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Abstract Given an ñ-dimensional manifold ˜M equipped with a ˜G-structure π̃ : ˜P → ˜M ,
there is a naturally induced G-structure π : P → M on any submanifold M ⊂ ˜M that
satisfies appropriate regularity conditions. We study generalized integrability problems for a
given G-structure π : P → M , namely the questions of whether it is locally equivalent to
inducedG-structures on regular submanifolds of homogeneous ˜G-structures π̃ : ˜P → ˜H/˜K .
If π̃ : ˜P → ˜H/˜K is flat k-reductive,we introduce a sequence of generalized curvatures taking
values in appropriate cohomology groups and prove that the vanishing of these curvatures
is a necessary and sufficient condition for the solution of the corresponding generalized
integrability problem.
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1 Introduction

Let M be an n-dimensional manifold and π : L(M) → M the linear frame bundle of M ,
that is, the GLn(R)-bundle of all linear frames u = (ei ) of the tangent spaces of M . We
recall that, given a closed subgroup G ⊂ GLn(R), a G-structure on M is a G-reduction P
of L(M), a bundle formed by a collection of linear frames with the property that any two of
them u = (ei ), u′ = (e′

i ) at a point x ∈ M satisfy an equality of the form

e′
j =

n
∑

i=1

Ai
j ei , for some A = (Ai

j ) ∈ G
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1464 A. Santi

(see, e.g., [9,22]). Any G-structure is naturally endowed with the so-called soldering form
ϑ : T P → R

n , defined by ϑu(v) = (v1, . . . , vn), where the vi are the components of the
vector π∗(v) ∈ Tπ(u)M w.r.t. the frame u = (ei ).

One of the simplest examples of a G-structure is given by the flat G-structure Po on R
n ,

the collection of all linear frames (ei ) of the form

ei =
n

∑

j=1

A j
i

∂

∂x j

∣

∣

∣

∣

x
, (A j

i ) ∈ G , (xi ) = standard coord. of R
n .

An arbitrary G-structure π : P → M is called (locally) integrable if it satisfies the
following: Around any x ∈ M , there exists a local diffeomorphism f : U → R

n such that
the bundle f∗(P|U ) of pushed-forward frames coincides with Po| f (U). Equivalently onemay
say that P is locally integrable if M can be covered by charts ξ = (yi ) with the property that
the coordinate frames ( ∂

∂yi

∣

∣

x ) are in P at all points. The problem of determining whether a
given G-structure π : P → M is integrable or not is usually called the integrability problem.
When G ⊂ GLn(R) is of finite type, such problem is completely solvable. Indeed, it turns
out that, in this case, P is integrable if and only if all elements of a special collection of
G-equivariant maps in the Spencer cohomology groups H p,2(g), g = Lie(G), are trivial
(see [7]).

Another natural construction of G-structures is the following. Let π̃ : ˜P → ˜M be a ˜G-
structure on a manifold ˜M of dimension ñ = n+m and M ⊂ ˜M a submanifold of dimension
n. We say that M is ˜P-regular if the collection of frames u ∈ ˜P that are adapted to M (i.e.,
with x = π̃(u) ∈ M and the first n vectors tangent to M) constitutes a principal bundle
π� = π̃ |P� : P� → M with structure group

G� =
{

˜A =
(

A B
0 D

)

∈ ˜G | A size n × n

}

. (1.1)

Note that the quotient G�/N� of G� by the closed and normal subgroup

N� =
{

˜A =
(

I B
0 D

)

∈ ˜G

}

(1.2)

is isomorphic to G = {

A ∈ GLn(R) | A = upper left block of some ˜A ∈ G�

}

. If M ⊂ ˜M is
˜P-regular, the quotient bundle π : P = P�/N� → M with structure group G = G�/N� is
naturally identifiable with the G-structure on M given by the frames formed by the first n
vectors of the adapted frames. We call it G-structure induced by ˜P; its frames u ∈ P are the
induced frames. First examples of such induced structures are the orthonormal frame bundles
of n-dimensional submanifolds of the flat Riemannian manifold R

n+m .
Now, given a G-structure π : P → M and an homogeneous ˜G-structure π̃ : ˜P → ˜M

on a manifold of dimension ñ = n + m, one may ask whether around any x ∈ M there is
a local embedding f : U ⊂ M → ˜M such that f (U) is ˜P-regular, and the pushed-forward
bundle f∗(P|U ) is the G-structure induced by ˜P . If this occurs, we say that f is a (P, ˜P)-
regular embedding and that P is locally immersible into ( ˜M, ˜P) (shortly, immersible in ˜P).
By analogy with the classical integrability problem, we call the question on the existence of
such local immersions the generalized integrability problem.

A crucial tool to deal with a given generalized integrability problem is provided by the
following theorem.

Let ˜M = ˜H/˜K be an ñ-dimensional homogeneous manifold with effective action and
π̃ : ˜P → ˜M one of its associated homogeneous ˜G-structures. Each of them is a subbundle
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A generalized integrability problem for G-structures 1465

˜P ⊂ L( ˜M) given by all frames of an orbit in L( ˜M) of the group of diffeomorphisms
˜H ⊂ Diff( ˜M) (see Sect. 2.1 for details). Let also˜h = Lie( ˜H),˜k = Lie(˜K ) and denote by
p̃ :˜h →˜h/˜k � To ˜M , o = e˜K , the canonical projection onto˜h/˜k. In the following, the space
To ˜M is identified with R

ñ by means of a linear frame uo ∈ ˜P|o.
Theorem 1.1 Let π : P → M be a G-structure on an n-dimensional manifold M with
soldering form ϑ = (ϑ1, . . . , ϑn). Then, P is locally immersible in ( ˜M = ˜H/˜K , ˜P) if and
only if

(a) G � G�/N�, where G�, N� ⊂ ˜G are as in (1.1) and (1.2) respectively;
(b) for any local section s : U ⊂ M → P, there exists an˜h-valued local 1-form ω on M

which satisfies

p̃ ◦ ω = (s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0) (1.3)

and

dω + 1

2
[ω,ω] = 0. (1.4)

Furthermore, if (b) holds for a given section s : U → P, then it holds for any other section
on the same open set U .

The proof of Theorem 1.1 is simple. The necessity is a consequence of the fact that, if
there is the required immersion f : U ⊂ M → ˜M , one can pullback the Maurer–Cartan
form � of ˜H on M and obtain a 1-form ω that satisfies (1.3) and (1.4). The sufficiency is
obtained by an appropriate use of Frobenius’ Theorem (see Sect. 2).

Theorem 1.1 gives an unified approach for determining complete sets of necessary and
sufficient conditions for the existence of local immersions into homogeneous spaces. To have
a flavor of the meaning of Eqs. (1.3) and (1.4), consider the case where there is a reductive
decomposition˜h =˜k + m̃ and two decompositions˜k = g + g⊥ and m̃ = m + m⊥ into the
direct sum of modules for the adjoint action of g = Lie(G). In this case, the˜h-valued 1-form
ω has the form

ω = ωg + ωg⊥ + ωm + ωm⊥

and condition (1.3) means that ωm coincides with s∗ϑ while ωm⊥
vanishes. At the same

time, condition (1.4) corresponds to the existence of a 1-form ω
˜k = ωg + ωg⊥

satisfying the
system of equations

[ωg, ωm] + [ωg⊥
, ωm] = −dωm − 1

2
[ωm, ωm]m̃ ,

dωg + dωg⊥ + 1

2
[ωg, ωg] + [ωg, ωg⊥] + 1

2
[ωg⊥

, ωg⊥] = −1

2
[ωm, ωm ]̃k.

In the case of isometric immersions into spaces of constant curvature, these equations turn
out to be equivalent to the classical Gauss–Codazzi–Ricci equations and the property that
they are the only obstructions to be satisfied is a direct consequence of Theorem 1.1 and of
its main corollaries (see Sect. 5.1).

In general, Eq. (1.4) is quite involved. But, if ˜h = ∑k−1
p=−1

˜hp is a (quasi-)graded Lie
algebra of depth 1, it splits into a sequence of equations that can be solved with an iterative
process (see Sects. 3.1 and 3.2). Further, if ˜P is integrable and of finite type, in analogy with
the results in [7], there is a sequence of locally defined maps on U ⊂ M which take values
in appropriate cohomology groups and vanish if and only if condition (b) of Theorem 1.1 is
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1466 A. Santi

satisfied, i.e., if and only if the generalized integrability problem is solvable (see Theorem
3.4). Thesemaps are called essential (G, ˜G)-curvatures, and they generalize, for instance, the
classical Riemannian curvature in the integrability problem of Riemannian metrics. Under
appropriate cohomological conditions, the essential (G, ˜G)-curvatures are maps which are
globally well defined on the total space of π : P → M and G�-equivariant (see Proposition
4.2 and Theorem 4.3).

Several applications of the general theory of ˜G-structures π̃ : ˜P → ˜M and the G-
structuresπ : P → M induced on ˜P-regular submanifoldsM ⊂ ˜M are considered in Sect. 5.
There we first obtain in a unified fashion the classical Gauss–Codazzi–Ricci equations for the
isometric immersions of a Riemannian manifold (M, g) into Euclidean spaces, spheres, and
hyperbolic spaces. Then, we consider the case of local conformal immersions of (M, g) into
spheres and get a new proof for Akivis’ theorem on the existence of such immersions ([1,2]).
Additional new results on this topic are also given. Finally, we show how the general results
yield the classical result by Andreotti andHill on the existence of CR local embeddings of CR
manifolds in C

ñ ([5]), and we discuss the theorem on the existence of local CR quaternionic
embeddings of an almost CR quaternionic manifold in HPñ that we prove in [18].

The paper is organized as follows. In Sect. 2, we give the basic definitions and properties
of homogeneous ˜G-structures and induced G-structures and prove Theorem 1.1. In Sect. 3,
we consider the case of (quasi-)graded Lie algebras, describe the above-mentioned iterative
process, and prove Theorem 3.4, the main result of this section. In Sects. 4 and 5, we restrict
to local immersions in flat 2-reductive ˜G-structures and present the previously mentioned
examples of applications.

Before concluding, we have to mention that a general study of the generalized integra-
bility problem was also done by Rosly and Schwarz in [16]. In fact, this paper was strongly
inspired by that one. There, the authors considered immersions into integrable ˜G-structures of
finite type, established Theorem 1.1, and determined a finite sequence of obstructions. Main
novelties of this paper with respect to [16] are the proof of Theorem 1.1 in coordinate-free
language, which allows immediate extensions to the case of local immersions into homo-
geneous manifolds, and the introduction of a new sequence of cohomology groups and the
corresponding essential curvatures. Note that this new setting can also be easily adapted to
deal with other kinds of G-structures, as for instance those of higher order (see [19]). We
also remark that the essential curvatures considered in this paper are in general different from
Rosly and Schwarz’ curvatures and actually determine a set of obstructions which completes
the one presented in [16] (see Remark 5.2).

2 G-structures immersible into homogeneous ˜G-structures

2.1 Homogeneous G-structures

Let M = H/K be an n-dimensional homogeneous manifold with an effective action. We
throughout assume that H is connected and simply connected and K connected. For any
h ∈ H , we denote by Lh ∈ Diff(M) the corresponding left action.

Given a frame uo = (ei ) ∈ L(M) at o = eK , let

P = H · uo = {h · uo := (Lh∗ei ) , h ∈ H} ⊂ L(M)

be the H -orbit of uo. One gets in this way a reduction π : P → M of L(M), which we call
the homogeneous G-structure associated with M = H/K .
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A generalized integrability problem for G-structures 1467

Note that if K1 is the kernel of the isotropy representation

K → GL(ToM) , k 
→ Lk∗|o ,

then the map h 
→ h · uo determines a natural bundle isomorphism between H/K1 → M =
H/K and the G-structure π : P → M , with G � K/K1.

From now on, we assume a fixed choice of uo and tacitly use it to identify ToM with R
n

and π : P → M with H/K1 → H/K . Then, if we consider the canonical projections

π1 : H → P = H/K1 , p : h → h/k � ToM ,

the soldering form ϑ of P can be determined from the Maurer–Cartan form � of H as the
unique R

n-valued 1-form which satisfies

π∗
1ϑ = p ◦ �. (2.1)

In the following, we define homogeneous G-structure any pair (H/K , P) consisting of
an homogeneous manifold M = H/K and a fixed associated homogeneous G-structure
P . Further, an homogeneous G-structure (H ′/K ′, P ′) is defined extension of (H/K , P) if
H ′/K ′ is locally diffeomorphic to H/K , P ′ locally equivalent to P as a G-structure, and
h = Lie(H) is a proper subalgebra of h′ = Lie(H ′) with k = h ∩ k′. The homogeneous
G-structure (H/K , P) is inextendible if it does not admit any extension.

As mentioned in the introduction, Theorem 1.1 fully characterizes immersible G-
structures. Before the proof, we give a simple characterization of ˜P-regular submanifolds,
which hold for any (not necessarily homogeneous) ˜G-structure π̃ : ˜P → ˜M .

Lemma 2.1 A submanifold M ⊂ ˜M is ˜P-regular if and only if for any x ∈ M there exists
an adapted frame u at x. In this case, the principal bundle π� : P� → M is a G�-reduction
of ˜P|M with G� as in (1.1).

This lemma is proved by first checking the existence of local smooth sections of ˜P|M
taking values in P� and then applying Lemma 1 in [11, p.84]. We omit the details for the sake
of brevity.

2.2 Proof of Theorem 1.1

Let f : U ⊂ M → ˜M be a (P, ˜P)-regular embedding, which we use to identify U with a
submanifold of ˜M and P|U with the induced G-structure. Without loss of generality, we may
assume U to be contractible, consider a local section s� : U → P� of the subbundle P� ⊂ ˜P|U
and the corresponding section s : U → P of P induced via the identification P � P�/N�.
By local triviality of the fibration π̃1 : ˜H → ˜P = ˜H/˜K1, we may also pick a local section
s̃ : U → ˜H |U satisfying π̃1 ◦ s̃ = s�. The situation is summarized by the following diagram:
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1468 A. Santi

Let ω = s̃∗� , where � is the Maurer–Cartan form of ˜H . Then, Eq. (1.3) is checked
observing that

p̃ ◦ ω = s̃∗( p̃ ◦ �) = s̃∗(π̃∗
1
˜ϑ) = s∗

�
˜ϑ = (s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0) ,

where the second equality follows from (2.1) applied to the soldering form˜ϑ of ˜P and the last
equality is a direct consequence of definitions of soldering 1-forms and inducedG-structures.
The Eq. (1.4) follows from the Maurer–Cartan equation of � .

Conversely, let ω be a 1-form satisfying (1.3), (1.4) and consider the 1-form ω − � on
the product U × ˜H with the associated distribution D ⊂ T (U × ˜H) of rank n, defined by

D = ∪y∈U× ˜HDy , Dy = Ker(ω − �)|y .

Using (1.4), one checks that D is involutive, hence integrable by Frobenius’ Theorem. For
a chosen x ∈ U , an integral leaf through the point (x, e) is the graph of a unique local map
s̃ : U → ˜H with ω = s̃∗� and s̃(x) = e.

We now claim that, by possibly taking a smaller U , the map

f = π̃ ◦ π̃1 ◦ s̃ : U ⊂ M → ˜M

is a (P, ˜P)-regular embedding. Using (1.3), one sees that f∗|x is injective so that f is a local
embedding around x . Moreover, given the section s� := π̃1 ◦ s̃ : U → ˜P|U of ˜P|U , we may
consider the G�-reduction

P� = {s�(x) · ˜A : x ∈ U, ˜A ∈ G�} ⊂ ˜P|U .

By (2.1) and (1.3), we get

s∗
�
˜ϑ = s̃∗π̃∗

1
˜ϑ = p̃ ◦ (̃s∗�) = p̃ ◦ ω = (s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0) .

This relation between the soldering forms ˜ϑ , ϑ of ˜P and P , respectively, says that f is
(P, ˜P)-regular with bundle of adapted frames isomorphic with P�.

Since we just proved that the existence of solutions to (1.3) and (1.4) for a given section
s : U → P is equivalent to local immersibility of P (a property clearly independent on the
choice of s), the last claim of the theorem follows immediately. 
�

Remark 2.2 Let ( ˜H ′/˜K ′, ˜P ′) be a proper extension of the homogeneous ˜G-structure
( ˜H/˜K , ˜P). Since any˜h-valued 1-form is an˜h′-valued 1-form satisfying additional condi-
tions, the Eqs. (1.3) and (1.4) on˜h-valued 1-forms are equivalent to the system on˜h′-valued
1-forms given by (1.3), (1.4) and such constraints. On the other hand, since ˜P ′ � ˜P , Theo-
rem 1.1 implies that there is an˜h-valued solution of (1.3) and (1.4) if and only if there is an
˜h′-valued solution. Due to this, inextendible homogeneous ˜G-structures are more appropriate
than the extendible ones for determining minimal sets of obstructions for a given generalized
integrability problem.
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A generalized integrability problem for G-structures 1469

3 k-reductive ˜G-structures and (G, ˜G)-curvatures

3.1 k-reductive G-structures

We recall that a Lie algebra h is a graded Lie algebra of depth 1 and height k (shortly, graded
Lie algebra of height k) if it admits a direct sum decomposition of vector spaces

h =
k−1
∑

p=−1

hp (3.1)

such that

[hr , hs] ⊂ hr+s for all r, s, (3.2)

where hr+s = {0} for r + s /∈ {−1, 0, . . . , k − 1}. If a Lie algebra h admits a vector space
decomposition (3.1) and satisfies (3.2) only when r + s ≥ −1, we call it quasi-graded of
height k.

Note that any Lie algebra g can be considered as a quasi-graded Lie algebra of height
k = 0, while the quasi-graded Lie algebras of height k = 1 coincide with the Lie algebras
endowed with a reductive decomposition.

Then-dimensional homogeneous spacesM = H/K with an effective action, quasi-graded
Lie algebra h = Lie(H) of height k, and isotropy subalgebra

k = Lie(K ) =
k−1
∑

p=0

hp

are called k-reductive; they have been considered by I. L. Kantor ([4,8]) as natural general-
izations of reductive homogeneous spaces. In this case,

dim h−1 = dim(h/k) = n and

for any X ∈ hp, p ≥ 0 , [X, h−1] = 0 implies X = 0 ,

by transitivity and effectiveness of the action of H on M .
We call k-reductive G-structure any homogeneousG-structure (H/K , P) associated with

a k-reductive space H/K . Under an identification h/k � R
n given by a given frame uo of

P|o, the Lie algebra g ⊂ gln(R) of the structure group G of P is identifiable with h0.
When h is a graded Lie algebra, it is known that (H/K , P) is locally identifiable with the

flat G-structure on R
n , i.e., it is locally integrable. We call it flat k-reductive G-structure. Its

Lie algebra h = ∑k−1
p=−1 h

p is a subalgebra of the maximal prolongation of h0 ⊂ gln(R),
defined as follows.

Definition 3.1 The maximal transitive prolongation of a subalgebra h0 of gln(R) is the
maximal graded Lie algebra

h∞ =
∞
∑

p=−1

h
p∞ ,

with h−1∞ = R
n , h0∞ = h0 and satisfying the following two properties:

1. The adjoint action of h0∞ on h−1∞ is the standard action of h0 on R
n ,

2. For any X ∈ h
p∞, p ≥ 0, if [X, h−1∞ ] = 0, then X = 0.
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1470 A. Santi

It is known that the maximal prolongation h∞ is uniquely determined by the algebra
h−1 + h0 ⊂ R

n + gln(R) and it might be infinite dimensional. When it is finite dimensional,
the Lie algebra g = h0 is called of finite type. Accordingly, also the G-structures with Lie
algebras Lie(G) = g are called of finite type (for further details, see, e.g., [9, Ch.1]).

A flat k-reductive G-structure (H/K , P), with P of finite type and h equal to its maximal
prolongation h = h∞ = ∑k−1

p=−1 h
p∞, is inextendible (this follows from Sternberg prolon-

gation theory of bundles, see [22]). Further, one can check that the following holds (see [8,
Thms. 17–18]): if an homogeneous space H ′/K ′ admits an invariant Cartan connection
modeled on H/K and is of maximal dimension (that is dim H ′ = dim H ) then:

– H ′/K ′ is k-reductive,
– Lie(H ′) is a quasi-graded Lie algebra with underlying graded vector space isomorphic

to h,
– Lie(K ′) � Lie(K ) = ∑k−1

p=0 h
p∞.

First examples of such homogeneous spaces and their associated k-reductive G-structures
(H ′/K ′, P ′) are the three simply connected Riemannian manifolds of constant curvature and
their orthonormal frame bundles (see Sect. 5.1).

3.2 Immersible G-structures of order p and associated (G, ˜G)-curvatures

Let ( ˜H/˜K , ˜P) be a k-reductive ˜G-structure on an ñ-dimensional homogeneous manifold
˜M = ˜H/˜K and π : P → M a G-structure on an n-dimensional manifold M with soldering
form ϑ = (ϑ1, . . . , ϑn), where G is isomorphic to G�/N� with G�, N� ⊂ ˜G as in (1.1) and
(1.2).

Combining Theorem 1.1 with the decomposition ˜h = ∑k−1
p=−1

˜hp , one gets that P is

locally immersible in ˜P if and only if, for any local section s : U ⊂ M → P of P , there
exist k + 1 1-forms

ωp : TU →˜hp , −1 ≤ p ≤ k − 1 ,

with

ω−1 = (s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0) (3.3)

and the others satisfying the system of k + 1 equations

dωp−1 + 1

2

p−1
∑

r=0

[ωr , ωp−1−r ] + 1

2
[ω−1, ω−1]˜hp−1 = −[ω−1, ωp] , 0 ≤ p ≤ k − 1 ,

dωk−1 + 1

2

k−1
∑

r=0

[ωr , ωk−1−r ] + 1

2
[ω−1, ω−1]˜hk−1 = 0 (3.4)

where we denoted by (·)˜hr the natural projection onto the subspace˜hr of˜h.
We stress the fact that if (3.3) and (3.4) hold for a choice of s, then they hold for any

other section of P on the same open set U . The very same property is also shared by the
subsystem of equations which consists of (3.3) and just the first p equations of (3.4) for some
p < k + 1. Due to this, in order to simplify the quest for solutions, it is always advisable to
make a choice for the section s (from which the associated 1-form ω−1 is always uniquely
determined by (3.3)) that makes the explicit expression of (3.3) as simple as possible (see,
for instance, Sect. 5.2).

All this motivates the following:
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A generalized integrability problem for G-structures 1471

Definition 3.2 The G-structure P is defined locally immersibile into ( ˜H/˜K , ˜P) to order
p if, around any point, it admits a local section s and forms ω−1, . . . , ωp−1 which satisfy
(3.3) and the first p equations of (3.4). Any p+ 1-tuple (s, ω0, . . . , ωp−1) as above is called
admissible.

Let P be immersible to order p and (s, ω0, . . . , ωp−1) an admissible tuple. Let also
V = R

ñ �˜h−1 and denote byW � R
n the n-dimensional subspace of V which corresponds

to the vanishing of the last ñ−n standard coordinates of R
ñ . For any integer r = 0, 1, . . . , p,

we define annihilator of level r in˜hp−1 the subspace of˜hp−1 given by

c
p−1
r = {

X ∈˜hp−1 | [. . . [[X, w1], w2] . . . , wr ] = 0 for all w1, . . . , wr ∈ W
}

.

For instance c
p−1
0 = 0 and c

p−1
1 is the centralizer of W in˜hp−1. We also set cp−1

p+1 := ˜hp−1

and consider the increasing filtration of˜hp−1 given by

0 = c
p−1
0 ⊂ c

p−1
1 ⊂ · · · ⊂ c

p−1
r ⊂ · · · ⊂ c

p−1
p ⊂ c

p−1
p+1 =˜hp−1.

Let p′
r : ˜hp−1 → ˜hp−1/c

p−1
r be the natural projection. We define (G, ˜G)-curvature of level

r and order p + 1 associated with (s, ω0, . . . , ωp−1) the˜hp−1/c
p−1
r -valued 2-form on the

domain of s given by

̂	
p−1
r = p′

r ◦
⎛

⎝dωp−1 + 1

2

p−1
∑

s=0

[ωs, ωp−1−s] + 1

2
[ω−1, ω−1]˜hp−1

⎞

⎠ . (3.5)

For any r = 0, 1, . . . , p, we fix a subspace c
p−1⊥
r complementary to c

p−1
r in c

p−1
r+1 . One

gets in this way a vector space direct sum decomposition

˜hp−1 =
p

⊕

s=0

c
p−1⊥
s , where c

p−1
r =

r−1
⊕

s=0

c
p−1⊥
s , (3.6)

which determines a corresponding projection p′′
r :˜hp−1 → c

p−1⊥
r .Wedefine complementary

(G, ˜G)-curvature of level r and order p + 1 associated with (s, ω0, . . . , ωp−1) and the
decomposition (3.6) the cp−1⊥

r -valued 2-form on the domain of s given by

˜	
p−1
r = p′′

r ◦
⎛

⎝dωp−1 + 1

2

p−1
∑

s=0

[ωs, ωp−1−s] + 1

2
[ω−1, ω−1]˜hp−1

⎞

⎠ . (3.7)

Finally, we define total (G, ˜G)-curvature of order p+1 associatedwith (s, ω0, . . . , ωp−1)

the˜hp−1-valued 2-form on the domain of s given by

	p−1 = dωp−1 + 1

2

p−1
∑

r=0

[ωr , ωp−1−r ] + 1

2
[ω−1, ω−1]˜hp−1

.

Weobserve that for anyfixed choice of a decomposition (3.6) as above,˜hp−1/c
p−1
r is naturally

identified with
p

⊕

s=r

c
p−1⊥
s , and the total curvature is the sum

	p−1 = ̂	
p−1
r +

r−1
∑

s=0

˜	
p−1
s
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of the curvature of level r and the complementary curvatures of lower levels.
The questionwhether a givenG-structure P is locally immersible in ˜P is therefore solvable

by the following iterative procedure. First, fix a section s : U ⊂ M → P and set ω−1 =
(s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0). Secondly, look for an ˜h0-valued 1-form ω0 which solves the
first equation of (3.4). Such equation is purely algebraic in ω0 and, using the total (G, ˜G)-
curvature 	−1, can be written as

[ω−1, ω0] = −	−1.

If there exists a solution ω0, P is immersible to order 1. We may then compute the total
(G, ˜G)-curvature 	0 and look for a ˜h1-valued 1-form ω1 solution to the next (algebraic)
equation

[ω−1, ω1] = −	0 ,

and so on. In the final step, we have that P is immersible if and only if there exists a choice of
an admissible k + 1-tuple (s, ω0, . . . , ωk−1) whose associated total (G, ˜G)-curvature 	k−1

vanishes identically.
These operations show that, at the pth-step, the immersibility to the higher order dependson

an algebraic obstruction, corresponding to the pointwise solvability of the non-homogeneous
linear equation

[ω−1, ωp] = −	p−1

in the unknown ωp . Moreover, using the (G, ˜G)-curvatures of level r and the complementary
curvatures, such equation splits for any r = 0, 1, . . . , p into the system of r equations

p′
r ◦ [ω−1, ωp] = −̂	

p−1
r and

p′′
s ◦ [ω−1, ωp] = −˜	

p−1
s for any s = 0, . . . , r − 1 .

We, respectively, call them equation of level r and complementary equations of levels
0, . . . , r − 1. We remark that the equation of level r depends just on p′

r ◦ ωp and not on the
entire 1-form ωp .

3.3 Immersible G-structures and flat k-reductive ˜G-structures

When ( ˜H/˜K , ˜P) is flat k-reductive, the algebraic conditions on the total (G, ˜G)-curvature
	p−1 and its components ̂	

p−1
r of level r can be expressed in cohomological terms. For this,

we need the following.

Lemma 3.3 If ( ˜H/˜K , ˜P) is flat k-reductive, the total (G, ˜G)-curvature associated with an
admissible tuple (s, ω0, . . . , ωp−1) satisfies the generalized Bianchi identity [ω−1,	p−1] =
0. In particular, its component of level r satisfies p′

r ◦ [ω−1, ̂	
p−1
r ] = 0.

Proof Since (s, ω0, . . . , ωp−1) is admissible and˜h−1 is abelian, one has

dωr + 1

2

r
∑

s=0

[ωs, ωr−s] = −[ω−1, ωr+1] , for all − 1 ≤ r ≤ p − 2.

Applying d to both sides when r = p − 2, one gets

0 = −d(dωp−2) = 1

2

p−2
∑

r=0

d[ωr , ωp−2−r ] + d[ω−1, ωp−1].
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This equality together with admissibility of (s, ω0, . . . , ωp−1) yields

0 = 1

2

p−2
∑

r=0

[dωr , ωp−2−r ] − 1

2

p−2
∑

r=0

[ωr , dωp−2−r ] + [dω−1, ωp−1] − [ω−1, dωp−1]

=
p−2
∑

r=−1

[dωr , ωp−2−r ] − [ω−1, dωp−1]

= −1

2

p−2
∑

r=0

r
∑

s=0

[[ωs, ωr−s], ωp−2−r ] −
p−2
∑

r=−1

[[ω−1, ωr+1], ωp−2−r ] − [ω−1, dωp−1].

On the other hand, it is not difficult to see
∑p−2

r=0

∑r

s=0
[[ωs, ωr−s], ωp−2−r ] = 0 and

p−2
∑

r=−1

[[ω−1, ωr+1], ωp−2−r ] = 1

2

p−2
∑

r=−1

[ω−1, [ωr+1, ωp−2−r ]]

= 1

2

p−1
∑

s=0

[ω−1, [ωs, ωp−1−s]] ,

so that 0 = −1

2

p−1
∑

s=0

[ω−1, [ωs, ωp−1−s]] − [ω−1, dωp−1] = −[ω−1,	p−1].

It remains to prove the second part of the lemma. From [ω−1,	p−1] = 0, one first infers
p′
r ◦ [ω−1,	p−1] = 0. Since adw(c

p−1
r ) ⊂ c

p−2
r−1 ⊂ c

p−2
r for all w ∈ W , the claim follows

directly from the fact that ω−1 is W -valued.

This lemma suggests to consider the following differential complex. For any nonnegative
integers r , p, and q , we set

C0,q
r (˜h,W ) := V ⊗ 
qW ∗ , C p+1,q

r (˜h,W ) := (˜hp/c
p
r ) ⊗ 
qW ∗.

Consider the generalized Spencer operator ∂ : C p,q
r (˜h,W ) → C p−1,q+1

r (˜h,W ) given by

∂c(w1, . . . , wq+1) :=
q+1
∑

i=1

(−1)i p′
r ◦ [c(w1, . . . , wi−1, ŵi , wi+1, . . . , wq+1), wi ]

for any c ∈ C p,q
r (˜h,W ) and w1, . . . , wq+1 ∈ W . One can directly check that ∂2 = 0 and

consider the corresponding differential complex

· · · ∂−→ C p+1,q−1
r (˜h,W )

∂−→ C p,q
r (˜h,W )

∂−→ C p−1,q+1
r (˜h,W )

∂−→ · · · .

Let Z p,q
r (˜h,W ) and B p,q

r (˜h,W ) be the spaces of (p, q)-cocycles and (p, q)-coboundaries
of this complex and set

H p,q
r (˜h,W ) = Z p,q

r (˜h,W )/B p,q
r (˜h,W ) .

We call it (p,q)-cohomology group of level r.
The following theorem extends Guillemin’s results on the integrability problem for G-

structures (see [7]) to the generalized integrability problem.
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Theorem 3.4 Let ( ˜H/˜K , ˜P) be a flat k-reductive ˜G-structure on an homogeneous manifold
˜M = ˜H/˜K of dimension ñ and π : P → M a G-structure on a manifold M of dimension n
with G isomorphic to G�/N�, where G�, N� ⊂ ˜G are as in (1.1) and (1.2).

Assume also that P is locally immersible in ˜P to order p and, for any admissible tuple
(s, ω0, . . . , ωp−1) on some open set U ⊂ M, use the frames sx , x ∈ U , to identify the tangent
spaces TxM with W. Then,

i) for any admissible (s, ω0, . . . , ωp−1), the associated total (G, ˜G)-curvature tensors
	p−1|x ∈˜hp−1 ⊗ 
2T ∗

x M � C p,2(˜h,W ) satisfy

∂(	p−1|x ) = 0 (3.8)

and ∂(̂	
p−1
r |x ) = 0 for all projections ̂	

p−1
r |x ∈ C p,2

r (˜h,W ), 1 ≤ r ≤ p;
ii) P is locally immersible in ˜P to order p+1 if and only if, around any point xo, there exists
an admissible tuple (s, ω0, . . . , ωp−1) such that [	p−1|x ] ∈ H p,2(˜h,W ) is zero at any x
where it is defined.

Proof (i) We first observe that given an admissible tuple (s, ω0, . . . , ωp−1) on U ⊂ M ,
any local˜hs-valued q-form is naturally identified with a map from U to Cs−1,q(˜h,W ).
The Eq. (3.8) is then a consequence of definitions, Lemma 3.3 and the fact that ω−1 =
(s∗ϑ1, . . . , s∗ϑn, 0, . . . , 0) while the last claim follows from the fact that the natural
projection from C p,q(˜h,W ) to C p,q

r (˜h,W ) is a morphism of differential complexes.
(ii) We recall that P is locally immersible in ˜P to order p+1 if and only if, around any point

xo, there is an admissible tuple (s, ω0, . . . , ωp−1)with associated total (G, ˜G)-curvature
	p−1 and a smooth map ωp : U → C p+1,1(˜h,W ) such that ∂ωp = −	p−1.

If this is the case, the class [	p−1|x ] ∈ H p,2(˜h,W ) is zero at any point. Conversely, if
[	p−1|x ] is constantly zero, then, at any fixed point x , there is an ω

p
x ∈ C p+1,1(˜h,W ) with

∂ω
p
x = −	p−1|x . Standard arguments yield that there exists a smooth˜hp-valued 1-form ωp

on U such that ∂ωp = −	p−1.

In view of this result, we define essential (G, ˜G)-curvature of order p + 1 the map

Rp+1 : U → H p,2(˜h,W ) , Rp+1
x := [	p−1|x ] .

It may be considered as a generalization of the (p+ 1)th-order structure function introduced
in [7] for the classical integrability problem.

The following corollary is a direct consequence of Theorem 3.4.

Corollary 3.5 Let ( ˜H/˜K , ˜P) be a flat k-reductive ˜G-structure for the graded Lie algebra˜h

and π : P → M a G-structure with G � G�/N�. Then,

(i) if P is immersible to order p in ˜P but there exist xo ∈ M and r ≥ 0 such that [̂	p−1
r |xo ] �=

0 for any admissible tuple (s, ω0, . . . , ωp−1), then P is not immersible to order p + 1;
(ii) if H p,2(˜h,W ) = 0 for all p ≥ 0, then P is locally immersible in ˜P.

4 Immersions into flat 2-reductive ˜G-structures

We now restrict to the case of flat 2-reductive ˜G-structures, and ( ˜H/˜K , ˜P) always denotes a
˜G-structure of this kind (hencewith˜h =˜h−1+˜h0+˜h1).We remark that any flat homogeneous
˜G-structure with ˜G ⊂ GL(V ) irreducible on V and of finite type is either 1-reductive or 2-
reductive and that, in the second case,˜h is always determined by a grading of depth 1 of a
simple Lie algebra. For the classification of flat 2-reductive ˜G-structures, see [10,14].

123



A generalized integrability problem for G-structures 1475

Definition 4.1 Let π : P → M be a G-structure with G � G�/N�. Two admissible tuples
(s, ω0) and (s′, ω′0) on the same U ⊂ M are strongly equivalent if s = s′ and ω′0 =
ω0 + [ω−1,� 1] for some˜h1-valued function � 1.

This definition is motivated by the fact that the essential curvatures of two strongly equiv-
alent tuples are necessarily the same. This can be checked as follows. Let (s, ω0), (s, ω′0) be
strongly equivalent.Bydefinitions, (3.3) and admissibility, one hasω−1 = ω′−1,	−1 = 	′−1

and

	−1 = −[ω−1, ω0] = −[ω−1, ω′0]. (4.1)

From this and strong equivalence, it follows that

	′0 = dω′0 + 1

2
[ω′0, ω′0]

= 	0 + d[ω−1,� 1] + [ω0, [ω−1,� 1]] + 1

2
[[ω−1,� 1], [ω−1,� 1]]

= 	0 + [	−1,� 1] − [ω−1, d� 1]
+[ω0, [ω−1,� 1]] + 1

2
[ω−1, [� 1, [ω−1,� 1]] (4.1)= 	0 − [ω−1, ε1] (4.2)

with ε1 = d� 1 + [ω0,� 1] + 1

2
[[ω−1,� 1],� 1],

hence [	0] = [	′0].
We also remark that if H1,1(˜h,W ) = 0, two tuples (s, ω0) and (s′, ω′0) on the same

contractible U are strongly equivalent if and only if s = s′. Indeed, if s = s′ Eq. (4.1) holds
and ω′0 − ω0 is closed, hence exact.

A similar argument shows that when H2,1(˜h,W ) = 0 (that is Z2,1(˜h,W ) = 0 since
˜h2 = 0), two admissible tuples (s, ω0, ω1) and (s′, ω′0, ω′1) are equal if and only if s = s′
and ω0 = ω′0.

In the following, π : P → M is a G-structure with G � G�/N�, G�, N� ⊂ ˜G as in (1.1),
(1.2). Furthermore, for any admissible tuple (s, ω0) of P , we denote by A(s,ω0) the set of all
admissible tuples (s′, ω′0, ω′1)with s′ = s and ω′0 = ω0 and byR the map which associates
to any tuple in A(s,ω0) the corresponding total curvature,

R : A(s,ω0) → C∞(U, Z2,2(˜h,W )) , R((s, ω0, ω1)) := 	1. (4.3)

The following proposition shows that one can interchange any two strongly equivalent tuples
in the analysis of the obstructions to the generalized integrability problem.

Proposition 4.2 Let (s, ω0) and (s′, ω′0) be two strongly equivalent tuples and R and R′
the associated maps defined in (4.3). Then,

R(A(s,ω0)) = R′(A(s′,ω′0)).

Proof Let � 1 be a 1-form satisfying ω′0 = ω0 + [ω−1,� 1] and ε1 as in (4.2). We observe
that ω1 is a solution of 	0 = −[ω−1, ω1] if and only if ω′1 = ω1 + ε1 is a solution of
	′0 = −[ω′−1, ω′1]. This shows that the map

T : A(s,ω0) → A(s′,ω′0) T ((s, ω0, ω1)) := (s′, ω′0, ω1 + ε1)

is a bijection. Hence, the claim is proved if we can show that the total curvature 	′1 of
T (s, ω0, ω1) is equal to the total curvature 	1 of (s, ω0, ω1). By construction, standard
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properties of Lie algebra valued differential forms and the identities 	−1 = −[ω−1, ω0] and
	0 = −[ω−1, ω1]

	′1 = dω′1 + [ω′0, ω′1]
= 	1 + dε1 + [ω0, ε1] + [[ω−1,� 1], ω1] + [[ω−1,� 1], ε1]
= 	1 + d[ω0,� 1] + 1

2
d[[ω−1,� 1],� 1] + [ω0, d� 1] + [ω0, [ω0,� 1]]

+ 1

2
[ω0, [[ω−1,� 1],� 1]] + [[ω−1,� 1], ω1] + [[ω−1,� 1], d� 1]

+ [[ω−1,� 1], [ω0,� 1]] + 1

2
[[ω−1,� 1], [[ω−1,� 1],� 1]]

= 	1 + 1

2
[[	−1,� 1],� 1] + 1

2
[[[ω−1, ω0],� 1],� 1] + [	0,� 1]

+ [[ω−1, ω1],� 1] − 1

2
[ω−1, [[ω0,� 1],� 1]] − [ω−1, [ω1,� 1]]

− 1

2
[ω−1, [d� 1,� 1]] − 1

6
[ω−1, [[[ω−1,� 1],� 1],� 1]]

= 	1 − 1

2
[ω−1, [[ω0,� 1],� 1]] − [ω−1, [ω1,� 1]]

− 1

2
[ω−1, [d� 1,� 1]] − 1

6
[ω−1, [[[ω−1,� 1],� 1],� 1]].

Since˜h2 = 0, all terms except 	1 are trivial; hence, 	1 = 	′1.

Theorem 4.3 Let H1,1(˜h,W ) = H2,1(˜h,W ) = 0. Given 0 ≤ p ≤ 2, if P is locally
immersible into ˜P to order p, then:

(i) for any x ∈ M, the value [	p−1|x ] of the essential (G, ˜G)-curvature of an admissible
tuple (s, ω0, . . . , ωp−1) depends only on the frame u = sx ∈ P|x ; this determines a
well-defined map

Rp+1 : P → H p,2(˜h,W ) Rp+1(u) := [	p−1|x ] ; (4.4)

(ii) the map (4.4) is G�-equivariant with respect to its action on P via the isomorphism
G � G�/N� and its standard actions on W and˜h;

(iii) the map (4.4) vanishes identically if and only if P is locally immersible into ˜P to order
p + 1.

Proof Let s, s′ : U ⊂ M → P be two fixed local sections on the same contractible U , hence
of the form s′ = s ◦ g−1 for some g : U → G. If p� : G� → G = G�/N� is the natural
projection, then g = p� ◦ g� for some g� : U → G�.

As usual, for any admissible tuple (s, ω0, . . . , ωp−1) associated with s, we use the frame
sx to identify at each x ∈ U the 1-forms ωr |x and the associated curvatures	r with elements
inC(˜h,W ). On the other hand, for the admissible tuples (s′, ω′0, . . . , ω′p−1) associated with
s′, we use s′

x (and not sx ) to make the corresponding identifications for ω′r |x and 	′r .
Case p = 0. Let ω−1, ω′−1 be the W -valued 1-forms associated with s, s′ as in (3.3) and
	−1, 	′−1 the corresponding total (G, ˜G)-curvatures. A direct computation shows that

	′−1 = g� · 	−1 + ∂
(

Rg−1
�

(dg� ◦ s′)
)

, (4.5)
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where we denote by Rg� the natural right action of g� on TG�. It follows that [	′−1] =
g� · [	−1]. From this, the transitivity of the action of G on the fibers of P , and the fact that
s′
x = sx implies g�|x = e, (i) and (ii) follow. Claim (iii) follows from Theorem 3.4.

Case p = 1. Let P be immersible in ˜P to order 1. Consider an admissible tuple (s, ω0)

with associated total (G, ˜G)-curvature 	0. By definition, it satisfies 	−1 = −∂ω0. Since
H1,1(˜h,W ) = 0, we know that two admissible tuples (s, ω0) and (̂s, ω̂0) with s = ŝ are
always strongly equivalent, hence with the same essential curvature of order 2 (see remarks
before Proposition 4.2).

Now, Eq. (4.5) and the fact that the generalized Spencer operator is G�-equivariant yield

	′−1 = g� · (−∂ω0) + ∂
(

Rg−1
�

(dg� ◦ s′)
)

= −∂
(

g� · ω0 − Rg−1
�

(dg� ◦ s′)
)

,

that is
(

s′, g�·(ω0◦s−1) − Rg−1
�

(dg�)
)

is admissible. Further, a direct computation shows

that the total curvature 	′0 of this admissible tuple is 	′0 = g� · 	0. By the above remark,
this implies that [	′0] = g� · [	0] independently of the choice of ω0 and ω′0. This yields (i),
(ii), and (iii) with the same arguments of the case p = 0.

Case p = 2. Let P be immersible in ˜P to order 2. Since H1,1(˜h,W ) = H2,1(˜h,W ) = 0,
by the remarks before Proposition 4.2 any two admissible tuples (s, ω0), (̂s, ω̂0) with s = ŝ
are strongly equivalent, and the sets A(s,ω0), A(̂s,ω̂0) consist both of just one element, say
ω1 and ω̂1, respectively. By Proposition 4.2, the total (G, ˜G)-curvatures of (s, ω0, ω1) and
(̂s, ω̂0, ω̂1) coincide, meaning that such curvature depends only on s.

Let us consider now an admissible tuple (s, ω0, ω1) and the admissible tuple (s′, ω′0, ω′1)
whereω′0 is as in the previous case andω′1 = g�·(ω1◦s−1). The associated curvatures satisfy
	′1 = g� · 	1. By the above remark, this implies that 	′1 = g� · 	1 independently of the
choice of (ω0, ω1) and (ω′0, ω′1). This yields (i), (ii), and (iii) with the same arguments as
above.

5 Applications

5.1 Riemannian immersions into spaces of constant curvature

Let ( ˜M, g̃) be a Riemannian manifold of dimension ñ and π̃ : ˜P = Og̃( ˜M) → ˜M the
Oñ(R)-structure given by the orthonormal frames

Og̃( ˜M) = {(ei ) ∈ L( ˜M) | g̃(ei , e j ) = δi j , 1 ≤ i, j ≤ ñ}.

Any n-dimensional submanifold M ⊂ ˜M is ˜P-regular so that one can always consider the
induced G-structure π : P → M , which is the orthonormal frame bundle of the Riemannian
metric g induced on M by g̃. It follows that, given two Riemannian manifolds (M, g) and
( ˜M, g̃), the local immersibility of π : Og(M) → M into π̃ : Og̃( ˜M) → ˜M is equivalent to
the existence of local isometric immersions of (M, g) into ( ˜M, g̃).

Let us consider now the problem of the existence of a local isometric immersion of an
n-dimensional Riemannian manifold (M, g) into a space of constant curvature ko that is of
the local immersibility of P = Og(M) in the homogeneous ˜G-structure ( ˜H/˜K , ˜P) with
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˜H =
⎧

⎨

⎩

SOñ(R) � R
ñ if ko = 0

SOñ+1(R) if ko = 1
SOñ,1(R) if ko = −1

, ˜K = SOñ(R),

and ˜P the orthonormal frame bundle of the homogeneous Riemannian manifold ( ˜M =
˜H/˜K , g̃), that is, R

ñ , Sñ or Hñ with their standard metrics of curvatures ko = 0, 1,−1
respectively.

These homogeneous spaces are reductive with quasi-graded Lie algebras

˜h =˜h−1 +˜h0 where ˜h−1 = R
ñ , ˜h0 = soñ(R) ,

with Lie brackets defined by

[A, v] = Av ∈˜h−1 , [v1, v2] = ko(v2 ⊗ 〈v1, ·〉 − v1 ⊗ 〈v2, ·〉) ∈˜h0 ,

for any v, v1, v2 ∈˜h−1 and A ∈˜h0.
For our purposes, it is convenient to consider the decomposition of˜h0 into the following

vector subspaces

soñ(R)=
{(

A −Bt

B D

)

| A ∈ son(R) , B ∈ R
ñ−n ⊗ (Rn)∗ , D ∈ soñ−n(R)

}

= so(W ) + W⊥ ⊗ W ∗ + so(W⊥) with W = R
n , W⊥ = R

ñ−n . (5.1)

In˜h0, there is only one annihilator, that is, c01 = so(W⊥), and from now on, we consider
c0⊥1 = so(W ) + W⊥ ⊗ W ∗ as a fixed complementary subspace.

By the results of Sect. 3.2, there exists a local isometric immersion of (M, g) in ( ˜M, g̃) if
and only if there is a pair (s, ω0) consisting of:

1. a local section s : U ⊂ M → Og(M), i.e., a field of g-orthonormal frames which we
use to identify any tangent space TxM with W = R

n and to define the 1-form

ω−1|x (w) = (w1, . . . , wn, 0, . . . , 0) , w = (wi ) ∈ W � TxM , x ∈ U ;
2. a soñ(R)-valued local 1-form ω0 satisfying the equations

[ω−1, ω0] = −dω−1 , (5.2)

	0 = dω0 + 1

2
[ω0, ω0] = 0. (5.3)

According to (5.1), we decompose ω0 = ωso(W ) + ωW⊥⊗W ∗ + ωso(W⊥) so that (5.2) is
equivalent to the following equations for any x ∈ U and w1, w2 ∈ W

− ωso(W )
x (w2)(w1) + ωso(W )

x (w1)(w2) = −dω−1|x (w1, w2) , (5.4)

− ωW⊥⊗W ∗
x (w2)(w1) + ωW⊥⊗W ∗

x (w1)(w2) = 0. (5.5)

By classical arguments, Eq. (5.4) has a unique solution ωso(W ), namely the connection 1-
form of the Levi-Civita covariant derivative ∇LC of (M, g). On the other hand, if NM is the
trivial vector bundle NM = U × W⊥ → U , Eq. (5.5) means that ωW⊥⊗W ∗

can be identified
with a symmetric local section 
 of ⊗2T M∗ ⊗ NM . We remark that, by the identification
W⊥ = R

ñ−n , the trivial bundle NM has a natural fiber metric, which we denote by g⊥, and
ωso(W⊥) is the connection 1-form of a covariant derivative ∇⊥ on NM compatible with g⊥.

Using again (5.1), we now decompose 	0 into

	0 = 	so(W ) + 	W⊥⊗W ∗ + 	so(W⊥),
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and we observe that the curvature ̂	0
1 of level 1 defined in (3.5) and the complementary

curvature ˜	0
0 of level 0 defined in (3.7) are equal to

̂	0
1 = 	so(W ) + 	W⊥⊗W ∗

and ˜	0
0 = 	so(W⊥).

Recall that 	0 = ̂	0
1 + ˜	0

0. A simple computation shows

	so(W ) = dωso(W ) + 1

2
[ωso(W ), ωso(W )] − (ωW⊥⊗W ∗

)t · ωW⊥⊗W ∗

+ 1

2
[ω−1, ω−1] ,

	W⊥⊗W ∗ = dωW⊥⊗W ∗ + ωW⊥⊗W ∗ · ωso(W ) + ωso(W⊥) · ωW⊥⊗W ∗
,

	so(W⊥) = dωso(W⊥) + 1

2
[ωso(W⊥), ωso(W⊥)] − ωW⊥⊗W ∗ · (ωW⊥⊗W ∗

)t .

Let∇ = ∇LC +∇⊥ be the covariant derivative on T M ⊕NM determined by the connection
1-form ωso(W ) + ωso(W⊥) and denote by R its curvature. We remark that ∇ is compatible
with the fiber metric g + g⊥.

Equation (5.3) splits into the equations ̂	0
1 = 	so(W ) + 	W⊥⊗W ∗ = 0 and ̂	0

0 =
	so(W⊥) = 0. One can check that the first corresponds to the Gauss–Codazzi equations

g(RXY Z ,W ) − g⊥(
(Y, Z),
(X,W )) + g⊥(
(X, Z),
(Y,W ))

+ko(g(X, Z)g(Y,W ) − g(Y, Z)g(X,W )) = 0 ,

and

(∇X
)(Y, Z) − (∇Y
)(X, Z) = 0 ,

for any X, Y, Z ,W ∈ X(M). The second one corresponds to the Ricci equations

g⊥(RXYμ, ν) +
n

∑

i=1

g⊥(
(X, ei ), μ)g⊥(
(Y, ei ), ν)

−
n

∑

i=1

g⊥(
(X, ei ), ν)g⊥(
(Y, ei ), μ) = 0 ,

for any X, Y ∈ X(M) and local sections μ, ν of NM , with {ei } a fixed local orthonormal
frame field of (M, g).

By these observations, it follows that, in this case, the results of Sect. 3.2 yield the classical
result that a Riemannian manifold (M, g) has a local isometric immersion in a space of
constant curvature ko if and only if there exists a metric bundle (NM, g⊥), a compatible
connection ∇⊥, and a symmetric tensor 
 that satisfy the Gauss–Codazzi–Ricci equations
(see, e.g., [21]).

Remark 5.1 For Riemannian immersions into Euclidean spaces, i.e., with ko = 0, the homo-
geneous ˜G-structure ( ˜H/˜K , ˜P) is flat k-reductive, and one can discuss the obstructions to
the generalized integrability problem as in Sect. 3.3. In this situation, the only relevant coho-
mology groups are H0,2(̃g,W ) and H1,2(̃g,W ) with g̃ = soñ(R) and W = R

n . One can
directly check that H0,2(soñ(R), R

n) = 0 (this is equivalent to the fact that (5.4) and (5.5)
are always solvable) and

H1,2(soñ(R),W ) � H1,2(son(R),W ) + W⊥ ⊗ R2,1 + so(W⊥) ⊗ 
2W ∗ ,
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1480 A. Santi

where R2,1 is the unique gl(W )-irreducible submodule of W ∗ ⊗ 
2W ∗ which is different
from 
3W ∗ (that is the kernel of complete antysimmetrization).

As˜h1 = 0, the cohomology class of	0 is trivial if and only if each of the three components

	so(W )|x ∈ H1,2(son(R),W ) , 	W⊥⊗W ∗ |x ∈ W⊥ ⊗ R2,1 and

	so(W )|x ∈ so(W⊥) ⊗ 
2W ∗,

is equal to zero, that is, the Gauss, the Codazzi, and the Ricci equations are, respectively,
satisfied.

Remark 5.2 Weobserve that the cohomologygroups introduced inSect. 3.3 are different from
those considered by Rosly and Schwarz in [16]. In that paper, the authors claimed that the
only obstructions to the generalized integrability problem into flat k-reductive ˜G-structures
are represented by the non-trivial classes in such cohomology groups ([16, Appendix C]).
On the other hand, in the case of Riemannian immersions into an Euclidean space, one can
check that the only non-trivial Rosly and Schwarz cohomology group is identifiable with
the subspace H1,2(son(R), R

n) of H1,2(soñ(R), R
n). This means that the set of Rosly and

Schwarz obstructions corresponds just to the Gauss equation and seems therefore not to be
complete.

5.2 Conformal immersions into a conformally flat space

Let ( ˜M, g̃) be an ñ-dimensional Riemannian manifold and π̃ : ˜P = COg̃( ˜M) → ˜M the
COñ(R)-structure of conformal frames

COg̃( ˜M) = {

(ei ) ∈ L( ˜M) | g̃(ei , e j ) = cδi j , 1 ≤ i, j ≤ ñ , c ∈ (0,+∞)
}

.

Any n-dimensional submanifold M ⊂ ˜M is ˜P-regular and has an induced G-structure
π : P → M , naturally identifiable with the bundle of conformal frames of the induced
Riemannian metric g. It follows that, given two Riemannian manifolds (M, g), ( ˜M, g̃), the
existence of local conformal immersions of (M, g) into ( ˜M, g̃) is equivalent to the existence
of a local immersion ofπ : COg(M) → M into π̃ : COg̃( ˜M) → ˜M . Due to this, the existence
of a local conformal immersion of (M, g) in the homogeneous conformally flat space (Sñ, g̃)
is equivalent to the local immersibility ofπ : COg(M) → M in the homogeneous ˜G-structure
(Sñ = SOñ+1,1(R)/˜K , ˜P) with ˜P = COg̃(Sñ) and ˜K an appropriate parabolic subgroup.

This homogeneous ˜G-structure is flat k-reductive and associated with the graded Lie
algebra˜h = soñ+1,1(R) with grading

˜h =˜h−1 +˜h0 +˜h1 = V + co(V ) + V ∗ , where V = R
ñ ,

and Lie brackets determined by the standard action of co(V ) on V and V ∗ and the bracket
between α ∈ V ∗ and v ∈ V defined by

[α, v] = v ⊗ α − �(α ⊗ v) + α(v)I . (5.6)

Here, � : V ∗ ⊗ V → V ⊗ V ∗ is the natural isomorphism induced by the standard scalar
product 〈·, ·〉 of V = R

ñ . The isotropy subalgebra is

˜k =˜h0 +˜h1 = co(V ) + V ∗.

We recall that when ñ ≥ 3,˜h is the maximal prolongation of co(V ) ([9,20]).
For the case of conformal immersions into a conformally flat Riemannian space, the

analogues of the Gauss–Codazzi–Ricci equations are provided by the following theorem.
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We first need to fix some notation. Let (M, g) be an n-dimensional Riemannian manifold
with Levi-Civita connection∇LC and ñ ≥ n. Given two symmetric tensors b, b′ of type (0, 2)
on M , we also denote by b � b′ their Kulkarni–Nomizu product, namely the (0, 4)-tensor
defined by

b � b′(X, Y, Z ,W ) = b(X, Z)b′(Y,W ) + b(Y,W )b′(X, Z)

−b(X,W )b′(Y, Z) − b(Y, Z)b′(X,W ).

Theorem 5.3 Given a conformal immersion ı : (M, g) −→ (Rñ, 〈·, ·〉) with ı∗〈·, ·〉 = e2 f g
for a smooth function f , the quadruple (∇⊥,
, B, D) formed by the restriction ∇⊥ of the
Levi-Civita connection of (Rñ, 〈·, ·〉) along the normal bundle NM of M and the tensors


 = e− f · 
,

B = Hess( f ) − d f � d f + 1

2
g(∇ f,∇ f )g ,

D = e f · 
(∇ f, ·) ,

where 
 is the second fundamental form of (M, e2 f g) ⊂ (Rñ, 〈·, ·〉) and ∇ f and Hess( f )
are the gradient and the Hessian of f w.r.t. g, satisfies the following equations for any
X, Y, Z ,W∈X(M) and μ, ν∈�(NM):

g(RXY Z ,W ) − 〈
(Y, Z),
(X,W )〉 + 〈
(X, Z),
(Y,W )〉
= −g � B(X, Y, Z ,W ), (5.7)

(∇X
)(Y, Z) − (∇Y
)(X, Z) = D(X)g(Y, Z) − D(Y )g(X, Z), (5.8)

〈RXYμ, ν〉 +
n

∑

i=1

〈
(X, ei ), μ〉〈
(Y, ei ), ν〉

−
n

∑

i=1

〈
(X, ei ), ν〉〈
(Y, ei ), μ〉 = 0 , (5.9)

(∇X B)(Y, Z) + 〈D(X),
(Y, Z)〉 is symmetric in X, Y, (5.10)

(∇X D�)(Y, μ) +
n

∑

i=1

〈
(X, Ei ), μ〉B(Y, Ei ) is symmetric in X, Y, (5.11)

where R is the curvature of the covariant derivative ∇ = ∇LC + ∇⊥ on the vector bundle
T M⊕NM → M, {ei } a fixed local orthonormal frame field of (M, g) and � : NM → NM∗
the natural isomorphism induced by 〈·, ·〉|NM.

Proof The Eqs. (5.7)–(5.9) are a consequence of the Gauss–Codazzi–Ricci equations for
the isometric immersion (M, e2 f g) ⊂ (Rñ, 〈·, ·〉) and the explicit expressions of Levi-Civita
connection and curvature of g′ = e2 f g in terms of g and f (see, e.g., [6, Thm.1.159]; caution:
We use a definition of curvature which is opposite in sign to the one in [6]). Equations (5.10)
and (5.11) follow from the definitions of B and D by a somehow long but straightforward
computation.

The contents of Sect. 3.3 yield the following theorem which shows that the above equa-
tions are actually necessary and sufficient conditions for the existence of local conformal
immersions into conformally flat spaces. This is a result that was actually first obtained by
Akivis ([1], see also [2, Theorem 3.1.5]) using the method of moving frames.
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1482 A. Santi

In the statement of this theorem, given an open subset U ⊂ M , we denote by NM =
U × W⊥ → U the trivial vector bundle with fiber W⊥ = R

ñ−n and natural fiber metric
determined by the standard inner product 〈·, ·〉|W⊥ .

Theorem 5.4 Let (M, g)be ann-dimensionalRiemannianmanifold and ñ ≥ n, ñ ≥ 3. Then,
for any x ∈ M, there exists a local conformal immersion of (M, g) around x into (Sñ, g̃)
if and only if for some neighborhood U ⊂ M of x, there is a quadruple (∇⊥,
, B, D)

consisting of

(i) a metric connection ∇⊥ : T M |U × NM → NM,
(ii) a local section 
 of S2T ∗M ⊗ NM,
(iii) a local section B of S2T ∗M,
(iv) a local section D of T ∗M ⊗ NM,

which satisfies (5.7)−(5.11).

Proof According to the decomposition (5.1) of so(V ), we consider the decomposition of
˜h0 = co(V ) into the vector subspaces

co(V ) = so(V ) + R = so(W ) + W⊥ ⊗ W ∗ + so(W⊥) + R. (5.12)

We also consider the decomposition of˜h1 = V ∗ given by

V ∗ = W ∗ + (W⊥)∗. (5.13)

Since˜h1 �= (0), by the results of Sect. 3.2, there exists a local conformal immersion of (M, g)
into (Sñ, g̃) if and only if there is an admissible triple (s, ω0, ω1), that is, a triple consisting
of:

1. a local section s : U ⊂ M → COg(M), i.e., a field of g-conformal frames which we use
to identify any tangent space TxM with W = R

n and define the 1-form

ω−1|x (w) = (w1, . . . , wn, 0, . . . , 0) , w = (wi ) ∈ W � TxM , x ∈ U .

By the observation before Definition 3.2, we may assume without loss of generality that
s is a field of g-orthonormal frames (in particular g is identified at any point with the
standard scalar product 〈·, ·〉|W );

2. a co(V )-valued local 1-form ω0 satisfying the equation

[ω−1, ω0] = −dω−1; (5.14)

3. a V ∗-valued local 1-form ω1 satisfying the equations

[ω−1, ω1] = −	0 = −dω0 − 1

2
[ω0, ω0] , (5.15)

	1 = dω1 + [ω1, ω0] = 0 . (5.16)

According to (5.12), we decompose ω0 = ωso(W ) +ωW⊥⊗W ∗ +ωso(W⊥) +ωR and (5.14)
is equivalent to the following equations for any x ∈ U , w1, w2 ∈ W :

− dω−1|x (w1, w2) = −ωso(W )
x (w2)(w1) + ωso(W )

x (w1)(w2)

− ωR

x (w2)(w1) + ωR

x (w1)(w2), (5.17)

0 = −ωW⊥⊗W ∗
x (w2)(w1) + ωW⊥⊗W ∗

x (w1)(w2). (5.18)
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From now on, we consider the solution of (5.17) determined byωR = 0 and the connection 1-
formωso(W ) of∇LC . Equation (5.18)means thatωW⊥⊗W ∗

can be identifiedwith a symmetric
local section
 of⊗2T M∗⊗NM . Finally, we observe thatωso(W⊥) is the connection 1-form
of a metric connection ∇⊥ on NM .

Since ωR = 0, we can argue in complete analogy with Sect. 5.1 and decompose 	0

according to (5.12)

	0 = 	so(W ) + 	W⊥⊗W ∗ + 	so(W⊥).

The explicit expressions of each component 	so(W ), 	W⊥⊗W ∗
, and 	so(W⊥) are as in Sect.

5.1.
Further, according to (5.13), we decompose ω1 = ωW ∗ + ω(W⊥)∗ so that equation (5.15)

splits into the following set of equations

	so(W )(w1, w2) = −w2 ⊗ ωW ∗
(w1) + �(ωW ∗

(w1) ⊗ w2)

+ w1 ⊗ ωW ∗
(w2) − �(ωW ∗

(w2) ⊗ w1) ,

	W⊥⊗W ∗
(w1, w2) = �(ω(W⊥)∗(w1) ⊗ w2) − �(ω(W⊥)∗(w2) ⊗ w1) ,

	so(W⊥)(w1, w2) = 0 ,

ωW ∗
(w1)(w2) = ωW ∗

(w2)(w1).

If we denote by B (respectively, D) the local section of ⊗2T ∗M (respectively, T ∗M ⊗ NM)
which corresponds to the local 1-form ωW ∗

(respectively, ω(W⊥)∗ ), one can check that the
above equations correspond to (5.7), (5.8), (5.9) and the fact that B is symmetric.

Now, according to (5.13), we decompose 	1 into 	1 = 	W ∗ + 	(W⊥)∗ . A simple com-
putation shows

	W ∗ = dωW ∗ − ωW ∗ · ωso(W ) − ω(W⊥)∗ · ωW⊥⊗W ∗
,

	(W⊥)∗ = dω(W⊥)∗ − ωW ∗ · (ωW⊥⊗W ∗
)t − ω(W⊥)∗ · ωso(W⊥).

Equation (5.16) splits into 	W ∗ = 0 and 	(W⊥)∗ = 0. Using Eqs. (5.7)–(5.9), one can
check that the first equation corresponds to (5.10) and the second one to (5.11). By these
observations and the general results of Sect. 3.2, it follows that a Riemannianmanifold (M, g)
with a triple (∇⊥,
, B, D) as in (i)–(iv) and satisfying (5.7)–(5.11) has a local conformal
immersion in (Sñ, g̃). This concludes the proof of the “if” direction of the Theorem.

The “only if” direction follows from Theorem 5.3 and the fact that Sñ is locally conformal
to R

ñ .

The results in Sects. 3.3 and 4 allow to improve the above theorem and show that in many
cases, the system (5.7)-(5.11) is equivalent to a smaller one.

Theorem 5.5 Under the assumption of Theorem 5.4, we have that:

(i) If n ≥ 4, any solution (∇⊥,
, B, D) of (5.7), (5.8), and (5.9) automatically satisfies
(5.10) and (5.11) as well;

(ii) If ñ = n + 1, local conformal immersions as hypersurfaces exist if and only if there are
tensors 
, B, D as in Theorem 5.4 satisfying (5.7), (5.8), (5.10), and (5.11) with ∇⊥
the flat connection. Moreover,

(a) if n = 2, there is always a solution (
, B, D) of (5.7) and (5.8),
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(b) if n ≥ 4, any solution (
, B, D) of (5.7), (5.8) automatically satisfies (5.10) and
(5.11) as well.

Proof We first determine the cohomology groups H p,2(˜h,W ) associated with ˜h =
soñ+1,1(R) andW = R

n , for any n ≤ ñ. As˜h2 = 0, the only relevant cases are p = 0, 1 and 2.
We observe that if n = ñ, these groups coincide with the usual Spencer groups H p,2(con(R))

of con(R) and (see [15])

H p,2(con(R)) �= 0 only when i) p = 2, n = 3 and i i) p = 1, n ≥ 4 .

Further, for any n < ñ, one can directly check that H0,2(˜h,W ) = 0 (this is equivalent to
the fact that (5.17) and (5.18) are always solvable).

Consider an element ω1 ∈ C2,2(˜h,W ) = V ∗ ⊗ 
2W ∗ and decompose it according to
(5.13) into ω1 = ωW ∗ + ω(W⊥)∗ . From definitions, it follows

∂ωW ∗ ∈ co(W ) ⊗ 
3W ∗ , ∂ω(W⊥)∗ ∈ W⊥ ⊗ W ∗ ⊗ 
3W ∗,

so that the vanishing of ∂ω1 = ∂ωW ∗ + ∂ω(W⊥)∗ is equivalent to

∂ωW ∗ = 0 (5.19)

and

∂ω(W⊥)∗ = 0. (5.20)

If n = 2, 
3W ∗ = 0 so that (5.19) and (5.20) are always trivially satisfied. If n ≥ 3, one can
directly show that (5.20) implies ω(W⊥)∗ = 0.

As˜h2 = 0, one has H2,2(˜h,W ) = Z2,2(˜h,W ), and by the above discussion,

H2,2(˜h,W ) �
{

H2,2(con(R)) if n ≥ 3 ,

V ∗ ⊗ 
2W ∗ if n = 2 .
(5.21)

In particular, H2,2(˜h,W ) is trivial when n ≥ 4, for any ñ.
Consider now an elementω0 ∈ C1,2(˜h,W ) = co(V )⊗
2W ∗ and decompose it according

to (5.12) into ω0 = ωso(W ) + ωW⊥⊗W ∗ + ωso(W⊥) + ωR. Equation ∂ω0 = 0 splits into the
following two equations

∂ωso(W ) + ∂ωR = 0 and ∂ωW⊥⊗W ∗ = 0.

Let also ω1 ∈ C2,1(˜h,W ) = V ∗ ⊗ W ∗ and decompose it according to (5.13) into ω1 =
ωW ∗ + ω(W⊥)∗ . Using (5.6), one can check that the equation ∂ω1 = ω0 is equivalent to

∂ωW ∗ = ωso(W ) + ωR and ∂ω(W⊥)∗ = ωW⊥⊗W ∗
.

The above discussion together with a direct computation and a dimensional argument shows
that

H1,2(˜h,W ) �
{

H1,2(con(R)) + W⊥ ⊗ R2,1

W ∗ + so(W⊥) ⊗ 
2W ∗ if n ≥ 3,

W⊥ ⊗ R2,1

W ∗ + so(W⊥) ⊗ 
2W ∗ if n = 2 ,
(5.22)

and

dim
R2,1

W ∗ = n3 − 4n

3
,
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where R2,1 ⊂ W ∗ ⊗ 
2W ∗ is the kernel of complete antysimmetrization. In particular,
H1,2(˜h,W ) is trivial when n = 2, ñ = 3.

Point (i) of the theorem is a direct consequence of (5.21), Theorem 3.4, the proof of
Theorem 5.4, and finally, of the observation that the essential curvature [	1] is naturally
identified with the total curvature 	1. Point (ii) of the theorem follows similarly from (5.21)
and (5.22) and by applying Theorem 3.4 and Theorem 5.4 when ñ = n + 1, W⊥ is 1-
dimensional and so(W⊥) = 0.

Remark 5.6 If n = 3, neither the group H1,2(˜h,W ) nor H2,2(˜h,W ) vanishes, and the system
(5.7)–(5.11) cannot be reduced simply as in Theorem 5.5.

5.3 CR immersions into C
n

Let ( ˜M, ˜J ) be an almost complex manifold, a real manifold of even dimension ñ = 2m̃ with
a tensor ˜J : T ˜M → T ˜M satisfying ˜J 2 = −I . Fix an integer 0 ≤ k ≤ m̃ − 1 and consider
the ˜G-structure on ˜M , ˜G � GLm̃(C),

˜P
˜J = {

(ei ) ∈ L( ˜M) | em̃−k+i = ˜Jei for any 1 ≤ i ≤ m̃ − k and

e2m̃−k+i = ˜Je2(m̃−k)+i for any 1 ≤ i ≤ k
}

.

One may check that a generic submanifold M ⊂ ˜M of dimension n = ñ − k is ˜P-regular,
and it is endowed with

(i) a rank 2(m̃ − k) distribution D ⊂ T M ,
(ii) a tensor J : D → D satisfying J 2 = −I ,

that is, (M,D, J ) is an almost CR manifold of CR codimension k. The induced G-structure
on M is

PD,J = {(ei ) ∈ L(M)| ei ∈ D if 1 ≤ i ≤ 2(m̃ − k) and

em̃−k+ j = Je j if 1 ≤ j ≤ m̃ − k
}

.

In this case, the group N� defined in (1.2) is trivial so that G is naturally identified with the
group G� defined in (1.1).

It follows that, given an almost CR manifold (M,D, J ) of real dimension n = ñ − k and
CR codimension k and an almost complex manifold ( ˜M, ˜J ) of real dimension ñ = 2m̃, the
existence of a local CR immersion of (M,D, J ) into ( ˜M, ˜J ) is equivalent to the existence
of a local immersion of the associated bundle PD,J into the bundle ˜P

˜J of ˜M . In particular,
the existence of a local CR immersion of (M,D, J ) into C

m̃ , endowed with the standard
complex structure ˜Jo, is equivalent to the local immersibility of π : PD,J → M into the
˜G-structure π̃ : ˜P

˜Jo → C
m̃ .

The latter is homogeneous andflat but it is not of finite type, since themaximal prolongation
˜h∞ = ∑∞

p=−1
˜h
p∞ of g̃ = glm̃(C) is infinite dimensional (see, e.g., [9]). However, the notions

of immersibility to order p and of generalized cohomology still make sense, and in the real
analytic setting, immersibility at any order still yields complete immersibility ([7,16]).

The next proposition provides the relevant cohomology groups. We first need to fix some
notation. Let W � R

n (respectively, U � R
2(m̃−k)) be the subspace of V = R

ñ determined
by the vanishing of the last k (respectively, 2k) standard coordinates. We also denote by W⊥
(respectively, U⊥) the subspace of V (respectively, W ) determined by the vanishing of the
first n (respectively, 2(m̃ − k)) standard coordinates of V . There are vector space direct sum
decompositions

V = W + W⊥ � R
n + R

k , W = U +U⊥ � R
2(m̃−k) + R

k .
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Proposition 5.7 All groups H p,2(˜h∞,W ), p ≥ 1 are trivial.

Proof We recall that the (p−1)th-component of themaximal prolongation˜h∞ of g̃ = glm̃(C)

is˜hp−1∞ = C
m̃ ⊗C S p(Cm̃)∗, and it has a natural structure of complex vector space (see, e.g.,

[9]).
We also note that, since any v ∈ W⊥ satisfies ˜Jov ∈ U⊥ ⊂ W , it is possible to extend

any element ωp−1 ∈ C p,2(˜h∞,W ) =˜h
p−1∞ ⊗
2W ∗ to an element ω̃p−1 ∈ C p,2(˜h∞, V ) =

˜h
p−1∞ ⊗ 
2V ∗, setting

ω̃p−1(v1, v2) := −ωp−1(˜Jov1, ˜Jov2) for all v1, v2 ∈ W⊥ ,

ω̃p−1(v1, w2) := −iωp−1(˜Jov1, w2) for all v1 ∈ W⊥ , w2 ∈ W .

We finally observe that the generalized Spencer operator on C p,2(˜h∞, V ) is just the usual
Spencer operator and that the corresponding cohomology H p,2(˜h∞, V ) is just the Spencer
group H p,2(glm̃(C)) of glm̃(C). It is known that this group is trivial for any p ≥ 1 ([7,12]).

Now, one can check that if ∂ωp−1 = 0, then also ∂ω̃p−1 = 0. From this fact, for all p ≥ 1
and ωp−1 with ∂ωp−1 = 0, one has

ω̃p−1 = ∂ω̃p for some ω̃p ∈ C p+1,1(˜h∞, V ) so that
ωp−1 = ∂ωp where ωp = ω̃p|W ∈ C p+1,1(˜h∞,W ).

In other words, H p,2(˜h∞,W ) = 0 for every p ≥ 1. 
�
Now, we observe that any coboundary T ∈ B0,2(˜h∞,W ) is the restriction to 
2W of

some ˜T ∈ B0,2(˜h∞, V ) and

B0,2(˜h∞, V ) = {

˜T ∈ V ⊗ 
2V ∗ | for every v1, v2 ∈ V

˜T (v1, v2) − ˜T (˜Jov1, ˜Jov2) = −˜Jo˜T (˜Jov1, v2) − ˜Jo˜T (v1, ˜Jov2)
}

.

From this, one gets that the vector space

B0,2(˜h∞,W ) ∩ W ⊗ 
2W ∗

is formed by all maps T ∈ W ⊗ 
2W ∗ satisfying

T (u1, u2) − T (˜Jou1, ˜Jou2) ∈ U ,

T (u1, u2) − T (˜Jou1, ˜Jou2) = −˜JoT (˜Jou1, u2) − ˜JoT (u1, ˜Jou2) ,
(5.23)

for any u1, u2 ∈ U . By Proposition 5.7, all the essential curvatures of order bigger than
1 of an admissible tuple are trivial. Thus, an analytic almost CR manifold has a local CR
immersion in C

m̃ if and only if the total curvature

	−1 : U ⊂ M → Z0,2(˜h∞,W ) (5.24)

takes values in the space of coboundaries B0,2(˜h∞,W ).We remark that, by its very definition,
the map (5.24) always takes values in W ⊗ 
2W ∗. It follows that (M,D, J ) is locally
immersible in C

m̃ if and only if (5.24) takes values in B0,2(˜h∞,W ) ∩ W ⊗ 
2W ∗ and, by
Eq. (5.23), if and only if

[X, Y ] − [J X, JY ] ∈ D and

[X, Y ] − [J X, JY ] = −J [J X, Y ] − J [X, JY ] ,
for all sections X, Y of D, i.e., when the almost CR structure is integrable in the classical
sense.We therefore reobtained the classical result byAndreotti andHill ([5]) on immersibility
of almost CR structures.
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5.4 CR quaternionic immersions into HPn

Let ( ˜M, Q) be an almost quaternionic manifold, a real manifold of dimension 4̃n with a
subbundle Q of End (T ˜M) locally generated by a triple (J1, J2, J3) of endomorphisms
satisfying

J3 = J1 J2 , J 2α = −I , Jα ◦ Jβ = −Jβ ◦ Jα for all 1 ≤ α, β ≤ 3 , α �= β .

To any ( ˜M, Q), one can naturally associate a ˜G-structure π̃ : ˜P → ˜M with ˜G = GLñ(H)·Sp1
(see [3,17]).

Let nowM be a realmanifold of dimension 4̃n−1 endowedwith an embedding T M ↪→ E
of its tangent bundle into a vector bundle E → M of rank(E) = 4̃n with a linear quaternionic
structure on each fiber. Following [13], the pair (M, E) is an almost CRquaternionicmanifold
(of hypersurface type). To any such manifold, one can naturally associate a G-structure
π : P → M with a particular structure group G which is not semisimple and has Levi factor
isomorphic with SLñ−1(H) × Sp1. We refer to [18] for its explicit description.

Any hypersurface M of an almost quaternionic manifold ˜M is ˜P-regular and inherits an
almost CR quaternionic structure, the natural inclusion T M ⊂ E := T ˜M |M . Moreover, the
above-mentioned bundle π : P → M coincides with the G-structure induced on M ⊂ ˜M
by π̃ : ˜P → ˜M .

It follows that, given an almost CR quaternionic manifold (M, E) of dimension 4̃n − 1
and an almost quaternionic manifold ( ˜M, Q) of dimension 4̃n, the existence of a local CR
quaternionic immersion of (M, E) into ( ˜M, Q) is equivalent to the local immersibility of
π : P → M into π̃ : ˜P → ˜M . In particular, the existence of a local CR quaternionic
immersion of (M, E) in the quaternionic projective space ˜M = HPñ with its standard
quaternionic structure Q = Qo is equivalent to the local immersibility of π : P → M
in the ˜G-structure π̃ : ˜Po → HPñ associated with (HPñ, Qo). This structure is flat k-
reductive with k = 2.We refer to [18] for the explicit expression of the maximal prolongation
˜h∞ of g̃ = gl̃n(H) + sp1 and its main properties. In that paper, it is also proved that the
groups H1,1(˜h∞,W ) and H2,1(˜h∞,W ) are trival. This fact, a careful analysis of the groups
H p,2(˜h∞,W ) and Theorems 1.1, 3.4 and 4.3, yield the following result on CR quaternionic
immersions. In the statement,

– E = C
2ñ−2 and H = C

2 are the standard representations of sl2ñ−2(C) and sl2(C),
respectively,

– Ad is the adjoint representation of sl2ñ−2(C),
– D is the sl2ñ−2(C)-irreducible module given by the kernel of the natural contraction

E ⊗ 
2E∗ → E∗.

Theorem 5.8 Let M be an almost CR quaternionic manifold of dimension 4̃n − 1 ≥ 7 and
π : P → M its canonically associated G-structure. Then:

(i) there are natural isomorphisms of s-modules, s � sl2ñ−2(C) + sl2(C),

H0,2(˜h∞,W ) ⊗ C � 
2E∗S2H + (D + E∗)S3H + (Ad+
2E∗)S4H + E∗S5H
H1,2(˜h∞,W ) ⊗ C � H1,2(̃g) ⊗ C ,

while the cohomology group H2,2(˜h∞,W ) vanishes;
(ii) there is a canonical G-equivariant map R1 : P → H0,2(˜h∞,W ) which vanishes if M

is locally immersible into a quaternionicmanifold (i.e., an almost quaternionic manifold
with a compatible torsion-free connection);
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1488 A. Santi

(iii) if R1 = 0, there is a canonical G-equivariant map R2 : P → H1,2(˜h∞,W );
(iv) M is locally immersible in HPn around any point if and only if R1 = R2 = 0.

Remark 5.9 The fact that the essential curvaturesR1 andR2 of the theorem are intrinsically
defined objects relies on the non-trivial fact that H1,1(˜h∞,W ) and H2,1(˜h∞,W ) vanish. In
general, these groups do not vanish: consider the case of isometric immersions into Euclidean
spaces where

H1,1(soñ(R),W ) � H1,1(son(R),W )
︸ ︷︷ ︸

=son(R)1=0

+W⊥ ⊗ S2W ∗ + so(W⊥) ⊗ W ∗.

The nonvanishing of the last two subspaces corresponds to the fact that the existence of a
local Riemannian immersion depends on the existence of an appropriate fundamental form
and normal connection.
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