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linear singular parabolic equations with measurable coefficients and lower order terms from
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1 Introduction and main results

In this paper we are concerned with divergence type quasi-linear singular parabolic equation
with measurable coefficients and lower order terms. This class of equations has numerous
applications and has been attracting attention for several decades (see, e.g. the monographs
[7,16,28], survey [8] and reference therein).

Let £2 be adomain in R”, n > 2, and for any T > 0 let £27 denote the cylindrical domain
£2 x (0, T). We consider quasi-linear parabolic differential equation of the form

u; —divA(x, t,u, Vu) = b(x,t,u, Vu), (x,t) € Q2r. (1.1)

Throughout the paper we suppose that the functions A : 2 x RT x R x R” — R”" and
b: 2 xRt xR xR" — R" are such that A(-, -, u, £), b(-, -, u, &) are Lebesgue measurable
forallu e R, £ e R",and A(x, ¢, -, -), b(x, t, -, -) are continuous for almost all (x, t) € 27.
We also assume that the following structure conditions are satisfied:
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Ax,t,u,8)E > g7 — g1(0)|ul? — fi(x),
IAG 1 u, 6)] < palélP7 + ga)ulP ™ + f(x),

bCx, 1, )] < h)IE™ + g3l + f3(0), (1.2)
where n2+”1 < p < 2,1, pup are positive constants and i (x), g; (x), fi(x), i = 1,2, 3 are
nonnegative functions, satisfying conditions which will be specified bellow.

The aim of this paper is to establish basic qualitative properties such as local boundedness
of weak solutions and their continuity under minimal possible restrictions on the coefficients
in structure conditions (1.2). These properties are indispensable in the qualitative theory of
second-order elliptic and parabolic equations. For Eq. (1.1) with g; (x), fi(x), i = 1,2,3
constants the local boundedness and Holder continuity of solutions was known since mid-
1980s (see [7] for the results, references and historical notes), and a resent breakthrough has
been made in [9, 10], where the Harnack inequality has been proved. Before stating precisely
our results we make several remarks related to lower order terms of (1.1) and refer the reader
for an extensive survey of the regularity issues to [7-10].

Local boundedness and Holder continuity of weak solutions to homogeneous linear diver-
gence type second-order elliptic and parabolic equations with measurable coefficients without
lower order terms is known since the famous results by De Giorgi [6] and Nash [20], and
the Harnack inequality since Moser’s celebrated paper [18]. However, in presence of lower
order term in the equation weak solutions may have singularities and/or internal zeroes, and
the Harnack inequality in general may not be valid, as one can easily realize looking at the
equation —Au + ﬁu = 0. It was Serrin [21] who generalized Moser’s result to the case

of quasi-linear equations with lower order terms with conditions expressed in terms of L9-
spaces. Using probabilistic techniques Aizenman and Simon in their famous paper [1] proved
the Harnack inequality and continuity of weak solutions to the equation —Au + Vu = 0
under the local Kato class condition on the potential V. Moreover, they showed that the
Kato-type condition on the potential V is necessary for the validity of the Harnack inequal-
ity. Soon after that Chiarenza et al. [5] developed a real variables technique to prove the
Harnack inequality for a linear equation of divergence type with measurable coefficients
and the potential from the Kato class, thus extending Aizenman, Simon’s result. Kurata [14]
extended the method of Chiarenza, Fabes and Garofalo and proved the same to the equation
> 9 (aija%) +>0  bi g—)':, + Vu = 0, with ||, V from the Kato class. Both papers

i,j=1 9x;

[5] and [14] make a heavy use of Green’s functions which makes this approach inapplicable to
quasi-linear equations. To treat the quasi-linear case of p-Laplacian with a lower order term
Biroli [2] introduced the notion of the nonlinear Kato class and gave the Harnack inequality
for positive solutions to —A ,u + Vu? —1 = 0. This was extended in [25] to the general case
of quasi-linear elliptic equations with lower order terms.

For second-order linear parabolic equations with measurable coefficients (without lower
order terms) Holder continuity of solutions was first proved by Nash [20]. Moser [19] proved
the validity of the Harnack inequality which was extended to the case of quasi-linear equations
with p = 2 in the structure conditions and structure coefficients from L9-classes in [26].
The continuity of weak solutions and the Harnack inequality for second-order linear elliptic
equations with lower order coefficients from Kato classes was proved by Zhang [29,30].

The parabolic theory for degenerate quasi-linear equations differs substantially from the
“linear” case p = 2 which can be already realized looking at the Barenblatt solution to
the parabolic p-Laplace equation. Di Benedetto developed an innovative intrinsic scaling
method (see [7] and the references to the original papers there; see also a nice exposition in
[27] where some recent advances are included) and proved the Holder continuity of weak
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solutions to (1.1) for p # 2 for the case fi, f2, f3, h from L?-classes, and the Harnack
inequality for the parabolic p-Laplace equations. For the case of measurable coefficients in
the main part of (1.1) the Harnack inequality was proved in the recent breakthrough paper
[9]. The Harnack inequality and continuity of solutions to the porous medium equations and
to the degenerate (p > 2) parabolic equations with singular lower order terms was proved in
[3,4,17]. It is natural to conjecture that the Harnack inequality holds for the singular (p < 2)
parabolic p-Laplace equation perturbed by lower order terms with coefficients form Kato
classes. The difficulty is that seemingly neither De Giorgy nor Moser iteration techniques
work in this situation.

In this paper following the strategy of [10] but using a different iteration, namely the
Kilpeldinen—Maly technique [13] properly adapted to the parabolic equations [17,23,24],
we establish the local boundedness and continuity for solutions of (1.1).

In what follows we use the notion of the Wolf potential of a function g(x), which is defined
by

¢ gy [ d o 1 1.3
Wy p(xi p) = o | rap B(X)Ig(z)l g o oa>1l n>of. (1.3)

The corresponding nonlinear Kato-type classes K g are defined by
Ko p = [g € L'(2) : lim sup WS ,(x; p) = o] . (1.4)
P=0xe@ ’

As one can easily see, for p = 2, the nonlinear Kato class K, := K 1 reduces to the
standard definition of the Kato class with respect to the Laplacian [1,22].
For the functions in the right-hand sides of (1.2) we assume that
p _r_
=

s1.figd . ST €Ky . g i€ K. (15)

Before formulating the main results let us remind the reader of the definition of a weak
solution to Eq. (1.1). We say that the function u € Vioc(£27) = Cioc(0, T; L2 (£2)N

loc
Lf;C(O, T, Wll)’cp (£2)) is a local weak solution of equation (1.1) if for every sub-interval

[t1, 2] C (0, T] the following integral identity is valid

/ up dx
o}

for any function ¢ € WL2(0, T : L2(2)) N L0, T; WP (2)).
Further on we assume without loss of generality that 2% € L?(£27) since otherwise we

at
can pass to the Steklov averages (see, e.g. [7]).

12} n
+/ / {—u@ +Ax,t,u, Vu)Vo — b(x, t,u, Vu)p}dxdt =0 (1.6)
1 1 2

Remark 1 The parameters {n, p, (1, 2} are the data and we say that generic constant y =
y(n, p, 11, 2) depends upon the data if it can be quantitatively determined a priori only in
terms of the indicated parameters.

In what follows we use the following quantities

_P_
+£77
W (p) == sup Wlﬁrlfl (x; p) + sup WI{?I (x; p),
xeR > ptl xeR '
pljl

+

U2, (s p) + sup W (x; p),
1 xeR

CpF

We(p) := sup W}f
xeR
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Wi (p) = sup W'\ (x; p).
xXeNR

The first main result of this paper is the local boundedness of solutions.

Letx € 2, 0 < s < T, forany p,t > 0 we define B,(x) = {y : |x —
yI< ph Qpe(x,s) == Q) (x,5) U Q;,t(x,s), where 0, . (x,s) = By(x) x (s —
7,5), Q;',T(x, ) := By(x) X (5,5 + 7).

Theorem 1.1 Let the conditions (1.2), (1.5) be fulfilled and u be a local weak solution to
Eq. (1.1). Then there exists vy € (0, 1) depending only on the data such that the inequality

Wi(32p) + We(32p) < vy (1.7)

implies that either
1

(’p_ps)z"’ < W;(320), (18)

or

r 1
n * - P
esssup |u| < y(t _s)—;( ess sup / |ue(x, r)ldx) + y( S)z P
By (y) PP

0, (y.1) 2s—t<tT<t
7,)‘7.?
x=p+n(p—2) >0, (1.9)
for all cylinders Q |, (v, 1) C £27.
Having established the local boundedness we proceed with the continuity.

Theorem 1.2 Let conditions (1.2), (1.5) be fulfilled and u be a bounded local weak solution
to Eq. (1.1). Then u is continuous, that is u € C(827).

For a fixed cylinder Qz_p 2p)Po (y,s) C $27 denote by .+ and w, nonnegative numbers
such that

Hy > esssup  u, p_— < essinf u, w>puy—p_.

Q;pv(Zﬂ)Pe (O] QZ_p.(Zﬂ)’W('V’S)

The next is a De Giorgi-type lemma (cf. [10]), and its formulation is almost the same
as in [10]. However, due to the different structure conditions the De Giorgi-type iteration
cannot be used, so we adapt the Kilpeldinen—Maly iteration [13], combined with ideas from
[17,23,24], where the Kilpeldinen—Maly technique was adapted to parabolic equations.

Theorem 1.3 Let the conditions (1.2), (1.5) be fulfilled and u be a bounded local weak
solution to Eq. (1.1). Fix&,a € (0, 1), there exist numbers vy € (0, 1) depending only on the
dataand B > 1,v € (0, 1) depending on 6, &, w, a, ess Supg, |u| and the data such that if

Wr(32p) = vy (1.10)
and
{(x,1) € Qgp,(zp)pg()’a s)rulx,t) Su-t+éo}| < V|Q27py(2)0)p9(y’s)|a (1.11)
then either
§w < B(Wr(32p) + W, (32p)), (1.12)
or
u(x,t) > pu_ +afw foralmostall (a.a.) (x,f) € Q;yppg(y,s). (1.13)
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Likewise if (1.10) holds and

(1) € Q5 g (0 9) 1 1(x, 1) < 1y — £} 2 V103, ). (114)

then either (1.12) holds true, or
u(x,t) < puy —afw foraa. (x,t) e Q;,ppe(y, s). (1.15)
Moreover, if g1 = g2 = g3 = 0, the constants v, B can be chosen independent from

esssupg, |ul.
Next is a De Giorgi-type lemma involving “initial data”.

Theorem 1.4 Let the conditions (1.2), (1.5) be fulfilled and u be a bounded local weak
solution to Eq. (1.1). Fix &, a € (0, 1), there exist numbers vi € (0, 1) depending only on
the data and B > 1,v € (0, 1) depending on 6, &, w, a, ess Supg, |u| and the data such that
if (1.10) holds true and if

u(x,s) > pu_ +éw foraa. x e Byy(y), (1.16)
and
(1) € 0F, g (0 9) 10, 1) < g — )l < V10T, o). (117
then either (1.12) holds true, or
u(x,t) > u_ +akw fora.a. (x,1) e Q;(Zp)po(y, s). (1.18)
Likewise if (1.10) holds and if
u(x,s) < puy —éw foraa. x € Byy(y), (1.19)
and
(1) € 0F, g2 9) U, 1) = iy =}l <VI03F, 0,09 (1.20)

then either (1.12) holds true, or
u(x,1) < py —akw foraa. (x,1) € Q;(zp),,(,(y, s). (1.21)
If g1 = g2 = g3 = 0, the constants v, B can be chosen independent from esssup g, |ul.

The following theorem is an expansion of positivity result, analogous in formulation as
well as in the proof [10].

Theorem 1.5 Let the conditions (1.2), (1.5) be fulfilled and u be a bounded local weak
solution to Eq. (1.1). Assume that for some (y, s) € 21 and some p > 0

[{x € By(y) tux,s) < p— + N} < (I —a)[B,y(y)] (1.22)

for some N > 0 and some a € (0, 1). Then there exist positive constants vi € (0, 1)
depending only on the data and B > 1, o,¢,b € (0, 1) depending on the data and «, such
that if (1.10) holds true, then either

N < B(W;(32p) + W,(32p)), (1.23)

or
u(x,t) > pu— +oN fora.a. x € By,(y), (1.24)

Joralls +b(1 —e)N*"PpP <1 <s+bN*PpP.
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1158 I. I. Skrypnik

If on the other hand
(€ By(y) s ulx,s) = s — NY| < (1 — )| B, ()], (1.25)
and if (1.10) holds, then either (1.23) holds true, or
u(x,t) < puy —oN fora.a. x € By,(y), (1.26)
foralls +b(1 —e)N?>~PpP <t <s+bN>PpP.

The rest of the paper contains the proof of the above theorems.

2 Auxiliary material and integral estimates
2.1 Auxiliary properties and local energy estimates

The following lemmas will be used in the sequel. The first one is the well-known De Giorgi—
Poincare lemma (see [15]).

Lemma 2.1 Leru € Wh! (Bp()) for some p > 0 and y € R". Let k and | be real numbers
such that k < 1. Then exists a constant y > 0 depending only on n, such that

(I — AL ByO\AL| < yo'! / \Vul dx, @.1)
Al.p\Ak,p

where Ay , = {x € By(y) : u(x) < k}.
The next lemma is an interpolation lemma.

Lemma 2.2 Let{y;}, j =0,1,2,...beasequence of bounded positive numbers satisfying
the recursive inequalities

. Jyo
yj < Aa’yiiy,

where A,a > 1 and o € (0, 1) are given constants. Then there exists a constant y > 0
depending only on a, o such that

Yo < yATS.
In what follows we will frequently use the following lemma.

Lemma 2.3 Let ¢ € Wol’p(Bp(y)), 0 < f € L! . Then there exists y > 0 such that

loc*

/ flelPdx <y sup W;‘,l(x;zmp*/ Ve|Pdx.
By (y) x€Bay(y) By(y)

Proof Let v be the weak solution to
—Ayu=f inB,(y), ve W'P(B,(y) =0.
Then by [13] SUP,ep,(y) V(X)) = Y SUDxen, ) W;l(x,Zp). Multiplying the equation

—Apv = f by %, & — 0, integrating by parts and letting ¢ — 0 we obtain

Vol?lo|P p Vo P~ 1pP—1
/ [Vv|Ple| dx+/ f|</)_|l dxfy/ [Vl _I;pl Vol d.
By(y) VP By(y) V¥ B,(y) vP
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Using the Young’s inequality we get

P
/ flel —dx <y/ IVo|Pdx.
By(y) VP~ By(y)

Hence the requited inequality follows. O

Lemma 2.4 Let u be a solution to Eq. (1.1) in $27. Then there exists y > 0 depending only
on the data, such that for every cylinder Q;ppg (y,s) C 27, and any k € R and any smooth
&(x, t) which is equal to zero for (x,t) € dB,(y) x (s, s + pP0) one has

ess sup / (u — k)PLEP (x, 1) dx +// IV(u — k)x|PEPdx dT
By(y) b g8

s<t<s+pP?

< / (u — k)LEP (x, s)dx + y// ((w — L&+ @ — B |VEIP) dxdT
Bp(‘) 1)9() s)

+ y// (|u|P (gl + gf) (= k) >0)+(u — k>i|u|"—1g3) £ dx dr
Q;ppg(y,S)

+y // (u —k)EhPEPdx dr
0F py(rs)

_P_
—H/// ((fl + fzﬂ—l) x((u—k+ >0+ (u— k)if3) gPdxdr. (2.2
0F pg(5)

Proof Test (1.6) by ¢ = (u—k)+&P and use conditions (1.2), the Holder and Young inequal-
ities. O

2.2 Integral estimates of solutions

Fix a positive number @ > 1 depending only on the data, which will be specified later. Set
v=uy +aWy(32p) and

for v>1
for O0<v<l.

G(v) = [ 0

Lemma 2.5 Let the conditions of Theorem 1.1 be fulfilled. Then there exists a constant y > 0
depending only on the data, such that for any l,§ > 0, 0 < A < min(1, %), k > p and

any cylinder Qr_,e (x,1) C Q;,Z(tfs)(y’ t) and any smooth &(x,t) = eD)ED (1), where
E(l)(x) € C8°(Br (%)) andé(z) (¢) is equal to zero fort <t — 0 one has

—I\—1-A
sup / vG( kdx+8 2// (/ s ) ds
i—g<i<iJL() 8
v—[\—1-4
pek
+u( a ) )lel gkdx dr
k—p p—2 pgk—p
<y// dxdt +yé // IVSIS dx dr
—[\—1-A
Fys 2// uP“ 14 ) higkdx di
5 71
bysm //UP/ (1+°
L

dsh, Edx dt, (2.3)
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1160 I. I. Skrypnik

where L = Q_ ,(x,f) N{v > I}, L(t) = LN {t = t}, hi(x) = gi1(x) —|—g2p1(x) +

a™ "W B20) (L) + 1 (), ha(x) = g1(0) 830 +hP () +a~P WP (320) fi(x) +
a'=PW ;TP (320) f3(0).

Proof First note that

(/U(HS_Z)_Hd) vl 2.4)
s = , .
1 8 + 1+ﬂ

v d w . s —1 _1_)Ld / UT_H 1 s —1 —I—Ad
/lww/l(—i—a) sZyv(v—)/l (+8) s

v—[
& —1
= you( —1)/ T A4 s > yazuG(v—). 2.5)
o 5

and

Test (1.6) by ¢ = V@ (V)EX, d(v) = (flv(l + %)_l_xds)_k, using (1.2) and the Young
inequality we have for any t € (f — 6, 1)

’ k L_l —1-A ek
/L(t)/l w® (w) dwé dx—i—//L ((D(v)+v(1+ 5 ) )IVv| ghdy dr
< [ [ woonavisie-toca

(I+2)(p—1)
o fferole
v—l L
—H///v1+ (vp(g1+g2”
L )

+)’// v’ @ (v) (g +gs+h”)5kdxdt+y// D) (fi +vfs) EFdx dr.
L L

|VE|PEFPdx dr

Y+ fi+ fzﬁ) gkdx dr

From this, using (2.4), (2.5) due to the choice of A we obtain the required (2.3) ]

w<v>=§(/lv 1+ ;’) H"Ads)+.

Lemma 2.6 Let the conditions of Lemma 2.5 be fulfilled and 0 < & < 2 — p. Then there
exists v1 € (0, 1) depending only on the data such that the inequality

Set

Wi (320) + We(320) +a~! < vy (2.6)

implies that

sup / ( )gkdx+sp 2// |V Pk dx dr <)///
f—0<t<tJL(t)

+yoP” 2// Y Ge et rdr dr + 175 29/

By (x)

|s,|s" Pdx dt

hldx+ylf’5*19/ hadx.
B, (%)

2.7)
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Continuity of solutions to singular parabolic equations with... 1161

Proof Recall that @ (v) < _, and apply (2.6) and Lemma 2.3. Then since

P

p
Wi (x;20) < y WS, g2p (x:2p) + ya 7T,

g3+h? -2

W,’,’ﬁu;zmsyW,f;"H,%(x;zmep,l (x;20) +y(@ 7T +a™h),

we have

—I\—1-2
y//(v—l)"“(uv—) higfdx dr
L 8
it ]
L
_ —[\N—1—-2
4yl ‘/ (v-l)P+‘(1+”—) IVE[PERPdx dr
L B
Syvlp_l//v 1+U
—i—yv1 51’//
Similarly

_ pypel
//(v—l)Pq)(v)hzﬁ,-‘ drdr < y// @ Z)p O o ekdxdr

( _ l)p-H

< yvf” |Vv|Pg “dxdr+ ol [ - IVEPE P dx dr
l L 1+ o

—N—1-2
v ) |Vo|PEkdx dr

[Vu|PERdx dt

(2.8)

vl 1// ()| Vo|PE dxdt—i—yvl(Sp// |vg|1’gk Pdxde.  (2.9)

From this, choosing v sufficiently small, due to Lemma 2.5 we obtain the required (2.7). O

3 L} — L estimate: Proof of Theorem 1.1

In what follows we suppose that

(’p_ps)2 7 > W(32p). 3.1)

Foro € (0, ) andi =0,1,2,...set p¥) := B(Z—ai), 19D = (¢ —s)(2—(r"1’).Fixap0int
i 1— X
) _ PO (2 9 1= e

P
11 1\ 7
80 = max[(fﬁ// vzdxdt)p s (%)2 p], (3‘2)
77[0 » Q;Oj()(-i’t_) Lo

where v is defined in Sect. 2, and choose a number m > 0 so that

(1) € Q) (1) and let po = py) = =(t—5)0P(1—0a?),

5e "ol = 2", (3.3)
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1162 I. I. Skrypnik

For o = ﬁ, [ >0and j = 0,1,2,...set rj := 570, 1; = 58, §;(1) =
22— _ _ _ -
[ =15, 0;() = min(t;, r{857" (). Bj = By, (0). Q;() := Q, 5. D). Lj() =

Qi) N{u > 1}, L.ty := LjN{z =1}, &(x.0) = & )& (1), where £ (x) €
C(B)), gj(.”(x) = linBj+1,$](.2)(t) — 1fort > f—z—aej(l),g](.z)(t) =0fors <7—6;(0),
0<é&j(x,1) <land|V§| < yril | 3’| < y0 (l), and set also

)11

8. ’ (l)l ! -
Aj() = / / Pdx dr. (3.4)

The sequences of positive numbers {/;} jen and {8} j e are defined inductively as follows.
Fix a positive number 1 € (0, 1) depending only on the data, which will be specified later.
Put lp = 0 and [} = §p, where &g is defined in (3.2). The following inequality is clear

Aol <.
Suppose we have chosen [y, ...,l; and §; = §;(liv1) =liy1 —1;, i =0,1,...,j—1
such that I + 18 1 <l <l 425781, i=1,...,j—1,
Ailliv) <n, i=0,1,...,j—1 (3.5)

Let us show how to choose /; | and §;. First we show that
Ajdy <n, I =1+2%08;_,. (3.6)

Further we show that 6;(7;) < 27%6;_1(/;) and so Q;(I;) C Qj—1(l;) and {&; # 0} C
{§j-1=1}L
- go
Indeed, §;(I;) = 2%78;_1, thus r”& A = 27l 8

rio therefore 6; (l ) <
2_010]',1(1]') and

Jl’

~ —ﬂt)f % -
Ajlj) <22 lﬁsjf’l@j ”(l )l_ // v(v—l)ék Pdx dr
c L;d)
n 2
< z—ﬁﬁ-‘r(x(l—k )8; lp)pg p(lj)l // U / lé'k pd dr
Lj- 1(1) ] i
=Aj1j) =n.

Thus inequality (3.6) is proved. If A;(l; + %6]-_1) <nwesetlj1 =1;+ %8]'_1. Note that
A (1) is continuous as a function of /. Soif A;(/; + %(Sj_l) > 1, the equation A (/) = n has
roots. Denote /1 the largest root A (/j11) = 1 and in both cases we set ; = §;(/j11) =

P S
lj+1 —I;. Note that our choices guarantee that §; < 27078y = (%)2*1’ and
J

Ajljy) <. (3.7

Further weset 0; = 0;(lj4+1), Oj = Q(jy1), Lj =Lj(jr1)and Lj(t) = L;j(lj41,1).
The following lemma is a key in the Kilpélainen—Maly technique [13].

Lemma 3.1 Forall j > 2 there exists y > 0 depending only on the data, such that

1 1
1 _ P =1
8 < 55,-_1+yzj(r;’ / hldx) +yl; ( b / hzdx) . (3.8)
Bj Bj
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Continuity of solutions to singular parabolic equations with... 1163

Proof Fix j > 2 and without loss assume that

1
(Sj > E(Sj_l, (39)

since otherwise (3.8) is evident. This inequality guarantees that A j(/;+1) = 1. Letus estimate
the term in the right-hand side of (3.4) with [ = [; . For this we decompose L; as L; =

L UL” L’ ={x,0)eLj: vl t) vl < &g}, L’ =L; \L where ¢ > 0 depending on
the data is small enough to be determlned later. Observe that our choices guarantee that
0; —82 prp < t; and for (x, t) € L; one has

u(x,t) =11 4 u(x,t) —1; -1
8j—1 dj—1 -

Since §;_1 = 1 on Q; we obtain

80 r ]‘""’//L/ v(g ’gk T e "// vEk P ddr

2, v—1i_1 j—
<eys! I ”//L lv(sji_*/lgj_lpdxdt <eyA;_1()) <eyn. (3.10)
J

1 Vol S—lj —%
w,:—(/ sl’(1+ ) ds) .
5; \ Uy, 5; s

Using the evident inequality y 1(8)1//” < v(% ’)” =1 < y(s)wp for (x,1) € L”, the
Sobolev inequality and Lemma 2.6 w1thl = IJH, 8§=206;,0=0; and 0 <A <min(2 —
P, %), we obtain

p—2,—1 —np“ v = jkp p2—1—ﬂp 2p+}”1’k—}7
s .//L” £ drdr < y ()80 71 //L” 7) yPE T axdr

Let

(k=p)n

(k—p)n .
—2,-1 _—n—p v _lj (2—p+)\)% n+p n+Dp
<y@8 11 ( sup / £ |V(ws )P dx dr
S O<t<T L’If(t)( 8; ) J !

J

p=2,_1 —n—p v u—1jy Epn
<y 1T ( sup / —(—L)e. P dx)
S 0<t<7 10 l_f( 8j )’

EIS]

(k=p)n
// VI 0 e 1 )e T deds
,D 21_1 (k—p)n —p
<y n+p // ’s TP Tdxde

1+4
+1§’57”r§""/ hydx + 15~ laJ‘. P ”/ hgdx] . (3.11)
A .B . Bj

Choosing k such that (k p ) _ p > 1, and using (3.9), we obtain

81.7_2171 I
J_ v Uededt < yA; () < (3.12)
n+p . s J =yAaji-1lj) =yn. .

Ty j J
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1164 I. I. Skrypnik

Combining (3.10)—(3.12) we get

1+2
ngeyn+y(s)(n+l§’5;1’rf*”/ hldx+17*15j*”r;’*"/ hzdx] . (3.13)
’ ’ B ’ B

J J
Choose ¢ such that ey = 7, and 5 such that y(s)n n = 7. Hence (3.13) yields (3.8), which
completes the proof of the lemma. O

In order to complete the proof of Theorem 1.1 we sum up (3.8) with respect to j from 2
toJ —1,

ly <y@Gi+h)+vyl W;” e Q2ro) +yl; W 1(2ro) (3.14)
Inequality (1.7) implies that yW P+ Q2ro) +y W 1(2r0) < 5, then by (3.14) we obtain
Iy <y@1+1) <y, (3.15)

where § is defined in (3.2).
Hence the sequence {/;} jen is convergent, and §; — 0 (j — 00), and we can pass to the
limit J — oo in (3.15). Let/ = lim_, [, from (3.7) we conclude that

L// v(v—Dydxdt <yIls; - 0 (j — 00). (3.16)
191 JJo; '

Choosing (x, 7) as a Lebesgue point of the function v(v — I); we conclude that v(x, 7) <1
and hence v(X, 7) is estimated from above by 8y. Applicability of the Lebesgue differen-
tiation theorem follows from [12, Chapter II,Section 3]. Taking essential supremum over
Q;”),t“) (y,t) wegetforanyi =0,1,2,...

M;:= esssup v<yo 'V ((t - s) //

]}
p+x
v2dx dt)
Qi) i) (.0

Q i+ +1) 00D

1

+yo‘V(t;)s)2"’. (3.17)

If for some ig > 0

afi"”(t—s) //
[

t—85\72=
MOSM,-OS)/U_V( )2,;.
pP

P 1
vzdxdt)zw - (t—S)ﬁ’
pP

Lo+ tig+1) 1)

then

otherwise inequality (3.17) implies that

M; <yo ’VMI{’H (t—s)"7 sup / vdx .
2s—t<t<tJ By(y)
From this, by Lemma 2.2, and taking into account (3.1), we conclude that

_n 0 t—s
Mosy((t—s) 7 sup / u+dx) +J/( ) g
- By (y)

2s—t<t<t

":

this completes the proof of Theorem 1.1.
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Continuity of solutions to singular parabolic equations with... 1165

4 A De Giorgi-type lemmas: Proof of Theorems 1.3 and 1.4

In this section we prove a De Giorgi-type lemmas [10]. Here we assume the structure condi-
tions

Alx,t,u, £) & > &7 — Fi(x),

|AG, 1, u, )] < pal€]P7% + Fa(x),

b(x, 1, u,6)| < h()IEIP™" + F3(x), (4.1)
where F;(x) = fi(x) + gi(x), i = 1,2, 3, these assumptions follow from (1.2) due to the

boundedness of u.
We provide the proof of (1.13), while the proof of (1.15) is completely similar.

Lemma 4.1 Let u be a weak solution to Eq. (1.1). Set v = u — u_, then for any l,§ > 0,
0 < A < min(1, %), k > p and any cylinder Q;T()E,t_) - Qgp,(zp)pg(y,s) and any

smooth function &(x, t) = €1 ()@ (1), where €V (x) € C°(B, (X)) and € (1) is equal
to zero fort <1t — 1 one has

AW
sup / Ww+D'"PG(—— )ekdx
(=)

i—t<t<il

l - - — — 1=
+872.//L{/v (l+l 55) | Adls”L(”H)(lJ“l sv) | A}(v+l>72p|vl)|"n,~?"dxdz

< y//La F 02 2 g+ 872 v P

1 _ 1=
+V5_2//(v+l)_2p/ (1+l 55) TR+ @+ DFERdx e
L v

P

+ys? // W+D'"2P(F + By Hgkdx dr
L

l ] —g\—1—-1
82 // I+ u)*l’/ (1+=2) Tdsnrétavar. 4.2)
L v 3
Proof The proof is similar to that of Lemma 2.5 with the choice of the test function ¢ =
_ 1 —sy—1—
@ +DI2P([,(1 4+ 557 ds) €5, O

Set

Yv) = ;(/l (1 +’;S)_17ds)+.

Lemma 4.2 Let the conditions of Lemma 4.1 be fulfilled and 0 < A < 2 — p. Then there
exists v1 € (0, 1) depending only on the data such that the inequality
Wr(32p) = vy (4.3)

implies that

. .
sup / G(—U)Skdx—l—y”z// |V |PERdx dr
L) 3 L

I—t<t<t

= V//L I_Tv(lézl + 87| VEIP)E P dx dr
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1166 I. I. Skrypnik

_P_
+yl_18_1r/ Fldx+y8_lr/ F3dx+y8_1r/ (F1+F2 1) dx
By (x) B (x) By (x)

+ylp_18_lr/ hPdx. (4.4)
B, (x)

Proof Note that (f (1+ 155) 1_’\ds)+ = 1 , =g and apply Lemma 2.3 and (4.3), we have

1 I\ [—v l—v
-5 hPgRdx dr < rl’/ n=r VolPgkdx dr
//(v—l—l 21) = §dxdr <yw L(U+) 1+Z_T”| v|PE

+yv1/ (u+l)*21’le [Vo|Pekdx dr

0= ot .
l p P ded
v //L wrhra g Goy ohE

5yv1/ (v+l>—2"/ (

+yvlap/ w4ni-2w? ! |Vs|Psk Pdxdr.

s—I\—1-2
) ds|Vu|Pekdx dr

Therefore, multiplying (4.2) by 1>?~! and using the evident inequality [ < v(x, 1) 41 < 2I
for (x, t) € L, and choosing v; sufficiently small, we get from (4.2) the required (4.4). O

Further on we assume that
Ew > B (Wr(32p) + We(32p)) . 4.5)
Fix a point (x,7) € 0, ,rg(y,s) and for @ = ﬁ [l >0and j = 0,1,2,... set
rjo= 458, =1 =1, ) = rj’?(s?*”(l), Bj = B,(X), Qj = Q, . (% D),
Li(h = QN {v < l;} Li,0) = Li() Nt = 1}, &(x.1) = £V (0)E (1), where
5700 € CF By, £ (1) =1in B £7(0) = Lfort = 7—277;(1), &7 (1) = 0 for
tft_—rj(l)and|V§j|§yr |3’|_y‘c (Z)andsetalso

2
Ai(l) = ui ()// ek raxar. (4.6)
I "ﬂ’ L) 5 (l) '

Define also the sequences {«;}, {,Bj} by

rj RN A 7T dr
o ::/ (r’”"/ (Fi + Ff )dx) +/ (r”fn/ F3dx) —_,
0 By (x) 0 By (x) r
rj 1 dr
B :=c/ (rp_”/ hpdx) —, j=-1,0,1,...
0 By (X) r

where ¢ > 1 is fixed number, depending only on the known parameters, which will be defined
later.

We start wit the choice of the sequences !}, §;. Putly = £w, o = min ((1_”)5‘” 02-r ),
I =1y — &p. From (1.9) it follows that

Aol = YE@8™ T 0P (14 (1 = @) 20 T {05 g (02 8) 1 < i + £
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Continuity of solutions to singular parabolic equations with... 1167

1

< yvE00 T (4 (- ) 20) 7.

Fix a number n € (0, 1) depending on the known data, which will be specified later, and
choose v from the condition

1

yVEwd T (1 + (1 — a)e)?~20) 7 <,

then we obtain that Ag(l1) < n.If cvy < %, then obviously we have

lpy B 1
E + Zao +loBo <11 <ly— Z(a_l —ag) —lo(B=1 — Bo)-

Lemma 4.3 Suppose we have chosen Iy, ...,l; and §; = §;(lix1) = ; — lix1, | =
0,1,...,j — 1 such that

(li v Bt — 255 s )
max { — — iPis i — - j—
) 4051 iPis Li i—1

! 1
<liy1 <l; —min (Z(ai—l —ay) +L(Bi—1 — B), 555—1),
i=1,...,j—1, @.7)

B
li+lZ§0{i+2liﬂi, i=1,...,j—1,

Ailliy1) <n, i=1,....j—1, 4.8)
then
- - lj B p-a
Aj()<n, T=max (E + e 1B —2556;). 4.9)

- - - - - l —
Pr()(jf Let ilS decompose L;(/;) as L;j(I) = L’j(l) U L’j’(l), L/j(l) = {3,,(1_';
L j(l)\L’j(l), where ¢ > 0 depending on the data is small enough to be determined later.
Note that

< g}, L’j’(l_) =

l; B Iy B B 1

3 7% LBz T+ g = e+ Sli-iBion — LB
8j—1 lj B B 1
1 tat g gt B — LB
dj—1

B
+ 7@ =) + 1B = B,
therefore we have
dj-1 B = - p-e
n (L e —ap) + B — B 25781 ) < 6;0) <2508, (410)

By (4.10) #7687 P () < 27%r?_ 571 and hence &1 (x.1) = 1 for (x.1) € Q;(). so if
8;(I) = 2576, then by (4.8)

A < 2*%(37p>3]’.’_‘13r]_—n—p //L <z‘>(lj _ v)g}’.‘:{’dx dt
J

_p=e 3 2 e lic1—v 4
<2 =G n)+n+l’55_’712rj7"1 P// Jj—1 f;(,lpdx dr=A;_1()) <n.
Lisy  8j-1

4.11)
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1168 I. I. Skrypnik

= 8
I£8;(1) = - + §(ej—1 —a)) +1;(Bj—1 — B;). then

87" ”// " Pdxdr < yes? // EXPdx dr
L(1>5(l) y’”] L0

I
< yes?lr, ”IP//L (I)L”s" Pdxdr < yeA;_1(lj) < yen. (4.12)
j—1

8i—1
Define
1 1 l: — _ 1+
%‘27—(/ (1+ ! _S) ”dS) :
5, \Jy 5,;() N
using the evident inequalities y_l(a)wpm by o y(s)wp( ) for (x,1) € L” p(A) =

=50 =
= 1 )\, the Sobolev inequality, and Lemma 4.2 w1thl =1, § =4 (l) T = r,(l) 0<A<

min{l, p ——F, %} and k such that (k p)" — p > 1, similar to (3.11), we obtain
Wzm
/ / ek raxar
"D 8 (l)
0 1
5y@[ // lapmﬂ”/)mw
"+P Ly 6 (l) B

+5.‘P(l‘)r’?‘”/ (Fy +F2”*‘)dx+a‘."’(i)r’."”/ Fydx
J J B; J J B;

1-p 7;,p—1 _p—n
+8, P (DI /

1+2
h”dx] . (4.13)
Bj

Using the inequality §; (/) > ST , similar to (4.12). we obtain

81’ 2(1)// Y q dr <
X .
L L@ 9 (l)

Furthermore, (4.10) implies that §; () = Li(Bj—1—Bj)+ g(aj,l — a;), therefore we have

— _ _P_
1;‘511.‘1’(1)51?‘”/ Fldx+5j‘P(1)r;"”/ (Fi + Fy )dx
Bj Bj

+5}*”(i)rf*” /B F3dx + 5}*”(1')15’*‘4’*” /B hPdx < y(B™P 4+ B'"F 4 ¢'7P).
‘/ j (4.14)
Combining estimates (4.12)—(4.14) we have
A;j() <yen+y(@e){n+B P +B'"P +clmryit (4.15)

First choose ¢ from the condition ye < 1 next fix n by y(e)n% = % and choosing B and

¢ large enough so that B—7 + B'=7 4 ¢!=P < 5, we conclude from (4.15) that Aj () <,
which completes the proof of Lemma 4.3. O
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Continuity of solutions to singular parabolic equations with... 1169

Note that A;(/) is continuous as a function of /. So if A;(l; — min(}l(a‘,-_l —aj) +
[i(Bj—1 — B)), %Sj,l)) > 7 the equation A;(l) = n has roots. Denote /; the largest
root Aj(lj41) = n. If A;(l; — min(§(ctj—1 — &) +1;(Bj—1 — B)), %8j-1)) < n, we set
liy1 =1 — min(%(ozjq —aj) +1i(Bj-1 — B)), %Sj,l) and in both cases we set §; =

8;j(lj+1) =1; —lj41. Note that our choice guarantee that §; < 25 Sji—rand Aj(lj41) <n
for j =1, 2,.... Similar to Lemma 3.1 we prove the following lemma.

Lemma 4.4 For all j > 2 there exists y > 0 depending only on the data, such that

1 p . - Ll
8 < 25, L+ vl hPdx (F1 + F) 7'y dx
B
=T
=
+y( p= ”/ F3dx) ) (4.16)
B.

j
Summing up inequality (4.16) with respectto j =2, ..., J — 1, we obtain
Iy =1y <81 +yloWr(32p) +yWr(32p) + y W (32p),
or the same
lo <1y 4280+ 81 + yloW,(32p) + y Wr(32p) + y W, (32p)
< 1y + 201+ 250)8 + yIgWy(320) + y Wy (320) + y We(320). (417

Let [ = lim; . [}, passing to the limit in (4.17) as J — oo and choosing (x, f) as a
Lebesgue point of the function (/ — v), using the definition of §y, we conclude that

1
2w < 0D + yEOW(320) + Y W (320) + ¥ Wy(320).

Fix v; € (0, 1) and B large enough so that vjy + B~y < l;“

ulx,t) —pu_ =v(x, 1) > déw. (4.18)

Since (X, ) is an arbitrary point in Q;,p,,g (y, s), from (4.18) the required (1.13) follows,
which proves Theorem 1.3.

The proof of Theorem 1.4 is similar to that of Theorem 1.3. Moreover, by taking [ <
£w and a cutoff function & = £ (x) independent of ¢, the integral involving &; in the
right-hand side of (4.4) vanishes. We may now repeat the same arguments as in previous
proof for (/; — v); and A;(l) over the cylinders Q; := B; x (s,5 + (20)70), A;(l) :=
5772

L oo B8 Tdvde ;) =1; =1, Ly = 0; N{v < ).
5 The expansion of positivity: Proof of Theorem 1.5

In the proof we closely follow [10].
Lemma 5.1 Assume that for some (y, s) € 27 and some p > 0

[{x € By(y) s u(x,s) < u—+ N} < (I —a)[B,y(y)] G.D
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1170 I. I. Skrypnik

for some N > 0 and some 0 < a < 1. There exist v, g9, b € (0, 1), B > 1 depending only
on the data and «, such that the inequality

Wi(32p) <y (5.2)
implies that either
N < B (W;(32p) +yWy(32p)) (5.3)
or )
o
[ € By(v) e 1) < i+ eoN) = (1= 5 ) 1B, ) (5:4)

forallt € (s,s +bN>PpP).

Proof Fork > 0and t > s set Ay ,(t) = {x € By(y) : u(x,t) < k + p_}. Write down the
estimate (2.2) for the function (N + p_u)4 over the cylinder Q;ppe (v,s), where 8 > 0
is to be chosen. The cutoff function £ is taken independent on ¢, nonnegative, and such that
€ =1on By1—o)(y), [VE| < L, where o € (0, 1) is to be chosen. Lemma 2.4 yields

op’

/ (N + p—w)’idx + // IV(N + p—u)+|PEPdx de
Bp(1-o) (y)x{t}) 05 pg(r:s)

< / (N + p_u)?dx +y(op) " // (N + p_w)dx dr
By (y)x (s} of

0. ppe(S)

P
+)/// (Fi + F)™ 4+ (N + p_u)4 F3)dx dt
0F pp(5)

+y // (N + p—u)f hPgPdx dr. (5.3)
Q5 pe(res)
The last integral in the right-hand side of (5.5) we estimate using Lemma 2.3

V// (N + p—u) hPEPdx dr < yvlp_l // V(N + pu—u)y|PEPdx dt
0F pp(9) opg ()

-l—yvl”*l(gp)—l’ //Q+ (N + u_u)f;dx dr.

p.opo ()

Choosing v sufficiently small, and using (5.1), (5.3) from (5.5) we conclude that

/ (N—HL_u)idx sNz‘l—a—i-)/Qa_PNp_z
Bp(1—o) (y) x{t}

_P_
+yon e [ (E B a s yon o | ngx]wp(yn
B,o()') Bp(y)
< N*{1 —a+y05 PNP3|B,(y)|. (5.6)

The left-hand side of (5.6) is estimated below by
/ (N + pw)idx = N2(1 = 80)*| Agon p(1-0) (1],
By(1-0)(y) x{t}

where g9 € (0, 1) is to be chosen. Next we have

|A£oN,p(t)| =< |A€0N,p(lfa)(t)| +Gn|Bp(y)|
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<f{on+(1—e) 21 —a+y8o PNP)}B,(y)l.

p,,—1 2
Choose o = &, 50 = 1 — Lo p = 277 {20042 and 9 = HN?7, then the last
inequality implies the required (5.4). O

Let the cylinder Q
consider the function

w(z, 1) = e N (u(y +2p, 5 + N> PpP(1 —e ™)) — pi_).

1'6)0 NP pp (y, s) be contained in £27. In the same way as in [10] we

Inequality (5.4) translates into w as
2

4.8

l(z € Bs(0) : w(z, 1) < speT7}| < (1 - )IBS(O)I, (5.7

for all T € (79, +00), where 7y > O to be chosen.
Since w > 0, formal differentiation, which can be justified in a standard way, gives

w, = 2& +divA@ T, w, Vw) + b(z, T, w, Vw),
—p

where &(z, T, w, Vw), 15(2, 7, w, Vw) satisfy the inequality

Az, 7, w, Vw) Vw > buy|Vw|? — Fi(x, 7),
|A(z, 7, w, Vw)| < bua|Vw|P + Fo(z, 1),
b(z, T, w, Vw)| < bh|Vw|P~ + F3(z, 1), (5.8)

where (1, (4o are the constants in the structure conditions (1.2), b is a number claimed by
Lemma 5.1 and

~ s ~ p=1
Fi(z,7) =bNPpPe> 7 Fi(y + 2p), Fa(z, 1) = bN'"PpP e By (y + 2p),

- p=1 -
F3(z,7) = le*”p”eé—"’Fa(y +2p), h(z,7) = ph(y + zp).

Set kg = soefol’, and k; = ];—9, s =0,1,...,ss, where s, to be chosen later. Then (5.7)
yields
2
e € Bs(O) : wiz. ) < ko)l = (1= 57, ) 1Bs(O) (5.9)

forall T € (19, +00) and forall 0 < s < s,.
Let Qry = Bs(0) x (t9 + kg ”. 70 + 2k ”) and Q' = Bs(0) x (10, 70 +2k; ) and a
nonnegative cutoff function in Q’m, £(z, 1) = £1(2), &2(7), where & € C(°(B16(0)), &1 =1

in Bg(0), & = 1fort > 19+ kg ", & =0fort < roand |V& | < £, |22] < yif .
Using Lemma 2.4 we have

bf[ 19— wierazar <y [[ - it + bl - ) 9Er dzar
27 27
- ~ 2 - ~
+y/ (F1 + Fz‘”1 + (ks — w)4 F3)dzdt + yb// (kg — w)fih”é‘pdz dr.
(N 2%
Taking into account the expressions of E, fl, fg, f~3 and kg, we estimate

y// (ks — w) hPEPdzdr < yvf"l// |V (ks — w); |PEPdz dT
N 0,
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1172 I. I. Skrypnik

+VV{H// (ks — w)} |VE|Pdz dr, (5.10)
2
and

- -2 -
// (Fi + F)™" + (ks — w)4 F3) dzdt
o,

—p.2 2p p2-p —p p—n % 1—p .p—n
< ybey ke YN"Fp (M+F")d+N"7p
B

F3dx].
B]6p(y)

16p )
(5.11)

From this, choosing v;sufficiently small, we obtain
_ 2p j2-p
// |V (ks — w)4|[Pdx dt < ykZ| Qx| [1 + ¢ Poseporpky 1P
04

x (Wr(320) + We(320))” " (1 + N™'W;(32p) + N~ Wg(32p))] .

Suppose for the moment that s, and ko have been chosen, and set

—Pasap KT
Ve = ¥ (Sx, 80, T0) = &, 2%FeTp"0

Therefore either N < y; (Wf (32p) + W, (32,0)) or the previous inequality yields
J[ v —wracar < il 10,
QTO

with constant y depending only on the data, ess supg,, |u| and b.
Set As(t) = {Bg(0) : w(-, 7) < kg},and Ay = {Qy, : w < kg}. By Lemma 2.1, (5.9) and
(5.11) we have
1 p=1
[As+1] = V1Qxl? [As\As41] 7 .

Taking the % power and summing up the last inequality with respecttos =0, ..., s, — 1,
we conclude that

P _r_
S*|AS*|p71 < VIQTolpq .

_p=l
Choosing s, from the condition ys, * = v, we obtain

H(z, 1) € Qg : w(z, T) < ke, }| < v[Qrl-

Without loss of generality we assume that 2%(2~P) is an integer, and subdivide cylinder
Q-, into 2+2=P) cylinders, each of length k; ”, by setting

Qi = Bg(0) x (t0+ kg "+ ik " 10+ kg ”
G+ DEEP), for i=0,1,...,2%% P .

For at least one of these, say Q;, there must hold

[{(z, 7) € Qip s w(z, 1) < ks, }| = v|Qjyl. (5.12)
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Apply Theorem 1.3 to w over Q;, with u— =0, Ew =k, a = %, 0 = ki_p. It gives

_ _ ks
w(z, 10+ kg 7+ (o + Dks. 7)) > S aain By(0), (5.13)

and hence, there exists a time level 7 € (19 + kéfp ,T0 + 2k§7p ), such that

0 .
w(z, 71) > 0peP, o= gp2 &tD, (5.14)

In terms of the original coordinates (5.14) implies

u(x, 1) = po +ogNe T =+ No in Bay(y), (5.15)
t1 =5 +bN>"PpP(l —e™).
Apply Lemma 2.4 with k = u_ + Ny, 6 = voNoz_p, and £ := &(x) € C3°(Bap(y)),
E(x) =1in B3,(y), [VE| < )/p“, where vg € (0, 1) to be chosen.

/ (No + p_1)%dx + // IV (No + po—u) |PEPdx dr
B3, (y)x{t} of (.5)

4p,(4p)P0

<o [ (No + )’ d dr
0

+ :
4p.ap)pp )

P
+J/// (Fi + F™ 4+ (No + p—u) F3) dx dt
o

+ ,
4p.4ppe 05

+y // (No + p—u) hPEPdx dr. (5.16)
0

+ :
ap.apyroS)

The last two terms in the right-hand side of (5.16) we estimate similar to (5.10), (5.11), hence
(5.16) yields

/ (No + p_u)rdx < ywoNg (1 + Ny P (Wr(32p) + We(320))"
B3y (y)x{1}

x (14 N5 (W (320) + W, (320))))

Therefore either N < y (o, 19, T) W (32p) or the previous inequality yields
3
KB3p(¥) tul,t) < pu—+ ZNo}l < yvolB3, (¥, (5.17)

forallz € (11,11 + voN; " (4p)P).

. + : _3 —2 —
Using Theorem 1.4 over Q3p’(4p)pU0N§7,, (y. 1) with éw = §No,a = 5, v = yv, we
get
Ny Noge™ E Noy _Zk(z)l
M(X,l‘)ZM—'f‘?:M—*‘fZM—‘FTe =, (5.13)

in Ba,(y) and for all times ; < 7 < 1y + voNy 7 (4p)”.
Now we define 1 so that

f+voNg P (4p)? =5 +bN* P pP,
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which implies

ef() —

b
4r U0002—p

2p o
From the previous #; < s + (1 — €)bN2=PpP where ¢ = e~ 020 "e™ Choose B so large
that B > max(yx, y (00, T0, T1)), we get the required (1.24). This proves Theorem 1.5.

6 Continuity of solutions: Proof of Theorem 1.2

Fix a point (xg, o) € §27, let the cylinder Q; RO M2-P (xg, fo) be contained in 27, M =
esssupg,. |ul and R is so small, that W;,(R) < v, wherev; € (0, 1) is defined in Theorem 1.5.
Let0 < R < 3% and set

My = ess sup u, mo= _ essinf u, wy= My— my.
Q;.RPMZ*P (x0,10) R.RP M2—P (x0.10)

Lemma 6.1 There exist constants B > 1 and b, § € (0, 1) that can be quantitatively deter-
mined only in terms of the data, such that, if oo > BWy(32Ry), setting po = Ry and for
j=0,1,2,...

2— _j _
Wj+1 = 8(1)]‘, 0]' = ba)j p’ pj = 27/ Ry, Qj = ij,p]]-}(?j(xo’t())’ (6.1)

either

essoscu < 2BWy(Ry) or essoscu < wj. (6.2)
j j

Proof We assume that statement (6.2) holds for j and prove for j + 1. Set ,u;r = esssupy; u,
22(p—1)

55 —g2=p - Atleastone of the two inequalities

w; =essinfg, uandf; = tg—Abp;’a)i_p,A =

1

o F -, Y
{Bp; (x0) s u(- 1)) < puy + 7}| =3

By, (x0)],
. n +_ % 1
(B, (x0) (7)) = i = L) < 51By, (xo)]
must hold. Assuming the first holds true, apply Theorem 1.5 with o = %, N = %, either

% < B(W;(32p)) + W,(32p;)) < B (Ws(32Ry) + W,(32R))) (6.3)
or

_ _ owj
u(x,tjy1) > w; + Tj fora.a. x € By, (x0),

and therefore
essinfu > u~ + &. (6.4)
Qi Y 2
Choose 6 = 1 — % then if (6.3) occurs, ess 08CQ;, U < 2B (Wf(32R1) + Wg(32R1)) , if
(6.4) occurs, then ess 08CQ;, U < dwj = wj41. This proves Lemma 6.1. O

@ Springer



Continuity of solutions to singular parabolic equations with... 1175

From the construction of Lemma 6.1 it follows that

essoscu < 2B (W;(32R) + W, (32R))) + wj,
J

by iteration

essQoscu <2B (Wf(32R1) + Wg(32R1)) + 87 wy. 6.5)
j

Letnow 0 < r < R be fixed, set R = r*R!=#, n € (0, 1), there exists a nonnegative
integer j such that Ri12777 1 <r < R127/, this implies

L/ r\lon;
essoscu = (=) w0+ 2B (Wy(G2R) + W(32R)
J 1

that is

1 1
essoscu < g(%)awo + 2B (Wf(32rﬂR1—M) + Wg(32rﬂRl—u)) , a=(1-—pw)log, 3

J

To conclude the proof, we observe that since 8/ > (RL])]OgZzSl > (%)"‘, the cylinder

Qy.rre, (X0, 10), 60 = b(%)a@—l’)wé*” is included in Q;, and therefore

1
essosc u < E(%)awo +2B (Wf(32r“R1—u) + Wg(32rMR1—#)) . (6.6)

Q; rrgy (X0.10)

This completes the proof of the continuity of solution to Eq. (1.1).
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