 is for the strongly coupled case (i.e., 0 < M0 ≤ Tω,ε ≤ M in
�), and Theorem 2.2 is for the weakly coupled case (i.e., 0 ≤ E1/ω,εTω,ε ≤ M in �). Proofs
of Theorems 2.1–2.2 are given in Sect. 4. Theorems 2.3–2.5 are convergence estimates for
the solution of (1.1). Theorem 2.3 is for the strongly coupled case, and Theorems 2.4–2.5
are for the weakly coupled case. Proofs of Theorems 2.3–2.5 are given in Sect. 5.

Theorem 2.1 Suppose

A1. � ⊂ R
n is a C2,1 domain for n ∈ {2, 3}, Ym is a smooth simply connected subdomain

of Y , Ym ⊂ Y ,
A2. K ∈ H1

per (R
n) is a positive function, ‖∇K‖L∞(Y ) is small compared withminx∈Y K(x),

and K ∈ C1,α(Y f ) ∩ C1,α(Ym) for some α ∈ (0, 1),
A3. ω, ε ∈ (0, 1), δ ∈ (0, 3), Vω,ε, Gω,ε ∈ Ln+δ(�),
A4. M0,M > 0, Tω,ε(x) ∈ [M0,M] for all x ∈ �,

then a H1(�) solution of (1.1) exists uniquely and there is a constant ω0 ∈ (0, 1) (depending
on δ,K,M, Y f ,�) such that, for ω < ω0 and ω

ε
> �4 > 0,

[�ω,ε]C0,μ(�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂�ε
m

ω[�ω,ε]C0,μ(ε(Ym+ j)) ≤ c‖E1/ω,εVω,ε, Gω,ε‖Ln+δ(�), (2.3)

where �4 is any number, μ ≡ δ
n+δ

, and c is a positive constant independent of ω, ε.

Theorem 2.2 Besides A1–A3, if

A4’. E1/ω,εTω,ε(x) ∈ [0,M] for all x ∈ �,

then a H1(�) solution of (1.1) exists uniquely and there is a constant ω0 ∈ (0, 1) (depending
on δ,K,M, Y f ,�) such that, for any ω < ω0,

[�ω,ε]C0,μ(�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂�ε
m

ωλ[�ω,ε]C0,μ(ε(Ym+ j))

≤ c(‖E1/ω,εVω,ε, Emax{1,ε/ω}Gω,ε‖Ln+δ(�), (2.4)

where μ ≡ δ
n+δ

and c is independent of ω, ε. In (2.4), λ =
{

3
2 if Tω,ε �= 0

1 if Tω,ε = 0
.
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FromTheorem 2.1 and Theorem 2.2, we know that if the right-hand side of (2.3) or (2.4) is
bounded, the Hölder norm of the solution of (1.1) in the connected high-permeability region
�ε

f is bounded uniformly in ω, ε, but the solution in �ε
m may change rapidly when ω, ε are

small. This is different from uniform elliptic equation case, where the solution is bounded
uniformly in the whole domain. To obtain the uniform Hölder estimate for the solution of
(1.1), the condition ω

ε
≥ �4 > 0 is needed in strongly coupled case but not in weakly coupled

case. Below is one example to show that the Hölder norm and the H1 norm of the solution
of (1.1) in �ε

m in general are not be bounded uniformly in ω, ε.

Remark 2.2 Suppose ϕ ∈ C∞
per (R

n) and ϕ in the cell Y ≡ (0, 1)n has support in Ym , we
define, for any ε ∈ (0, 1),

�ω,ε(x) ≡
{
0 if x ∈ �ε

f ,

ϕ( x
ε
) if x ∈ �ε

m .

Then �ω,ε satisfies

{
−∇ · (Eω2,ε∇�ω,ε) = Gω,ε in �,

�ω,ε = 0 on ∂�,

where Gω,ε(x) = −ω2ε−2�ϕ( x
ε
)X�ε

m
. Note [�ω,ε]C0,μ(ε(Ym+ j)) = ε−μ[ϕ]C0,μ(Ym+ j),

‖∇�ω,ε‖L2(�ε
m ) ≈ ε−1‖∇ϕ‖L2(Ym ), and ‖Gω,ε‖Ln+δ(�ε

m ) ≈ ω2ε−2‖�ϕ‖Ln+δ(Ym ) where

δ > 0, μ ≡ δ
n+δ

. Here A ≈ B means that A is almost like B times a constant when ε

is small. If ω ≤ ε < 1, then the right-hand side of (2.4) is finite and (2.4) holds for �ω,ε . But
the C0,μ norm and the H1 norm of �ω,ε in �ε

m are not bounded uniformly in ε ∈ (0, 1).

Next we state convergence results. Set Am ≡ {x ∈ R
n |x ∈ ∪ j∈Zn (Ym + j)}, A f ≡

R
n\Am , and Eν ≡

{
1 in Y f

ν in Ym
for any ν > 0. We find X

(i)
ν ∈ H1

per (R
n) for ν ∈ (0, 1] and

i ∈ {1, 2, · · · , n} satisfying
⎧⎪⎨
⎪⎩

−∇ · (Eν2K(∇X
(i)
ν + ei )) = 0 in Y,∫

Y f

X
(i)
ν (y)dy = 0,

(2.5)

find X
(i)
0 ∈ H1

per (A f ) ∩ H1
per (Am) for i ∈ {1, 2, · · · , n} satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (K(∇X
(i)
0 + ei )) = 0 in Y f ,

X
(i)
0 = 0 in Ym,

K(∇X
(i)
0 + ei ),+ · n = 0 on ∂Ym,∫

Y f

X
(i)
0 (y)dy = 0,

(2.6)
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and find Wβ ∈ H1
per (A f ) ∩ H1

per (Am) for β > 0, T ∈ L∞
per (R

n), and T ≥ 0 satisfying⎧⎨
⎩

β2∇ · (K∇Wβ) − TWβ = 0 in Ym,

Wβ = 1 on ∂Ym,
(2.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · (K∇Wβ) − T = −1

|Y f |
( ∫

Y f

Tdy +
∫

Ym

TWβdy

)
in Y f ,

�Eβ2K∇Wβ� · n = 0 on ∂Ym,∫
Y f

Wβ(y)dy = 0,

(2.8)

where ei is a unit vector in the i th coordinate direction, |Y f | is the volume of Y f , and n is

an outward normal vector on ∂Ym . See (2.1) for (2.6)3 and (2.8)2. Let X
(i)
ν,s(x) ≡ sX(i)

ν ( x
s )

Xν,s ≡ (X
(1)
ν,s, · · · ,X

(n)
ν,s), and Wβ,s,i (x) ≡ si

Wβ( x
s ) for any ν ∈ [0, 1], s ∈ (0, 1), β > 0,

i ∈ Z. By Lax–Milgram Theorem [16], (2.5)–(2.8) are uniquely solvable. Denote by �ν for
ν ∈ [0, 1] a n × n matrix function whose (i, j)-component is ∂iX

( j)
ν . By remark in pages

17–19, 94–95 [17],

Kν ≡
∫

Y f ∪Ym

Eν2K(I + �ν(y))dy for ν ∈ [0, 1] (2.9)

is a constant symmetric positive definite matrix. Here I is the identity matrix.
If, in addition to A1–A4,

A5. Tω,ε(x) = T( x
ε
) > 0 and T ∈ C0,α

per (R
n) for some α > 0,

A6. ‖E1/ω,εGω,ε‖Ln+δ(�) + ‖Gω,ε‖W 1,n+δ(�ε
f )
is bounded independent of ω, ε,

the solution of (1.1) with Vω,ε = 0 satisfies ‖Eω,ε∇�ω,ε,�ω,ε‖L2(�) ≤ c (independent of
ω, ε). Suppose ω, ε → 0 and ω

ε
→ σ ∈ [0,∞], by tracing the proof of Theorem 2.3 [3], we

can extract a subsequence (same notation for subsequence) such that⎧⎪⎪⎨
⎪⎪⎩
Eω2,εKε∇�ω,ε → K0∇�

Tω,ε�ω,ε → |Y f |Tσ �

Gω,ε → |Y f |G
in L2(�) weakly, (2.10)

where K0 is defined in (2.9) with ν = 0, |Y f | is the volume of Y f , and

Tσ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

|Y f |
∫

Y
Tdy if σ = ∞,

1

|Y f |
( ∫

Y f

Tdy +
∫

Ym

TWσ dy

)
if σ ∈ (0,∞),

1

|Y f |
∫

Y f

Tdy if σ = 0.

(2.11)

See (2.7) for Wσ . The � in (2.10) satisfies{
−∇ · (K0∇�) + |Y f |Tσ � = |Y f |G in �,

� = 0 on ∂�.
(2.12)
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By Theorem 9.19 [16] and A6,

‖�‖W 3,n+δ(�) ≤ c‖G‖W 1,n+δ(�), (2.13)

where c is a constant depending on K0,M, |Y f |,�. Now for any ω, ε ∈ (0, 1) and on any
ε(Ym + j) ⊂ �ε

m for some j ∈ Z
n , we consider⎧⎨

⎩
−∇ · (

ω2Kε∇φ
( j)
ω,ε

) + Tω,εφ
( j)
ω,ε = Gω,ε in ε(Ym + j),

φ
( j)
ω,ε = � on ε(∂Ym + j),

(2.14)

where � is the solution of (2.12). By Lax–Milgram Theorem [16], A5–A6, and (2.13), the
φ

( j)
ω,ε of (2.14) is solvable uniquely in H1(ε(Ym + j)). By Theorem 8.24 and Theorem 8.29

[16], φ( j)
ω,ε ∈ L∞(ε(Ym + j)). Moreover,

Theorem 2.3 Suppose A1–A6 and Vω,ε = 0 in (1.1). There is a constant ω0 ∈ (0, 1) such
that, for any ω ∈ (0, ω0) and ε ∈ (0, 1),

1. if ω, ε → 0 and ω
ε

→ ∞, the solutions of (1.1), (2.12), and (2.14) satisfy

‖Eω,ε(�ω,ε − �)‖L∞(�) + ‖�ω,ε −
∑
j∈Zn

ε(Ym+ j)⊂�ε
m

φ( j)
ω,ε‖L∞(�ε

m )

≤ c(‖Gω,ε − G‖Ln+δ(�ε
f )

+ max{ω, ε/ω}),
2. if ω, ε → 0 and ω

ε
→ σ ∈ (0,∞), the solutions of (1.1), (2.12), and (2.14) satisfy

‖Eω,ε

(
�ω,ε − (X�ε

f
+ W ω

ε
,ε,0X�ε

m
)�

)‖L∞(�) + ‖�ω,ε −
∑
j∈Zn

ε(Ym+ j)⊂�ε
m

φ( j)
ω,ε‖L∞(�ε

m )

≤ c(‖Gω,ε − G‖Ln+δ(�ε
f )

+ max{ω, ε, |ω2/(σε)2 − 1|}),
3. if ω, ε → 0 and ω

ε
→ 0, the solutions of (1.1) and (2.12) satisfy

‖�ω,ε − (X�ε
f
+ W ω

ε
,ε,0X�ε

m
)�‖Ln+δ(�)

≤ c(‖Gω,ε − G‖Ln+δ(�ε
f )

+ max{ω, ε, |ωε−1 ln(ωε−1)| 12 }),
where c is a constant independent of ω, ε.

Theorem 2.3, based on Theorem 2.1, is a convergence result for (1.1) in strongly coupled
case. Note that L∞ convergence estimate is obtained for ω

ε
→ σ > 0 case and that only Ln+δ

convergence estimate is available for ω
ε

→ 0 case. Next we present convergence estimates
for the solutions of (1.1) in weakly coupled case (that is, Theorems 2.4 and 2.5).

Besides A1–A3, A4’, and A6, if

A7. E1/ω,εTω,ε(x) = P( x
ε
) ≥ 0 and P ∈ L∞

per (R
n) ∩ C0,α(A f ) for some α > 0,

the solution of (1.1) with Vω,ε = 0 satisfies ‖Eω,ε∇�ω,ε,T
1/2
ω,ε�ω,ε‖L2(�) ≤ c (independent

of ω, ε). By compactness principle [3,17],⎧⎪⎨
⎪⎩
Eω2,εKε∇�ω,ε → K0∇�

Tω,ε�ω,ε → |Y f |T̆ �

Gω,ε → |Y f |G
in L2(�) weakly as ω, ε → 0, (2.15)
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1810 L.-M. Yeh

where T̆
(

= 1

|Y f |
∫

Y f

P(y)dy

)
is a constant vector and K0 is defined in (2.9) with ν = 0.

Similar to (2.12)–(2.13), the � in (2.15) satisfies⎧⎪⎨
⎪⎩

−∇ · (K0∇�) + |Y f |T̆ � = |Y f |G in �,

� = 0 on ∂�,

‖�‖W 3,n+δ(�) ≤ c‖G‖W 1,n+δ(�),

(2.16)

where |Y f | is the volume of Y f and c is a constant depending on K0,M, |Y f |,�.
We have the following result:

Theorem 2.4 Assume A1–A3, A4’, A6–A7, and Vω,ε = 0 in (1.1). There is a ω0 ∈ (0, 1)
such that if ω < ω0, then the solutions of (1.1), (2.16), and (2.14) with � obtained from
(2.16) satisfy

‖Eω3/2,ε�ω,ε − �‖L∞(�) + ‖�ω,ε −
∑
j∈Zn

ε(Ym+ j)⊂�ε
m

φ( j)
ω,ε‖L∞(�ε

m )

≤ c(‖Gω,ε − G‖Ln+δ(�ε
f )

+ max{ω, ε}),
where c is a constant independent of ω, ε. See (2.16) for G.

UnderA1–A3andA6, the solutionof (1.1)withVω,ε = Tω,ε = 0 satisfies‖Eω,ε∇�ω,ε‖L2(�)

≤ c (independent of ω, ε). By compactness principle [3,17],{
Eω2,εKε∇�ω,ε → K0∇�

Gω,ε → |Y f |G in L2(�) weakly as ω, ε → 0, (2.17)

where K0 is defined in (2.9) with ν = 0. The � in (2.17) satisfies⎧⎪⎨
⎪⎩

−∇ · (K0∇�) = |Y f |G in �,

� = 0 on ∂�,

‖�‖W 3,n+δ(�) ≤ c‖G‖W 1,n+δ(�),

(2.18)

where |Y f | is the volume of Y f and c is a constant depending on K0, |Y f |,�. We also have

Theorem 2.5 Assume A1–A3, A6, and Vω,ε = Tω,ε = 0 in (1.1). There is a ω0 ∈ (0, 1)
such that if ω < ω0, the solutions of (1.1), (2.18), and (2.14) with Tω,ε = 0 and � from
(2.18) satisfy

‖Eω,ε�ω,ε − �‖L∞(�) + ‖�ω,ε −
∑
j∈Zn

ε(Ym+ j)⊂�ε
m

φ( j)
ω,ε‖L∞(�ε

m )

≤ c(‖Gω,ε − G‖Ln+δ(�ε
f )

+ max{ω, ε}),
where c is a constant independent of ω, ε. See (2.17) for G.

Theorems 2.3, 2.4, 2.5 imply ifω, ε, ‖Gω,ε −G‖Ln+δ(�ε
f )
are small enough, the homogenized

solution � of (2.12) or (2.16) or (2.18) is a good approximation of the solution of (1.1) in
the connected subregion �ε

f , but the � may not be a good approximation of the solution of
(1.1) in the disconnected subset �ε

m . In the disconnected subset �
ε
m , the solution of (1.1) can

be approximated by the solution of (2.14). One also notes that
∑

j∈Zn

ε(Ym + j)⊂�ε
m

φ
( j)
ω,ε is obtained

by solving mutually independent local problems.
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3 A priori uniform estimates for interface problems

Let �(x − y) denote the fundamental solution of the Laplace equation in R
n ; see §6.2 [14].

Define a single-layer and a double-layer potentials as, for any smooth function ϕ on the
boundary ∂Ym of Ym ,⎧⎪⎪⎨

⎪⎪⎩
S∂Ym (ϕ)(x) ≡

∫
∂Ym

�(x − y)ϕ(y)dy

L∂Ym (ϕ)(x) ≡
∫

∂Ym

∇y�(x − y)ny ϕ(y)dy
for x ∈ ∂Ym,

where ny is the unit vector outward normal to ∂Ym . By tracing the argument of Lemma 4.1
[27], we know

Lemma 3.1 For any p ∈ (1,∞), i ∈ {0, 1}, and α ∈ (0, 1), the linear operators⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S∂Ym : W i− 1
p ,p

(∂Ym) → W i+1− 1
p ,p

(∂Ym)

L∂Ym : W i+1− 1
p ,p

(∂Ym) → W i+2− 1
p ,p

(∂Ym)

S∂Ym : C1,α(∂Ym) → C2,α(∂Ym)

L∂Ym : C1,α(∂Ym) → C2,α(∂Ym)

are bounded; the operator I − �L∂Ym is continuously invertible in W i+1− 1
p ,p

(∂Ym) and in
C2,α(∂Ym) for � ∈ [−2, 2]; there is a constant c independent of � so that⎧⎨

⎩‖ϕ‖
W

i+1− 1
p ,p

(∂Ym )
≤ c‖(I − �L∂Ym )(ϕ)‖

W
i+1− 1

p ,p
(∂Ym )

for ϕ ∈ W i+1− 1
p ,p

(∂Ym),

‖ϕ‖C2,α(∂Ym ) ≤ c‖(I − �L∂Ym )(ϕ)‖C2,α(∂Ym ) for ϕ ∈ C2,α(∂Ym),

where I is the identity operator.

By A1, let us assume{
Ym ⊂ D1 ⊂ D2 ⊂ Y,

min{dist (Ym, ∂D1), dist (D1, ∂D2), dist (D2, ∂Y )} > 0.
(3.1)

Lemma 3.2 Under A1–A2, ω ∈ (0, 1], p ∈ (n, 6), M > 0, and Pω(x) ∈ [0,M] for all
x ∈ Y , any solution of

− ∇ · (Eω2K∇Uω + Qω) + EωPωUω = Fω in Y (3.2)

satisfies

‖Eω3/2Uω‖W 1,p(D1\Ym )∩W 1,p(Ym ) ≤ c(‖Uω‖L2(Y f )
+ ‖E1/ω Qω‖L2(Y )

+‖E1/ω Fω‖H−1(Y ) + ‖E1/
√

ω Qω‖L p(Y ) + ‖E1/
√

ω Fω‖W−1,p(Y )), (3.3)

where c is a constant independent of ω. See Sect. 2 for Eν .

Proof Let p ∈ (n, 6) and c denote a constant independent of ω.
Step 1: Assume Qω ∈ W 1,p

0 (Y f ) ∩ W 1,p
0 (Ym), Fω ∈ L p(Y ), and consider{

−∇ · (Eω2K∇ϕω + Qω) + EωPωϕω = Fω in D2,

ϕω = 0 on ∂D2.
(3.4)
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1812 L.-M. Yeh

The unique existence of a solution of (3.4) in H1(D2) is known by Lax–Milgram Theorem
[16]. By Theorem 7.26 and Poincaré inequality [16],

‖ϕω‖L p(D2\Ym ) + ω1/2‖P1/2ω ϕω‖W−1,p(Ym ) ≤ c‖Eω∇ϕω,Eω1/2P
1/2
ω ϕω‖L2(D2)

≤ c(‖E1/ω Qω‖L2(D2)
+ ‖E1/ω Fω‖H−1(D2)

+‖E1/
√

ω Qω‖L p(D2) + ‖E1/
√

ω Fω‖W−1,p(D2)
) ≡ cIω. (3.5)

By (3.4)–(3.5) and [22], we have

‖ϕω‖W 1,p(D2\D1)
≤ cIω. (3.6)

See (3.1) for D1. Let ϕ̂ in Ym be the solution of{
−∇ · (ω2k̂∇ϕ̂ + ω2(K − k̂)∇ϕω + Qω) = Fω − ωPωϕω in Ym,

ϕ̂|∂Ym = 0,
(3.7)

and ϕ̂ in D2 \ Ym be the solution of{
−∇ · (K̂∇ϕ̂ + (K − K̂)∇ϕω + Qω) = Fω − Pωϕω in D2\Ym,

ϕ̂|∂(D2\Ym ) = 0,
(3.8)

where K̂, k̂ are two constants in the interval (minY K,maxY K). By [22] and (3.5),{
ω2k̂‖ϕ̂‖W 1,p(Ym ) ≤ c

(
ω1/2Iω + ω2‖(K − k̂)∇ϕω‖L p(Ym )

)
,

K̂‖ϕ̂‖W 1,p(D2\Ym ) ≤ c
(
Iω + ‖(K − K̂)∇ϕω‖L p(D2\Ym )

)
.

(3.9)

If we define ϕ̌ ≡ ϕω − ϕ̂ in D2, then (3.4) and (3.7)–(3.8) imply⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ϕ̌ = 0 in D2\∂Ym,

�ϕ̌� = 0 on ∂Ym,

�Ě∇ϕ̌� · ny = F/K̂ on ∂Ym,

ϕ̌ = 0 on ∂D2,

(3.10)

where Ě ≡
{

ω2k̂/K̂ in Ym

1 in Y f

and ny is the unit vector outward normal to ∂Ym . See (2.1) for

(3.10)2,3. Since Qω ∈ W 1,p
0 (Y f ) ∩ W 1,p

0 (Ym),

F ≡ (
ω2k̂∇ϕ̂,− − K̂∇ϕ̂,+ + ω2(K − k̂)∇ϕω,− − (K − K̂)∇ϕω,+

) · ny |∂Ym .

By (3.9),

‖F‖
W

− 1
p ,p

(∂Ym )
≤c

(
Iω + ω2‖K − k̂‖L∞(Ym )‖ϕω‖W 1,p(Ym )

+‖K − K̂‖L∞(D2\Ym )‖ϕω‖W 1,p(D2\Ym )

)
. (3.11)

By Green’s formula, (3.10), and Theorem 6.5.1 [14], we see that⎧⎨
⎩

ϕ̌/2 + L∂Ym (ϕ̌) = S∂Ym (∂ny ϕ̌,−|∂Ym )

ϕ̌/2 − L∂Ym (ϕ̌) = −S∂Ym (∂ny ϕ̌,+|∂Ym ) + S∂D2(∂ny ϕ̌|∂D2)
on ∂Ym,
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where ∂ny ϕ̌|∂D2 is the normal derivative of ϕ̌ on ∂D2. So we have(
I − 2(1 − ω̌)

1 + ω̌
L∂Ym

)
ϕ̌ = 2 S∂D2(∂ny ϕ̌|∂D2)

1 + ω̌
− 2 S∂Ym (F)

(1 + ω̌)K̂
on ∂Ym, (3.12)

where ω̌ ≡ ω2k̂/K̂. Then (3.6), (3.9), (3.12), and Lemma 3.1 imply⎧⎨
⎩

‖ϕ̌‖
W

1− 1
p ,p

(∂Ym )
≤ c(‖F‖

W
− 1

p ,p
(∂Ym )

+ ‖∂ny ϕ̌‖
W

− 1
p ,p

(∂D2)
),

‖∂ny ϕ̌‖
W

− 1
p ,p

(∂D2)
≤ c

(
Iω + ‖(K − K̂)∇ϕω‖L p(D2\Ym )

)
.

(3.13)

(3.10)–(3.11) and (3.13) imply

‖ϕ̌‖W 1,p(D2\Ym )∩W 1,p(Ym ) ≤ c
(
Iω + ω2‖K − k̂‖L∞(Ym )‖ϕω‖W 1,p(Ym )

+‖K − K̂‖L∞(D2\Ym )‖ϕω‖W 1,p(D2\Ym )

)
.

Together with (3.9), we obtain

‖Eω3/2ϕω‖W 1,p(D2\Ym )∩W 1,p(Ym ) ≤ c
(
Iω + ω3/2‖K − k̂‖L∞(Ym )‖ϕω‖W 1,p(Ym )

+‖K − K̂‖L∞(D2\Ym )‖ϕω‖W 1,p(D2\Ym )

)
.

By A2, we obtain

‖Eω3/2ϕω‖W 1,p(D2\Ym )∩W 1,p(Ym ) ≤ cIω. (3.14)

Step 2: Note W 1,p
0 (Y f ) (resp. W 1,p

0 (Ym)) is dense in L p(Y f ) (resp. L p(Ym)) as well as
L p(Y ) is dense in W −1,p(Y ). By a limiting argument, we see that if Qω ∈ L p(Y ) and
Fω ∈ W −1,p(Y ), the solution of (3.4) still satisfies (3.14).

Step 3: Let η be a smooth function satisfying η ∈ C∞
0 (D2), η ∈ [0, 1], η = 1 in D1,

‖∇η‖W 1,∞(D2)
≤ c. Multiply (3.2) by η to obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (Eω2K∇(Uωη) − KUω∇η + Qωη) + EωPωUωη

= Fωη − (K∇Uω + Qω)∇η in D2,

Uωη = 0 on ∂D2.

By the result of Step 2, we have

‖Eω3/2Uω‖W 1,p(D1\Ym )∩W 1,p(Ym ) ≤ c(‖Uω‖L p(D2\D1) + ‖E1/
√

ω Qω‖L p(Y )

+‖E1/
√

ω Fω‖W−1,p(Y ) + ‖E1/ω Qω‖L2(Y ) + ‖E1/ω Fω‖H−1(Y )). (3.15)

Let η̃ be another smooth function satisfying η̃ ∈ C∞
0 (Y ), η̃ ∈ [0, 1], η̃ = 1 in D2,

‖∇η̃‖W 1,∞(Y ) ≤ c. Multiply (3.2) by η̃ and then use energy method to get

‖Uω‖L p(D2\D1) ≤ c(‖Uω‖L2(Y f )
+ ‖E1/ω Qω‖L2(Y ) + ‖E1/ω Fω‖H−1(Y )).

Together with (3.15), we obtain (3.3).
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Modifying the argument for Lemma 3.2 and employing Lemma 3.1, we see

Lemma 3.3 Under A1–A2, ω ∈ (0, 1], and p ∈ (n,∞), any solution of

−∇ · (Eω2K∇Uω + Qω) = Fω in Y

satisfies

‖Eωi Uω‖W 1,p(D1\Ym )∩W 1,p(Ym )

≤ c(‖Uω‖L2(Y f )
+ ‖Eωi−2 Qω‖L p(Y ) + ‖Eωi−2 Fω‖W−1,p(Y )),

‖Uω‖W 2,p(D1\Ym )∩W 2,p(Ym )

≤ c(‖Uω‖L2(Y f )
+ ‖Eω−2 Qω‖W 1,p(Y f )∩W 1,p(Ym ) + ‖Eω−2 Fω‖L p(Y )),

‖Eωi Uω‖C2,α(D1\Ym )∩C2,α(Ym ) ≤ c(‖Uω‖L2(Y f )
+ ‖Eωi−2 Qω‖C1,α(Y f )∩C1,α(Ym )

+‖Eωi−2 Fω‖C0,α(Y f )∩C0,α(Ym )), (3.16)

where i ∈ {0, 1}, α ∈ (0, 1), and c is a constant independent of ω. See (3.1) for D1.

Under A1–A2 and ν ∈ (0, 1], the solution of (2.5) satisfies, by Lemma 3.3,

‖X(i)
ν ‖C2(Y f )∩C2(Ym ) ≤ c, (3.17)

where c is independent of ν. Under A1–A2, the solution of (2.6) satisfies, by Theorem 6.30
[16],

‖X(i)
0 ‖C2(Y f )

≤ c, (3.18)

where c is a constant. By (3.17) and (3.18), it is not difficult to see that there are positive
constantsω0, �5, �6 such that the symmetric positive definite matrixKν for ν ∈ [0, 1] in (2.9)
satisfies {

�5 I ≤ Kν ≤ �6 I,

|Kν − K0| ≤ cν where c is independent of ν.
(3.19)

Define a part of boundary of Y by ∂Ỹn ≡ {y ∈ ∂Y |y = (y1, y2, · · · , yn−1, 0)} and
consider the following problem{

−∇ · (Eω2K∇Uω + Qω) + EωPωUω = Fω in Y,

Uω = Ubω on ∂Ỹn .
(3.20)

Let Ym ⊂ D3 ⊂ Y satisfy min{dist (Ym, ∂D3), dist (D3, ∂Y \ ∂Ỹn)} > 0. By an analogous
argument as that for Lemma 3.2, we see

Lemma 3.4 Under A1–A2, ω ∈ (0, 1], p ∈ (n, 6), M > 0, and Pω(x) ∈ [0,M] for all
x ∈ Y , any solution of (3.20) satisfies

‖Eω3/2Uω‖W 1,p(D3\Ym )∩W 1,p(Ym ) ≤ c(‖Ubω‖W 1,p(Y f )
+ ‖Uω‖L2(Y f )

+‖E1/ω Qω‖L2(Y ) + ‖E1/ω Fω‖H−1(Y ) + ‖E1/
√

ω Qω‖L p(Y ) + ‖E1/
√

ω Fω‖W−1,p(Y )),

where c is a constant independent of ω.
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Under A1–A2, ω ∈ (0, 1], and p ∈ (n,∞), any solution of (3.20) with Pω = 0 satisfies

‖EωUω‖W 1,p(D3\Ym )∩W 1,p(Ym ) ≤ c(‖Ubω‖W 1,p(Y f )
+ ‖Uω‖L2(Y f )

+‖E1/ω Qω‖L p(Y ) + ‖E1/ω Fω‖W−1,p(Y )),

where c is a constant independent of ω.

One example below shows that the second-order derivatives of the solution of (1.1) may
not be bounded uniformly in ω, ε in the high-permeability subregion �ε

f .

Remark 3.1 Assume that B1(0) ⊂ �(ω) and η is a bell-shaped smooth function satisfying
η ∈ C∞

0 (B1(0)), η ∈ [0, 1], and η(x) = 1 in B1/2(0). Employ (2.5), η, and X
(1)
ω,ω for

ω ∈ (0, 1) to obtain⎧⎪⎨
⎪⎩

−∇ · (
Eω2,ωKω(∇(ηX

(1)
ω,ω) − X

(1)
ω,ω∇η + ηe1)

)
= −Eω2,ωKω(∇X

(1)
ω,ω + e1)∇η in �,

ηX
(1)
ω,ω = 0 on ∂�,

where e1 is a unit vector in the first coordinate direction. By (3.17), we see that

‖X(1)
ω,ω∇η − ηe1‖W 1,∞(B1(0)) + ‖(∇X

(1)
ω,ω + e1)∇η‖L∞(B1(0))

is bounded uniformly in ω, but ‖ηX(1)
ω,ω‖W 2,p(B1(0)∩�ω

f )
for p ∈ [1,∞] is not bounded uni-

formly in ω.

4 Uniform Hölder estimate

A1–A2 are assumed in this section.We shall derive uniformHölder estimates for non-uniform
elliptic equations, that is, Theorem 2.1 and Theorem 2.2. The Hölder estimate in the interior
region is considered in Sect. 4.1, and the estimate around the boundary is in Sect. 4.2.

4.1 Interior estimate

For convenience, we let B1(0) ⊂ �.

Lemma 4.1 For any δ,M > 0, there are θ1, θ2 ∈ (0, 1) (depending on δ,M,K, Y f ) with
θ1 < θ22 and there is a ω0 ∈ (0, 1) (depending on θ1, θ2, δ,M,K) such that if

− ∇ · (Eω2,νKν∇Uω,ν + Qω,ν) + Eω,νPω,νUω,ν = Fω,ν in B1(0), (4.1)

and if ⎧⎪⎨
⎪⎩

ω, ν ∈ (0, ω0), θ ∈ [θ1, θ2], Pω,ν(x) ∈ [0,M] for all x ∈ B1(0),

max{‖Eω,νUω,ν‖L2(B1(0)), ‖ω−1
0 Qω,νX�ν

f
+ ω−1

Qω,νX�ν
m
‖Ln+δ(B1(0)),

ω−1
0 ‖Fω,νX�ν

f
+ ω−1 max{ω, ν}Fω,νX�ν

m
‖Ln+δ(B1(0))} ≤ 1,

(4.2)

then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

Bθ (0)

∣∣∣�νUω,ν |�ν
f
− (�νUω,ν |�ν

f
)0,θ

∣∣∣2 dx ≤ θ2μ,

−
∫

Bθ (0)∩�ν
m

ω2
∣∣∣Uω,ν − (�νUω,ν |�ν

f
)0,θ

∣∣∣2 dx ≤ θ2μ,

(4.3)
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where μ ≡ δ
n+δ

. See Sect. 2 for (�νUω,ν |�ν
f
)0,θ , the average value of the extension function

�νUω,ν |�ν
f

in Bθ (0).

Proof Consider the following problem

− ∇ · (K0∇U) + PU = 0 in B3/4(0), (4.4)

where K0 is defined in (2.9) and P(x) ∈ [0,M] for x ∈ B3/4(0). Any solution U of (4.4)
satisfies, by Theorem 9.11 [16] and (3.19),

‖U‖C1,α(B1/2(0))
≤ c‖U‖L2(B3/4(0)),

where α ∈ (0, 1) and c only depends on K0,M. If μ̌ satisfies μ < μ̌ < 1, then, by Theorem
1.2 in page 70 [15],

−
∫

Bθ (0)
|U − (U)0,θ |2dx ≤ θ2μ̌ −

∫
B3/4(0)

U
2dx (4.5)

for θ (depending on δ,K0,M) sufficiently small. Let us fix θ1, θ2 ∈ (0, 1
2 ) so that θ1 < θ22

and (4.5) holds for any θ ∈ [θ1, θ2].
Now we claim (4.3)1. If not, there is a sequence {θω,ν,Pω,ν,Uω,ν,Qω,ν,Fω,ν} satisfying

(4.1) and, as ω, ν → 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θω,ν → θ ∈ [θ1, θ2],
Pω,ν(x) ∈ [0,M] for all x ∈ B1(0),

max{‖Eω,νUω,ν‖L2(B1(0)), ω
−1‖Qω,ν‖Ln+δ(B1(0)∩�ν

m )} ≤ 1,

lim
ω,ν→0

‖Qω,ν,Fω,ν‖Ln+δ(B1(0)∩�ν
f )

+ ω−1 max{ω, ν}‖Fω,ν‖Ln+δ(B1(0)∩�ν
m ) = 0,

−
∫

Bθω,ν (0)

∣∣∣�νUω,ν |�ν
f
− (�νUω,ν |�ν

f
)0,θω,ν

∣∣∣2 dx > |θω,ν |2μ.

(4.6)

By energy method and A2, there is a constant c independent of ω, ν such that

‖Uω,ν‖H1(B4/5(0)∩�ν
f )

+ ‖ω∇Uω,ν, ω
1/2

P
1/2
ω,νUω,ν‖L2(B4/5(0)∩�ν

m ) ≤ c.

By compactness principle and by tracing the proof of Theorem 2.3 [3], we can extract a
subsequence (same notation for subsequence) such that⎧⎪⎨

⎪⎩
�νUω,ν |�ν

f
→ U in L2(B3/4(0)) strongly

Eω2,νKν∇Uω,ν → K0∇U in L2(B3/4(0)) weakly

Eω,νPω,νUω,ν → PU in L2(B3/4(0)) weakly

as ω, ν → 0, (4.7)

where P(x) ∈ [0,M] for all x ∈ B3/4(0),K0 is a constant symmetric positive definite matrix,
�5 ≤ K0 ≤ �6, and �5, �6 are positive constants (see (2.9) and (3.19)). TheU in (4.7) satisfies
(4.4). Equations (4.5)–(4.7) then imply

θ2μ = lim
ω,ν→0

|θω,ν |2μ ≤ lim
ω,ν→0

−
∫

Bθω,ν (0)

∣∣∣�νUω,ν |�ν
f
− (�νUω,ν |�ν

f
)0,θω,ν

∣∣∣2

= −
∫

Bθ (0)
U
2 −

∣∣∣∣ −
∫

Bθ (0)
U

∣∣∣∣
2

= −
∫

Bθ (0)
|U − (U)0,θ |2 ≤ θ2μ̌ −

∫
B3/4(0)

U
2dx .

If θ2 is small enough, then we get contradiction. Therefore, we prove (4.3)1.
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Set ζ ≡ θ−μ(�νUω,ν |�ν
f

− (�νUω,ν |�ν
f
)0,θ ) and η ≡ θ−μ(Uω,ν − (�νUω,ν |�ν

f
)0,θ ).

(4.1) implies, for any smooth function ϕ with support in ν(Ym + j) ⊂ Bθ (0) ∩ �ν
m for some

j ∈ Z
n ,

ω2
∫

ν(Ym+ j)
(η − ζ )∇ · (Kν∇ϕ) − ω

∫
ν(Ym+ j)

Pω,ν(η − ζ )ϕ

=
∫

ν(Ym+ j)

(
ω2Kν∇ζ + θ−μ

Qω,ν

)∇ϕ + θ−μ(ωPω,ν�νUω,ν |�ν
f
− Fω,ν)ϕ. (4.8)

If ϕ is the solution of{
−ω2∇ · (Kν∇ϕ) + ωPω,νϕ = ζ − η in ν(Ym + j),

ϕ = 0 on ν(∂Ym + j),
(4.9)

then c1ν−1ω2‖ϕ‖L2(ν(Ym+ j)) ≤ ω2‖∇ϕ‖L2(ν(Ym+ j)) ≤ c2ν‖η − ζ‖L2(ν(Ym+ j)), where c1, c2
are independent of ν. (4.8) and (4.9) imply∫

ν(Ym+ j)
ω2|η − ζ |2 ≤ c

∫
ν(Ym+ j)

ω2ν2|∇ζ |2

+c
∫

ν(Ym+ j)
ν2θ−2μ(|ω−1

Qω,ν |2 + ν2P2ω,ν

∣∣�νUω,ν |�ν
f

∣∣2 + |νω−1
Fω,ν |2). (4.10)

Summing (4.10) over all ν(Ym + j) ⊂ Bθ (0) ∩ �ν
m for j ∈ Z

n , we obtain (4.3)2 if ω0 is
small enough. ��
Lemma 4.2 For any δ ∈ (0, 3) and M > 0, there are θ1, θ2 ∈ (0, 1) (depending on
δ,M,K, Y f ) with θ1 < θ22 and there is a ω0 > 0 (depending on θ1, θ2, δ,M,K) such
that if

− ∇ · (Eω2,εKε∇Uω,ε + Qω,ε) + γEω,εPω,εUω,ε = Fω,ε in B1(0), (4.11)

and if ω, ε ∈ (0, ω0), θ ∈ [θ1, θ2], γ ∈ [0, 1], Pω,ε(x) ∈ [0,M] for all x ∈ B1(0), and k
satisfying ε/θk ≤ ω0, then⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
∫

B
θk (0)

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)0,θk

∣∣∣2 dx ≤ θ2kμ|Jω,ε |2,

−
∫

B
θk (0)∩�ε

m

ω2
∣∣∣Uω,ε − (�εUω,ε |�ε

f
)0,θk

∣∣∣2 dx ≤ θ2kμ|Jω,ε |2,
(4.12)

where μ ≡ δ
n+δ

and

Jω,ε ≡ 3ω−1
0 (‖Eω,εUω,ε‖L2(B1(0)) + ω−1‖Qω,ε,max{ω, ε}Fω,ε‖Ln+δ(B1(0)∩�ε

m )

+‖Qω,ε, Fω,ε‖Ln+δ(B1(0)∩�ε
f )

).

Proof Let c denote a constant independent of ω, ε, γ . This proof is done by induction. For
k = 1, we define Uω,ε ≡ Uω,ε

Jω,ε
, Qω,ε ≡ Qω,ε

Jω,ε
, Fω,ε ≡ Fω,ε

Jω,ε
, Pω,ε ≡ γPω,ε . Then they satisfy

(4.1) and (4.2) with ν = ε. By Lemma 4.1,⎧⎪⎪⎨
⎪⎪⎩

−
∫

Bθ (0)

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)0,θ

∣∣∣2 dx ≤ θ2μ,

−
∫

Bθ (0)∩�ε
m

ω2
∣∣∣Uω,ε − (�εUω,ε |�ε

f
)0,θ

∣∣∣2 dx ≤ θ2μ.
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This implies (4.12) for k = 1. By energy method and A2, any solution of (4.11) satisfies

‖Uω,ε‖H1(B4/5(0)∩�ε
f )

≤ c(‖Eω,εUω,ε‖L2(B1(0)) + ‖E1/ω,ε Qω,ε‖L2(B1(0))

+‖Fω,ε‖L2(B1(0)) + εω−1‖Fω,ε‖L2(B1(0)∩�ε
m )) ≡ cÎ.

By Theorem 7.26 [16] and Remark 2.1,

∥∥�εUω,ε |�ε
f

∥∥
L

2n
n−2 (B4/5(0))

≤ cÎ. (4.13)

Suppose (4.12) holds for some k satisfying ε/θk ≤ ω0, we define, in B1(0) \ ∂�ε
m/θk ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uω,ε/θk (x) ≡ J−1
ω,εθ

−kμ
(
Uω,ε(θ

k x) − (�εUω,ε |�ε
f
)0,θk

)
,

Qω,ε/θk (x) ≡ J−1
ω,εθ

k(1−μ)Qω,ε(θ
k x),

Fω,ε/θk (x) ≡ J−1
ω,εθ

k(2−μ)
(
Fω,ε(θ

k x) − γEω,ε/θk (x)Pω,ε(θ
k x)(�εUω,ε |�ε

f
)0,θk

)
,

Pω,ε/θk (x) ≡ θ2kγPω,ε(θ
k x).

Then they satisfy

−∇ · (Eω2,ε/θkKε/θk ∇Uω,ε/θk + Qω,ε/θk ) + Eω,ε/θkPω,ε/θkUω,ε/θk = Fω,ε/θk in B1(0).

By triangle inequality,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖Fω,ε/θk ‖Ln+δ(B1(0)∩�ε
f /θ

k )

≤ θk

Jω,ε
‖Fω,ε‖Ln+δ(B

θk (0)∩�ε
f )

+ θk(3−μ−n/2)M
Jω,ε

∥∥�εUω,ε |�ε
f

∥∥
L2n/(n−2)(B

θk (0)),

‖Fω,ε/θk ‖Ln+δ(B1(0)∩�ε
m/θk )

≤ θk

Jω,ε
‖Fω,ε‖Ln+δ(B

θk (0)∩�ε
m ) + ωθk(3−μ−n/2)M

Jω,ε

∥∥�εUω,ε |�ε
f

∥∥
L2n/(n−2)(B

θk (0)).

By induction, (4.13), and small θ ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pω,ε/θk (x) ∈ [0,M] for all x ∈ B1(0),

‖Eω,ε/θkUω,ε/θk ‖L2(B1(0)) ≤ 1,

‖ω−1
0 Qω,ε/θkX�ε

f /θ
k + ω−1

Qω,ε/θkX�ε
m/θk ‖Ln+δ(B1(0)) ≤ 1,

ω−1
0 ‖Fω,ε/θkX�ε

f /θ
k + ω−1 max{ω, ε/θk}Fω,ε/θkX�ε

m/θk ‖Ln+δ(B1(0)) ≤ 1.

By Lemma 4.1 (take ν = ε/θk), we obtain

⎧⎪⎪⎨
⎪⎪⎩

−
∫

Bθ (0)

∣∣∣�ε/θkUω,ε/θk |�ε
f /θ

k − (�ε/θkUω,ε/θk |�ε
f /θ

k )0,θ

∣∣∣2 dx ≤ θ2μ,

−
∫

Bθ (0)∩�ε
m/θk

ω2
∣∣∣Uω,ε/θk − (�ε/θkUω,ε/θk |�ε

f /θ
k )0,θ

∣∣∣2 dx ≤ θ2μ.

(4.14)
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Note, by Remark 2.1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫

Bθ (0)

∣∣∣�ε/θkUω,ε/θk |�ε
f /θ

k − (�ε/θkUω,ε/θk |�ε
f /θ

k )0,θ

∣∣∣2 dx

= −
∫

B
θk+1 (0)

∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)0,θk+1

∣∣2
|Jω,ε |2 θ2kμ

dx,

−
∫

Bθ (0)∩�ε
m/θk

∣∣∣Uω,ε/θk − (�ε/θkUω,ε/θk |�ε
f /θ

k )0,θ

∣∣∣2 dx

= −
∫

B
θk+1 (0)∩�ε

m

∣∣Uω,ε − (�εUω,ε |�ε
f
)0,θk+1

∣∣2
|Jω,ε |2 θ2kμ

dx .

(4.15)

Equations (4.14)–(4.15) imply the inequality (4.12) for k + 1 case. ��
Lemma 4.3 For any δ ∈ (0, 3) and M > 0, there is a ω∗ ∈ (0, 1) (depending on
δ,M,K, Y f ) such that if ω, ε ∈ (0, ω∗), γ ∈ [0, 1], and Pω,ε(x) ∈ [0,M] for all x ∈ B1(0),
then any solution of (4.11) satisfies

[Uω,ε]C0,μ(B1/2(0)∩�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂B1/2(0)∩�ε
m

ω3/2[Uω,ε]C0,μ(ε(Ym+ j)) ≤ cJω,ε, (4.16)

where c is a constant independent of ω, ε, γ . See Lemma 4.2 for μ, Jω,ε .

Proof Let θ1, θ2, ω0 be same as those in Lemma 4.2, defineω∗ ≡ ω0θ2/2, and letω, ε ≤ ω∗.
Denote by c a constant independent of ω, ε, γ . Because of θ1 < θ22 , for any r ∈ [ε/ω0, θ2],
there are θ ∈ [θ1, θ2] and k ∈ N satisfying r = θk . Lemma4.2 implies, for any r ∈ [ε/ω0, θ2],⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
∫

Br (0)

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)0,r

∣∣∣2 dx ≤ r2μ|Jω,ε |2,

−
∫

Br (0)∩�ε
m

ω2
∣∣∣Uω,ε − (�εUω,ε |�ε

f
)0,r

∣∣∣2 dx ≤ r2μ|Jω,ε |2.
(4.17)

Now we define, in B2/ω0(0) \ ∂�ε
m/ε,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uω,1(x) ≡ J−1
ω,εε

−μ
(
Uω,ε(εx) − (�εUω,ε |�ε

f
)0,2ε/ω0

)
,

Qω,1(x) ≡ J−1
ω,εε

1−μQω,ε(εx),

Fω,1(x) ≡ J−1
ω,εε

2−μ
(
Fω,ε(εx) − γEω,1(x)Pω,ε(εx)(�εUω,ε |�ε

f
)0,2ε/ω0

)
,

Pω,1 ≡ ε2γPω,ε(εx).

Then they satisfy

−∇ · (Eω2,1K∇Uω,1 + Qω,1) + Eω,1Pω,1Uω,1 = Fω,1 in B 2
ω0

(0).

Take r = 2ε
ω0

in (4.17) to get{
Pω,1 ∈ [0,M] for all x ∈ B2/ω0(0),

‖Eω,1Uω,1‖L2(B2/ω0 (0)) + ‖E1/ω,1Qω,1,E1/ω,1Fω,1‖Ln+δ(B2/ω0 (0)) ≤ c.

By (3.3) of Lemma 3.2,

[Uω,1]C0,μ(B1/ω0 (0)∩�ε
f /ε)

+ ω3/2[Uω,1]C0,μ(B1/ω0 (0)∩�ε
m/ε) ≤ c. (4.18)
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1820 L.-M. Yeh

(4.18) implies that (4.17)1 also holds for r ≤ ε/ω0. So (4.17)1 holds for r ≤ θ2. Next we shift
the origin of the coordinate system to any point z ∈ B1/2(0) and repeat above argument to
see that (4.17)1 with 0 replaced by any z ∈ B1/2(0) also holds for r ∈ (0, θ2). Together with
Theorem 1.2 in page 70 [15], we obtain the Hölder estimate of �εUω,ε in B1/2(0). Hölder
estimate of Uω,ε in ε(Ym + j) ⊂ B1/2(0) ∩ �ε

m is from (4.18). So (4.16) is proved. ��
Remark 4.1 Letω∗ be same as that in Lemma 4.3. By (3.3) of Lemma 3.2 with p = n+δ, we
know that if δ ∈ (0, 3), M > 0, ε ∈ [ω∗, 1], ω ∈ (0, ω∗), γ ∈ [0, 1], and Pω,ε(x) ∈ [0,M]
for all x ∈ B1(0), any solution of (4.11) satisfies (4.16). Together with Lemma 4.3, we know
that any solution of (4.11) satisfies (4.16) if δ ∈ (0, 3), M > 0, ε ∈ (0, 1), ω ∈ (0, ω∗),
γ ∈ [0, 1], and Pω,ε(x) ∈ [0,M] for all x ∈ B1(0).

Let us consider the solutions of (4.11) with Pω,ε = 0. By tracing the arguments of Lemma
4.2, Lemma 4.3, and Remark 4.1 as well as employing (3.16) of Lemma 3.3, then we have

Lemma 4.4 For any δ > 0, there is aω∗ > 0 (depending on δ,K, Y f ) such that ifω ∈ (0, ω∗)
and ε ∈ (0, 1), then any solution of (4.11) with Pω,ε = 0 satisfies

[Uω,ε]C0,μ(B1/2(0)∩�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂B1/2(0)∩�ε
m

ω[Uω,ε]C0,μ(ε(Ym+ j)) ≤ cJω,ε,

where c is a constant independent of ω, ε. See Lemma 4.2 for μ, Jω,ε .

4.2 Boundary estimate

In this subsection, we assume 0 ∈ ∂�. By A1, there is a C2,1 function ρ : R
n−1 → R

satisfying{
ρ(0) = |∇ρ(0)| = 0,

B1(0) ∩ �/t = B1(0) ∩ {(x ′, xn) ∈ R
n | t xn > ρ(t x ′)} if t ∈ (0, 1].

If t = 0, we define B1(0) ∩ �/t ≡ B1(0) ∩ {(x ′, xn) ∈ R
n | xn > 0}. Set

Eν,ε,t ≡
{
1 in �ε

f /t

ν in �ε
m/t

for t ∈ (0, 1]. (4.19)

Lemma 4.5 For any δ,M > 0, there are θ̃1, θ̃2 ∈ (0, 1) (depending on δ,M,K, Y f , �)
satisfying θ̃1 < θ̃22 and there is a ω̃0 > 0 (depending on θ̃1, θ̃2, δ,M,K,�) satisfying
ω̃0 < ω0 (ω0 is that in Lemma 4.1) such that if⎧⎪⎨

⎪⎩
−∇ · (Eω2,ε,sKε/s∇Uω,ε,s + Qω,ε,s)

+Eω,ε,sPω,ε,sUω,ε,s = Fω,ε,s in B1(0) ∩ �/s,

Uω,ε,s = 0 on B1(0) ∩ ∂�/s,

(4.20)

and if⎧⎪⎪⎨
⎪⎪⎩

ω, ε
s ∈ (0, ω̃0), s ∈ (0, 1], θ̃ ∈ [θ̃1, θ̃2], Pω,ε,s(x) ∈ [0,M] for x ∈ B1(0) ∩ �/s,

max{‖Eω,ε,sUω,ε,s‖L2(B1(0)∩�/s), ‖ 1
ω̃0

Qω,ε,sX�ε
f /s + 1

ω
Qω,ε,sX�ε

m/s‖Ln+δ(B1(0)),

1
ω̃0

‖Fω,ε,sX�ε
f /s + 1

ω
max{ω, ε

s }Fω,ε,sX�ε
m/s‖Ln+δ(B1(0))} ≤ 1,
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then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

B
θ̃
(0)∩�/s

∣∣∣�ε/sUω,ε,s |�ε
f /s

∣∣∣2 dx ≤ θ̃2μ,

−
∫

B
θ̃
(0)∩�ε

m/s
ω2|Uω,ε,s |2dx ≤ θ̃2μ,

(4.21)

where μ ≡ δ
n+δ

.

Proof Consider the following problem{
−∇ · (K0∇U) + PU = 0 in B3/4(0) ∩ �/t,

U = 0 on B3/4(0) ∩ ∂�/t,
(4.22)

where t ∈ [0, 1], P(x) ∈ [0,M] for x ∈ B3/4(0) ∩ �/t , and K0 is defined in (2.9). Any
solution U of (4.22) satisfies, by Theorem 9.13 [16] and (3.19),

‖U‖C1,α(B1/2(0)∩�/t) ≤ c‖U‖L2(B3/4(0)∩�/t), (4.23)

where α ∈ (0, 1) and c is a constant depending on M,K0,� but independent of t . If μ̌

satisfies μ < μ̌ < 1, by (4.23),

−
∫

B
θ̃
(0)∩�/t

U
2dx ≤ θ̃2μ̌ −

∫
B3/4(0)∩�/t

U
2dx (4.24)

for small θ̃ (depending on δ,M,K0,�). Fix θ̃1, θ̃2 ∈ (0, 1
2 ) such that θ̃1 < θ̃22 and (4.24)

holds for any θ̃ ∈ [θ̃1, θ̃2].
We claim (4.21)1. If not, there is a sequence {sω,ε, θ̃ω,ε,Pω,ε,sω,ε ,Uω,ε,sω,ε , Qω,ε,sω,ε ,

Fω,ε,sω,ε } satisfying (4.20) and, as ω, ε → 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε/sω,ε → 0, sω,ε → s∗ ∈ [0, 1], θ̃ω,ε → θ̃∗ ∈ [θ̃1, θ̃2],
Pω,ε,sω,ε (x) ∈ [0,M] for x ∈ B1(0) ∩ �/sω,ε,

max{‖Eω,ε,sω,εUω,ε,sω,ε ‖L2(B1(0)∩�/sω,ε )
,

ω−1‖Qω,ε,sω,ε ‖Ln+δ(B1(0)∩�ε
m/sω,ε )

} ≤ 1,

lim
ω,ε/sω,ε→0

‖Qω,ε,sω,ε ,Fω,ε,sω,ε ‖Ln+δ(B1(0)∩�ε
f /sω,ε )

+ω−1 max{ω, ε/sω,ε}‖Fω,ε,sω,ε ‖Ln+δ(B1(0)∩�ε
m/sω,ε )

= 0,

−
∫

B
θ̃ω,ε

(0)∩�/sω,ε

∣∣∣�ε/sω,εUω,ε,sω,ε |�ε
f /sω,ε

∣∣∣2 dx > |θ̃ω,ε |2μ.

(4.25)

By energy method and A2, there is a constant c independent of ω, ε, sω,ε such that

‖Uω,ε,sω,ε ‖H1(B4/5(0)∩�ε
f /sω,ε )

+‖ω∇Uω,ε,sω,ε , ω
1/2

P
1/2
ω,ε,sω,ε

Uω,ε,sω,ε ‖L2(B4/5(0)∩�ε
m/sω,ε )

≤ c.

By compactness principle and by tracing the proof of Theorem 2.3 [3], we can extract a
subsequence (same notation for subsequence) such that, as ω, ε/sω,ε → 0,⎧⎪⎨

⎪⎩
�ε/sω,εUω,ε,sω,ε |�ε

f /sω,ε
→ U in L2(B3/4(0) ∩ �/s∗) strongly,

Eω2,ε,sω,ε
Kε/sω,ε ∇Uω,ε,sω,ε → K0∇U in L2(B3/4(0) ∩ �/s∗) weakly,

Eω,ε,sω,εPω,ε,sω,εUω,ε,sω,ε → PU in L2(B3/4(0) ∩ �/s∗) weakly,
(4.26)
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where K0 is a constant symmetric positive definite matrix, �5 ≤ K0 ≤ �6 (see (2.9) and
(3.19)), and P(x) ∈ [0,M] for x ∈ B3/4(0)∩�/s∗. In (4.26), functionU satisfies (4.22) with
t = s∗. By (4.24)–(4.25), we conclude

|θ̃∗|2μ ≤ lim
ω,ε/sω,ε→0

−
∫

B
θ̃ω,ε

(0)∩�/sω,ε

∣∣�ε/sω,εUω,ε,sω,ε |�ε
f /sω,ε

∣∣2dx

= −
∫

B
θ̃∗ (0)∩�/s∗

U
2dx ≤ |θ̃∗|2μ̌ −

∫
B3/4(0)∩�/s∗

U
2dx . (4.27)

But (4.27) is impossible if we take θ̃2 small enough. Therefore, there is a ω̃0 such that (4.21)1
holds for ω, ε/s ≤ ω̃0. Clearly, ω̃0 can be chosen so that ω̃0 < ω0 (see Lemma 4.1 for ω0).
The proof of (4.21)2 is similar to that of (4.3)2, so we skip it. ��

Lemma 4.6 For any δ,M > 0, there are θ̃1, θ̃2 ∈ (0, 1) (depending on δ,M,K, Y f , �)
satisfying θ̃1 < θ̃22 and there is a ω̃0 > 0 (depending on θ̃1, θ̃2, δ,M,K,�) satisfying
ω̃0 < ω0 (ω0 is that in Lemma 4.2) such that if{

−∇ · (Eω2,εKε∇Uω,ε + Qω,ε) + Eω,εPω,εUω,ε = Fω,ε in B1(0) ∩ �,

Uω,ε = 0 on B1(0) ∩ ∂�,
(4.28)

and if ω, ε ∈ (0, ω̃0), θ̃ ∈ [θ̃1, θ̃2], Pω,ε(x) ∈ [0,M] for x ∈ B1(0) ∩ �, and k satisfying
ε/θ̃k ≤ ω̃0, then ⎧⎪⎪⎨

⎪⎪⎩
−
∫

B
θ̃k (0)∩�

∣∣∣�εUω,ε |�ε
f

∣∣∣2 dx ≤ θ̃2kμ| J̃ω,ε |2,

−
∫

B
θ̃k (0)∩�ε

m

ω2
∣∣Uω,ε

∣∣2dx ≤ θ̃2kμ| J̃ω,ε |2,
(4.29)

where J̃ω,ε ≡ ‖Eω,εUω,ε‖L2(B1(0)∩�) + ω−1‖Qω,ε,
1
ω̃0

max{ω, ε}Fω,ε‖Ln+δ(B1(0)∩�ε
m ) +

1
ω̃0

‖Qω,ε, Fω,ε‖Ln+δ(B1(0)∩�ε
f )

and μ ≡ δ
n+δ

.

Proof The proof is similar to that of Lemma 4.2 and is done by induction on k. For k = 1,
(4.29) is deduced from Lemma 4.5 with s = 1. Suppose (4.29) holds for some k with
ε/θ̃k ≤ ω̃0, we define⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Uω,ε,θ̃k (x) ≡ J̃−1

ω,ε θ̃
−kμUω,ε(θ̃

k x)

Qω,ε,θ̃k (x) ≡ J̃−1
ω,ε θ̃

k(1−μ)Qω,ε(θ̃
k x)

Fω,ε,θ̃k (x) ≡ J̃−1
ω,ε θ̃

k(2−μ)Fω,ε(θ̃
k x)

Pω,ε,θ̃k (x) ≡ θ̃2kPω,ε(θ̃
k x)

in B1(0) \ ∂�ε
m/θ̃k .

Then they satisfy⎧⎪⎨
⎪⎩

−∇ · (Eω2,ε,θ̃kKε/θ̃k ∇Uω,ε,θ̃k + Qω,ε,θ̃k )

+Eω,ε,θ̃kPω,ε,θ̃kUω,ε,θ̃k = Fω,ε,θ̃k in B1(0) ∩ �/θ̃k,

Uω,ε,θ̃k = 0 on B1(0) ∩ ∂�/θ̃k .

Following the argument of Lemma 4.2 and employing Lemma 4.5 with s = θ̃k , we obtain
(4.29) with k + 1 in place of k. ��
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Lemma 4.7 For any δ ∈ (0, 3) and M > 0, there is a ω̃∗ ∈ (0, 1) (depending on
δ,M,K, Y f ,�) such that if ω, ε ≤ ω̃∗ and Pω,ε(x) ∈ [0,M] for x ∈ B1(0) ∩ �, then
any solution of (4.28) satisfies

[Uω,ε]C0,μ(B1/2(0)∩�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂B1/2(0)∩�ε
m

ω3/2[Uω,ε]C0,μ(ε(Ym+ j)) ≤ c Ĵω,ε, (4.30)

where μ ≡ δ
n+δ

; c is a constant independent of ω, ε; Ĵω,ε is defined as

Ĵω,ε ≡ 3

ω̃∗
(‖Eω,εUω,ε‖L2(B1(0)∩�) + ‖Qω,ε, Fω,ε‖Ln+δ(B1(0)∩�ε

f )

+ω−1‖Qω,ε,max{ω, ε}Fω,ε‖Ln+δ(B1(0)∩�ε
m )). (4.31)

Proof Let θ̃1, θ̃2, ω̃0, J̃ω,ε be same as those in Lemma 4.6, set ω̃∗ ≡ min{ω̃0θ̃2/3, ω∗}where
ω∗ is the one in Lemma 4.3, and let ω, ε ≤ ω̃∗. Denote by c a constant independent of ω, ε.
By energy method and A2, any solution of (4.28) satisfies

‖Uω,ε‖H1(B3/4(0)∩�ε
f )

≤ c(‖Eω,εUω,ε‖L2(B1(0)∩�) + ‖E1/ω,ε Qω,ε‖L2(B1(0)∩�)

+‖Fω,ε‖L2(B1(0)∩�) + εω−1‖Fω,ε‖L2(B1(0)∩�ε
m )) ≡ cǏ.

By Theorem 7.26 [16] and Remark 2.1,∥∥�εUω,ε |�ε
f

∥∥
L

2n
n−2 (B3/4(0)∩�)

≤ cǏ. (4.32)

For any x ∈ Bθ̃2/3
(0) ∩ �ε

f , define η(x) ≡ |x − x0| where x0 ∈ ∂� satisfying |x − x0| =
miny∈∂� |x − y|. Then we have either case (1) η(x) > 2ε

3ω̃0
or case (2) η(x) ≤ 2ε

3ω̃0
.

Let us consider case (1). Because of θ̃1 < θ̃22 , for any r ∈ [ε/ω̃0, θ̃2], there are θ̃ ∈ [θ̃1, θ̃2]
and k ∈ N satisfying r = θ̃k . Since η(x) ∈ [ 2ε

3ω̃0
, θ̃2

3 ], by Lemma 4.6,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

Br (x0)∩�

∣∣∣�εUω,ε |�ε
f

∣∣∣2 dy ≤ r2μ| J̃ω,ε |2

−
∫

Br (x0)∩�ε
m

ω2
∣∣Uω,ε

∣∣2 dy ≤ r2μ| J̃ω,ε |2
for r ∈ [3

2
η(x), θ̃2].

So, for s ∈ [ η(x)
2 , θ̃2

3 ],⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

Bs (x)∩�

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)x,s

∣∣∣2 dy ≤ cs2μ| J̃ω,ε |2,

−
∫

Bs (x)∩�ε
m

ω2
∣∣Uω,ε − (�εUω,ε |�ε

f
)x,s

∣∣2dy ≤ cs2μ| J̃ω,ε |2.
(4.33)

Next we shift the coordinate system such that x is located at the origin and we define, in
B1(x) \ ∂�ε

m/η(x),⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uω,ε,η(x)(y) ≡
Uω,ε (η(x)y)−(�εUω,ε |�ε

f
)x,η(x)

Ĵω,ε ημ(x)
,

Qω,ε,η(x)(y) ≡ Qω,ε (η(x)y)

Ĵω,ε ημ−1(x)
,

Fω,ε,η(x)(y) ≡
Fω,ε (η(x)y)−Eω,ε/η(x)(y)Pω,ε (η(x)y)(�εUω,ε |�ε

f
)x,η(x)

Ĵω,ε ημ−2(x)
,

Pω,ε,η(x)(y) ≡ Pω,ε(η(x)y).
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See (4.31) for Ĵω,ε . Then these functions satisfy

−∇ · (Eω2,ε/η(x)Kε/η(x)∇Uω,ε,η(x) + Qω,ε,η(x))

+|η(x)|2Eω,ε/η(x)Pω,ε,η(x)Uω,ε,η(x) = Fω,ε,η(x) in B1(x). (4.34)

Take s = η(x) < 1 in (4.33) to see, by (4.32),⎧⎪⎨
⎪⎩
Pω,ε,η(x)(y) ∈ [0,M] for all y ∈ B1(x).

ω̃−1
0 (‖Eω,ε/η(x)Uω,ε,η(x)‖L2(B1(x)) + ‖Qω,ε,η(x),Fω,ε,η(x)‖Ln+δ(B1(x)∩�ε

f /η(x))

+ω−1‖Qω,ε,η(x),max{ω, ε/η(x)}Fω,ε,η(x)‖Ln+δ(B1(x)∩�ε
m/η(x))) ≤ c.

Apply Lemma 4.3 to (4.34) to obtain

[Uω,ε,η(x)]C0,μ(B1/2(x)∩�ε
f /η(x))

+ sup
j∈Zn

ε
η(x)

(Ym+ j)⊂B1/2(0)∩�ε
m/η(x)

ω3/2[Uω,ε,η(x)]C0,μ( ε
η(x)

(Ym+ j)) ≤ c. (4.35)

Which implies

−
∫

Bs (x)∩�

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)x,s

∣∣∣2 dy ≤ cs2μ| Ĵω,ε |2 for s <
η(x)

2
. (4.36)

Next we consider case (2). Because of θ̃1 < θ̃22 , for any r ∈ [ε/ω̃0, θ̃2], there are θ̃ ∈
[θ̃1, θ̃2] and k ∈ N satisfying r = θ̃k . By Lemma 4.6,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
∫

Br (x0)∩�

∣∣∣�εUω,ε |�ε
f

∣∣∣2 dy ≤ cr2μ| J̃ω,ε |2

−
∫

Br (x0)∩�ε
m

ω2
∣∣Uω,ε

∣∣2 dy ≤ cr2μ| J̃ω,ε |2
for r ∈ [ε/ω̃0, θ̃2]. (4.37)

This implies, for s ∈ [ ε
3ω̃0

, θ̃2
3 ],⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
∫

Bs (x)∩�

∣∣∣�εUω,ε |�ε
f
− (�εUω,ε |�ε

f
)x,s

∣∣∣2 dy ≤ cs2μ| J̃ω,ε |2,

−
∫

Bs (x)∩�ε
m

ω2
∣∣∣Uω,ε − (�εUω,ε |�ε

f
)x,s

∣∣∣2 dy ≤ cs2μ| J̃ω,ε |2.
(4.38)

Againwe shift the coordinate system such that x is located at the origin.Define, in (B1/ω̃0(x)∩
�/ε) \ ∂�ε

m/ε,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uω,1(y) ≡ Ĵ−1
ω,εε

−μ
(
Uω,ε(εy) − (�εUω,ε |�ε

f
)x,ε/ω̃0

)
,

Qω,1(y) ≡ Ĵ−1
ω,εε

1−μQω,ε(εy),

Fω,1(y) ≡ Ĵ−1
ω,εε

2−μ(Fω,ε(εy) − Eω,ε,ε(y)Pω,ε(εy)(�εUω,ε |�ε
f
)x,ε/ω̃0),

Pω,1(y) ≡ ε2Pω,ε(εy),

and define

Ubω ≡ − Ĵ−1
ω,εε

−μ(�εUω,ε |�ε
f
)x,ε/ω̃0 in B 1

ω̃0
(x) ∩ �/ε.

See (4.19) for Eω,ε,ε .
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By (4.37)1, Ubω is a constant independent of ω, ε. Then these functions satisfy⎧⎨
⎩

−∇ · (Eω2,ε,εK∇Uω,1 + Qω,1) + Eω,ε,εPω,1Uω,1 = Fω,1 in B 1
ω̃0

(x) ∩ �/ε,

Uω,1 = Ubω on B 1
ω̃0

(x) ∩ ∂�/ε.

Take s = ε
ω̃0

in (4.38) to see, by (4.37)1,⎧⎪⎨
⎪⎩
Pω,1 ∈ [0,M] for all x ∈ B1/ω̃0(x) ∩ �/ε,

‖Eω,ε,εUω,1‖L2(B1/ω̃0 (x)∩�/ε) + ‖E1/ω,ε,εQω,1, E1/ω,ε,εFω,1‖Ln+δ(B1/ω̃0 (x)∩�/ε)

+‖Ubω‖W 1,n+δ(B1/ω̃0 (x)∩�/ε) ≤ c.

By Lemma 3.4,

[Uω,1]C0,μ(B1/2ω̃0 (x)∩�ε
f /ε)

+ ω3/2[Uω,1]C0,μ(B1/2ω̃0 (x)∩�ε
m/ε) ≤ c. (4.39)

(4.39) imply (4.38)1 holds for s ≤ ε
2ω̃0

.
The Hölder estimate of�εUω,ε follows from (4.33)1, (4.36), (4.38)1, (4.39), and Theorem

1.2 in page 70 [15]. The Hölder estimate of Uω,ε in ε(Ym + j) ⊂ B1/2(0) ∩ �ε
m is from

(4.35) and (4.39). ��
Remark 4.2 Let ω̃∗ be same as that in Lemma 4.7. By Lemma 3.4 with p = n + δ, we
know that if δ ∈ (0, 3), M > 0, ε ∈ [ω̃∗, 1], ω ∈ (0, ω̃∗), and Pω,ε(x) ∈ [0,M] for all
x ∈ B1(0)∩�, any solution of (4.28) satisfies (4.30). Together with Lemma 4.7, any solution
of (4.28) satisfies (4.30) if δ ∈ (0, 3),M > 0, ε ∈ (0, 1), ω ∈ (0, ω̃∗), and Pω,ε(x) ∈ [0,M]
for all x ∈ B1(0) ∩ �.

Let us consider the solutions of (4.28) with Pω,ε = 0. By tracing the arguments of Lemma
4.7 and Remark 4.2 and employing Lemma 3.4, then we have

Lemma 4.8 For any δ > 0, there is a ω̃∗ ∈ (0, 1) (depending on δ,K, Y f ,�) such that, if
ω ∈ (0, ω̃∗) and ε ∈ (0, 1), then any solution of (4.28) with Pω,ε = 0 satisfies

[Uω,ε]C0,μ(B1/2(0)∩�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂B1/2(0)∩�ε
m

ω[Uω,ε]C0,μ(ε(Ym+ j)) ≤ c Ĵω,ε,

where c is a constant independent of ω, ε. See Lemma 4.7 for μ, Ĵω,ε .

By energy method, partition of unity, Remark 4.1, Remark 4.2, Lemma 4.4, Lemma 4.8,
and Poincaré inequality [16], we conclude

Lemma 4.9 Under A1–A2, for any δ ∈ (0, 3) and M > 0, there is a constant ω̃∗ ∈ (0, 1)
(depending on δ,M,K, Y f ,�) such that if{

−∇ · (Eω2,εKε∇Uω,ε + Qω,ε) + Eω,εPεUω,ε = Fω,ε in �,

Uω,ε = 0 on ∂�,

and if ω ∈ (0, ω̃∗), ε ∈ (0, 1), and Pω,ε(x) ∈ [0,M] for all x ∈ �, then

[Uω,ε]C0,μ(�ε
f )

+ sup
j∈Zn

ε(Ym+ j)⊂�ε
m

ωλ[Uω,ε]C0,μ(ε(Ym+ j))

≤ c(‖Qω,ε, Fω,ε‖Ln+δ(�ε
f )

+ ω−1‖Qω,ε,max{ω, ε}Fω,ε‖Ln+δ(�ε
m )),
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where μ ≡ δ
n+δ

and c is a positive constant independent of ω, ε. Here λ is 3
2 if Pω,ε �= 0 and

is 1 if Pω,ε = 0.

Under A1–A4, we multiply (1.1) by |�ω,ε |q−2�ω,ε for q > 2 and integrate over � to
obtain

‖�ω,ε‖Lq (�) ≤ c‖E1/ω,εVω,ε, Gω,ε‖Lq (�), (4.40)

where c is independent of ω, ε. Then we write (1.1) as{
−∇ · (Eω2,εKε∇�ω,ε + Vω,ε) = Gω,ε − Tω,ε�ω,ε in �,

�ω,ε = 0 on ∂�.

Theorem 2.1 follows by energy method, (4.40) for q = n + δ, and Lemma 4.9 for Pω,ε = 0.
Theorem 2.2 is a direct consequence of energy method and Lemma 4.9.

5 Convergence estimates

In this section,we proveTheorems 2.3, 2.4, 2.5. For each ν ∈ (0, 1) and i1, i2 ∈ {1, 2, · · · , n},
we find Y

(i1,i2)
ν ∈ H1

per (R
n) satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · (
Eν2K(∇Y

(i1,i2)
ν + X

(i2)
ν ei1)

)
= K(i1,i2)

ν|Y f | XY f − Eν2K(∂i1X
(i2)
ν + δi1,i2) in Y,∫

Y f

Y
(i1,i2)
ν (y)dy = 0,

(5.1)

where ei1 is a unit vector in the i1th coordinate direction, δi1,i2 is 1 if i1 = i2 and is 0 if
i1 �= i2, and K(i1,i2)

ν is the (i1, i2)th component of Kν . See (2.5) for X
(i)
ν and (2.9) for Kν . By

Lax–Milgram Theorem [16], A1–A2, and (3.17), Y(i1,i2)
ν is uniquely solvable. By Lemma

3.3,

‖Y(i1,i2)
ν ‖C2(Y f )∩C2(Ym ) ≤ c, (5.2)

where c is a constant independent of ν. Define n × n matrices Yν ≡ (Y
(i1,i2)
ν ) and Yν,s(x) ≡

s2Yν(
x
s ) for ν, s ∈ (0, 1).

5.1 Proof of Theorem 2.3

A1–A6 are assumed. This subsection consists of two parts. The first part is for ω, ε → 0,
ω
ε

→ ∞, and the second part is for ω, ε → 0, ω
ε

→ σ ∈ [0,∞).

5.1.1 Part 1: ω, ε → 0, ω
ε

→ ∞.

For each ν ∈ (0, 1), we find W̃ν ∈ H1
per (R

n) satisfying

⎧⎨
⎩

∇ · (Eν2K∇W̃ν) = T − T∞XY f in Y,∫
Y f

W̃ν(y)dy = 0.
(5.3)
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See (2.11) for T∞. By Lax–Milgram Theorem [16], W̃ν is uniquely solvable. By Lemma 3.3
and A5,

‖EνW̃ν‖C2(Y f )∩C2(Ym ) ≤ c/ν, (5.4)

where c is independent of ν. Define W̃ν,s(x) ≡ s2W̃ν(
x
s ) for ν, s ∈ (0, 1).

Let �ω,ε be the solution of (1.1) with Vω,ε = 0, � be the solution of (2.12), and

ϕω,ε ≡ �ω,ε − � − W̃ω,ε� − Xω,ε∇� − Yω,ε∇2� in �.

See (2.5) for Xω,ε and (5.1) for Yω,ε . By (2.12)–(2.13), (3.17), (3.19), and (5.1)–(5.4),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (
Eω2,εKε

(∇ϕω,ε + W̃ω,ε∇� + Yω,ε∇3�
)) + Tω,εϕω,ε

= O1(ω + ε/ω) + Gω,ε − GX�ε
f

in �,

ϕω,ε = O2(ε + ε2/ω2) on ∂�,

where O1(ν) denotes a function satisfying ‖O1(ν)‖Ln+δ(�) ≤ cν and O2(ν) denotes a func-
tion satisfying ‖O2(ν)‖L∞(�) ≤ cν for some constant c independent of ω, ε. See (2.12) for
G. Decompose ϕω,ε as ϕω,ε = ϕ̂ω,ε + ϕ̌ω,ε , where ϕ̂ω,ε satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−∇ · (

Eω2,εKε

(∇ϕ̂ω,ε + W̃ω,ε∇� + Yω,ε∇3�
)) + Tω,εϕ̂ω,ε

= O1(ω + ε/ω) + Gω,ε − GX�ε
f

in �,

ϕ̂ω,ε = 0 on ∂�,

(5.5)

and ϕ̌ω,ε satisfies {
−∇ · (Eω2,εKε∇ϕ̌ω,ε) + Tω,εϕ̌ω,ε = 0 in �,

ϕ̌ω,ε = O2(ε + ε2/ω2) on ∂�.
(5.6)

By Theorem 2.1, A6, (2.13), (5.2), and (5.4), the solution of (5.5) satisfies

‖Eω,εϕ̂ω,ε‖L∞(�) ≤ c(max{ω, ε/ω} + ‖Gω,ε − G‖Ln+δ(�ε
f )

), (5.7)

where c is independent of ω, ε. By Theorem 8.1 [16], the solution of (5.6) satisfies

‖ϕ̌ω,ε‖L∞(�) = ‖ϕ̌ω,ε‖L∞(∂�) ≤ c(ε + ε2/ω2), (5.8)

where c is a constant independent of ω, ε.
From (5.7) and (5.8), we see that the difference between the solution of (1.1) with Vω,ε = 0

and the solution of (2.12) satisfies

‖Eω,ε(�ω,ε − �)‖L∞(�) ≤ c(max{ω, ε/ω} + ‖Gω,ε − G‖Ln+δ(�ε
f )

), (5.9)

where c is a constant independent of ω, ε. Now let us consider (2.14). We note that the
solution of (1.1) with Vω,ε = 0 and the solution of (2.14) satisfy, for any ε(Ym + j) ⊂ �ε

m
and j ∈ Z

n ,⎧⎨
⎩

−ω2∇ · (
Kε∇(�ω,ε − φ

( j)
ω,ε)

) + Tω,ε(�ω,ε − φ
( j)
ω,ε) = 0 in ε(Ym + j),

�ω,ε − φ
( j)
ω,ε = �ω,ε − � on ∂ε(Ym + j).
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By (5.9) and Theorem 8.1 [16], we conclude

‖�ω,ε −
∑
j∈Zn

ε(Ym+ j)⊂�ε
m

φ( j)
ω,ε‖L∞(�ε

m ) ≤ c(max{ω, ε/ω} + ‖Gω,ε − G‖Ln+δ(�ε
f )

), (5.10)

where c is independent of ω, ε. (5.9)–(5.10) imply Theorem 2.3 for ω, ε → 0, ω
ε

→ ∞.

5.1.2 Part 2: ω, ε → 0, ω
ε

→ σ ∈ [0,∞).

For ν ∈ (0, 1), β ∈ (0,∞), and i1, i2 ∈ {1, · · · , n}, we find X̃
(i1)
ν,β , Ỹ

(i1,i2)
ν,β ∈ H1

per (R
n)

satisfying⎧⎪⎪⎨
⎪⎪⎩

∇ ·
(
Eν2K

(∇X̃
(i1)
ν,β + (XY f + WβXYm )ei1

)) = 0 in Y,∫
Y f

X̃
(i1)
ν,β (y)dy = 0,

(5.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(
Eν2K(∇Ỹ

(i1,i2)
ν,β + X̃

(i2)
ν,β ei1)

)

= K̃(i1,i2)

ν,β

|Y f | XY f − Eν2K
(
∂i1 X̃

(i2)
ν,β + (XY f + WβXYm )δi1,i2

)
in Y,∫

Y f

Ỹ
(i1,i2)
ν,β (y)dy = 0,

(5.12)

where ei1 , δi1,i2 are same as those in (5.1),Wβ is from (2.7)–(2.8), and K̃(i1,i2)
ν,β is defined as

K̃(i1,i2)
ν,β ≡

∫
Y
Eν2K

(
∂i1 X̃

(i2)
ν,β + (XY f + WβXYm )δi1,i2

)
dy. (5.13)

X̃
(i1)
ν,β , Ỹ

(i1,i2)
ν,β in (5.11)–(5.12) are uniquely solvable by Lax–Milgram Theorem [16].

Lemma 5.1 Under A1–A2 and A4, the solution Wβ of (2.7)–(2.8) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wβ(x) ∈ [0, 1] for any x ∈ Ym, β ∈ (0,∞),

‖Eβ2Wβ‖W 2,p(Y f )∩W 2,p(Ym ) ≤ c for any p ∈ (1,∞), β ∈ (0,∞),∫
Ym

TWβdy ≤ c
√|β ln β| if β ∈ (0, β∗),

(5.14)

where β∗ is a constant depending on K,T and diam|�|, and c is independent of β.

Proof Corollary 3.2 [16] implies (5.14)1. Theorems 9.11, 9.15 [16], extension method in
Theorem 7.25 [16], and (5.14)1 imply (5.14)2. For any x ∈ Ym , we set ηx ≡ minz∈∂Ym |z − x |
and ξx ≡ maxz∈∂Ym |z − x |. Next we fix t ∈ R and x ∈ Ym as well as define ϕ(y) ≡
exp((|y − x |2 − η2x )t) for y ∈ Ym . Then ϕ satisfies

β2∇ · (K∇ϕ) − Tϕ = β2ϕ(4t2K|y − x |2 + 2t (y − x)∇K + 2tKn − T/β2).

We find that there are β∗ < 1 and c∗ > 0 (depending on K,T, diam|�| but not x ∈ Ym)
such that if β ∈ (0, β∗), t = c∗/β, and x ∈ Ym , then
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{
β2∇ · (K∇ϕ) − Tϕ ≤ 0 in Bξx (x) ∩ Ym,

ϕ ≥ 1 in Ym \ Bηx (x).
(5.15)

Corollary 3.2 [16], (2.7), and (5.15) imply

0 ≤ Wβ ≤ ϕ on Ym . (5.16)

For any ν > 0, define Ym(ν) ≡ {y ∈ Ym |minz∈∂Ym |z − y| ≥ ν}. By (5.16), it is easy to see
that if β ∈ (0, β∗), then, for any x ∈ Ym(

√
2|β ln β|/c∗),

0 ≤ Wβ ≤ β on Bηx /2(x). (5.17)

So if β ∈ (0, β∗),
∫

Ym

TWβdy ≤ c
√|β ln β| by (5.14)1 and (5.17). ��

By Lemma 3.3, Lemma 5.1, and energy method, there is a ω0 ∈ (0, 1) such that, for any
ν ∈ (0, ω0) and β ∈ (0,∞),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖X̃(i1)
ν,β‖W 1,p(Y f )∩W 1,p(Ym ), ‖Ỹ(i1,i2)

ν,β ‖W 2,p(Y f )∩W 2,p(Ym ) ≤ c,

‖X̃(i1)
ν,β , Ỹ

(i1,i2)
ν,β ‖C2,α(Y f )∩C2,α(Ym ) ≤ c

β2 ,

|K̃(i1,i2)
ν,β − K(i1,i2)

0 | ≤ c(
ν

β
+ ν2) as ν → 0,

|Tτ − Tσ | ≤
⎧⎨
⎩

c| τ 2

σ 2 − 1| if τ → σ ∈ (0,∞),

c
√|τ ln τ | if τ → σ = 0,

(5.18)

where p ∈ (n,∞), α ∈ (0, 1), K(i1,i2)
0 is the (i1, i2)th component of K0 (see (2.9)),

and c is a constant independent of ν, β, τ, σ . See (5.13) for K̃(i1,i2)
ν,β , and see (2.11) for

Tσ . Define X̃ω,β,ε(x) ≡ εX̃ω,β( x
ε
) Ỹω,β ≡ (Ỹ

(i1,i2)
ω,β ) and Ỹω,β,ε(x) ≡ ε2Ỹω,β( x

ε
) for

β ∈ (0,∞), ω, ε ∈ (0, 1), i1, i2 ∈ Z.
Let �ω,ε be the solution of (1.1) with Vω,ε = 0, � be the solution of (2.12), and

�ω,ε ≡ �ω,ε − (X�ε
f
+ W ω

ε
,ε,0X�ε

m
)� − W ω

ε
,ε,2�X�ε

f
− X̃ω, ω

ε
,ε∇� − Ỹω, ω

ε
,ε∇2�

in �. See remark after (2.8) for W ω
ε
,ε,i . By (2.7)–(2.8), (5.11)–(5.12), (5.18), and Lemma

5.1 with β = ω
ε
, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (
Eω2,εKε

(∇�ω,ε + W ω
ε
,ε,2∇�X�ε

f
+ Ỹω, ω

ε
,ε∇3�

))
+Tω,ε�ω,ε = Gω,ε + K̃ω,ω/ε

|Y f | ∇2�X�ε
f
− T ω

ε
�X�ε

f
+ O1(ε) in � \ ∂�ε

m,

�Eω2,εKε

(∇�ω,ε + W ω
ε
,ε,2∇�X�ε

f
+ Ỹω, ω

ε
,ε∇3�

)� · nε = 0 on ∂�ε
m,

��ω,ε� = −W ω
ε
,ε,2�X�ε

f
on ∂�ε

m,

�ω,ε = O2(ε) on ∂�,

(5.19)

where O1(ν),O2(ν) are same as those in Part 1. See (2.2) for (5.19)2,3. Let us define

ϕω,ε ≡
{

�ω,ε + W ω
ε
,ε,2�X�ε

f
on �ε

f ,

�ω,ε on �ε
m .
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By (2.12)–(2.13), (5.18), and Lemma 5.1, ϕω,ε satisfies{
−∇ · (

Eω2,εKε

(∇ϕω,ε + O1(ε)
)) + Tω,εϕω,ε = Gω,ε − GX�ε

f
+ X̃ in �,

ϕω,ε = O2(ε) on ∂�,

where

X̃ ≡
{
O1(ε + | ω2

σ 2ε2
− 1|) if ω

ε
→ σ ∈ (0,∞),

O1(ε + |ω
ε
ln ω

ε
| 12 ) if ω

ε
→ 0.

We write the ϕω,ε as ϕω,ε = ϕ̌ω,ε + ϕ̂ω,ε , where ϕ̌ω,ε satisfies{
−∇ · (Eω2,εKε∇ϕ̌ω,ε) + Tω,ε ϕ̌ω,ε = 0 in �,

ϕ̌ω,ε = O2(ε) on ∂�,
(5.20)

and ϕ̂ω,ε satisfies{
−∇ · (

Eω2,εKε

(∇ϕ̂ω,ε + O1(ε)
)) + Tω,εϕ̂ω,ε = Gω,ε − GX�ε

f
+ X̃ in �,

ϕ̂ω,ε = 0 on ∂�.
(5.21)

By Theorem 8.1 [16], the solution of (5.20) satisfies

‖ϕ̌ω,ε‖L∞(�) = ‖ϕ̌ω,ε‖L∞(∂�) ≤ cε, (5.22)

where c is independent of ω, ε. Next we consider (5.21) for ω
ε

→ σ ∈ (0,∞) and ω
ε

→ 0
separately.

Case 1: ω
ε

→ σ ∈ (0,∞). By Theorem 2.1 and A6, the solution of (5.21) satisfies

‖Eω,εϕ̂ω,ε‖L∞(�) ≤ c(max{ω, ε, |ω2/(σε)2 − 1|} + ‖Gω,ε − G‖Ln+δ(�ε
f )

), (5.23)

where c is independent ofω, ε. Employing (5.22)–(5.23) and modifying the argument of Part
1, we obtain Theorem 2.3 for ω, ε → 0, ω

ε
→ σ ∈ (0,∞) case.

Case 2: ω
ε

→ 0. If ϕ̂ω,ε is the solution of (5.21), we multiply (5.21) by |ϕ̂ω,ε |n+δ−2ϕ̂ω,ε and
integrate by part to see, by A6,

‖ϕ̂ω,ε‖Ln+δ(�) ≤ c(max{ω, ε, |ω
ε
ln

ω

ε
| 12 } + ‖Gω,ε − G‖Ln+δ(�ε

f )
), (5.24)

where c is independent of ω, ε. By (5.22) and (5.24), we obtain Theorem 2.3 for ω, ε →
0, ω

ε
→ 0 case.

5.2 Proof of Theorem 2.4

The proof is similar to that of Theorem 2.3. Let us assume that A1–A3, A4’, A6, and A7
hold. For each ν ∈ (0, 1), we find W̆ν ∈ H1

per (R
n) satisfying⎧⎨

⎩
∇ · (Eν2K∇W̆ν) = (EνP − T̆ )XY f in Y,∫

Y f

W̆ν(y)dy = 0.
(5.25)

See A7 for P, and (2.15) for constant T̆ . By Lax–Milgram Theorem [16], Lemma 3.3, and
A7, W̆ν is uniquely solvable and

‖W̆ν‖C2(Y f )∩C2(Ym ) ≤ c, (5.26)

123



Uniform bound and convergence for elliptic homogenization... 1831

where c is a constant independent of ν. Define W̆ν,s(x) ≡ s2W̆ν(
x
s ) for ν, s ∈ (0, 1).

Let �ω,ε be the solution of (1.1) with Vω,ε = 0, � be the solution of (2.16), and

ϕω,ε ≡ �ω,ε − � − W̆ω,ε� − Xω,ε∇� − Yω,ε∇2� in �.

See (2.5) forXω,ε and (5.1) forYω,ε . By (2.16), (3.17), (3.19), (5.1)–(5.2), and (5.25)–(5.26),
we obtain⎧⎪⎨

⎪⎩
−∇ · (

Eω2,εKε

(∇ϕω,ε + O1(ε
2)

)) + Tω,εϕω,ε

= O1(ε + ω)X�ε
f
+ O1(ω)X�ε

m
+ (Gω,ε − G)X�ε

f
in �,

ϕω,ε = O2(ε) on ∂�,

whereO1(ν),O2(ν) are defined as those in Part 1. See (2.15) for G. Modifying the argument
of Part 1 in Sect. 5.1 and employing Theorem 2.2, we obtain Theorem 2.4.

5.3 Proof of Theorem 2.5

We assume A1–A3 and A6. Let �ω,ε be the solution of (1.1) with Vω,ε = Tω,ε = 0, � be
the solution of (2.18), and define

ϕω,ε ≡ �ω,ε − � − Xω,ε∇� − Yω,ε∇2� in �.

See (2.5) for Xω,ε and (5.1) for Yω,ε . By (2.18), (3.17), (3.19), and (5.2), ϕω,ε satisfies⎧⎪⎨
⎪⎩

−∇ · (
Eω2,εKε

(∇ϕω,ε + O1(ε
2)

))
= O1(ε + ω)X�ε

f
+ O1(ω)X�ε

m
+ (Gω,ε − G)X�ε

f
in �,

ϕω,ε = O2(ε) on ∂�.

Modifying the argument of Part 1 in Sect. 5.1 and employingTheorem2.2,we obtainTheorem
2.5.
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