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Abstract The exp-Rabelo equation describes pseudo-spherical surfaces. It is a nonlinear
evolution equation. In this paper, the well-posedness of bounded from above solutions for
the initial value problem associated with this equation is studied.
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1 Introduction

Bicklund transformations have been useful in the calculation of soliton solutions of certain
nonlinear evolution equations of physical significance [9,22,25,26] restricted to one space
variable x and a time coordinate ¢. The classical treatment of the surface transformations,
which provide the origin of Bécklund theory, was developed in [11]. Backlund transforma-
tions are local geometric transformations, which construct from a given surface of constant
Gaussian curvature — 1 a two parameter family of such surfaces. To find such transformations,
one needs to solve a system of compatible ordinary differential equations [10].

In [15,16], the authors used the notion of differential equation for a function u(z, x) that
describes a pseudo-spherical surface, and they derived some Bicklund transformations for
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nonlinear evolution equations which are the integrability condition s/(2, R)-valued linear
problems [13,14,18,19,26].

In [20], the authors had derived some Bicklund transformations for nonlinear evolu-
tion equations of the Ablowitz—Kaup—Newell-Segur (AKNS) class. These transformations
explicitly express the new solutions in terms of the known solutions of the nonlinear evolution
equations and corresponding wave functions which are solutions of the associated AKNS
system [2,32].

In [17], the authors used Bécklund transformations derived in [15,16] in the construction
of exact soliton solutions for some nonlinear evolution equations describing pseudo-spherical
surfaces which are beyond the AKNS class. In particular, they analyzed the following equation
[3]:

Ox (Byu + ag()dyu + foyu) = yg' W), « B,y €R, (1.1)

where g(u) is any solution of the linear ordinary differential equation
§'w) +pgu) =6, p, 0eR. (1.2)

(1.1) include the sine-Gordon, sinh-Gordon and Liouville equations, in correspondence of
a=0.

In [24], Rabelo proved that the system of the Eqs. (1.1) and (1.2) describes pseudo-
spherical surfaces and possesses a zero-curvature representation with a parameter.

We consider (1.1) and assume that o # 0.

When
a=-—1, n =0, 6=1, (1.3)
(1.2) reads
g () =1. (1.4)
A solution of (1.4) is
2
u
= —. 1.5
g(u) 2 (1.5)

Taking 8 = 0, y > 0, substituting (1.3), and (1.5) in (1.1), we get

1
9y (a,u - gaxbﬁ) = yu, (1.6)

that was also introduced recently by Schifer and Wayne [29] as a model equation describing
the propagation of ultra-short light pulses in silica optical fibers.
Integrating (1.6) in x, we gain the integro-differential formulation of (1.6) (see [27])

1 X
o — e’ = y/ u(t, y)dy, (1.7)

that is equivalent to

1
3,14—63,(1,{3 =yP, 0P=u. (1.8)

In [4,6,8], the authors investigated the well-posedness in classes of discontinuous functions
for (1.7) or (1.8). In particular, they proved that (1.7) or (1.8) admits a unique entropy solution
in the sense of the following definition:

Definition 1.1 We say thatu € L°°((0, T) x R), T > 0, is an entropy solution of (1.7) or
(1.8)if
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(1) u is a distributional solution of (1.7) or equivalently of (1.8);
(i) for every convex function 7 € C?(R), the entropy inequality

U &2
§
() +dq) —yn'@WP <0,  qu)= —/ 777/(5)615, (1.9)
holds in the sense of distributions in (0, co) x R.

Definition 1.1 makes sense because the weak solution of (1.7) lies in L, see [4,6,8].
Here, we consider the case

a=1. (1.10)
Taking u = —1, 6 =0, (1.2) reads
g"(u) — gu) =0. (1.11)
A solution of (1.11)is
g(u) = €. (1.12)

Taking 8 = 0, y = —1, and substituting (1.10), and (1.12) in (1.1), we get
A (du + dce") = —e", (1.13)

which is known as the exp-Rabelo equation (see [12,28]), and describes pseudo-spherical
surfaces with constant negative curvature.

Our aim is to investigate the well-posedness for the initial value problem in classes of
discontinuous functions for (1.13). Therefore, we augment (1.13) with the initial datum

u(0, x) = up(x), (1.14)

on which we assume that
sup ug < 0o, / "W dx < oo, (1.15)
R

Integrating (1.13) in (0, x), we gain the integro-differential formulation of (1.13) (see [1,28,
31D

du + et = —f(;r ey, t>0, x eR, (1.16)
u(0, x) = uo(x), x €R, ’
that is equivalent to
oru + 0,e" = —P, t>0, x eR,
0y P = é*, t>0, x>0, (1.17)
P(t,0) =0, t >0,
u(0, x) = uog(x), x € R.

We assume (1.15) because the unique useful conserved quantity is

tr—>/e”(”x)dx.
R

Moreover, we prove that the weak solutions of (1.13) may not belong to L°°, but they are
only bounded from above.

Therefore, to have the well-posedness of weak solution, we have to consider the following
definition of the entropy:
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926 G. M. Coclite, L. di Ruvo

Definition 1.2 A pair of functions (7, ¢) is called an entropy—entropy flux pairifn : R — R
is a C? function and ¢ : R — R is defined by

u
ao = [ @ @,
An entropy—entropy flux pair (, ¢) is called convex/compactly supported if, in addition, n
is convex/compactly supported.
In light of (1.15) and Definition 1.2, we give the following definition of solution:
Definition 1.3 We say that u, such that

ue Ly ((0,00) xR), supu(t,-) < oo, / dy <00, 1>0, (1.18)
R

is an entropy solution of the initial value problem (1.13) and (1.14) if

(1) u is a distributional solution of (1.16) or equivalently of (1.17);
(ii) for every convex function 7 € C%(R), the entropy inequality

Bun() + dxq () + 1 () /0 fdy <0, qlu) = / En@Ede, (119)

holds in the sense of distributions in (0, co) x R.
The main result of this paper is the following theorem.

Theorem 1.1 Let T > 0 be given and assume (1.15). The initial value problems (1.13) and
(1.14) possess a unique entropy solution u in the sense of Definition 1.3. Moreover, if u and
w are two entropy solutions of (1.13) in the sense of Definition 1.3, the following inequality
holds

lutt, ) — wt, Mo —rpy < D0, ) = wO, 1 r_caynreca »  (1.20)

Sfor almost every 0 <t < T, R > 0, and some suitable constant C(T) > 0 that depends
onlyon R, T, supu(0, -), supw(O0, -).

The existence argument is based on passing to the limit using the compensated com-
pactness argument of [30] in a vanishing viscosity approximation of (1.17) (see Sect. 2).
Moreover, we argue as in [6,8,21] for the uniqueness and stability of the solutions of (1.17).

The paper is organized as follows. In Sect. 2, we prove several a priori estimates on a
vanishing viscosity approximation of (1.17). Those play a key role in the proof of our main
result, that is given in Sect. 3.

2 Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation
of (1.17).

Fix a small number ¢ > 0, and let u, = u.(¢, x) be the unique classical solution of the
following mixed problem

Oty + 0yets = — Py + saﬁx (e'e), t>0, x eR,

0y Pe = e'e, t>0, x eR, .1
P.(t,0) =0, t >0,
ug (0, x) = ug 0(x), x e R,
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where u; o is a C*° (0, co) approximation of ug such that

ug,e — up, a.e.andin LZC(R), I <p<oo,

supug o < supug, ¢ >0,
/ oWy < / My, &> 0. (2.2)
R R

Clearly, (2.1) is equivalent to the integro-differential problem

[3,ug + 9 et = — f(;‘ et dy + aafx (e*s), t>0, xR, 23)

ug (0, x) = ug 0(x), x eR.

The existence of solutions of (2.1) can be obtained by fixing a small number § > 0 and
considering the further approximation of (2.1) (see [5,7])

Oiltg s + Oye'ed = —Pe 5 + saﬁx (e'ed) t>0, x eR,

—802 Pe s+ 3y Pes = eted, t>0, x R,
PE,S(ta O) :Oa > 0,
e 5(0, x) = ug 0(x), x €R,

and then sending § — 0.
Observe that, multiplying (2.3) by e we have

1 X
o () + 30 (e) = —ete /O eI dy + ee 92 (e"). (2.4)
Introducing the notation
Ve (t, x) = ") > 0, 2.5)
(2.4) reads
1. 5 ! 2
0rve + Eaxvs = —vg/o ve(t, y)dy + v 05, ve. (2.6)

It follows from (2.5) and u. (¢, £00) = —oo that
Ve (1, £o0) = 0. 2.7)

Moreover, from (2.2) and (2.5), we get
lveoll o) =< €, / Ve.o(x)dx < / eWdx, ¢ > 0. 2.8)
R R
Let us prove some a priori estimates on v., and, hence on u.

Lemma 2.1 Let T > 0 be given and assume (2.2). We have that
Ve ll Lo (0,00 xR) < €7, & > 0. (2.9)

In particular, we get
supug(t, ) <supug, t>0. (2.10)

Proof We begin by observing that, from (2.5) and (2.6), we have

1)2 v2
dve + By (75) — &2, (78) <0. .11
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Therefore, a supersolution of (2.6) satisfies the following ordinary differential equation

dz
R 0’ , 0 — supuo’
” z(0)=¢e

that is
z(1) = e™PH0, (2.12)

It follows from the comparison principle for parabolic equation and (2.5) that
0 < ve(t, x) < SPHO, (2.13)

which gives (2.9).
Finally, (2.10) follows from (2.5) and (2.13). O

Lemma 2.2 Leta > 0and T > 0 be given and assume (2.2). For each t > 0, we have

/ v fe(a +1)2 //v (0 ve) dsdx
+ (o + 1)// @+l (/ vgdy) dsdx < (esuP"‘))a/ Mgy, (2.14)
R

In particular, we get

/e((x+l)u5(t,x)dx < (esupuo)d/euo(x)dx’
R

R

t
g(a + 1) // ette (1% (Bxe"S(”x))zdsdx < (esupuo)a/ "Wy,
0JR R
t
(@+1) / / e Dus(t.x) ( / ' e“g(t'x)dy) dsdx < (e%P“0)* / 0™ gy, (2.15)
0JR 0 R

Proof Multiplying (2.6) by v¥, we have
v v + v?“&xva = —v‘;"'l/ vedy + sv“+182
0

It follows from (2.5), (2.6) and an integration on R that

1 d
a+15/vg+1:/v‘?8’v£
R R
X
:s/ v?“&fxvgdx—/ v?“&xve—/ ot (/ vgdy) dx
R R R 0
X
:—8(a+l)/vg‘(axvg)zdx—/vg‘H (/ vedy) dx,
R R 0
that is,

d X
7/ et +8(a+1)2/v?(axve)zdx—i-(a—i-l)/v?H (/ vgdy) dx =0. (2.16)
dr Jr R R 0

An integration on (0, t) gives

/ vitldx +e(a +1)° // V¥ (3, ve) dsdux
+(a+l)// ot (/ ugdy)dx:/ugg‘dx. (2.17)
R
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From (2.5) and (2.8),

/Rvg"arldx < HUS’OHiW((O,oo)x]R)/RUS’de < (esupuo)a/Reuo(x)dx. (2.18)

Therefore, (2.17) and (2.18) give (2.14).
Finally, (2.15) follows from (2.6) and (2.14) ]

3 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. We begin with the following result

Lemma 3.1 Fix T > 0. There exists a subsequence {vg, }ren of {Ve}e=0 and a limit function
v € L*®((0, 00) x R) such that

Ve, = vae andin L], ((0,00) xR), 1 < p < oo. (3.1
In particular, we have

ug, — logv = u a.e. and in L{;C((O, ) xR), 1 <p<oo 3.2)

Proof Let n : R — R be any convex C2 entropy function, and ¢ : R — R be the corre-
sponding entropy flux defined by ¢’(v) = vn(v). By multiplying (2.6) with n’(ve) and using
the chain rule, we get

0 (ve) + 0xq(ve) = €0y (ﬁ/(vs)vsaxva) —en' (ve) Ve (axu£)2

—
=Lie =L,
2 X
_877/(1)8) (0xve) _U/(va)ve/ vedy,
——/ 0
=:L3,

=:»C4,s
where L1 ¢, L£2.¢, L£3,¢, L4, are distributions. Let us show that
Lie—0in H'((0,T) xR), T > 0.

By Lemmas 2.1 and 2.2 in correspondence of o = 0,

T
||8n/(v€)v88xv8 ||iz((0,T)X]R) = 82 ”77/”200(1) ”U&”Loo(((),oo)x]R)/O ||axv8(s7 )”iZ(R) ds

< e [y e [ eoax 0.

where
I = (O, eS”p”(’).

We claim that

{£2,¢}e>0 1s uniformly bounded in Ll((O, T)xR), T > 0.
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930 G. M. Coclite, L. di Ruvo

Again by Lemmas 2.1 and 2.2 in correspondence of o = 0,
2 ! 2
||877//(U8)U6(axv8) ||L1((0,T)><]R) = || n//”Loo([) ||v8||L°°((O,OO)XR)8/O ||8ng(S, ')HLZ(R) ds

< r}// . £SuP uo/ euo(x)dx.
7 iy ™ |
‘We have that
{L3 ¢}e>0 is uniformly bounded in L! ((0,T) xR), T > 0.

Again by Lemmas 2.1 and 2.2 in correspondence of o = 0,
2 ! 2
H877/(Us)(3xve) HLI((O,TXR) = H n/”LOO([)E/O ||ang(S, .)”LZ(R) dS

SHn/”Loo(l)/]Reuo(x)dx_

We claim that
{L4.¢}e=0 is uniformly bounded in Ll((O, T)xR), T > 0.

Again by Lemmas 2.1 and 2.2 in correspondence of o = 0,

T X
<7l % / / v (/ v dy) dsdx
‘ L1((0,T)xR) ” HL D JoJr “\Jo °

<[ sy /]R "™y,

Therefore, Murat’s lemma [23] implies that

n’(va)vg/ vedy
0

{0:n(ve) + 3xq(ve)},plies in a compact subset of ngcl((O, T) x R). 3.3)

The L bound stated in Lemma 2.1, (3.3), and the Tartar’s compensated compactness method
[30] give the existence of a subsequence {vg, }ken and a limit function v € L*°((0, oo) x R),
such that (3.1) holds.

(3.2) follows from (2.5) and (3.1). O

Proof of Theorem 1.1 We begin by proving that u, defined in (3.2), is an entropy solution of
(1.16) or (1.17) in the sense of Definition 1.3. Let ¢ € C*°(R2) be a positive text function

with a support, and let us consider a compactly supported entropy—entropy flux pair (1, g).
We have to prove

/ /(ﬂ(u)8t¢+q(u)8xd))dtdx—/ /n/(u) (/ e”dy) drdx
0 JR 0 JR 0

+/ n(uo(x))¢ (0, x)dx > 0. (3.4)
R
Multiplying (2.1) by 1’ (u,), we have

X
0umie,) + 02 usy) + 1 1te,) / Ckddy = e (s )02, ().
0
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Since

Skn/(usk)a,%x (eugk) =0y (gkn/(uak)ax (eugk)) - Skn//(usk)ax (eugk) OxlUgy
=0y (ex (e )y (€% )) — exn) (e e sk (Byue,)?,

we have
X
atn(usk) + 8xQ(”£k) + n/(usk)/ ek dy
0

= 0y (Skn/(”ak)ax (eugk)) - 5k77”(“£k)eugk (8Xu6k)2
< Oy (8k77/(l48k)8x (eugk)) .

Multiplying (3.5) by ¢, an integration on (0, co) x R gives

/ / (1(tte )3y + (1) 3 ) didlx — / / n/(ugk)( / emdy) drdx
0 JR 0 JR 0

+/R 1 (ue;,0(x)¢ (0, x)dx

o0
+8k/ / 1 (e, )0y (€% ) Dxpdrdx > 0.
o Jr

Let us show that -
gk/ / n/(usk)ax (eugk) 8X¢dldx — 0.
0 JR

Fix T > 0. From (2.14) in correspondence of & = 0, and the Holder inequality,
o0
8](/ / n/(ué‘k)ax (eugk) 8x¢dtdx
0 Jr

o0
= Sk/o /Rm/(“sk” ’ax (eusk)| [0xp|dedx

= &k ” n/”L”((O,oo)x]R) ” dx (eugk)”Lz(supp(qub)) 10x® 1l 2 (supp (3.4

= &k ” n/”LOO((O,oo)x]R) ” Oy (eusk)“Lz((O,T)xR) 10xb 1 20,7 <)
1

2
=< \/a ”n/HLOO((O.OO)X]R) ||ax¢||L2((O,T)><R) (/R €M0(X)dx) — O,

that is (3.7).
Therefore, (3.6) follows from (2.2), (3.2), (3.6) and (3.7).

(3.5)

(3.6)

3.7)

We claim that prove that u(¢, x) is unique and (1.20) holds. We consider two entropy

solutions u(t, x), w(t, x) be of (1.16) or (1.17) such that

supu(t,-) < supug, supw(t,-) <supwg, t >0,

/e“O(X)dx < 00, /ew"(")dx < 00,
R R

Due to (3.8), we have
" —e"| < Colu — w],

where
Co = SUP U0 + SUP o

(3.8)

(3.9)
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932 G. M. Coclite, L. di Ruvo

Arguing as in [6, Theorem3.1], we can prove that
X
3 (Ju — w]) + 9; ((" — €") sign (u — w)) + sign (u — w)/ (e"—e")dy <0
0

holds in sense of distributions in (0, 00) x R, and

”u([’ ) - U)([, )”I(f)

t X
< lluo — woll 7o) —// sign (u — w) (/ (e" —e") dy) dsdx, 0<t<T, (3.10)
0J1(s) 0
where
I(s) =[-R —Co(t —5), R+ Co(t — 5)].
Due to (3.9),
t X
- // sign (u — v) (/ (e" —e") dy) dsdx
0J1(s) 0
t X
5// (/ |e”—ew|dy) dsdx
0J1(s) | \Jo
t
< Co// (’/ ju = vldy|)dsdx
0J1(s) NJ1s)
t
= CO/0 [1(s)] Nluls, ) — v(s, ')”L‘(I(s)) ds. (3.11)
Moreover,
[I(s)|=2R +2Co(t —s) < 2R +2Cot <2R +2CyT. (3.12)

We consider the following continuous function:
G@) = llu(t, ) —v@ gigey, t=0. (3.13)
It follows from (3.10), (3.11), (3.12) and (3.13) that

t
G(1) = G(0) + C(T) / G(s)ds,
0

where C(T) = 2R + 2CyT . The Gronwall inequality and (3.13) give

c(Tr
lu, ) — v, M —rr <€ O g — Voll L1~ R—Cor. R+Cor) »

that is (1.20). O
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