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Abstract On a metric graph, we introduce the notion of a free divisor as a replacement for
the notion of a base point-free complete linear system on a curve. By means of an example,
we show that the Clifford inequality is the only obstruction for the existence of very special
free divisors on a graph. This is different for the situation of base point-free linear systems on
curves. It gives rise to the existence of many types of divisors on graphs that cannot be lifted
to curves maintaining the rank, and it also shows that classifications made for linear systems
of some fixed small positive Clifford index do not hold (exactly the same) on graphs.
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1 Introduction

The theory of divisors on a compact metric graph � is developed very similar to the theory of
divisors on a smooth projective curve C . In their paper [9], the authors proved a Riemann–
Roch theorem for metric graphs with a statement completely similar to the Riemann–Roch
theorem for curves. This was an extension of a similar result for finite graphs in [3]. In this
paper, when talking about a graph, we mean a metric graph.

Instead of the dimension of the complete linear system associated with a divisor on a
curve, one has the concept of the rank rk(D) of a divisor D on a graph �. On a graph �,
there is a well-defined canonical divisor K� and an effective divisor D on � is called special
in case the rank of K� − D is at least 0. As in the case of curves, the rank of a non-special
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divisor D on� is completely determined by its degree deg(D) because of the Riemann–Roch
Theorem. For a general effective special divisor D, either its rank or the rank of K� − D is
zero. An effective divisor D such that both rk(D) > 0 and rk(K� − D) > 0 is called very
special, and when considering the possible ranks of divisors, one can restrict to very special
divisors. Such divisors have their degree between 2 and 2g-4. If the genus of the graph is <2,
then there are no very special divisors on the graph, so from now on we only consider graphs
of genus g at least 3. It follows easily from the Theorem of Riemann–Roch that for a very
special divisor D on a metric graph �, one has deg(D) ≥ 2 rk(D). In the case of curves, this
corresponding statement is part of the so-called Clifford Theorem.

As in the case of curves, and for the same reason, this inequality is the only obstruction for
the existence of a graph � having a very special effective divisor D of a prescribed degree d
between 2 and 2g−4 and rank r . In case � is a hyperelliptic graph of genus g, meaning it has
an effective divisor E of degree 2 and rank 1, then r E + F with F a general effective divisor
on � of degree d − 2r is a very special divisor of degree d and rank r (of course we assume
2 ≤ d ≤ 2g− 4 and d ≥ 2r ). In case D has rank r and P is any point on �, then also D+ P
has rank at least r . In the case of curves if a divisor D satisfies dim(|D|) = r and P is a
point on C such that dim(|D+ P|) = r , then P is a fixed point of the complete linear system
|D + P|, meaning every divisor of |D + P| contains P . In the relationship between linear
systems on curves and projective realizations of the curve, one is only interested in linear
systems without base points. The examples mentioned above in the case of hyperelliptic
curves are not base point free in case d − 2r > 0. In the case one restricts to base point-free
linear systems on curves one gets more obstructions. As an example, if p is a prime number
and D is an effective divisor on a curveC of degree p such that |D| is a base point-free linear
system of dimension 2, then C is birationally equivalent to a plane curve of degree p and
therefore g ≤ p(p − 1)/2. In the case of graphs, in case D is an effective divisor of rank at
least 1 such that for each point P on � one has rk(D − P) < rk(D), then we say D is a free
divisor on �. In the case of curves, the corresponding definition is equivalent to |D| being
base point free. In the case of graphs, it could be that a divisor D of rank at least 1 that is
not free does not contain a point P such that each effective divisor linearly equivalent to D
contains P . In contrast to the case of curves, the main result of this paper is the following.

Main Theorem For all integers r, d and g satisfying r ≥ 1, d ≤ r + g−2 and d −2r ≥ 0,
there exists a metric graph � of genus g such that � has a free divisor D of degree d with
rk(D) = r .

We mention a few consequences concerning the differences between the theories of divi-
sors on curves and on graphs. In his paper [2], the author describes a degeneration such that
given a divisor D of degree d with dim(D) = r on a curve C , one obtains a graph � having
a divisor τ(D) of degree d and rank at least r . Given an effective divisor D on a graph � of
degree d and rank r , one is interested in conditions implying it comes from a divisor on a
curve with the same rank and dimension. In [12] and [13], it is shown that this correspon-
dence between divisors on graphs and curves is very good in the case of graphs of genus at
most 3 and in case of hyperelliptic graphs. Moreover, for every genus g in [5], one obtains
the existence of graphs for which this correspondence is very good. However, in [14] one
obtains graphs of genus 4 such that not all effective divisors can be lifted to the same curve
such that the rank on the graph is equal to the dimension of the associated complete linear
system on the curve. More examples of this kind are obtained, see e.g., [11]. The examples
in this paper show the existence of types of divisors on graphs that cannot be lifted because
such divisors do not exist on curves. As an example, for all genus g ≥ 7, we obtain graphs
� having a free divisor of degree 5 and rank 2. If such a divisor would be a specialization of

123



Free divisors on metric graphs 1395

a divisor D on a curve C , then | D | has to be a base point-free linear system on C of degree
5 and dimension at least 2. Such curves do not exist.

Associated with a very special divisor D is the Clifford index of D defined by c(D) =
deg(D)−2 rk(D). The inequality of Clifford is equivalent to c(D) ≥ 0. In the case of curves,
the second part of Clifford’s Theorem is the classification of very special divisors of Clifford
index 0. This classification also holds for graphs. In [7], it is proved that in case a graph
has a very special divisor of Clifford index 0, then the graph is hyperelliptic. Moreover, it
is proved in [8] that in case � is a hyperelliptic graph and E is a divisor of degree 2 and
rank 1 on �, then each very special divisor on � of Clifford index 0 is linearly equivalent
to a multiple of E . In the case of curves, for small values of the Clifford index, there exist
classifications of divisors of the given Clifford index. As a next case in [16], it is proved that
on a non-hyperelliptic curve, each very special divisor of degree at most g − 1 of Clifford
index 1 has dimension at most 2 (and in case it has dimension 2, then g ≤ 6). In this paper for
all genus g ≥ 3 and all 1 ≤ r ≤ g−2, we show the existence of a graph � of genus g having
a divisor D of degree 2r + 1 and rank r (hence c(D) = 1). Therefore, the classifications of
linear systems on curves of small Clifford index do not hold for graphs in case of nonzero
Clifford index.

The final arguments in Sect. 3.3 do fit within the concept of lingering paths developed
in [6]. This observation is due to the referee.

2 Generalities

A metric graph � (shortly a graph) is a compact connected metric space such that for each
point P on �, there exists n ∈ Z with n ≥ 1 such that some neighborhood of P is isometric
to {z ∈ C : z = te2kπ/n with t ∈ [0, r ] ⊂ R and k ∈ Z} for some r > 0 and with P
corresponding to 0. The valence val(P) is equal to n. We say that P is a vertex of � if
val(P) �= 2.

Let V (�) be the set of vertices of �. A connected component e of �\V (�) is called an
edge of �. We write e to denote its closure, and we call it a closed edge of �. In case e\e is
just one vertex of �, then we call e a loop. In case V (�) = ∅, then � is also considered as
being a closed loop. Let E(�) be the set of closed edges of �. The genus of � is defined by
g(�) = 1 in case � is a loop, else

g(�) = |E(�)| − |V (�)| + 1.

An arc on � based at P is a map τ : [0, a] → � with τ(0) = P such that τ is an isometry
on its image. Two such arcs τ and τ ′ are called equivalent in case τ(ε) = τ ′(ε) for ε > 0 very
small. An equivalence class of such arcs is called a tangent direction of � at P , and TP (�)

is the set of tangent directions of � at P . Clearly, TP (�) has val(P) tangent directions.
A divisor D on a metric graph � is a finite formal linear combination

∑
P∈� nP P of

points on � with integer coefficients (hence nP �= 0 for finitely many points P an �). We
also write D(P) to denote the coefficient nP . The degree of D is deg(D) = ∑

P∈� nP . We
say D is effective if nP ≥ 0 for all P ∈ �. The canonical divisor of � is

K� =
∑

P∈�

(val(P) − 2)P

(since � is compact, one has val(P) �= 2 for finitely many points P on �). A rational
function on � is a continuous function f : � → R that can be described as a piecewise affine
function with integer slopes on the edges. For P ∈ �, we define div( f )(P) as being the sum
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of all slopes of f on � in all directions emanating from P . In this way f defines a divisor
div( f ) = ∑

P∈� (div( f )(P)) P . Two divisors D1 and D2 are called linearly equivalent if
D2 − D1 = div( f ) for some rational function f on �. For a divisor D, we define the rank
rk(D) as follows. In case D is not linearly equivalent to an effective divisor, then rk(D) = −1.
Otherwise, rk(D) is the minimal number r such that for each effective divisor E of degree r
on �, there exists an effective divisor D′ on � linearly equivalent to D and containing E .

2.1 Reduced divisors

The concept of reduced divisors is introduced in [3] in the context of finite graphs. Its
generalization to the metric case is introduced at different papers (see e.g., [10,17]). Let D
be a divisor on a metric graph �, let X be a closed subset of �, and let P ∈ ∂X be a boundary
point of X . We say a tangent direction v ∈ TP (�) leaves X at P if for an arc τ representing
v and ε > 0, small one has τ(ε) /∈ X . We say P is a saturated boundary point of X with
respect to D if the number of tangent directions v at P leaving X is at most D(P); otherwise,
we call it non-saturated.

Definition 1 Let D be a divisor on ametric graph� and let P0 ∈ �.We say D is a P0-reduced
divisor in case the following conditions are satisfied

1. ∀P ∈ �\{P0} : D(P) ≥ 0
2. ∀X ⊂ �, a closed subset with P0 /∈ X , there exists P ∈ ∂X such that P is non-saturated

with respect to D.

Theorem 1 Let D be a divisor on a metric graph � and let P ∈ �. There is a unique
P-reduced divisor DP on � linearly equivalent to D.

2.2 The burning algorithm

In [15], an algorithm is described such that given an effective divisor D on � and P ∈ �,
one finds the P-reduced divisor DP linearly equivalent to D. From this algorithm, it is clear
that DP (P) is the maximal value m = D′(P) for an effective divisor D′ linearly equivalent
to D.

Part of that algorithm consists of checking that a given effective divisor D is P-reduced.
This can be made very visible using the so-called burning algorithm (see also [4, A.3]).

In case Q ∈ Supp(D) with Q �= P , then we assume there are D(Q) firefighters available
at Q. There is a fire starting at P and following all tangent directions of P . Each time the fire
reaches some point Q ∈ Supp(D) along some tangent direction v at Q, then one firefighter
does stop the fire at Q coming in along v. Then, this firefighter is occupied and not available
any more. In case the fire reaches some point Q ∈ � and there is no more firefighter available
at Q (because Q /∈ Supp(D) or all firefighters at Q are occupied by fires coming in from
other tangent directions at Q), then Q gets burned and the fire goes on from Q in all tangent
directions not yet burned. The divisor is P-reduced if and only if the whole graph gets burned
by this fire.

2.3 The Jacobian and Abel–Jacobi maps

For making some dimension arguments, we use the tropical Jacobian of a metric graph and
the associated Abel–Jacobi maps defined in [17]. In that paper, the authors do introduce
one-forms on �. The space �(�) of those one-forms is a g-dimensional real vector space.
Similar to the case of curves, integrals along paths on � do define linear functions on �(�).
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Fig. 1 Graph �0

The cycles on � do define a lattice� in the dual space�(�)∗, and we call J (�) = �(�)∗/�
the tropical Jacobian of �.

Fixing a base point P0 on �, one also obtains for each nonnegative integer d an Abel–
Jacobimap I (d) : �(d) → J (�). Here,�(d) is the d-th symmetric product of� parametrizing
effective divisors of degree d on�. The structure of�(d) is described in e.g., [1]. For D1, D2 ∈
�(d), one has I (d)(D1) = I (d)(D2) if and only if D1 and D2 are linearly equivalent. For
d ≥ g, the map I (d) is surjective. For d < g, the image of I (d) is a finite union of images
on J (�) of bounded open subsets of affine subspaces of �(�)∗ of dimension at most d .

3 The example

First, we recall the definition of a free divisor on a graph �.

Definition 2 An effective divisor D on a metric graph � is called free if for all P ∈ �, one
has rk(D − P) < rk(D).

In this section, we are going to prove the following theorem

Theorem 2 For all integers r, d and g satisfying r ≥ 1, d ≤ r + g − 2 and d − 2r ≥ 0,
there exists a metric graph � of genus g such that � has a free divisor D of degree d with
rk(D) = r .

In case d−2r = 0, this is well known (see the Introduction), so we can assume d−2r ≥ 1.
Writing d = 2r + a, we obtain a ≥ 1 instead of the condition d − 2r ≥ 1 and the condition
g ≥ r + a + 2 instead of d ≤ r + g − 2. In particular, we can assume g ≥ a + 3 ≥ 4. For a
fixed value of the integer a, we are going to construct a graph � such that for all integers r
satisfying 1 ≤ r ≤ g − a − 2, there exists a free divisor D on � of degree 2r + a such that
rk(D) = r .

To construct the graph, we start with a graph �0 consisting of a circles as used in [6]
(see Fig. 1). We do not need all assumptions from [6, Definition 4.1], we only need that
the lengths of both edges from wi to wi+1 are different for 1 ≤ i ≤ a − 2. Take vg ∈
γ1\{w1}, vg−1 ∈ γa\{wa−1} such that 2vg is not linearly equivalent to 2w1 on γ1 and 2vg−1

is not linearly equivalent to 2wa−1 on γa and some more different points va+1, . . . , vg−2

(remember g ≥ a + 3) on �0 different from w1, . . . , wa−1. For each a + 1 ≤ i ≤ g, we
attach a loop γi to �0 at vi . This is the graph � of genus g we are going to use (see Fig. 2).
A divisor E on �0 or on γi for some a + 1 ≤ i ≤ g can also be considered as a divisor on
�. Therefore, we write rk�0(E) [resp. rkγi (E), rk�(E)] to denote its rank as a divisor on �0

(resp. γi , �).
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Fig. 2 Graph �

Lemma 1 In case E and E ′ are linearly equivalent divisors on �0 or γi for some a + 1 ≤
i ≤ g, then E and E ′ are also linearly equivalent divisors on �.

Proof Assume E and E ′ are linearly equivalent divisors on �0. Let f be a rational function
on �0 such that div( f ) = E − E ′. Let g be the rational function on � such that its restriction
to �0 is equal to f and for a + 1 ≤ i ≤ g its restriction is the constant function with value
f (vi ), then on � one has div(g) = E − E ′. This proves the lemma in the case of �0, the
other case is similar. �

Lemma 2 Let E and E ′ be effective divisors on�0 such that E and E ′ are linearly equivalent
as divisors on �. Then, E and E ′ are linearly equivalent as divisors on �0.

Proof There is a rational function f on� such that div( f ) = E−E ′. For a+1 ≤ i ≤ g, there
is no point P on γi\{vi } contained in the support of div( f ). Since γi is a loop, this implies
f is constant on γi . Let f ′ be the restriction of f to �0, then this implies div( f ′) = E − E ′
on �0; hence, E and E ′ are linearly equivalent divisors on �0. �
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Free divisors on metric graphs 1399

3.1 Effective divisors of degree a + 2r and rank r

Lemma 3 Let D be an effective divisor of degree a + 2r on �0 with 1 ≤ r ≤ g − a − 2,
then rk�(D) ≥ r .

Proof Let E = P1 +· · ·+ Pr be an effective divisor on �. We need to prove that there exists
an effective divisor D′ on � linearly equivalent to D containing E . From the Riemann–Roch
Theorem, it follows rk�0(D) ≥ 2r ; hence; in case Pi ∈ �0 for 1 ≤ i ≤ r , then there exists a
divisor D′ on �0 linearly equivalent to D containing E . From Lemma 1, we know D′ is also
linearly equivalent to D on �.

So we can assume not all points Pi belong to �0. Define a + 1 ≤ i1 < i2 < · · · < ir ′ ≤ g
such that E ∩ (γ j\{v j }) �= ∅ for some a + 1 ≤ j ≤ g if and only if there exists 1 ≤ k ≤ r ′
such that ik = j . Let deg(E∩(γik\{vik })) = nk for 1 ≤ k ≤ r ′ and let deg(E∩�0) = n0. On
�0, we consider the divisor E0 = (E ∩ �0) + (n1 + 1)vi1 + · · · + (nr ′ + 1)vir ′ . It has degree
n0 + (n1 + 1) + · · · (nr ′ + 1) = r + r ′ ≤ 2r ; hence, there exists a divisor D′′ on �0 linearly
equivalent to D containing E0. From Lemma 1, it follows D′′ is linearly equivalent to D as a
divisor on �. For 1 ≤ k ≤ r ′, there exists a point Qk on γik such that (E ∩ (γik\{vik }) + Qk

is linearly equivalent to (nk + 1)vik on γik . Again because of Lemma 1, linearly equivalence
between those divisors also holds on �. Therefore, on � the divisor D is linearly equivalent
to D′′ − ∑r ′

k=1(nk + 1)vik + ∑r ′
k=1(E ∩ (γik\{vik }) + Qk . This is an effective divisor D′ on

� containing E . �
In order to finish the proof of Theorem 2, it is enough to prove that there exists an effective

divisor D on �0 of degree a + 2r such that for each point P on �, one has rk�(D − P) < r .
Indeed because of Lemma 3, it would imply rk�(D) = r and D is a free divisor on �. We are
going to show that the subset of J (�0) consisting of the images under I (a + 2r) of effective
divisors D on �0 of degree a + 2r such that there is a point P on � with rk�(D − P) ≥ r
is different from J (�0). Since the map I (a + 2r) : �

(a+2r)
0 → J (�0) is surjective, this is

enough to finish the proof of Theorem 2.

3.2 The case P /∈ �0

Lemma 4 Let D be an effective divisor of degree a + 2r on �0 such that there exists a point
P ∈ γa+1\{va+1} satisfying rk�(D − P) = r . Then, there exists an effective divisor E of
degree a− 2 on �0 such that D is linearly equivalent to 2(va+1 + va+2 + · · ·+ va+r+1)+ E
on �0.

FromLemma 4, it follows that in case D is an effective divisor of degree a+2r on�0 such
that there exists a point P ∈ γa+1\{va+1} satisfying rk�(D − P) = r , then I (2r + a)(D)

belongs to the subset I (2r + 2)(2(va+1 + · · · va+r+1)) + I (a − 2)(�(a−2)
0 ) of J (�0). This

subset of J (�0) is the union of finitely many images of bounded open subsets of affine
subspaces of dimension at most a − 2 of �(�)∗. A similar conclusion holds for P on any
γi for a + 1 ≤ i ≤ g. If I (2r + a)(D) does not belong to such subset of J (�), then
rk�(D − P) < r for all P /∈ �0.

In order to prove Lemma 4, we are going to use the following lemma and its corollaries.

Lemma 5 Let G0 be a metric graph and let G be the graph obtained from G0 by attaching a
loop γ at some point v ∈ G0 (see Fig. 3). Let P be a point of γ \{v} and let D be an effective
divisor on G0. Let Q be a point on G0, and let DQ,0 be the Q-reduced divisor on G0 linearly
equivalent to D, and let DQ be the Q-reduced divisor on G linearly equivalent to D + P.
Then, DQ = DQ,0 + P.
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Fig. 3 Graph G

Proof Since DQ,0 is linearly equivalent to D on G0, it follows from Lemma 1 that DQ,0 is
linearly equivalent to D on G; hence, DQ,0 + P is linearly equivalent to D + P on �. So it
is enough to prove that DQ + P is a Q-reduced divisor on G. This is clear using the burning
algorithm: a fire starting at Q burns the whole graph G0 since DQ is a Q-reduced divisor
on �0. Hence, a fire leaves v in both tangent directions to γ at v. These fires do reach P
along both tangent directions to γ at P; hence, also P gets burned because there is only one
firefighter at P . This proves DQ + P is Q-reduced on G. �
Corollary 1 Let G0 be ametric graph, and let G be the graph obtained from G0 by attaching
a loop γ at some point v ∈ G0. Let P be a point of γ \{v}, and let D be an effective divisor
on G0. If rkG(D + P) ≥ r , then rkG0(D) ≥ r .

Proof Assume rkG(D + P) ≥ 1, and let Q be a point on G0. Let DQ be the Q-reduced
divisor linearly equivalent to D on G0. From Lemma 5, we know DQ + P is the Q-reduced
divisor on G linearly equivalent to D + P . Since rkG(D + P) ≥ 1, it follows DQ + P
contains Q; hence, DQ contains Q. This proves rkG0(D) ≥ 1.

Now assume rkG(D+ P) ≥ r > 1, by means of induction we can assume that rkG0(D) ≥
r −1. Take P1 +· · ·+ Pr on G0. We can assume D = P1 +· · · Pr−1 + D′ for some effective
divisor D′ on G0. Then, rkG(D′ + P) ≥ 1; hence, rkG0(D

′) ≥ 1. Hence, D′ is linearly
equivalent to Pr + D” on G0 for some effective divisor D” on G0. Then, D” + P1 + · · · Pr
is linearly equivalent to D on G0; hence, rkG0(D) ≥ r . �
Corollary 2 Let G0 be ametric graph, and let G be the graph obtained from G0 by attaching
a loop γ at some point v ∈ G0. Let D be an effective divisor of degree d on G0. There does
not exist an effective divisor D′ of degree d − 1 on G0 and P ∈ γ \{v} such that D and
D′ + P are linearly equivalent divisors on �.

Proof Assume D′ is an effective divisor of degree d − 1 on G0 and P ∈ γ \{v} such that
D and D′ + P are linearly equivalent divisors on G. Choose Q ∈ G0 and let DQ (resp.
D′

Q) be the Q-reduced divisors on G0 linearly equivalent to D (resp. D′) on G0. Because of
Lemma 5, DQ (resp. D′

Q + P) is the Q-reduced divisor on G linearly equivalent to D (resp.
D′ + P) on G. By assumption, D and D′ + P are linearly equivalent divisors on G. Since
DQ �= D′

Q + P , this contradicts Theorem 1. �
Now we are going to prove Lemma 4. On �0, the divisor D is linearly equivalent to

2va+1 + D′ for some effective divisor D′ of degree a + 2r − 2 on �0. On the loop γa+1,
one has 2va+1 linearly equivalent to P + P ′ for some point P ′ different from va+1. From
Lemma 1, it follows D is linearly equivalent to D′ + P + P ′ on �. By assumption, we
have rk�(D′ + P ′) ≥ r . Let �′ = �\(γa+1\{va+1}); then, from Corollary 1, we obtain
rk�′(D′) ≥ r . For a + 2 ≤ j ≤ a + r + 1, let Pj be a point on γ j different from v j . On �′,
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there exists an effective divisor D′′ linearly equivalent to D′ containing Pa+2+· · ·+ Pa+r+1.
Write D′′ = D′′

a+2 + · · · + D′′
g + E ′ with Supp(D′′

j ) ⊂ γ j\{v j } for a + 2 ≤ j ≤ g and
Supp(E ′) ⊂ �0. On γ j , there exist a nonnegative integer r j and an effective divisor E ′′

j of
degree at most 1 such that D′′

j is linearly equivalent to r jv j + E ′′
j . From Lemma 1, we know

that D′′′ = 2va+1 + ra+2va+2 + · · · + rgvg + E ′′
a+2 + · · · + E ′′

g + E ′ is linearly equivalent
to D as a divisor on �.

From Corollary 2, it follows E ′′
a+2 + · · · + E ′′

g = 0. However, for a + 2 ≤ j ≤ a + r + 1,
one has Pj ∈ D′′

j and D′′
j linearly equivalent to r jv j on γ j ; hence, r j ≥ 2. Hence, D′′′ =

2(va+1 + · · · + va+r+1) + E for some effective divisor E on �0. From Lemma 2, it follows
that D′′′ is also linearly equivalent to D as divisors on�0. This finishes the proof of Lemma 4.

3.3 The case P ∈ �0

Let D be an effective divisor of degree a + 2r on �0, and assume there exists P ∈ �0 such
that rk�(D− P) = rk�(D). Let D′ be an effective divisor on �0 such that D′ + P is linearly
equivalent to D as a divisor on �0. From Lemma 1, we know D′ is linearly equivalent to
D − P as a divisor on �; hence, rk�(D′) = r . Therefore, we have to consider effective
divisors D′ on �0 of degree a + 2r − 1 such that rk�(D′) ≥ r . The divisors D we are
considering are of the type D′ + P for such divisor D′ on �0 and P a point on �0. So, let D′
be such a divisor on �0.

For a + 1 ≤ i ≤ a + r − 1, we choose Pi ∈ γi\{vi } (hence in case r = 1, this means
we take no point, also a + r − 1 ≤ g − 2 because r ≤ g − a − 2). Also, we choose points
Pg ∈ γg\{vg} and Pg−1 ∈ γg−1\{vg−1}. On �, there exists an effective divisor D′′ linearly
equivalent to D′ containing Pa+1 + · · · + Pa+r−1 + Pg . Repeating the arguments used in
the proof of Lemma 4, using Corollary 2 we find D′ is linearly equivalent on �0 to a divisor
D′′′ = 2(va+1 +· · ·+ va+r−1 + vg)+ E for some effective divisor E on �0 of degree a− 1.
Using Pg−1 instead of Pg , we find the existence of an effective divisor E ′ on �0 of degree
a−1 such that 2(va+1+· · ·+va+r−1+vg−1)+E ′ is linearly equivalent to D′ on�0. It follows
that 2vg + E is linearly equivalent to 2vg−1 + E ′ on �0; hence, rk�0(2vg + E − 2vg−1) ≥ 0.

In case E is linearly equivalent on �0 to an effective divisor F containing vg−1, then
D = D′ + P is linearly equivalent to 2(va+1 +· · ·+va+r−1 +vg)+vg−1+ (F −vg−1 + P).
In that case, I (a + 2r)(D) belongs to the subset I (2r + 1)(2(va+1 + · · · + va+r−1 + vg) +
vg−1)+ I (a − 1)

(
�

(a−1)
0

)
of J (�0). This subset is the image of a finite number of bounded

open subsets of affine subspaces of�(�0)
∗ of dimension at most a−1. A similar conclusion

can be drawn in case E would be linearly equivalent on�0 to an effective divisor F ′ containing
vg . We can assume I (a + 2r)(D) does not belong to such subset of J (�).

Now we consider the situation where E is not linearly equivalent on �0 to an effective
divisor F (resp. F ′) containing vg−1 (resp. vg). Using arguments as in Lemma 1, it is clear that
each effective divisor on �0 is linearly equivalent to an effective divisor whose support has
at most one point in each γi\{wi } for 1 ≤ i ≤ a with wa = vg−1. This implies E is linearly
equivalent on�0 to a divisor Q1+· · ·+Qa−1 with Qi ∈ γ ji \{w ji } for 1 ≤ i ≤ a−1with 1 ≤
j1 < j2 < · · · < ja−1 ≤ a and Q1 �= vg in case j1 = 1. We are going to describe a certain
finite subset S of �0 satisfying the following property. If Qi /∈ S for each 1 ≤ i ≤ a−1, then
rk�0(2vg + E − 2vg−1) = −1. For Q ∈ S and Qi = Q for some 1 ≤ i ≤ a − 1, one obtains
D = D′+P linearly equivalent as a divisor on�0 to 2(va+1+· · ·+va+r−1+vg)+Q+F ′+P
for some effective divisor F ′ of degree a−2. In that case, I (a+2r)(D) belongs to the subset
I (2r +1)(2(va+1 +· · ·+va+r−1 +vg)+Q)+ I (a−1)(�(a−1)

0 ) of J (�0). Again this subset
is the image of the union of finitely many bounded subsets of affine subspaces of �(�0)

∗ of
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dimension at most a − 1. In case I (a + 2r)(D) does not belong to such subset of J (�0),
then we obtain rk�(D − P) < r for all P ∈ �.

Let S be the finite set consisting of the following points: the points Q′
1 and Q′′

1 on γ1
such that 2vg + Q′

1 is linearly equivalent to 3w1 on γ1 and vg + Q′′
1 is linearly equivalent to

2w1 on γ1; for 2 ≤ i ≤ a − 1 the points Q′
i and Q′′

i on γi such that 2wi−1 + Q′
i is linearly

equivalent to 3wi and wi−1 + Q′′
i is linearly equivalent to 2wi on γi and the point Q′

a on γa
such that wa−1 + Q′

a is linearly equivalent to 2vg−1 on γa . So we can assume Qi /∈ S for
1 ≤ i ≤ a−1. Define 0 ≤ e ≤ a−1 such that je = e and je+1 = e+2 (no condition on j0 in
case e = 0 and no condition on ja in case e = a− 1). We start with 2vg + Q1 +· · ·+ Qa−1.
In case e > 0, then on γ1, we obtain 2vg + Q1 linearly equivalent to 2w1 + R1 with
R1 /∈ {w1, vg}. Hence, because of Lemma 1, 2vg +Q1 +· · ·+Qa−1 is linearly equivalent to
R1+2w2+Q2+· · ·+Qa−1 on�0.Continuing in thisway, in case e = a−1,weobtain 2vg+E
is linearly equivalent to a divisor R1 + · · · + Ra−1 + 2wa−1 on �0 with Ri ∈ γi\{wi−1, wi }
for 1 ≤ i ≤ a− 1 (here w0 = vg). Since 2wa−1 is not linearly equivalent to 2vg−1 on γa , we
obtain 2vg+E is linearly equivalent to R1+· · ·+Ra+vg−1 with also Ra ∈ γa\{wi−1, vg−1}.
Using the burning algorithm on �0, one easily sees that this divisor is vg−1-reduced. This
implies R1 + · · · + Ra − vg−1 is vg−1-reduced too; hence, rk�0(2vg + E − 2vg−1) = −1
in this case. In case 1 ≤ e < a − 1, then we obtain 2vg + E is linearly equivalent to
R1+· · ·+ Re +2we +Qe+1+· · ·+Qa−1 with Ri ∈ γi\{wi−1, wi } in case 1 ≤ i ≤ e. Since
2vg is linearly equivalent to R1 + w1 with R1 ∈ γ1\{vg, w1} on γ1 and 2wi−1 is linearly
equivalent to Ri + wi with Ri ∈ γi\{wi−1, wi } on γi for 2 ≤ i ≤ a − 1, we obtain 2vg + E
linearly equivalent to R1+· · · Re+1+we+1+Qe+1+· · ·+Qa−1 in case 0 ≤ e < a−1. From
this, we obtain 2vg+E linearly equivalent on�0 to a divisor R1+· · ·+Ra−1+wa−1+Qa−1

with Ri ∈ γi\{wi−1, wi } for e + 2 ≤ i ≤ a − 1, and therefore, it is linearly equivalent on
�0 to a divisor R1 + · · · + Ra + vg−1 with Ra ∈ γa\{wa−1, vg−1}. As already mentioned
before, this is a vg−1-reduced divisor, implying rk�0(2vg + E − 2vg−1) = −1.

The previous arguments are very similar to the use of the so-called lingering paths in [6].
As a matter of fact, if the divisor 2vg + F is the vg-reduced divisor linearly equivalent to
2vg + E , then this implies the associated lingering path (see [6] for this concept) lingers
in a − 1 steps. So we proved that rk�0(2vg + E − 2vg−1) ≥ 0 implies the lingering path
associated with 2vg + E lingers in at most a − 2 steps. This gives rise to the dimension
arguments used in the proof.
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