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Abstract We consider Robin problems driven by a nonhomogeneous differential operator
involving a reaction that has zeros and no global growth restriction.Using variationalmethods
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω . In this paper, we deal with the

following nonlinear Robin problem

− div a(∇u) = f (x, u) in Ω,

∂u

∂na
= −β(x)|u|p−2u on ∂Ω,

(1.1)

where a : RN → R
N is assumed to be continuous, strictly monotone and satisfies certain

regularity and growth conditionswhich are listed in hypothesesH(a) below. These hypotheses
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1208 N. S. Papageorgiou, P. Winkert

are general enough to incorporate various differential operators of interest such as the p-
Laplacian (1 < p < ∞). However, we stress that the differential operator here is not
(p − 1)-homogeneous, and this is a source of difficulties in the analysis of problem (1.1), in
particular in the search for nodal (sign changing) solutions. By ∂u

∂na
, we denote the generalized

normal derivative defined by

∂u

∂na
= (a(∇u), n)RN

with n(x) being the outward unit normal at x ∈ ∂Ω . We further assume that the reaction
f : Ω ×R → R is a Carathéodory function; that is, x �→ f (x, s) is measurable for all s ∈ R

and s �→ f (x, s) is continuous for a.a. x ∈ Ω . The interesting feature of our work is the fact
that we do not impose any global growth condition on f (x, ·). Instead, we assume that f (x, ·)
admits x-dependent zeros of constant sign. In the context of Dirichlet equations driven by
the p-Laplacian, reactions with zeros but having subcritical global growth were considered
by Bartsch et al. [4] and Iturriaga et al. [11]. In both papers, the zeros are supposed to be x
independent, that is, constant functions. For Neumann equations involving the p-Laplacian,
subcritical nonlinearities with constant zeros have been studied by Aizicovici et al. [2]. Other
works dealing with Robin equations driven by the p-Laplacian are those of Zhang et al. [28]
and Zhang and Xue [29], but with stronger hypotheses on the reaction. Finally, we mention
the papers of Duchateau [7], Lê [13] and Papageorgiou and Rădulescu [20] dealing with
different types of eigenvalue problems for the Robin p-Laplacian.

The aim of this work is to prove multiplicity theorems for problem (1.1) providing com-
plete sign information of the solutions obtained.We use variational methods based on critical
point theory combinedwith suitable truncation and perturbation techniques alongwithMorse
theory to show that problem (1.1) has at least three nontrivial solutions whereby two of them
have constant sign (one positive, the other negative) and the third one is nodal. To the best
of our knowledge, for Robin problems, only Papageorgiou and Rădulescu [20] and Winkert
[26] obtained nodal solutions for a different class of parametric Robin equations driven by
the p-Laplacian being a (p − 1)-homogeneous differential operator.

In the next section, for the reader’s convenience, we review the main mathematical tools
that we will use in the sequel.

2 Mathematical background

Let X be a Banach space with norm ‖ · ‖X and denote by X∗ its dual space equipped with the
dual norm ‖ · ‖X∗ , that is

‖ξ‖X∗ = sup
{〈ξ, v〉(X∗,X) : v ∈ X, ‖v‖X ≤ 1

}
,

where 〈·, ·〉(X∗,X) stands for the duality paring of (X∗, X).

Definition 2.1 The functional ϕ ∈ C1(X) fulfills the Palais–Smale condition (the PS-
condition for short) if the following holds: Every sequence (un)n≥1 ⊆ X such that (ϕ(un))n≥1

is bounded inR and ϕ′(un) → 0 in X∗ as n → ∞ admits a strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ which compensates the fact that
the ambient space X need not to be locally compact (X is in general infinite dimensional). The
PS-condition leads to a deformation theorem which in turn generates the minimax theory for
the critical values of ϕ. One of the main results in this theory is the so-called mountain pass
theorem due to Ambrosetti and Rabinowitz [3].
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Nonlinear Robin problems with a reaction of arbitrary growth 1209

Theorem 2.2 Let ϕ ∈ C1(X) be a functional satisfying the PS-condition and let u1, u2 ∈
X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf {ϕ(u) : ‖u − u1‖X = ρ} =: mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ (t)) with Γ = {γ ∈ C ([0, 1], X) : γ (0) = u1, γ (1) = u2}.
Then, c ≥ mρ with c being a critical value of ϕ.

By L p(Ω)
(
or L p

(
Ω;RN

))
and W 1,p(Ω), we denote the usual Lebesgue and Sobolev

spaces with their norms ‖ · ‖p and ‖ · ‖1,p , which is given by

‖u‖1,p = (‖∇u‖p
p + ‖u‖p

p
) 1
p for all u ∈ W 1,p(Ω).

The norm of RN is denoted by | · |, and (·, ·)
RN stands for the inner product in R

N . In
addition to the Sobolev space W 1,p(Ω), we will also use the ordered Banach space C1(Ω)

with norm ‖ · ‖C1(Ω) and its positive cone

C1(Ω)+ = {
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
,

which has a nonempty interior given by

int
(
C1
0 (Ω)+

) = {
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.

On ∂Ω , we use the (N − 1)-dimensional Hausdorff (surface) measure denoted by σ(·).
Then, we can define the Lebesgue spaces Ls(∂Ω) with 1 ≤ s ≤ ∞ and norm ‖ · ‖s,∂Ω . It is
known that there exists a unique linear continuous map γ0 : W 1,p(Ω) → L p(∂Ω), known
as the trace map, such that γ0(u) = u

∣
∣
∂Ω

for all u ∈ W 1,p(Ω) ∩C(Ω). In fact, the mapping
γ0 is compact and

im γ0 = W
1
p′ ,p(∂Ω), ker γ0 = W 1,p

0 (Ω)

with 1
p + 1

p′ = 1. From now on, for the sake of notational simplicity, we drop the use of the

trace map γ0. It is understood that all restrictions of the Sobolev functions u ∈ W 1,p(Ω) on
the boundary ∂Ω are defined in the sense of traces.

Next, we introduce our hypotheses on the map a(·). To this end, let ω ∈ C1(0,+∞) and
assume that it satisfies

0 < ĉ ≤ tω′(t)
ω(t)

≤ c0 and c1t
p−1 ≤ ω(t) ≤ c2(1 + t p−1) (2.1)

for all t > 0 and with some constants c1, c2 > 0. The hypotheses on a : RN → R
N read as

follows.

H(a): a(ξ) = a0 (|ξ |) ξ for all ξ ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t �→ ta0(t) is strictly increasing on (0,∞), limt→0+ ta0(t) = 0,

and lim
t→0+

ta′
0(t)

a0(t)
= c > −1;

(ii) |∇a(ξ)| ≤ c3
ω (|ξ |)

|ξ | for all ξ ∈ R
N\{0} and some c3 > 0;

(iii) (∇a(ξ)y, y)RN ≥ ω (|ξ |)
|ξ | |y|2 for all ξ ∈ R

N\{0} and all y ∈ R
N .
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1210 N. S. Papageorgiou, P. Winkert

(iv) if G0(t) = ∫ t
0 a0(s)sds, then

pG0(t) − a0(t)t
2 ≥ 0 for all t ≥ 0

and there exist 1 < θ < ς ≤ p and c̃, c∗ > 0 such that

t → G0

(
t
1
ς

)
is convex on R+ = [0,+∞)

and

lim
t→0+

ςG0(t)

tς
= c∗, a0(t)t

2 − θG0(t) ≥ c̃t p for all t > 0.

Remark 2.3 These conditions on a(·) are motivated by the nonlinear regularity theory of
Lieberman [14] and the nonlinear maximum principles of Pucci and Serrin [23]. The above
hypotheses imply that G0(·) is strictly convex and strictly increasing. Let G(ξ) = G0(|ξ |)
for all ξ ∈ R

N . Then, we have

∇G(ξ) = G ′
0(|ξ |) ξ

|ξ | = a0(|ξ |)ξ = a(ξ) for all ξ ∈ R
N\{0}.

Hence, G(·) is the primitive of a(·) and of course ξ �→ G(ξ) is convex with G(0) = 0. It
follows that

G(ξ) ≤ (a(ξ), ξ)
RN for all ξ ∈ R

N . (2.2)

The next lemma is a straightforward consequence of the above hypotheses and summarizes
the main properties of the map a(·).
Lemma 2.4 If hypotheses H(a)(i), (ii), (iii) hold, then

(i) the map ξ → a(ξ) is continuous, maximal monotone and strictly monotone;
(ii) |a(ξ)| ≤ c4

(
1 + |ξ |p−1) for all ξ ∈ R

N and some c4 > 0;
(iii) (a(ξ), ξ)RN ≥ c1

p−1 |ξ |p for all ξ ∈ R
N .

This lemma together with (2.1) and (2.2) leads to the following growth estimates for the
primitive G(·).
Corollary 2.5 If hypotheses H(a) (i), (ii), (iii) hold, then

c1
p(p − 1)

|ξ |p ≤ G(ξ) ≤ c5
(
1 + |ξ |p) for all ξ ∈ R

N and some c5 > 0.

Example 2.6 The following maps a : RN → R
N satisfy hypotheses H(a).

(i) Let 1 < p < ∞, and let a(ξ) = |ξ |p−2ξ . Then, a(·) represents the well-known p-
Laplace differential operator defined by

Δpu = div
(|∇u|p−2∇u

)
for all u ∈ W 1,p(Ω).

(ii) Let 1 < q < p < ∞ and let a(ξ) = |ξ |p−2ξ + |ξ |q−2ξ . Then, a(·) becomes the
(p, q)-differential operator defined by

Δpu + Δqu = div
(|∇u|p−2∇u

) + div
(|∇u|q−2∇u

)

for all u ∈ W 1,p(Ω). Such differential operators arise in various physical applications
(see Papageorgiou and Smyrlis [21], Papageorgiou and Winkert [22] and the references
therein).
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Nonlinear Robin problems with a reaction of arbitrary growth 1211

(iii) Let 1 < p < ∞ and let a(ξ) = (
1 + |ξ |2)

p−2
2 ξ . In this case, a(·) corresponds to the

generalized p-mean curvature differential operator which is defined by

div

[
(
1 + |∇u|2)

p−2
2 ∇u

]
for all u ∈ W 1,p(Ω).

(iv) For 1 < p < ∞ let a(ξ) = |ξ |p−2ξ
[
1 + 1

1+|ξ |p
]
. In this case, the primitive G0(·) is

G0(t) = 1

p
t p + 1

p
ln

(
1 + t p

)
for all t ≥ 0

and the corresponding differential operator is

Δpu + div

( |∇u|p−2∇u

1 + |∇u|p
)

for all u ∈ W 1,p(Ω),

which arises in plasticity theory (see Fuchs and Gongbao [8]).

Our hypotheses on the boundary weight function β(·) are the following.
H(β): β ∈ C0,α(∂Ω) with 0 < α < 1 and β(x) ≥ 0 for all x ∈ ∂Ω .

Let f0 : Ω × R → R be a Carathéodory function satisfying a subcritical growth with
respect to s ∈ R, that is

| f0(x, s)| ≤ ã(x)
(
1 + |s|r−1) for a.a. x ∈ Ω and all s ∈ R,

with ã ∈ L∞(Ω)+, and 1 < r < p∗, where p∗ is the critical exponent of p given by

p∗ =
{

Np
N−p if p < N ,

+∞ if p ≥ N .

Let F0(x, s) = ∫ s
0 f0(x, t)dt , and let ϕ0 : W 1,p(Ω) → R be the C1-functional defined

by

ϕ0(u) =
∫

Ω

G(∇u)dx + 1

p

∫

∂Ω

β(x)|u|pdσ −
∫

Ω

F0(x, u)dx .

The next result can be proved exactly as in Papageorgiou and Rădulescu [20] andWinkert
[24] based on the regularity results of Lieberman [14].

Theorem 2.7 If u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0; i.e., there exists ρ0 > 0
such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then, u0 ∈ C1,γ (Ω) for some γ ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of ϕ0;
i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ‖h‖W 1,p(Ω) ≤ ρ1.

As already mentioned, our approach involves the usage of critical groups (Morse theory).
So, let us recall the definition of critical groups. Given ϕ ∈ C1(X) and c ∈ R, we consider
the following sets

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set ofϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).
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1212 N. S. Papageorgiou, P. Winkert

For every topological pair (Y1, Y2)with Y2 ⊆ Y1 ⊆ X and every integer k ≥ 0, we denote

by Hk(Y1, Y2) the k
th=-relative singular homology group with integer coefficients. If u ∈ Kc

ϕ

is isolated, then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk
(
ϕc ∩U, ϕc ∩U\{u}) for all integers k ≥ 0,

where U is a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision property of
singular homology theory implies that the definition of critical groups above is independent
of the particular choice of the neighborhood U.

If ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞, then the critical groups of
ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ≥ 0,

where c < inf ϕ(Kϕ). The second deformation theorem (see, e.g., Gasiński and Papageorgiou
[9, p. 628]) implies that this definition is independent of the level c.

Assuming that Kϕ is finite, we define

M(t, u) =
∑

k≥0

rankCk(ϕ, u)tk for all t ∈ R and all u ∈ Kϕ,

P(t,∞) =
∑

k≥0

rankCk(ϕ,∞)tk for all t ∈ R.

Then, the Morse relation says
∑

u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ R, (2.3)

where Q(t) = ∑
k≥0 βk tk is a formal series in t ∈ R with nonnegative integer coefficients

βk .
In what follows, we denote by A : W 1,p(Ω) → (

W 1,p(Ω)
)∗

the nonlinear map defined
by

〈A(u), v〉 =
∫

Ω

(a(∇u),∇v)RN dx for all u, v ∈ W 1,p(Ω).

By means of Lemma 2.4, we can easily see that A is semicontinuous and maximal
monotone.

Since our hypotheses on the reaction f : Ω × R → R involve the spectrum of the
Robin p-Laplacian, let us recall some basic features of this spectrum. We refer to Lê [13]
and Papageorgiou and Rădulescu [20] (see also Motreanu and Winkert [18] for the Robin-
Fučík-spectrum of the p-Laplacian) for more details. We consider the following nonlinear
eigenvalue problem

−Δμu = λ̂|u|μ−2u in Ω,

∂u

∂nμ

= −β(x)|u|μ−2u on ∂Ω,
(2.4)

where β fulfills H(β), μ ∈ (1, p), and ∂u
∂nμ

= |∇u|μ−2 ∂u
∂n for all u ∈ W 1,μ(Ω). We say

that λ̂ ∈ R is an eigenvalue of the negative Robin μ-Laplacian, henceforth denoted by
−ΔR

μ , if problem (2.4) admits a nontrivial solution û ∈ W 1,μ(Ω) known as an eigenfunction

corresponding to λ̂. We know that there exists a smallest eigenvalue denoted by λ̂1(μ, β)

which has the following properties:
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Nonlinear Robin problems with a reaction of arbitrary growth 1213

• λ̂1(μ, β) ≥ 0 and λ̂1(μ, β) > 0 if β �= 0;
• λ̂1(μ, β) is isolated in the spectrum σ̂ (μ, β) of −ΔR

μ ;

• λ̂1(μ, β) is simple, that is, if û, v̂ are eigenfunctions corresponding to λ̂1(μ, β), then
û = ξ v̂ for some ξ �= 0;

• λ̂1(μ, β) = infu∈W 1,μ(Ω)

{∫
Ω |∇u|μdx+∫

∂Ω β(x)|u|μdσ∫
Ω |u|μdx : u �= 0

}
. (2.5)

The infimum in (2.5) is realized on the corresponding one-dimensional eigenspace. Owing
to (2.5), it is clear that the elements of this eigenspace do not change sign. In what follows,
we denote by û1(μ, β) the positive Lμ-normalized (that is, ‖û1(μ, β)‖μ = 1) eigenfunction
corresponding to the eigenvalue λ̂1(μ, β). The nonlinear regularity theory (see Lieberman
[14]) implies û1(μ, β) ∈ C1(Ω)+\{0}. Moreover, by virtue of the nonlinear maximum
principle (see Pucci and Serrin [23]), we obtain û1(μ, β) ∈ int

(
C1
0 (Ω)+

)
.

It is easy to check that the spectrum σ̂ (μ, β)of−ΔR
μ is closed, and so the second eigenvalue

is well defined by

λ̂2(μ, β) = inf
[
λ̂ ∈ σ̂ (μ, β) : λ̂ > λ̂1(μ, β)

]
.

Now, let ∂BLμ

1 = {u ∈ Lμ(Ω) : ‖u‖μ = 1}, Sμ = W 1,μ(Ω) ∩ ∂BLμ

1 , and ξ(u) =
‖∇u‖μ

μ + ∫
∂Ω

β(x)|u|μdσ for all u ∈ W 1,μ(Ω). Then, due to Papageorgiou and Rădulescu

[20], we have the following variational characterization of λ̂2(μ, β).

Proposition 2.8 There holds

λ̂2(μ, β) = inf
γ̂∈Γ̂ (μ,β)

max−1≤t≤1
ξ(γ̂ (t)),

where Γ̂ (μ, β) = {γ̂ ∈ C
([−1, 1], Sμ

) : γ̂ (−1) = −û1(μ, β), γ̂ (1) = û1(μ, β)}.
Moreover, owing to the Ljusternik–Schnirelman theory, there exists a whole sequence(

λ̂k(μ, β)
)

k≥1
of eigenvalues such that λ̂k(μ, β) → +∞ as k → +∞. However, we do

not know whether this sequence exhausts σ̂ (μ, β). This is true if p = 2 (linear eigenvalue
problem) or if N = 1 (ordinary differential equation).

Finally, let us fix our notation. Given s ∈ R, we set s± = max{±s, 0}. Then, for u ∈
W 1,p(Ω), we define u±(·) = u(·)±. Recall that

u± ∈ W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

By | · |N , we denote the Lebesgue measure on R
N . Furthermore, for u, v ∈ W 1,p(Ω) and

v ≤ u, we define by [v, u] the ordered interval given by
[v, u] = {

y ∈ W 1,p(Ω) : v(x) ≤ y(x) ≤ u(x) a.e. in Ω
}
.

3 Solutions of constant sign

In this section, we are going to prove the existence of constant sign solutions for problem
(1.1). To this end, we suppose the following assumptions on the function f : Ω × R → R.

H1: f : Ω × R → R is a Carathéodory function such that f (x, 0) = 0 for a.a. x ∈ Ω and
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1214 N. S. Papageorgiou, P. Winkert

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

| f (x, s)| ≤ aρ(x) for a.a. x ∈ Ω and all |s| ≤ ρ;
(ii) there exist functions w± ∈ W 1,p(Ω) ∩ C(Ω) and constants c± ∈ R such that

w−(x) ≤ c− < 0 < c+ ≤ w+(x) for all x ∈ Ω;
f (x, w+(x)) ≤ 0 ≤ f (x, w−(x)) for a.a. x ∈ Ω;
A(w−) ≤ 0 ≤ A(w+) in

(
W 1,p(Ω)

)∗ ;
(iii) if ς ∈ (1, p] and c∗ > 0 are as in hypothesis H(a) (iv), then there exists η ∈ L∞(Ω)

such that

η(x) ≥ c∗λ̂1(μ, β̂) a.e. in Ω, η �= c∗λ̂1(μ, β̂), β̂ = 1

c∗ β;

lim inf
s→0

f (x, s)

|s|ς−2s
≥ η(x) uniformly for a.a. x ∈ Ω;

(iv) if M∗ = max
{‖w+‖∞ , ‖w−‖∞

}
, then there exists ξ∗ > 0 such that

f (x, s)s + ξ∗|s|p ≥ 0 for a.a. x ∈ Ω and all |s| ≤ M∗.

Remark 3.1 In the above hypotheses, we do not employ any global growth condition on
f (x, ·). In fact, the particular structure of f (x, ·) beyond w±(x) is irrelevant. Note that
hypothesis H1(ii) is automatically satisfied if we can find c− < 0 < c+ such that

f (x, c+) ≤ 0 ≤ f (x, c−) for a.a. x ∈ Ω.

Hypotheses H1(ii),(iii) imply that f (x, ·) exhibits an oscillatory behavior near zero and
the last inequality in H1(ii) means that

〈A (w−) , h〉 ≤ 0 ≤ 〈A (w+) , h〉 for all h ∈ W 1,p(Ω) with h ≥ 0.

By means of H1(iii), we see that f (x, ·) is either (ς − 1)-superlinear or (ς − 1)-linear
near zero. Finally, hypothesis H1(iv) is a perturbed sign condition.

The following function fulfills these hypotheses

f (s) =
{

ξ
(|s|q−2s − |s|p−2s

)
if |s| ≤ 1,

e|s| − e if |s| > 1,

with ξ > c∗λ̂1(ς, β̂) and 1 < q < p.

Proposition 3.2 Let hypotheses H(a), H(β) and H1 be satisfied. Then, problem (1.1) admits
at least two nontrivial constant sign solutions

u0 ∈ int
(
C1
0(Ω)+

)
and v0 ∈ − int

(
C1
0(Ω)+

)
.

Proof We begin with the positive constant sign solution. To this end, let f̂+ : Ω × R → R

be a truncation perturbation defined by

f̂+(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0,

f (x, s) + s p−1 if 0 ≤ s ≤ w+(x),

f (x, w+(x)) + w+(x)p−1 if s > w+(x),

(3.1)
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Nonlinear Robin problems with a reaction of arbitrary growth 1215

which is a Carathéodory function. We set F̂+(x, s) = ∫ s
0 f̂+(x, t)dt and consider the C1-

functional ϕ̂+ : W 1,p(Ω) → R defined by

ϕ̂+(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p + 1

p

∫

∂Ω

β(x)
(
u+)p

dσ −
∫

Ω

F̂+(x, u)dx .

Note that ϕ̂+ is coercive due to Corollary 2.5, hypothesis H(β) and the truncation defined
in (3.1).Moreover, by the Sobolev embedding theorem and the compactness of the trace oper-
ator, we see that ϕ̂+ is sequentially weakly lower semicontinuous. Therefore, the Weierstrass
theorem implies the existence of u0 ∈ W 1,p(Ω) such that

ϕ̂+(u0) = inf
[
ϕ̂+(u) : u ∈ W 1,p(Ω)

]
. (3.2)

Given ε > 0, by virtue of hypotheses H(a)(iv) and H1(iii), there exists δ = δ(ε) ∈
(0,min{1, c+}) such that

G(ξ) ≤ c∗ + ε

ς
|ξ |ς for all |ξ | ≤ δ (3.3)

and

f (x, s) ≥ (η(x) − ε) sς−1 for a.a. x ∈ Ω and all s ∈ [0, δ]. (3.4)

If F(x, s) = ∫ s
0 f (x, t)dt , then (3.4) gives

F(x, s) ≥ 1

ς
(η(x) − ε) sς for a.a. x ∈ Ω and all s ∈ [0, δ]. (3.5)

Let t ∈ (0, 1) be small such that t û1(ς, β̂)(x) ∈ (0, δ] for all x ∈ Ω . Recall that β̂ = 1
c∗ β

and that û1(ς, β̂) ∈ int
(
C1
0 (Ω)+

)
. Then, due to (3.1), (3.3), (3.5) and ς < p, we obtain

ϕ̂+
(
t û1(ς, β̂)

)
=

∫

Ω

G
(
∇

(
t û1(ς, β̂)

))
dx + 1

p

∫

∂Ω

β(x)
(
t û1(ς, β̂)

)p
dσ

−
∫

Ω

F
(
x, t û1(ς, β̂)

)
dx

≤ c∗ + ε

ς
tς

∥
∥
∥∇û1(ς, β̂)

∥
∥
∥

ς

ς
+ tς

ς

∫

∂Ω

β(x)û1(ς, β̂)ςdσ

− tς

ς

∫

Ω

(η(x) − ε) û1(ς, β̂)ςdx

= tς

ς

[∫

Ω

(
c∗λ̂1(ς, β̂) − η(x)

)
û1(ς, β̂)dx +

(
λ̂1(ς, β̂) + 1

)
ε

]
.

(3.6)

Note that by hypothesis H1(iii) and since û1(ς, β̂) ∈ int
(
C1
0 (Ω)+

)
, we have

μ̂ =
∫

Ω

(
η(x) − c∗λ̂1(ς, β̂)

)
û1(ς, β̂)dx > 0.

Therefore, if we choose ε ∈
(
0, μ̂

λ̂1(ς,β̂)+1

)
, it follows

ϕ̂+
(
t û1(ς, β̂)

)
< 0,
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1216 N. S. Papageorgiou, P. Winkert

that means, ϕ̂+ (u0) < 0 = ϕ̂+ (0), and thus, u0 �= 0. By means of (3.2), there holds
ϕ̂′+ (u0) = 0 which results in

〈A(u0), h〉 +
∫

Ω

|u0|p−2u0hdx +
∫

∂Ω

β(x)
(
u+
0

)p−1
hdσ =

∫

Ω

f̂+(x, u0)hdx (3.7)

for all h ∈ W 1,p(Ω). Taking h = −u−
0 ∈ W 1,p(Ω) in (3.7) and applying Lemma 2.4(iii)

combined with the truncation in (3.1) gives

c1
p − 1

∥
∥∇u−

0

∥
∥p
p + ∥

∥u−
0

∥
∥p
p ≤ 0.

Hence, u0 ≥ 0 and u0 �= 0. Now we choose h = (u0 − w+)+ ∈ W 1,p(Ω) in (3.7). Then,
because of hypotheses H1(ii) and H(β) along with (3.1), one has

〈
A(u0), (u0 − w+)+

〉 +
∫

Ω

u p−1
0 (u0 − w+)+ dx +

∫

∂Ω

β(x)u p−1
0 (u0 − w+)+ dσ

=
∫

Ω

(
f (x, w+) + w

p−1
+

)
(u0 − w+)+ dx

≤ 〈
A(w+), (u0 − w+)+

〉 +
∫

Ω

w
p−1
+ (u0 − w+)+ dx +

∫

∂Ω

β(x)w p−1
+ (u0 − w+)+ dσ.

Therefore,

〈
A(u0) − A(w+), (u0 − w+)+

〉 +
∫

Ω

(
u p−1
0 − w

p−1
+

)
(u0 − w+)+ dx ≤ 0,

which implies |{u0 > w+}|N = 0 meaning u0 ≤ w+. In summary, we have proved that
u0 ∈ [0, w+], u0 �= 0. Then, by virtue of (3.1), Eq. (3.7) becomes

〈A(u0), h〉 +
∫

∂Ω

β(x)u p−1
0 hdσ =

∫

Ω

f (x, u0)hdx for all h ∈ W 1,p(Ω). (3.8)

Applying the nonlinear Green’s identity (see, e.g., Gasiński and Papageorgiou [9, p. 210])
yields

〈A(u0), h〉 = 〈− div a (∇u0) , h〉 +
〈

∂u

∂na
, h

〉

∂Ω

, (3.9)

where 〈·, ·〉∂Ω denotes the duality brackets for the pair

(
W

− 1
p′ ,p

′
(∂Ω),W

1
p′ ,p(∂Ω)

)
. From

the representation theorem for the elements of W−1,p′
(∂Ω) =

(
W 1,p

0 (Ω)
)∗

(see, e.g.,

Gasiński and Papageorgiou [9, p. 211]) and Lemma 2.4, we get

div a(∇u0) ∈ W−1,p′
(Ω) =

(
W 1,p

0 (Ω)
)∗

.

From (3.8) and (3.9) as well as the fact that h
∣
∣
∂Ω

= 0 for all h ∈ W 1,p
0 (Ω), it follows

〈− div a (∇u0) , h〉 =
∫

Ω

f (x, u0)hdx for all h ∈ W 1,p
0 (Ω),

which implies

− div a(∇u0) = f (x, u0) a.e. in Ω.
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Nonlinear Robin problems with a reaction of arbitrary growth 1217

Hence, (3.8) and (3.9) imply
〈

∂u

∂na
+ β(x)u p−1

0 , h

〉

∂Ω

= 0 for all h ∈ W 1,p(Ω). (3.10)

Recall that γ0
(
W 1,p(Ω)

) = W
1
p′ ,p(∂Ω) (see, e.g., Gasiński and Papageorgiou [9,

p. 209]). So, from (3.10), we may infer that

∂u

∂na
+ β(x)u p−1

0 = 0 on ∂Ω.

From Winkert [25], we get u0 ∈ L∞(Ω) and the regularity results of Lieberman [14,
p. 320] ensure that u0 ∈ C1(Ω)+\{0}.

Now, let ξ∗ > 0 be as in hypothesis H1(iv). Then,

− div a(∇u0) + ξ∗u p−1
0 = f (x, u0) + ξ∗u p−1

0 ≥ 0 for a.a. x ∈ Ω,

which gives

div a(∇u0(x)) ≤ ξ∗u p−1
0 for a.a. x ∈ Ω. (3.11)

Let ϑ(t) = a0(t)t for all t > 0. Then, (2.2) and hypothesis H(a)(iii) lead to the following
one-dimensional estimate

ϑ ′(t)t = a′
0(t)t

2 + a0(t)t ≥ c1t
p−1 for all t > 0,

which, by integration of parts and hypothesis H(a)(iv), implies
∫ t

0
ϑ ′(s)sds = ϑ(t)t −

∫ t

0
ϑ(s)ds

= a0(t)t
2 − G0(t)

≥ c̃t p for all t > 0. (3.12)

Because of (3.11) and (3.12), we may apply the strong maximum principle of Pucci and
Serrin [23, p. 111] which yields

u(x) > 0 for all x ∈ Ω.

Taking into account the boundary point theorem of Pucci and Serrin [23, p. 120], we
conclude that u0 ∈ int

(
C1
0(Ω)+

)
.

In order to prove the existence of a negative solution, we introduce the Carathéodory
function

f̂−(x, s) =

⎧
⎪⎨

⎪⎩

f (x, w−(x)) + |w−(x)|p−2w−(x) if s < w−(x),

f (x, s) + |s|p−2s if w−(x) ≤ s ≤ 0,

0 if s > 0.

Then, we set F̂−(x, s) = ∫ s
0 f̂−(x, t)dt and consider theC1-functional ϕ̂− : W 1,p(Ω) →

R defined by

ϕ̂−(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p − 1

p

∫

∂Ω

β(x)
(
u−)p

dσ −
∫

Ω

F̂−(x, u)dx .
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1218 N. S. Papageorgiou, P. Winkert

Working as above with f̂− and ϕ̂−, we produce a negative solution v0 of (1.1) such that

v0 ∈ [w−, 0] ∩ (− int
(
C1
0 (Ω)+

))
.

��
In fact, we can produce extremal constant sign solutions for problem (1.1), that is the

smallest positive solution and the greatest negative solution. For this purpose, we introduce
the following solution sets

S+ = {
u ∈ W 1,p(Ω) : u �= 0, u ∈ [0, w+], u is a solution of (1.1)

}
,

S− = {
u ∈ W 1,p(Ω) : u �= 0, u ∈ [w−, 0], u is a solution of (1.1)

}
.

Proposition 3.2 implies directly that

∅ �= S+ ⊆ [0, w+] ∩ int
(
C1
0(Ω)+

)
and ∅ �= S− ⊆ [w−, 0] ∩ (− int

(
C1
0(Ω)+

))
.

Given ε > 0 and r ∈ (p, p∗), by virtue of hypotheses H1(i),(iii), there exists c6 =
c6(ε, r) > 0 such that

f (x, s)s ≥ (η(x) − ε) |s|ς − c6|s|r for a.a. x ∈ Ω and all |s| ≤ ρ, (3.13)

where ρ = max{‖w+‖∞, ‖w−‖∞}.
We consider the subsequent auxiliary Robin problem

− div a(∇u) = (η(x) − ε) |u|ς−2u − c6|u|r−2u in Ω,

∂u

∂na
= −β|u|p−2u on ∂Ω.

(3.14)

Proposition 3.3 If hypotheses H(a) and H(β) are satisfied, then problem (3.14) has a unique
positive solution u ∈ int

(
C1
0 (Ω)+

)
, and since (3.14) is odd, v = −u ∈ − int

(
C1
0 (Ω)+

)
is

the unique negative solution of (3.14).

Proof First, we establish the existence of a positive solution. To this end, let ψ+ :
W 1,p(Ω) → R be the C1-functional defined by

ψ+(u) =
∫

Ω

G(∇u)dx + 1

p
‖u−‖p

p + 1

p

∫

∂Ω

β(x)
(
u+)p

dσ

− 1

ς

∫

Ω

(η(x) − ε)
(
u+)ς

dx + c6
r

∥
∥u+∥

∥r
r .

Since r > p and due to Corollary 2.5, we obtain

ψ+(u) ≥ c1
p(p − 1)

∥
∥∇u+∥

∥p
p + c6

r

∥
∥u+∥

∥r
r + c1

p(p − 1)

∥
∥∇u−∥

∥p
p + 1

p

∥
∥u−∥

∥p
p

− 1

ς

∫

Ω

(η(x) − ε)
(
u+)ς

dx

≥ c7
[∥
∥u+∥

∥p
1,p + ∥

∥u−∥
∥p
1,p

]
− c8

(
‖u‖ς

1,p + 1
)

= c7‖u‖p
1,p − c8‖u‖ς

1,p − c8

for some c7, c8 > 0. Recall that ς < p we see that ψ+ is coercive. Since ψ+ is sequentially
weakly lower semicontinuous as well, we find u ∈ W 1,p(Ω) such that

ψ+(u) = inf
[
ψ+(u) : u ∈ W 1,p(Ω)

]
. (3.15)
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Reasoning as in the proof of Proposition 3.2 along with hypothesis H(a)(iv) and the
assumptions on η(·) (see H1(iii)) we get, for t ∈ (0, 1) sufficiently small,

ψ+
(
t û1(ς, β̂)

)
< 0.

Therefore, ψ+(u) < 0 = ψ+(0); thus, u �= 0. Because u is a critical point of ψ+, it holds
ψ ′+(u) = 0 which gives

〈A(u), h〉 −
∫

Ω

(
u−)p−1

hdx +
∫

∂Ω

β(x)
(
u+)p−1

hdσ

=
∫

Ω

(η(x) − ε)
(
u+)ς−1

hdx − c6

∫

Ω

(
u+)r−1

hdx for all h ∈ W 1,p(Ω). (3.16)

We choose h = −u− ∈ W 1,p(Ω) in (3.16) and apply Lemma 2.4(iii) to get

c1
p − 1

∥
∥∇u−∥

∥p
p + ∥

∥u−∥
∥p
p ≤ 0,

which gives u ≥ 0, u �= 0. Then, (3.16) becomes

〈A(u), h〉 +
∫

∂Ω

β(x)u p−1hdσ

=
∫

Ω

(η(x) − ε) uς−1hdx − c6

∫

Ω

ur−1hdx for all h ∈ W 1,p(Ω).

As in the proof of Proposition 3.2, using the nonlinear Green’s identity, we see from the
equation above that u is a positive solution of the auxiliary problem given in (3.14). Note
that u ∈ L∞(Ω) (see, e.g., Winkert and Zacher [27]). Then, the nonlinear regularity theory
(see Lieberman [14]) and the nonlinear maxmium principle (see Pucci and Serrin [23]) imply
u ∈ int

(
C1
0 (Ω)+

)
.

In order to finish the proof, we have to show the uniqueness of u. To this end, we consider
the integral functional Υ : L1(Ω) → R ∪ {∞} defined by

Υ (u) =
⎧
⎨

⎩

∫

Ω

G
(
∇u

1
ς

)
dx + 1

p

∫

∂Ω

β(x)|u| p
ς dσ if u ≥ 0, u

1
ς ∈ W 1,p(Ω),

+∞ otherwise.

Let u1, u2 be in the domain of Υ ; i.e., u1, u2 ∈ dom(Υ ) = {
u ∈ L1(Ω) : Υ (u) < +∞}

,

and let further u = ((1 − t)u1 + tu2)
1
ς with t ∈ [0, 1]. Applying Lemma 1 of Díaz and Saá

[5], there holds

|∇u(x)| ≤
[
(1 − t)

∣
∣
∣∇u1(x)

1
ς

∣
∣
∣
ς + t

∣
∣
∣∇u2(x)

1
ς

∣
∣
∣
ς] 1

ς

a.e. in Ω.

Recall that G0 is increasing. Therefore, due to hypothesis H(a)(iv), it follows

G0 (|∇u(x)|)

≤ G0

(
(
(1 − t)

∣
∣
∣∇u1(x)

1
ς

∣
∣
∣
ς + t

∣
∣
∣∇u2(x)

1
ς

∣
∣
∣
ς) 1

ς

)

≤ (1 − t)G0

(∣∣
∣∇u1(x)

1
ς

∣
∣
∣
)

+ tG0

(∣∣
∣∇u2(x)

1
ς

∣
∣
∣
)

a.e. in Ω.
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1220 N. S. Papageorgiou, P. Winkert

Since G(ξ) = G0(|ξ |) for all ξ ∈ R
N , we obtain

G(∇u(x)) ≤ (1 − t)G
(
∇u1(x)

1
ς

)
+ tG

(
∇u2(x)

1
ς

)
a.e. in Ω,

which implies that Υ is convex. By means of Fatou’s lemma, we easily verify that Υ is lower
semicontinuous as well.

Now, let y be another positive solution of (3.14) and recall that u, y ∈ int
(
C1
0 (Ω)+

)
. Then,

for every h ∈ C1(Ω) and for |t | small enough, we have uς + th, yς + th ∈ int
(
C1
0 (Ω)+

)
.

Hence, Υ is Gateaux differentiable at uς and yς in the direction h. Moreover, the chain rule
and the nonlinear Green’s identity give

Υ ′ (uς
)
(h) = 1

ς

∫

Ω

− div a(∇u)

uς−1 hdx, (3.17)

Υ ′ (yς
)
(h) = 1

ς

∫

Ω

− div a(∇ y)

yς−1 hdx, (3.18)

for all h ∈ W 1,p(Ω) (recall that C1(Ω) is dense in W 1,p(Ω)). Note that Υ ′ is monotone
because of the convexity of Υ . Then, owing to (3.17) and (3.18), we obtain

0 ≤ 〈
Υ ′ (uς

) − Υ ′ (yς
)
, uς − yς

〉
L1(Ω)

= 1

ς

∫

Ω

(− div a(∇u)

uς−1 + div a(∇ y)

yς−1

)
(
uς − yς

)
dx

= 1

ς

∫

Ω

(
(η(x) − ε)uς−1 − c6ur−1

uς−1 − (η(x) − ε)yς−1 − c6yr−1

yς−1

)
(
uς − yς

)
dx

= c6
ς

∫

Ω

(
yr−ς − ur−ς

) (
uς − yς

)
dx

≤ 0,

since r > ς . Thus, u = v ∈ int
(
C1
0(Ω)+

)
is the unique positive solution of (3.14).

The fact that problem (3.14) is odd implies that v = −u ∈ − int
(
C1
0 (Ω)+

)
is the unique

negative solution of (3.14). ��
Proposition 3.4 Let hypotheses H(a), H(β) and H1 be satisfied. Then, there holds

u ≤ u for all u ∈ S+ and v ≤ v for all v ∈ S−.

Proof Let u ∈ S+ and introduce the Carathédory function k : Ω × R → R defined by

k(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0,

(η(x) − ε) sς−1 − c6sr−1 + s p if 0 ≤ s ≤ u(x),

(η(x) − ε) u(x)ς−1 − c6u(x)r−1 + u(x)p if s > u(x).

(3.19)

Setting K (x, s) = ∫ s
0 k(x, t)dt , we consider the C1-functional ψ̂ : W 1,p(Ω) → R given

by

ψ̂(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p + 1

p

∫

∂Ω

β(x)
(
u+)p

dσ −
∫

Ω

K (x, u)dx .

Bymeans of the truncation defined in (3.19) andCorollary 2.5, it follows that ψ̂ is coercive.
Since ψ̂ is also sequentiallyweakly lower semicontinuous,we find an element u∗ ∈ W 1,p(Ω)

such that
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Nonlinear Robin problems with a reaction of arbitrary growth 1221

ψ̂(u∗) = inf
[
ψ̂(u) : u ∈ W 1,p(Ω)

]
. (3.20)

Recall that u ∈ int
(
C1
0(Ω)+

)
, so we can choose t ∈ (0, 1) small enough such that

t û1(ς, β̂) ≤ u. Then, as in the proof of Proposition 3.2, we may show that ψ̂(t û1(ς, β̂) < 0
meaning that ψ̂(u∗) < 0 = ψ̂(0). Hence, u∗ �= 0.

Because of ψ̂ ′(u∗) = 0, we have

〈A(u∗), h〉 +
∫

Ω

|u∗|p−2 u∗hdx +
∫

∂Ω

β(x)
(
u+∗

)p−1
hdσ

=
∫

Ω

k (x, u∗) hdx for all h ∈ W 1,p(Ω). (3.21)

If h = −u−∗ ∈ W 1,p(Ω) in (3.21), then, by reason of Lemma 2.4(iii) and (3.19), it follows

c1
p − 1

‖∇u∗‖p
p + ‖u∗‖p

p ≤ 0,

therefore, u∗ ≥ 0, u∗ �= 0. On the other side, if we choose h = (u∗ − u)+ ∈ W 1,p(Ω) in
(3.21), we obtain

〈
A(u∗), (u∗ − u)+

〉 +
∫

Ω

u p−1∗ (u∗ − u)+ dx +
∫

∂Ω

β(x)u p−1∗ (u∗ − u)+ dσ

=
∫

Ω

[
(η(x) − ε) uς−1 − c6u

r−1 + u p−1] (u∗ − u)+ dx

≤ 〈
A(u), (u∗ − u)+

〉 +
∫

Ω

u p−1 (u∗ − u)+ dx +
∫

∂Ω

β(x)u p−1 (u∗ − u)+ dσ,

where we used the definition of the truncation in (3.19) and the fact that u ∈ S+ (see (3.13)).
Finally, we derive

〈
A(u∗) − A(u), (u∗ − u)+

〉 +
∫

Ω

(
u p−1∗ − u p−1

)
(u∗ − u)+ dx ≤ 0,

which gives |{u∗ > u}|N = 0, hence u∗ ≤ u. We have proved that

u∗ ∈ [0, u], u∗ �= 0. (3.22)

Then, by virtue of (3.19), Eq. (3.21) becomes

〈A(u∗), h〉 +
∫

∂Ω

β(x)u p−1∗ hdσ =
∫

Ω

[
(η(x) − ε) uς−1∗ − c6u

r−1∗
]
hdx

for all h ∈ W 1,p(Ω). Hence, u∗ is a nontrivial positive solution of problem (3.14). Taking
into account Proposition 3.3, we infer that u∗ = u ∈ int

(
C1
0 (Ω)+

)
. Because of (3.22), it

follows

u ≤ u for all u ∈ S+.

Following the same ideas, we can prove that v ≤ v for all v ∈ S−. ��
Now we are in the position to prove the existence of extremal constant sign solutions of

problem (1.1).

Proposition 3.5 If hypotheses H(a), H(β) and H1 hold, then problem (1.1) has a smallest
positive solution u∗ ∈ int

(
C1
0 (Ω)+

)
and a greatest negative solution v∗ ∈ − int

(
C1
0 (Ω)+

)
.
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Proof Owing to Dunford and Schwartz [6, p. 336], we find a sequence (un)n≥1 ⊆ S+ such
that

inf S+ = inf
n≥1

un .

Recall that un ∈ [0, w+] ∩ int
(
C1
0(Ω)+

)
and

− div a(∇un) = f (x, un) in Ω,

∂un
∂na

= −β(x)u p−1
n on ∂Ω.

(3.23)

Since un ∈ L∞(Ω), we may apply the regularity results of Lieberman; that is, there exist
γ > 0 and c9 > 0 such that

un ∈ C1,γ (Ω) and ‖un‖C1,γ (Ω) ≤ c9 for all n ≥ 1.

Exploiting the compact embedding of C1,γ (Ω) into C1(Ω) and passing to a suitable
subsequence if necessary, we have

un → u∗ in C1(Ω) as n → ∞. (3.24)

Combining (3.9) and (3.23) yields

〈A(un), h〉 −
〈
∂un
∂na

, h

〉

∂Ω

=
∫

Ω

f (x, un)hdx for all h ∈ W 1,p(Ω)

which implies, again due to (3.23),

〈A(un), h〉 +
∫

∂Ω

β(x)u p−1
n hdσ =

∫

Ω

f (x, un)hdx for all h ∈ W 1,p(Ω).

Passing to the limit as n → ∞ and using (3.24), we obtain

〈A(u∗), h〉 +
∫

∂Ω

β(x)u p−1∗ hdσ =
∫

Ω

f (x, u∗)hdx for all h ∈ W 1,p(Ω).

Therefore, u∗ is a solution of (1.1), and by Proposition 3.4, we know that u ≤ un for all
n ≥ 1 which ensures that

u ≤ u∗.

In summary, we have u∗ ∈ S+ and u∗ = inf S+.
Similarly, we prove that v∗ ∈ S− such that v∗ = supS−. ��

4 Nodal solutions

By applying the extremal constant sign solutions obtained in the previous section, we can
now generate nodal (sign changing) solutions of problem (1.1). To do this, we strengthen the
condition on f (x, ·) near zero and consider two different cases. In the first one, we suppose
that f (x, ·) is (ς − 1)-superlinear near zero, and in the second case, we assume that f (x, ·)
is (ς − 1)-linear near zero. The proofs of the two cases differ.

In the first case, the hypotheses on f : Ω × R → R are the following.

123



Nonlinear Robin problems with a reaction of arbitrary growth 1223

H2: f : Ω × R → R is a Carathéodory function such that f (x, 0) = 0 for a.a. x ∈ Ω ,
hypotheses H2(i),(ii),(iv) are the same as the corresponding hypotheses H1(i),(ii),(iv)
and

(iii) if F(x, s) = ∫ s
0 f (x, t)dt , then there exist δ0 ∈ (0,min {±c±, 1}) and q ∈ (1, θ) such

that

c10|s|q ≤ f (x, s)s ≤ qF(x, s),

for a.a. x ∈ Ω , for all |s| ≤ δ0, and for some c10 > 0.

Wefirst introduce the following truncation functions e : Ω×R → R and d : ∂Ω×R → R.

e(x, s) =

⎧
⎪⎨

⎪⎩

f (x, w−) + |w−(x)|p−2w−(x) if s < w−(x),

f (x, s) + |s|p−2s if w−(x) ≤ s ≤ w+(x),

f (x, w+) + w+(x)p−1 if s > w+(x),

(4.1)

and

d(x, s) =

⎧
⎪⎨

⎪⎩

β(x)|w−(x)|p−2w−(x) if s < w−(x),

β(x)|s|p−2s if w−(x) ≤ s ≤ w+(x),

β(x)w+(x)p−1 if s > w+(x).

(4.2)

Setting E(x, s) = ∫ s
0 e(x, t)dt and D(x, s) = ∫ s

0 d(x, t)dt , we define the C1-functional
ϕ : W 1,p(Ω) → R given by

ϕ(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p +
∫

∂Ω

D(x, u)dσ −
∫

Ω

E(x, u)dx .

In the first step, we have to compute the critical groups of ϕ at the origin. Note that a
similar computation under stronger hypotheses and for G(ξ) = 1

ξ
|ξ |p for all ξ ∈ R

N was
done by Moroz [16] (p = 2) and Jiu-Su [12] (1 < p < ∞). In both works, the ambient
space is W 1,p

0 (Ω).

Proposition 4.1 Let hypotheses H(a), H(β) and H2 be satisfied, and suppose that Kϕ is
finite. Then,

Ck(ϕ, 0) = 0 for all k ≥ 0.

Proof Regarding hypotheses H2(i),(iii) and (4.1), there exist c11 > 0 and r > p such that

E(x, s) ≥ c10
q

|s|q − c11|s|r for a.a. x ∈ Ω and all s ∈ R. (4.3)

Moreover, hypotheses H(a)(iv) and Corollary 2.5 imply

G(ξ) ≤ c12
(|ξ |ς + |ξ |p) for all ξ ∈ R

N and some c12 > 0. (4.4)

Let u ∈ W 1,p(Ω) and t ∈ (0, 1). Then, due to (4.2), (4.3) and (4.4), it follows

ϕ(tu) =
∫

Ω

G(∇(tu))dx + t p

p
‖u‖p

p +
∫

∂Ω

D(x, tu)dσ −
∫

Ω

E(x, tu)dx

≤ c12
(
tς‖∇u‖ς

ς + t p‖∇u‖p
p
) + t p

p
‖u‖p

p + t p

p
c13‖u‖p

p,∂Ω

+ c11t
r‖u‖rr − c10

q
tq‖u‖qq (4.5)
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1224 N. S. Papageorgiou, P. Winkert

for some c13 > 0. Since q < ς < p < r , with view to (4.5), we can find t∗ = t∗(u) ∈ (0, 1)
small enough such that

ϕ(tu) < 0 for all t ∈ (
0, t∗

)
. (4.6)

Let u ∈ W 1,p(Ω) with 0 < ‖u‖1,p ≤ 1 and ϕ(u) = 0. Then, owing to d(x, s)s ≥
ςD(x, s) on ∂Ω × R, we obtain

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

= 〈
ϕ′(u), u

〉

=
∫

Ω

(a(∇u),∇u)RN dx + ‖u‖p
p +

∫

∂Ω

d(x, u)udσ −
∫

Ω

e(x, u)udx

≥
∫

Ω

[
(a(∇u),∇u)RN − θG(∇u)

]
dx +

(
1 − θ

p

)
‖u‖p

p

+ (θ − q)

∫

Ω

E(x, u)dx +
∫

Ω

[qE(x, u) − e(x, u)u] dx . (4.7)

Hypotheses H2(i),(iii) and (4.1) imply

qE(x, s) − e(x, s)s ≥ −c14|s|r for a.a x ∈ Ω and all s ∈ R, (4.8)

where c14 is a positive constant. Applying (4.3), (4.8) and hypotheses H(a)(iv) in (4.7), we
obtain, as ς > q ,

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

≥ c̃‖∇u‖p
p +

(
1 − ς

p

)
‖u‖p

p − c15‖u‖rr
for some c15 > 0. Therefore,

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

≥ c16‖u‖p
1,p − c17‖u‖r1,p for some c16, c17 > 0. (4.9)

From (4.9) and since r > p, we can find ρ ∈ (0, 1) small enough such that

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

> 0 for all u ∈ W 1,p(Ω) with 0 < ‖u‖1,p ≤ ρ, ϕ(u) = 0. (4.10)

Fixing u ∈ W 1,p(Ω) with 0 < ‖u‖1,p ≤ ρ and ϕ(u) = 0, we claim that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (4.11)

We argue indirectly and suppose we can find t0 ∈ (0, 1) such that ϕ(t0u) > 0. Since
ϕ(u) = 0 and ϕ is continuous, by Bolzano’s theorem, we have

t∗ = min {t ∈ [t0, 1] : ϕ(tu) = 0} > t0 > 0.

Then,

ϕ(tu) > 0 for all t ∈ [t0, t∗). (4.12)

We set v = t∗u. Then, 0 < ‖v‖1,p ≤ ‖u‖1,p ≤ ρ and ϕ(v) = 0. So, from (4.10), it
follows

d

dt
ϕ(tv)

∣
∣
∣
∣
t=1

> 0. (4.13)
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Note that, because of (4.12),

ϕ(v) = ϕ(t∗u) = 0 < ϕ(tu) for all t ∈ [t0, t∗),
which implies

d

dt
ϕ(tv)

∣
∣
∣
∣
t=1

= t∗
d

dt
ϕ(tu)

∣
∣
∣
∣
t=t∗

= t∗ lim
t→t−∗

ϕ(tu)

t − t∗
≤ 0. (4.14)

Comparing (4.13) and (4.14), we reach a contradiction. This proves (4.11).
Let ρ ∈ (0, 1) be small such that Kϕ ∩ Bρ = {0}. We consider the deformation h :

[0, 1] × (
ϕ0 ∩ Bρ

) → ϕ0 ∩ Bρ defined by

h(t, u) = (1 − t)u.

By reason of (4.10) and (4.11), we see that this deformation is well defined and that
ϕ0 ∩ Bρ is contractible in itself.

Let u ∈ Bρ with ϕ(u) > 0. We are going to show that there exists an unique t (u) ∈ (0, 1)
such that

ϕ(t (u)u) = 0. (4.15)

Taking into account (4.6) alongwithBolzano’s theorem,we verify that such a t (u) ∈ (0, 1)
exists. We only need to show its uniqueness. Arguing by contradiction, suppose that there
exist

0 < t1 = t (u)1 < t2 = t (u)2 < 1 such that ϕ(t1u) = ϕ(t2u) = 0.

Relation (4.11) gives

ϕ(t t2u) ≤ 0 for all t ∈ [0, 1],
which implies that

t1
t2

∈ (0, 1) is a maximizer of t → ϕ(t t2u) on [0, 1].

We conclude that

t1
t2

d

dt
ϕ(t t2u)

∣
∣
∣
∣
t= t1

t2

= d

dt
ϕ(t t1u)

∣
∣
∣
∣
t=1

= 0,

which contradicts (4.10). This proves the uniqueness of t (u) ∈ (0, 1) satisfying (4.15). We
have

ϕ(tu) < 0 for all t ∈ (0, t (u)) and ϕ(tu) > 0 for all t ∈ (t (u), 1].
Consider the function E1 : Bρ\{0} → (0, 1] defined by

E1(u) =
{
1 if u ∈ Bρ\{0}, ϕ(u) ≤ 0,

t (u) if u ∈ Bρ\{0}, ϕ(u) > 0,

it is easy to check that E1 is continuous. Let E2 : Bρ\{0} → (
ϕ0 ∩ Bρ

) \{0} be defined by

E2(u) =
{
u if u ∈ Bρ\{0}, ϕ(u) ≤ 0,

E1(u)u if u ∈ Bρ\{0}, ϕ(u) > 0.
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1226 N. S. Papageorgiou, P. Winkert

Evidently, E2 is continuous and

E2

∣
∣
∣
∣(

ϕ0∩Bρ

)\{0}
= id

∣
∣
∣
∣(

ϕ0∩Bρ

)\{0}
.

We conclude that
(
ϕ0 ∩ Bρ

) \{0} is a retract of Bρ\{0} and the latter is contractible. It
follows that

(
ϕ0 ∩ Bρ

) \{0} is contractible in itself. Moreover, we have seen before that
ϕ0 ∩ Bρ is contractible in itself. Then, from Granas and Dugundji [10, p. 389], we have

Hk
(
ϕ0 ∩ Bρ,

(
ϕ0 ∩ Bρ

) \{0}) = 0 for all k ≥ 0,

which implies

Ck(ϕ, 0) = 0 for all k ≥ 0.

��
Using this proposition, we can prove the existence of a nodal solution of (1.1). In what

follows, we denote by u∗ ∈ int
(
C1
0 (Ω)+

)
and v∗ ∈ − int

(
C1
0 (Ω)+

)
the two extremal

constant sign solutions of (1.1) obtained in Proposition 3.5.

Proposition 4.2 Let H(a), H(β), and H2 be satisfied. Then, problem (1.1) admits a nodal
solution y0 ∈ [v∗, u∗] ∩ C1(Ω).

Proof We introduce the Carathéodory functions η : Ω ×R → R, γ : ∂Ω ×R → R defined
by

η(x, s) =

⎧
⎪⎨

⎪⎩

f (x, v∗(x)) + |v∗(x)|p−2v∗(x) if s < v∗(x),
f (x, s) + |s|p−2s if v∗(x) ≤ s ≤ u∗(x),
f (x, u∗(x)) + u∗(x)p−1 if s > u∗(x),

(4.16)

and

γ (x, s) =

⎧
⎪⎨

⎪⎩

β(x)|v∗(x)|p−2v∗(x) if s < v∗(x),
β(x)|s|p−2s if v∗(x) ≤ s ≤ u∗(x),
β(x)u∗(x)p−1 if s > u∗(x).

(4.17)

Let H(x, s) = ∫ s
0 η(x, t)dt, Γ (x, s) = ∫ s

0 γ (x, t)dt and let ψ : W 1,p(Ω) → R be the
C1-functional given by

ψ(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p +
∫

∂Ω

Γ (x, u)dσ −
∫

Ω

H(x, u)dx .

Additionally, we consider the positive and negative truncations of η(x, ·) and γ (x, ·), that
is,

η±(x, s) = η
(
x,±s±)

and γ±(x, s) = γ
(
x,±s±)

.

We set H±(x, s) = ∫ s
0 η±(x, t)dt, Γ±(x, s) = ∫ s

0 γ±(x, t)dt and consider the C1-
functionals ψ± : W 1,p(Ω) → R defined by

ψ±(u) =
∫

Ω

G(∇u)dx + 1

p
‖u‖p

p +
∫

∂Ω

Γ±(x, u)dσ −
∫

Ω

H±(x, u)dx .
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Claim 1 Kψ ⊆ [v∗, u∗], Kψ+ = {0, u∗} , Kψ− = {v∗, 0}
Let u ∈ Kψ , that is, ψ ′(u) = 0 which results in

〈A(u), h〉 +
∫

Ω

|u|p−2uhdx +
∫

∂Ω

γ (x, u)hdσ =
∫

Ω

η(x, u)hdx (4.18)

for all h ∈ W 1,p(Ω). Choosing h = (u − u∗)+ ∈ W 1,p(Ω) in (4.18) and applying (4.16),
(4.17) gives

〈A(u), (u − u∗)+〉 +
∫

Ω

u p−1 (u − u∗)+ dx +
∫

∂Ω

β(x)u p−1∗ (u − u∗)+ dσ

=
∫

Ω

[
f (x, u∗) + u p−1∗

]
(u − u∗)+ dx

= 〈A(u∗), (u − u∗)+〉 +
∫

Ω

u p−1∗ (u − u∗)+ dx +
∫

∂Ω

β(x)u p−1∗ (u − u∗)+ dσ,

which implies

〈A(u) − A(u∗), (u − u∗)+〉 +
∫

Ω

(
u p−1 − u p−1∗

)
(u − u∗)+ dx = 0.

Therefore, |{u > u∗}|N = 0, hence, u ≤ u∗. Similarly, if we choose h = (v∗ − u)+ ∈
W 1,p(Ω), then we obtain v∗ ≤ u. Thus, u ∈ [v∗, u∗] meaning Kψ ⊆ [v∗, u∗]. In the same
way, we can show that

Kψ+ ⊆ [0, u∗] and Kψ− ⊆ [v∗, 0].
But the extremality of u∗ and v∗ implies

Kψ+ = {0, u∗} and Kψ− = {v∗, 0}.
This proves Claim 1.
By virtue of Claim 1, we may assume that Kψ is finite. Otherwise, due to (4.16) and

(4.17), we already have infinity nodal solutions and so we are done.

Claim 2 u∗ ∈ int
(
C1
0 (Ω)+

)
and v∗ ∈ − int

(
C1
0 (Ω)+

)
are local minimizers of ψ .

It is clear that ψ+ is coercive due to the presence of the truncations. Since it is also
sequentially weakly lower semicontinuous, we find u∗ ∈ W 1,p(Ω) such that

ψ+ (u∗) = inf
[
ψ+(u) : u ∈ W 1,p(Ω)

]
. (4.19)

As before (see the proof of Proposition 3.2), for |t | ∈ (0, 1) small enough such that at
least

t û1(ς, β̂) ∈ [v∗, u∗], |t |û1(ς, β̂) ≤ δ0 for all x ∈ Ω

(recall that u∗ ∈ int
(
C1
0(Ω)+

)
and v∗ ∈ − int

(
C1
0 (Ω)+

)
, hence such a |t | ∈ (−1, 1) can be

found) and using hypothesis H2(iii), we obtain

ψ+
(
t û1(ς, β̂)

)
< 0.

Therefore, ψ+(u∗) < 0 = ψ+(0), and thus, u∗ �= 0. Since u∗ is a global minimizer of
ψ+ (see (4.19)), there holds u∗ ∈ Kψ+\{0}, which implies, due to Claim 1, that u∗ = u∗ ∈
int

(
C1
0 (Ω)+

)
.
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1228 N. S. Papageorgiou, P. Winkert

As ψ
∣
∣
C1(Ω)+ = ψ+

∣
∣
C1(Ω)+ , it follows that u∗ ∈ int

(
C1
0 (Ω)+

)
is a local C1(Ω)-

minimizer of ψ . Invoking Theorem 2.7, we infer that u∗ is a local W 1,p(Ω)-minimizer
of ψ .

The second assertion can be shown in the same way, using ψ− instead of ψ+. This proves
Claim 2.

Without any loss of generality, we may assume that ψ+(v∗) ≤ ψ+(u∗) (the analysis
is similar if the opposite inequality holds). Since u∗ ∈ int

(
C1
0 (Ω)+

)
is a local W 1,p(Ω)-

minimizer of ψ (see Claim 2), there exists ρ ∈ (0, 1) such that

ψ(v∗) ≤ ψ(u∗) < inf
[
ψ(u) : ‖u − u∗‖1,p = ρ

] = mρ, ‖v∗ − u∗‖1,p > ρ (4.20)

(seeAizicovici et al. [1, Proof of Proposition 29]). Recall that the functional is coercive; hence,
it satisfies the PS-condition. This fact along with (4.20) permits the use of the mountain pass
theorem stated in Theorem 2.2. This yields y0 ∈ W 1,p(Ω) such that

y0 ∈ Kψ and mρ ≤ ψ(y0). (4.21)

Then, by means of Claim 1, we have y0 ∈ [v∗, u∗]. From this and (4.20), (4.21), it follows
that y0 �= u∗, y0 �= v∗ and y0 is a solution of (1.1) (see the definition of the truncations in
(4.16), (4.17)). Moreover, the nonlinear regularity theory implies that y0 ∈ [v∗, u∗]∩C1(Ω).
Since y0 is a critical point of ψ of mountain pass type, we have

C1(ψ, y0) �= 0 (4.22)

(see, e.g., Motreanu et al. [17, p. 176]).
We consider now the homotopy ĥ(t, u) defined by

ĥ(t, u) = (1 − t)ψ(u) + tϕ(u) for all (t, u) ∈ [0, 1] × W 1,p(Ω).

Suppose we could find sequences (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆ W 1,p(Ω) such that

tn → t ∈ [0, 1], un → 0 in W 1,p(Ω), and ĥ′
u(tn, un) = 0 for all n ≥ 1. (4.23)

This gives

〈A(un), h〉 +
∫

Ω

|un |p−2unhdx + (1 − tn)
∫

∂Ω

γ (x, un)hdσ + tn

∫

∂Ω

d(x, un)hdσ

= (1 − tn)
∫

Ω

η(x, un)hdx + tn

∫

Ω

e(x, un)hdx for all h ∈ W 1,p(Ω).

As before, we can show that un ∈ [w−, w+] for all n ≥ 1 and via the nonlinear Green’s
identity (see the proof of Proposition 3.2) we obtain

− div a(∇un) + |un |p−2un = (1 − tn)η(x, un) + tne(x, un) in Ω,

∂u

∂na
= −(1 − tn)γ (x, un) − tnd(x, un) on ∂Ω.

The regularity results of Lieberman [14, p. 320] imply the existence of λ ∈ (0, 1) and
c18 > 0 such that

un ∈ C1,λ(Ω) and ‖un‖C1,λ(Ω) ≤ c18 for all n ≥ 1. (4.24)

The compact embedding of C1,λ(Ω) into C1(Ω) along with (4.23) and (4.24) yields

un → 0 in C1(Ω) as n → ∞.

123



Nonlinear Robin problems with a reaction of arbitrary growth 1229

Hence, un ∈ [v∗, u∗] for all n ≥ n0 ≥ 1, and because of Claim 1, it follows (un)n≥n0 ⊆
Kψ which contradicts the fact that Kψ is finite. Therefore, (4.23) cannot happen, and then,
the homotopy invariance of critical groups (see Motreanu et al. [17]) implies that

Ck(ψ, 0) = Ck(ϕ, 0) for all k ≥ 0.

Using this together with Proposition 4.1, there holds

Ck(ψ, 0) = 0 for all k ≥ 0. (4.25)

Comparing (4.22) and (4.25), we see that y0 �= 0. Hence, y0 ∈ [v∗, u∗]∩C1(Ω) is nodal.
��

Now we can state the first multiplicity result for problem (1.1)

Theorem 4.3 Let hypotheses H(a), H(β) and H2 be satisfied. Then, problem (1.1) has at
least three nontrivial solutions

u0 ∈ int
(
C1
0 (Ω)+

)
, v0 ∈ − int

(
C1
0 (Ω)+

)
, and y0 ∈ [v0, u0] ∩ C1(Ω) nodal.

Remark 4.4 An interesting question was posed by the referee, namely whether we can
describe the nodal regions of the solution y0. It seems to us that in this generality this cannot
be done. However, for more particular reaction terms and differential operators maybe more
information can be provided for the nodal solution. This is an interesting open problemworth
pursuing further.

In Theorem 4.3, hypothesis H2(iii) dictates the presence of a concave nonlinearity near
zero (recall that 1 < q < θ < ς ≤ p). Next, we examine what happens if f (x, ·) is (ς − 1)-
linear near zero. For example, suppose that a(ξ) = |ξ |p−2ξ for all ξ ∈ R

N with 1 < p < ∞;
that is, the differential operator is the p-Laplacian. Then, c1 = p−1, and we can take ς = p
(see hypothesis H(a)(iv)). In this case, the reaction f (x, ·) will be (p − 1)-linear near zero,
and so the geometry near the origin changes from the previous case.

H3: f : Ω × R → R is a Carathéodory function such that f (x, 0) = 0 for a.a. x ∈ Ω ,
hypotheses H3(i),(ii),(iv) are the same as the corresponding hypotheses H1(i),(ii),(iv)
and

(iii) there exists constants c19, c20 > 0 such that

c∗λ̂2(ς, β̂) < c19

and

c19 ≤ lim inf
s→0

f (x, s)

|s|ς−2s
≤ lim sup

s→0

f (x, s)

|s|ς−2s
≤ c20

uniformly for a.a. x ∈ Ω .

Remark 4.5 Note that Proposition 4.1 is no longer true under hypothesis H3 because the
geometry near the origin is now different and so the approach changes. The idea in the
current case is to use Proposition 2.8 instead.

Theorem 4.6 If hypotheses H(a), H(β) and H3 hold, then problem (1.1) has at least three
nontrivial solutions

u0 ∈ int
(
C1
0 (Ω)+

)
, v0 ∈ − int

(
C1
0 (Ω)+

)
, and y0 ∈ [v0, u0] ∩ C1(Ω) nodal.
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Proof Evidently, the results of Sect. 3 remain valid, and so we can find extremal constant
sign solutions u∗ ∈ int

(
C1
0 (Ω)+

)
and v∗ ∈ − int

(
C1
0(Ω)+

)
of (1.1). Then, as in the proof

of Proposition 4.2, defining the C1-functionals ψ and ψ±, the mountain pass theorem (see
Theorem 2.2) implies the existence of a solution y0 ∈ [v∗, u∗] ∩ C1(Ω) of problem (1.1).
We need to show that y0 �= 0. From the mountain pass theorem, it follows

mρ ≤ ψ(y0) = inf
γ∈Γ

max
0≤t≤1

ψ(γ (t)), (4.26)

where Γ = {
γ ∈ C

([0, 1],W 1,p(Ω))
) : γ (0) = v∗, γ (1) = u∗

}
. According to (4.26), in

order to establish the nontriviality of y0, it suffices to produce a path γ∗ ∈ Γ such that
ψ
∣
∣
γ∗ < 0. For this purpose, we introduce the following Banach C1-manifolds

Sς = W 1,p(Ω) ∩ ∂BLς

1 and Scς = Sς ∩ C1(Ω).

Recall that BLς

1 = {
u ∈ Lς (Ω) : ‖u‖ς = 1

}
and note that Scς is dense in Sς . We consider

the subsequent sets of paths

Γ̂ (ς, β̂) =
{
γ̂ ∈ C

([−1, 1], Sς

) : γ̂ (−1) = û1(ς, β̂), γ̂ (1) = û1(ς, β̂)
}

,

Γ̂c(ς, β̂) =
{
γ̂ ∈ C

([−1, 1], Scς
) : γ̂ (−1) = û1(ς, β̂), γ̂ (1) = û1(ς, β̂)

}

Claim Γ̂c(ς, β̂) is dense in Γ̂ (ς, β̂).
Let γ̂ ∈ Γ̂ (ς, β̂) and ε ∈ (0, 1). Consider the multifunction Tε : [−1, 1] → 2C

1(Ω)

defined by

Tε(t) =
⎧
⎨

⎩

{
u ∈ C1(Ω) : ∥∥u − γ̂ (t)

∥
∥
1,p < ε

}
if − 1 < t < 1,

{
±û1(ς, β̂)

}
if t = ±1,

we easily verify that Tε has nonempty and convex values. Moreover, Tε(t) is open for all
t ∈ (−1, 1), while Tε(±1) are singletons. In addition, the continuity of γ̂ implies that
the multifunction Tε is lower semicontinuous (see Papageorgiou and Kyritsi [19, p. 458]).
Therefore, we can apply Theorem 3.1 of Michael [15] to obtain a continuous path γ̂ε :
[−1, 1] → C1(Ω) such that

γ̂ε(t) ∈ Tε(t) for all t ∈ [−1, 1].

Now, let εn = 1
n , n ≥ 1, and let

(
γ̂n = γ̂εn

)
n≥1 ⊆ C

([−1, 1],C1(Ω)
)
be as above. We

have

∥
∥γ̂n(t) − γ̂ (t)

∥
∥
1,p <

1

n
for all t ∈ (−1, 1),

γ̂n(±1) = ±û1(ς, β̂) for all n ≥ 1. (4.27)

Since γ̂ (t) ∈ ∂BLς

1 for all t ∈ [−1, 1], we may assume, due to (4.27), that
∥
∥γ̂n(t)

∥
∥

ς
�= 0

for all t ∈ [−1, 1] and all n ≥ 1. We set

γ̂ 0
n (t) = γ̂n(t)∥

∥γ̂n(t)
∥
∥

ς

for all t ∈ [−1, 1] and all n ≥ 1. (4.28)
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Clearly, γ̂ 0
n ∈ C([−1, 1], Scς ) and γ̂ 0

n (±1) = ±û1(ς, β̂). Moreover, due to (4.27) and
(4.28), we obtain
∥
∥γ̂ 0

n (t) − γ̂ (t)
∥
∥
1,p ≤ ∥

∥γ̂ 0
n (t) − γ̂n(t)

∥
∥
1,p + ∥

∥γ̂n(t) − γ̂ (t)
∥
∥
1,p

≤
∣
∣
∣1 − ∥

∥γ̂n(t)
∥
∥

ς

∣
∣
∣

∥
∥γ̂n(t)

∥
∥

ς

∥
∥γ̂n(t)

∥
∥
1,p + 1

n
for all t ∈ [−1, 1] and all n ≥ 1.

Note that, because γ̂ (t) ∈ Sς for all t ∈ [−1, 1], (4.27), and the embeddingW 1,p(Ω) ↪→
Lς (Ω),

max−1≤t≤1

∣
∣
∣1 − ∥

∥γ̂n(t)
∥
∥

ς

∣
∣
∣ = max−1≤t≤1

∣
∣
∣
∥
∥γ̂ (t)

∥
∥

ς
− ∥

∥γ̂n(t)
∥
∥

ς

∣
∣
∣

≤ max−1≤t≤1

∥
∥γ̂ (t) − γ̂n(t)

∥
∥

ς

≤ c21 max−1≤t≤1

∥
∥γ̂ (t) − γ̂n(t)

∥
∥
1,p

≤ c21
n

for some c21 > 0 and for all n ≥ 1. Therefore, Γ̂c(ς, β̂) is dense in Γ̂ (ς, β̂). This proves the
Claim.

The Claim combined with Proposition 2.8 imply, for given δ > 0, the existence of γ̂0 ∈
Γ̂c(ς, β̂) such that

max−1≤t≤1
ξ
(
γ̂0(t)

) ≤ λ̂2(ς, β̂) + δ. (4.29)

Recall that ξ(u) = ‖∇u‖p
p + ∫

∂Ω
β̂(x)|u|pdσ for all u ∈ W 1,p(Ω). Given ε ∈(

0, c19 − c∗λ̂1(ς, β̂)
)
, owing to hypotheses H(a)(iv) and H3(iii), we can find δ̂ = δ̂(ε) ∈

(0, δ) such that

F(x, s) ≥ c19 − ε

ς
|s|ς for a.a. x ∈ Ω and all |s| ≤ δ̂, (4.30)

G(ξ) ≤ c∗ + ε

ς
|ξ |ς for all |ξ | ≤ δ̂. (4.31)

Since γ̂0 ∈ Γ̂c(ς, β̂) and u∗ ∈ int
(
C1
0(Ω)+

)
, v∗ ∈ − int

(
C1
0 (Ω)+

)
, we find λ ∈ (0, 1)

small enough such that, for all t ∈ [−1, 1],
λγ̂0(t) ∈ [v∗, u∗] and λ

∣
∣γ̂0(t)(x)

∣
∣ , λ

∣
∣∇γ̂0(t)(x)

∣
∣ ≤ δ̂ for all x ∈ Ω. (4.32)

Now, applying (4.16), (4.17), (4.29), (4.30), (4.31), (4.32) and using the fact that∥
∥γ̂0(t)

∥
∥

ς
= 1 and ς < p, we get

ψ
(
λγ̂0(t)

) =
∫

Ω

G
(
λ∇γ̂0(t)

)
dx + λp

p

∫

∂Ω

β(x)
∣
∣γ̂0(t)

∣
∣p dσ −

∫

Ω

F
(
x, λγ̂0(t)

)
dx

≤ c∗ + ε

ς
λς

∥
∥∇γ̂0(t)

∥
∥p
p + λς

ς
c∗

∫

∂Ω

β̂(x)
∣
∣γ̂0(t)

∣
∣p dσ − λς

ς
(c19 − ε)

= λς

ς

[
c∗ξ

(
γ̂0(t)

) + ε
(∥
∥∇γ̂0(t)

∥
∥p
p + 1

)
− c19

]

≤ λς

ς

[
c∗λ̂2(ς, β̂) + c∗δ + εc22 − c19

]
(4.33)

123



1232 N. S. Papageorgiou, P. Winkert

for some c22 > 0 and for all t ∈ [−1, 1]. Since c19 > c∗λ̂2(ς, β̂), choosing ε > 0 and δ > 0
small enough, from (4.33), it follows

ψ
(
λγ̂0(t)

)
< 0 for all t ∈ [−1, 1].

We easily see that γ̂ := λγ̂0 is a continuous path inW 1,p(Ω)which connects−λû1(ς, β̂)

and λû1(ς, β̂) satisfying

ψ
∣
∣
γ̂

< 0. (4.34)

Next, we have to construct a continuous path in W 1,p(Ω) connecting λû1(ς, β̂) and u∗.
For this purpose, let

μ = ψ+(u∗) = inf
[
ψ+(u) : u ∈ W 1,p(Ω)

]
< 0 = ψ+(0) (4.35)

(see the proof of Proposition 4.2). The second deformation theorem (see, e.g., Gasiński and

Papageorgiou [9, p. 628]) implies the existence of a deformation h : [0, 1]×
(
ψ0+\K 0

ψ+

)
→

ψ0+ such that

h(0, u) = u for all u ∈ ψ0+\K 0
ψ+ , (4.36)

h
(
1, ψ0+\K 0

ψ+

)
⊆ ψ

μ
+, (4.37)

and

ψ+(h(t, u)) ≤ ψ+(h(s, u)) (4.38)

for all s, t ∈ [0, 1] with 0 ≤ s ≤ t ≤ 1 and all u ∈ ψ0+\K 0
ψ+ .

Recall, owing to Claim 1 in the proof of Proposition 4.2, that Kψ+ = {0, u∗}. Therefore,
due to (4.34) and (4.35),

ψ
μ
+ = {u∗} (4.39)

and

ψ+
(
λû1(ς, β̂)

)
= ψ

(
λû1(ς, β̂)

)
= ψ

(
γ̂ (1)

)
< 0.

Therefore, λû1(ς, β̂) ∈ ψ0+\K 0
ψ+ = ψ0+\{0}. This means we can define

γ̂+(t) = h
(
t, λû1(ς, β̂)

)+
for all t ∈ [0, 1]. (4.40)

Then, by virtue of (4.34), (4.36), (4.37), (4.38), and (4.39), it follows

γ̂+(0) = h
(
0, λû1(ς, β̂)

)+ = λû1(ς, β̂)

γ̂+(1) = h
(
1, λû1(ς, β̂)

)+ = u∗,

ψ
(
γ̂+(t)

) = ψ+
(
γ̂+(t)

) ≤ ψ+
(
λû1(ς, β̂)

)
= ψ

(
λû1(ς, β̂)

)
< 0.

Hence, γ̂+ is a continuous path connecting λû1(ς, β̂) and u∗ fulfilling

ψ
∣
∣
γ̂+ < 0. (4.41)
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In a similar fashion, using the functionalψ− instead ofψ+, wemay construct a continuous
path γ̂− in W 1,p(Ω) which connects −λû1(ς, β̂) and v∗ satisfying

ψ
∣
∣
γ̂− < 0. (4.42)

The union of the curves γ̂−, γ̂ , and γ̂+ forms a continuous path γ∗ ∈ Γ such that, because
of (4.34), (4.41), and (4.42),

ψ
∣
∣
γ∗ < 0.

This implies that y0 ∈ [v∗, u∗] ∩ C1(Ω) is a nodal solution of (1.1). ��
In order to prove the existence of a second nodal solution of (1.1), we will consider the

special case when a(ξ) = ξ is the Laplacian and the reaction f (x, ·) is linear near zero and
differentiable. To be more precise, the problem under consideration is given by

−Δu = f (x, u) in Ω,

∂u

∂n
= −β(x)u on ∂Ω.

(4.43)

The reason that we consider the above special case of problem (1.1) is because we will use
tools from Morse theory, in particular critical groups. As it is well known, the strongest and
more definitive results on critical groups can be produced in the context of Hilbert spaces and
for C2-functionals. In fact, in problem (4.43) we could have used a general strongly elliptic
second-order differential operator but for simplicity in the exposition we have decided to
proceed with the Laplacian. For the general problem (1.1), additional nodal solutions can be
produced if we introduce symmetry structure in the problem something that we wanted to
avoid in this paper.

The new hypotheses on f : Ω × R → R read as follows.

H4: f : Ω × R → R is a measurable function such that f (x, ·) ∈ C1(R), f (x, 0) = 0 for
a.a. x ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

| f ′
s (x, s)| ≤ aρ(x) for a.a. x ∈ Ω and all |s| ≤ ρ;

(ii) there exist functions w± ∈ H1(Ω) ∩ C(Ω) and constants c± ∈ R such that

w−(x) ≤ c− < 0 < c+ ≤ w+(x) for all x ∈ Ω;
f (x, w+(x)) ≤ 0 ≤ f (x, w−(x)) for a.a. x ∈ Ω;
A(w−) ≤ 0 ≤ A(w+) in

(
H1(Ω)

)∗ ;
(iii) there exist constants c23, c24 > 0 and m ≥ 2 such that

λ̂m(2, β) < c23 ≤ c24 < λ̂m+1(2, β),

and

c23 ≤ f ′
s (x, 0) = lim

s→0

f (x, s)

s
≤ c24

uniformly for a.a. x ∈ Ω .

Remark 4.7 Note that in this case, using the mean value theorem, we see that if M∗ =
max

{‖w+‖∞, ‖w−‖∞
}
, then there exists ξ∗ > 0 such that s �→ f (x, s) + ξ∗s is nonde-

creasing on [−M∗, M∗] for a.a. x ∈ Ω .
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Theorem 4.8 Let hypotheses H(β) and H4 be satisfied. Then, problem (4.43) admits at least
four nontrivial solutions

u0 ∈ int
(
C1
0(Ω)+

)
, v0 ∈ − int

(
C1
0(Ω)+

)
, and y0, ŷ ∈ intC1(Ω)[v0, u0] nodal.

Proof Because of Theorem 4.6, we already have three nontrivial solutions

u0 ∈ int
(
C1
0 (Ω)+

)
, v0 ∈ − int

(
C1
0 (Ω)+

)
, and y0 ∈ [v0, u0] ∩ C1(Ω) nodal.

In addition, by virtue of Proposition 3.5, we may assume that u0 and v0 are extremal
constant sign solutions of (4.43).

Let ξ∗ > 0 be as postulated in Remark 4.7. Since y0 ≤ u0, we obtain

−Δu0 + ξ∗u0 = f (x, u0) + ξ∗u0 ≥ f (x, y0) + ξ∗y0 = −Δy0 + ξ∗y0 a.e. in Ω.

This implies

Δ(u0 − y0) ≤ ξ∗(u0 − y0) a.e. in Ω,

which, in view of Pucci and Serrin [23], results in u0 − y0 ∈ int
(
C1
0 (Ω)+

)
. Similarly, we

can show that y0 − v0 ∈ int
(
C1
0 (Ω)+

)
. Therefore,

y0 ∈ intC1(Ω)[v0, u0]. (4.44)

Using the notation from the proof of Proposition 4.2, we know that u0 and v0 are local
minimizers of the functional ψ , hence

Ck(ψ, u0) = Ck(ψ, v0) = δk,0Z for all k ≥ 0. (4.45)

Additionally, the proof of Theorem 4.6 had shown that y0 is a critical point of ψ of
mountain pass type. Thus, from Motreanu et al. [17, p. 177] and since (4.44), we have

Ck(ψ, y0) = δk,1Z for all k ≥ 0. (4.46)

Note that u = 0 is a nondegenerate critical point of ψ of Morse index

dm = dim
m⊕

i=1

E
(
λ̂i (2, β)

)
≥ 2

with E
(
λ̂i (2, β)

)
being the eigenspace corresponding to the eigenvalue λ̂i (2, β). Hence,

Ck(ψ, 0) = δk,dmZ for all k ≥ 0. (4.47)

Finally, since ψ is coercive, it follows that

Ck(ψ,∞) = δk,0Z for all k ≥ 0. (4.48)

Supposing Kψ = {0, u0, v0, y0}, from (4.45), (4.46), (4.47), (4.48) and theMorse relation
with t = −1 (see (2.3)), we obtain

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

which implies (−1)dm = 0, a contradiction. Thus, there exists ŷ ∈ Kψ ⊆ [v0, u0] with
ŷ /∈ {0, u0, v0, y0}. Hence, ŷ is a second nodal solution of (4.43). Similarly, as done for y0,
we can show that ŷ ∈ intC1(Ω)[v0, u0]. ��
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