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Abstract The main aim of this paper was to show that the nonlinear Choquet integral can
be used to construct nonlinear approximation operators, exactly as by the use in probability
of the Lebesgue-type integral, linear and positive approximation operators are constructed.
The so-called Feller constructive scheme is generalized, by introducing discrete and non-
discrete nonlinear approximation operators in terms of the nonlinear Choquet integral with
respect to a monotone and subadditive set function. As concrete examples illustrating the
theoretical results, Bernstein–Choquet and Picard–Choquet operators are introduced, for
which qualitative and quantitative approximation properties are obtained. In some subclasses
of functions, they may have better approximation properties than the classical Bernstein and
Picard operators.
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1 Introduction

Awell-known general scheme in constructing linear and positive approximation operators is
the Feller’s probabilistic scheme (see [4], Chapter 7, or e.g., [1], Section 5.2, pp. 283–319),
by which to any continuous and bounded function f : R → R, approximation operators of
the form

Ln( f )(x) =
∫

�

f ◦ Z(n, x)dP =
∫
R

f dPZ(n,x), (1)
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are attached, where P is a probability on the measurable space (�, C), Z : N× I → M2(�),
with I a subinterval of R,M2(�) represents the space of all random variables whose square
is integrable on � with respect to the probability P and PZ(n,x) denotes the distribution
of the random variable Z(n, x) with respect to P defined by PZ(n,x)(B) = P(Z−1(n, x)),
for all Borel measurable subsets of R. Then, denoting by E(Z(n, x)) and Var(Z(n, x)) the
expectance and the variance of the random variable Z(n, x), respectively, and supposing that
limn→∞ E(Z(n, x)) = x , limn→∞ Var(Z(n, x)) = 0, uniformly on I , it is proved that for
all f as above, Ln( f ) converges to f uniformly on each compact subinterval of I .

In addition, if for the random variable Z(n, x), its probability density function λn,x is
known, then for any f , we can write

Ln( f )(x) =
∫
R

f dPZ(n,x) =
∫
R

f (t) · λn,x (t)dP(t), (2)

formula which is useful for the concrete construction and quantitative estimations in the
approximation by the operators Ln( f )(x).

It isworth noting that for themost classical linear and positive operators, the approximation
properties can be studied by using their representations in the above forms (1) and (2) (see
e.g., [1], Section 5.2, pp. 283–319).

The main aim of this paper is to generalize the constructive formulas in (1) and (2) for the
case when P is a monotone, subadditive set function, not necessarily (countable) additive as
in the case of the probability.

More precise, we consider a Feller kind scheme based on the Choquet integral with respect
to a monotone and subadditive set function (sometimes called capacity), for the construction
of approximation sequences of nonlinear operators. Since in the case when the set function
P is monotone and subadditive, in general, the formula (2) does not hold, the approximation
sequences of nonlinear operators can formally be constructed by two distinct ways : Ln( f )(x)
given by the formula in (1) and Ln( f )(x) given by the last integral on the right-hand side
of (2). However, it is worth noting that according to the Radon–Nikodym-type result for the
Choquet integral in [7] (see also e.g., [8], p. 75, Theorem 5.10), for very special subclasses
of monotone and subadditive set functions, the formulas for Ln( f )(x) in (2) still hold.

As concrete examples illustrating the theoretical results, Bernstein–Choquet and Picard–
Choquet type operators are introduced and their qualitative and quantitative approximation
properties are studied. In some subclasses of functions, they may have better approximation
properties than the classical Bernstein and Picard operators.

Note that similar approaches were considered in [5] and [6] for the study of the nonlin-
ear approximation operators constructed in terms of the possibilistic integral, including the
important classes of the so-called max-product approximation operators.

2 Preliminaries

Themain aim of this section is to present known concepts and results used in the next section.

Definition 2.1 Let (�, C) be a measurable space, i.e.,� is a non-empty set and C be a σ -ring
(or σ -algebra) of subsets in � with ∅ ∈ C.
(i) (see e.g., [12], p. 63) The set function μ : C → [0,+∞] is called a monotone set

function (or capacity) if μ(∅) = 0 and A, B ∈ C, with A ⊂ B, implies μ(A) ≤ μ(B).
If � ∈ C, then μ is called normalized if μ(�) = 1.
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(ii) (see [2], or e.g., [12], p. 179) Let μ be a normalized, monotone set function and denote
by G the class of all finite nonnegative functions defined and measurable on (�, C).
Recall that X : � → R is measurable (or more precisely C-measurable) if for any B,
Borelian subset in R, we have X−1(B) ∈ C.

For A ∈ C and X ∈ G, the Choquet integral of X on A with respect to a monotone set
function μ is defined by

(C)

∫
A
Xdμ =

∫ ∞

0
μ(Fα(X)

⋂
A)dα,

where Fα(X) = {ω ∈ �; X (ω) ≥ α}. If (C)
∫
A Xdμ < +∞, then X is called Choquet

integrable on A.
If X : � → R is of arbitrary sign, then the Choquet integral is defined by (see [12],

p. 233)

(C)

∫
A
Xdμ =

∫ +∞

0
μ(Fα(X)

⋂
A)dα +

∫ 0

−∞
[μ(Fα(X)

⋂
A) − μ(A)]dα.

When μ is the Lebesgue measure (i.e., countably additive), then the Choquet integral
(C)

∫
A Xdμ reduces to the Lebesgue integral.

In the case when � = {ω0, ω1, . . . , ωn} is a finite set and μ : P(�) → R+ is a monotone
set function, then the Choquet integral of X : � → R with respect to μ reduces to the
formula (see e.g., [12], p. 239)

(C)

∫
�

Xdμ =
n∑

i=0

[
X (ω∗

i ) − X (ω∗
i−1)

]
μ
({

ω∗
i , ω

∗
i+1, . . . , ω

∗
n

})

=
n∑

i=0

X (ω∗
i )
[
μ
({

ω∗
i , . . . , ω

∗
n

})− μ
({

ω∗
i+1, . . . , ω

∗
n

})]
,

where (ω∗
0, ω

∗
1, ω

∗
2, . . . , ω

∗
n) is a permutation of (ω0, ω1, ω2, . . . , ωn) such that

X (ω∗
0) ≤ X (ω∗

1) ≤ X
(
ω∗
2

) ≤ · · · ≤ X (ω∗
n)

and by convention, in the first sum, we take X (ω∗−1) = 0, while in the second sum, we take
μ({ω∗

n+1, ω
∗
n}) = 0.

It is worth mentioning that the above concept of Choquet integral appears for the first time
in the 1925 paper of Vitali [10] (see [12], p. 245).

(iii) Given a measurable space (�, C) and μ : C → [0,+∞) a normalized, monotone set
function, for each C-measurable X : � → R, we can define its distribution (as a set
function) with respect to μ, by the formula

μX : B → R+, μX (B) = μ(X−1(B)) = μ ({ω ∈ �; X (ω) ∈ B}) , B ∈ B,

where B is the class of all Borel measurable subsets in R. It is clear that μX is a
normalized, monotone set function on B.
We say that X (and its distribution μX ) have the Choquet density λX : R → R+ (with
respect to μ), if λX is B-measurable, (C)

∫
R

λXdμ = 1 and

μX (B) = μ(X−1(B)) = (C)

∫
B

λXdμ = (C)

∫
B
dμX , for all B ∈ B.
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(iv) Given X : � → R and f : R → R, B-measurable, the Choquet integral of f with
respect to the distribution μX is denoted by (C)

∫
R
f (t)dμX (t).

(v) For a measurable X : � → R, its Choquet expectance is defined by ECh(X) =
(C)

∫
�
Xdμ. Also, its Choquet variance is defined by VARCh(X) = ECh((X −

ECh(X))2).

The following simple result is useful for the considerations in Sect. 3, and in our best
knowledge, it seems to be new.

Lemma 2.2 If μ : C → R+ is a normalized, monotone set function, X is C-measurable and
f : R → R is B-measurable, then we have

(C)

∫
R

f (t)dμX (t) = (C)

∫
�

f ◦ Xdμ

=
∫ +∞

0
μ(Fα( f ◦ X))dα +

∫ 0

−∞
[μ(Fα( f ◦ X)) − 1]dα.

Proof Denoting Bα = {t ∈ R; f (t) ≥ α}, it follows
X−1(Bα) = {ω ∈ �; X (ω) ∈ Bα} = {ω ∈ �; f [X (ω)] ≥ α} ,

which immediately implies

(C)

∫
R

f (t)dμX (t) =
∫ +∞

0
μX (Bα)dα +

∫ 0

−∞
[μX (Bα) − 1] dα

=
∫ +∞

0
μ
(
X−1(Bα)

)
dα +

∫ 0

−∞
[
μ
(
X−1(Bα)

)− 1
]
dα = (C)

∫
�

f ◦ Xdμ

and the lemma is proved. ��
Remark 2.3 Note that more general, for any T ∈ B, denoting �T = X−1(T ), we have

(C)

∫
T
f (t)dμX (t) = (C)

∫
�T

f ◦ Xdμ

=
∫ +∞

0
μ
(
Fα( f ◦ X)

⋂
�T

)
dα +

∫ 0

−∞

[
μ
(
Fα( f ◦ X)

⋂
�T

)
− μ(�T )

]
dα.

In what follows, we list some known properties we need for our reasonings.

Remark 2.4 Let us suppose thatμ is a monotone set function. Then, the following properties
hold:

(i) (C)
∫
A is non-additive (i.e., (C)

∫
A( f + g)dμ = (C)

∫
A f dμ + (C)

∫
A gdμ) but it is

positive homogeneous, i.e., for all a ≥ 0, we have (C)
∫
A a f dμ = a · (C)

∫
A f dμ (for

f ≥ 0 see, e.g., [12], Theorem 11.2, (5), p. 228 and for f of arbitrary sign, see e.g., [3],
p. 64, Proposition 5.1, (ii)).
If c ∈ R and f is of arbitrary sign, then (C)

∫
A( f + c)dμ = (C)

∫
A f dμ + c · μ(A)

(see e.g., [12], pp. 232–233, or [3], p. 65).
If μ is submodular too (i.e., μ(A

⋃
B) + μ(A

⋂
B) ≤ μ(A) + μ(B) for all A, B),

then the Choquet integral is subadditive, that is (C)
∫
A( f + g)dμ ≤ (C)

∫
A f dμ +

(C)
∫
A gdμ, for all f, g of arbitrary sign (see e.g., [3], p. 75, Theorem 6.3).

If f ≤ g on A, then the Choquet integral is monotone, that is (C)
∫
A f dμ ≤ (C)

∫
A gdμ

(see e.g., [12], p. 228, Theorem 11.2, (3) for f, g ≥ 0 and p. 232 for f, g of arbitrary
sign).

123



Approximation by Choquet integral operators 885

Ifμ denotes the dual set function ofμ (that isμ(A) = μ(�)−μ(�\ A), for all A ∈ C),
then for all f of arbitrary sign, we have (C)

∫
A(− f )dμ = −(C)

∫
A f dμ (see e.g., [12],

Theorem 11.7, p. 233).
By the definition of the Choquet integral, if F ≥ 0 and μ is subadditive, then it is
immediate that

(C)

∫
A
⋃

B
Fdμ ≤ (C)

∫
A
Fdμ + (C)

∫
B
Fdμ.

Note that if μ is submodular, then it is clear that it is subadditive too.
(ii) Simple concrete examples of monotone and submodular set functionsμ can be obtained

from a probability measure M on a σ -algebra of subsets in � = ∅ (i.e., M(∅) = 0,
M(�) = 1 and M is countable additive), by the formula μ(A) = γ (M(A)), where
γ : [0, 1] → [0, 1] is an increasing and concave function, with γ (0) = 0, γ (1) = 1
(see e.g., [3], pp. 16–17, Example 2.1).
Also, any possibility measure μ is monotone and submodular. While the monotonicity
is immediate from the axiom μ(A

⋃
B) = max{μ(A), μ(B)}, the submodularity is

immediate from the property μ(A
⋂

B) ≤ min{μ(A), μ(B)}.
(iii) Many other properties of the Choquet integral can be found in e.g., Chapter 11 in [12],

or in [3].

The following Chebyshev-type inequality for the Choquet integral obtained directly from
Corollary 3.1 in [11] (see also [9]) will also be useful.

Theorem 2.5 (Chebyshev’s inequality) If� ∈ C,μ is a monotone set function and F : � →
R is C-measurable, then for any r > 0 we have

μ

({
s ∈ �;

∣∣∣∣F(s) − (C)

∫
�

Fdμ

∣∣∣∣ ≥ r

})
≤ (C)

∫
�

(
F − (C)

∫
�
Fdμ

)2 dμ
r2

.

3 Nonlinear Choquet integral operators

The aim of this section is to introduce operators constructed in terms of the Choquet integral
and to study their approximation properties. By analogy to the Feller’s random scheme
in probability theory which produce linear and positive approximation operators, we will
consider a similar approximation scheme, but which will produce nonlinear approximation
operators in terms of the Choquet integral.

Given a measurable space (�, C),μ : C → [0,+∞) a normalized, monotone set function
and I ⊂ R a real interval (bounded or unbounded), let us consider a mapping Z : N × I →
MesC(�), where MesC(�) denotes the class of all X : � → R which are C-measurable.

For any (n, x) ∈ N × I , denote

ECh(Z(n, x)) = (C)

∫
�

Z(n, x)dμ := αn,x and VARCh(Z(n, x)) := σ 2
n,x .

Now, according to the idea in the Feller’s scheme, to continuous f : R → R, let us attach
a sequence of operators by the formula in Lemma 2.2,

Ln( f )(x) := (C)

∫
R

f (t)dμZ(n,x)(t) = (C)

∫
�

f ◦ Z(n, x)dμ, x ∈ I, n ∈ N.
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886 S. G. Gal

Theorem 3.1 Letμ be a normalized, monotone and subadditive set function and f : R → R

be uniformly continuous and bounded on R. Suppose that limn→+∞ αn,x = x, uni-
formly on I and limn→+∞ σ 2

n,x = 0, uniformly on each compact subinterval of I . Then,
limn→∞ Ln( f ) = f , uniformly on any compact subinterval of I .

If, in addition, limn→+∞ σ 2
n,x = 0, uniformly on I , then limn→∞ Ln( f ) = f , uniformly

on I .

Proof First of all, it is worth noting that since f is bounded, both integrals defining Ln( f )(x)
are finite, for all x ∈ I and n ∈ N. Indeed, denoting H(α) = μ({ω ∈ �; f [Z(n, x)(ω)] ≥
α}), it is clear that H(α) is a finite (bounded) and non-increasing function on (−∞,+∞),
and since f is bounded, there exists m < 0 and M > 0, such that we can write

(C)

∫
�

f ◦ Z(n, x)dμ =
∫ M

0
H(α)dα +

∫ 0

m
[H(α) − 1]dα,

which obviously is a finite number.
Now, since f is uniformly continuous on R, for any ε > 0, there exist δ > 0, such that

for all t, x ∈ R with |t − x | < δ, we have | f (t) − f (s)| ≤ ε/2.
Let G : R → R be bounded on R and B-measurable. Since μ is subadditive on C, we get

μ(A) = μ(�) − μ(� \ A) ≤ μ(A).

Now, applying the operator Ln to the obvious inequality −|G|(x) ≤ G(x) ≤ |G|(x), for
all x ∈ R, we obtain

Ln(−|G|)(x) ≤ Ln(G)(x) ≤ Ln(|G|)(x), x ∈ R.

But by the inequality μ(A) ≤ μ(A), for all A ∈ C in Remark 2.4, (i), and by Lemma 2.2,
we get

Ln(−|G|)(x) = (C)

∫
�

−|G| ◦ Z(n, x)dμ = −(C)

∫
�

|G| ◦ Z(n, x)dμ

= −
∫ +∞

0
μ [Fα (|G| ◦ Z(n, x))] dα −

∫ 0

−∞
(μ[Fα(|G| ◦ Z(n, x))] − 1) dα

≥ −
∫ +∞

0
μ [Fα (|G| ◦ Z(n, x))] dα −

∫ 0

−∞
(μ [Fα (|G| ◦ Z(n, x))] − 1) dα

= −(C)

∫
�

|G| ◦ Z(n, x)dμ = −Ln(|G|)(x),

which leads to −Ln(|G|)(x) ≤ Ln(G)(x) ≤ Ln(|G|)(x), equivalent to
|Ln(G)(x)| ≤ Ln(|G|)(x), for all x ∈ R.

Above we used the relationship μ(�) = μ(�) = 1.
By using Theorem 11.6, p. 232 in [12] (see also the second property in Remark 2.4, (i))

and the above property for G(t) := f (t) − f (αn,x ), it follows

|Ln( f )(x) − f (αn,x )| =
∣∣∣∣(C)

∫
R

( f (t) − f (αn,x ))dμZ(n,x)(t)

∣∣∣∣
≤ (C)

∫
R

| f (t) − f (αn,x )|dμZ(n,x)(t).
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Let us consider the decomposition

R = {
t ∈ R; |t − αn,x | < δ

}⋃{
t ∈ R; |t − αn,x | ≥ δ

} := T1
⋃

T2

and denote �T1 = Z−1(n, x)(T1), �T2 = Z−1(n, x)(T2).
Since μ is subadditive, this easily implies the subadditivity of μZ(n,x), which implies

(C)

∫
R

| f (t) − f (αn,x )|dμZ(n,x)(t)

=
∫ ∞

0
μZ(n,x)

({
t ∈ T1

⋃
T2; | f (t) − f (αn,x )| ≥ α

})
dα

≤
∫ ∞

0

[
μZ(n,x)

({
t ∈ T1; | f (t) − f (αn,x )| ≥ α

})

+μZ(n,x)
({
t ∈ T2; | f (t) − f (αn,x )| ≥ α

})]
dα

=
∫ ∞

0
μZ(n,x)

({
t ∈ T1; | f (t) − f (αn,x )| ≥ α

})
dα

+
∫ ∞

0
μZ(n,x)

({
t ∈ T2; | f (t) − f (αn,x )| ≥ α

})
dα

= (C)

∫
T1

| f (t) − f (αn,x )|dμZ(n,x)(t) + (C)

∫
T2

| f (t) − f (αn,x )|dμZ(n,x)(t)

≤ ε

2
(C)

∫
T1
1 · dμZ(n,x)(t) + 2‖ f ‖ · μ

({|Z(n, x) − αn,x | ≥ δ
})

≤ ε

2
+ 2‖ f ‖ · σ 2

n,x · δ−2 ≤ ε

2
+ ε

2
= ε,

for n sufficiently large, uniformly on any compact subinterval of I .
Above ‖ f ‖ = sup{| f (t)|; t ∈ R} andwe also used the relationships (based onRemark 2.4,

(i), first and fourth property)

(C)

∫
T1
1 · dμZ(n,x)(t) = (C)

∫
�T1

1 · dμ ≤ (C)

∫
�

1 · dμ = μ(�) = 1,

(C)

∫
T2

| f (t) − f (αn,x )|dμZ(n,x)(t) ≤ 2‖ f ‖ · (C)

∫
T2
1 · dμZ(n,x)(t)

= 2‖ f ‖ · (C)

∫
�T2

1dμ = 2‖ f ‖ · μ(�T2) = 2‖ f ‖

·μ ({ω ∈ �; |Z(n, x)(ω) − αn,x | ≥ δ
})

and the Chebyshev’s inequality in Theorem 2.5, which implies

μ
({ω ∈ �; |Z(n, x)(ω) − αn,x | ≥ δ})

= μ

({
ω ∈ �;

∣∣∣∣Z(n, x)(ω) − (C)

∫
�

Z(n, x)dμ

∣∣∣∣ ≥ δ

})

≤ (C)
∫
�
(Z(n, x) − (C)

∫
�
Z(n, x)dμ)2dμ

δ2
= VARch(Z(n, x))

δ2
= σ 2

n,x

δ2
.

The second part of the theorem follows immediately from the above considerations, since
in this case, there is n0 ∈ N such that σ 2

n,x ≤ δ2ε/(4(‖ f ‖ + 1)), for all x ∈ I and n ≥ n0. ��
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888 S. G. Gal

Remark 3.2 Analyzing the proof of Theorem 3.1, it easily follows that without any change
in its proof, the construction of the operators Ln( f )(x) can be slightly generalized by con-
sidering that not just Z depends on n and x , but also that μ may depend on n and x and �

may depend on n. More exactly, we can consider Ln( f )(x) of the more general form

Ln( f )(x) := (C)

∫
R

f (t)dμZ(n,x)(t) = (C)

∫
�n

f ◦ Z(n, x)dμn,x , x ∈ I, n ∈ N,

where μn,x : Cn → [0,+∞), (n, x) ∈ N × I , is a family of normalized, monotone and
subadditive set functions on �n and μZ(n,x) denotes the distribution of Z(n, x) with respect
to μn,x . This remark is useful in constructing several concrete examples of such operators.

Also, it is worth noting here that if we suppose thatμ({ω ∈ �; Z(n, x)(ω) ∈ I } = 1, then
the operators Ln in the statement of Theorem 3.1 can be attached to continuous and bounded
functions defined on a strict subinterval I ⊂ R, f : I → R.

Indeed, let us extend f to a function continuous and bounded, f ∗ : R → R. Since μ is
normalized,monotone and subadditive, this implies thatμZ(n,x) is normalized,monotone and
subadditive (see Definition 2.1, (iii) and the proof of Theorem 3.1). But, for any monotone
and subadditive set function μ and A, B with μ(B) = 0, we have μ(A) ≤ μ(A

⋃
B) ≤

μ(A) + μ(B) = μ(A), which for any bounded function F : A⋃ B → R implies

(C)

∫
A
⋃

B
Fdμ =

∫ ∞

0
μ
({

t ∈ A
⋃

B; F(t) ≥ α
})

dα

+
∫ 0

−∞

[
μ
({

t ∈ A
⋃

B; F(t) ≥ α
})

− μ
(
A
⋃

B
)]

dα

=
∫ ∞

0
μ ({t ∈ A; F(t) ≥ α}) dα +

∫ 0

−∞
[μ ({t ∈ A; F(t) ≥ α}) − μ(A)] dα

= (C)

∫
A
Fdμ.

Applying this for A = I , B = R \ I , F = f ∗ and μ = μZ(n,x), we immediately get

(C)

∫
R

f ∗dμZ(n,x) = (C)

∫
I
f dμZ(n,x).

In the next considerations, since as it is stated in Introduction, formula (2) does not hold
in general, different approximation operators can directly be defined by the right-hand side
in (2). In this sense, we present the following quantitative results.

Theorem 3.3 Denoting by P(R) the class of all subsets of R, let (R, C) be a measurable
space with C ⊂ P(R) and μ : C → [0,+∞), be a monotone and submodular set function.

For λn,x : R → R+, n ∈ N, x ∈ R, Choquet densities with respect to μ (that is,
(C)

∫
R

λn,x (t)dμ(t) = 1), let us define by UC(R), the class of all functions f : R → R+,
uniformly continuous on R, such that f · λn,x are C-measurable and Tn( f )(x) < +∞, for
all n ∈ N, x ∈ R, where

Tn( f )(x) = (C)

∫
R

f (t) · λn,x (t)dμ(t).

Then, denoting ϕx (t) = |t − x |, for all x ∈ R, n ∈ N and δ > 0 we have

|Tn( f )(x) − f (x)| ≤
[
1 + Tn(ϕx )(x)

δ

]
· ω1( f ; δ)R.
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Proof According to Remark 2.4, (i), we immediately get that each Tn is a monotone, sub-
additive, positive homogenous operator on the space UC(R). It is also worth noting that if
f, g ∈ UC(R), then f + g ∈ UC(R) and α · f ∈ UC(R), for α ≥ 0.
Let f, g ∈ UC(R). We have f = f − g + g ≤ | f − g| + g, which successively implies

Tn( f )(x) ≤ Tn(| f − g|)(x) + Tn(g)(x), that is Tn( f )(x) − Tn(g)(x) ≤ Tn(| f − g|)(x).
Writing now g = g− f + f ≤ | f − g|+ f and applying the above reasonings, it follows

Tn(g)(x) − Tn( f )(x) ≤ Tn(| f − g|)(x), which combined with the above inequality gives
|Tn( f )(x) − Tn(g)(x)| ≤ Tn(| f − g|)(x).

Then, from the identity

Tn( f )(x) − f (x) = [Tn( f )(x) − f (x) · Tn(e0)(x)] + f (x)[Tn(e0)(x) − 1],
by using the above inequality too, it follows

| f (x) − Tn( f )(x)| ≤ |Tn( f (x))(x) − Tn( f (t))(x)| + | f (x)| · |Tn(e0)(x) − 1|
≤ Tn(| f (t) − f (x)|)(x) + | f (x)| · |Tn(e0)(x) − 1|.

Now, since for all t, x ∈ I , we have

| f (t) − f (x)| ≤ ω1( f ; |t − x |)I ≤
[
1

δ
|t − x | + 1

]
ω1( f ; δ)I ,

replacing above and taking into account that Tn(e0)(x) = e0(x) (here e0(x) = 1, for all
x ∈ R), we immediately obtain that for all n ∈ N, x ∈ R and δ > 0, we have

|Tn( f )(x) − f (x)| ≤
[
1 + 1

δ
Tn(ϕx )(x)

]
ω1( f ; δ)R.

��
Remark 3.4 An important problem in Theorem 3.3 is to determine the functions f with
Tn( f )(x) < +∞, for all n ∈ N, x ∈ R. Since Tn(e0)(x) = 1, from the positive homogeneity
of Tn , it easily follows that for f0(t) = c > 0 for all t ∈ R, we have Tn( f0)(x) = c, for
all x ∈ R, n ∈ R. Then, for any bounded f : R → R+ and α ≥ 0, denoting ‖ f ‖ =
sup{ f (x); x ∈ R} < +∞, we get {t ∈ R; f (t) · λn,x (t) ≥ α} ⊂ {t ∈ R; ‖ f ‖ · λn,x (t) ≥ α},
which implies

μ
({
t ∈ R; f (t) · λn,x (t) ≥ α

}) ≤ μ
({
t ∈ R; ‖ f ‖ · λn,x (t) ≥ α

})
and therefore

Tn( f )(x) =
∫ +∞

0
μ
({
t ∈ R; f (t) · λn,x (t) ≥ α

})
dα

≤
∫ +∞

0
μ
({
t ∈ R; ‖ f ‖ · λn,x (t) ≥ α

})
dα = ‖ f ‖ · Tn(e0)(x) = ‖ f ‖ < +∞.

Also, from these reasonings, it follows that if for an unbounded function F0 : R → R+,
we have Tn(F0)(x) < +∞, for all x ∈ R, n ∈ N, then for any unbounded function f
satisfying f (t) ≤ F0(t), for all t ∈ R, we have Tn( f )(x) < +∞, for all x ∈ R, n ∈ N.

Remark 3.5 Analyzing the proof of Theorem 3.3, it is clear that μ may depend on n and
x too. Also, it is worth noting that the operators studied by Theorem 3.1 (and those more
general defined in Remark 3.2), in general do not coincide with those studied by Theorem 3.3,
fact which implies that these two theorems represent distinct results. This is due to the fact
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that for a monotone and subadditive Choquet set function μ, in general, we do not have the
equality

(C)

∫
R

f (t)dμZ(n,x)(t) = (C)

∫
R

f (t)λn,x (t)dμ(t), for all f,

whereλn,x : R → R+ represents theChoquet density of Z(n, x), as defined byDefinition 2.1,
(iii).

However, as it was pointed out in Introduction too, due to a Radon–Nikodym result for
the Choquet integral in [7] (see also [8], p. 75, Theorem 5.10), for very special subclasses
of monotone and subadditive set functions, the formula for Ln( f )(x) in (2) still holds. More
exactly, ifμ and ν aremonotone, subadditive and continuous from below set functions, where
ν(A) = (C)

∫
A f dμ, for all A ∈ B, if the couple (μ, ν) has a strong decomposition property

and if μ(A) = 0 implies ν(A) = 0, then the formula (2) holds for all nonnegative functions
f .

4 Concrete examples

In this section, the results in Sect. 3 are illustrated by several examples.

Example 4.1 Here we consider approximation operators generated by the construction in
Theorem 3.1 (see also Remark 3.2 too).

Take �n = {0, 1, 2, . . . , n} and consider Z(n, x) : �n → [0, 1] defined by Z(n, x)(k) =
k
n , for all k ∈ �n (in fact, here Z depends only on n).

Firstly, if we define μn,x : P(�n) → R+ by μn,x ({i}) = pn,i (x) = (n
i

)
xi (1 − x)n−i ,

i ∈ {0, 1, . . . , n}, x ∈ [0, 1] and for any A ⊂ �n , μn,x (A) = ∑
i∈A pn,i (x), then μn,x is

normalized, monotone and additive on P(�n). Also, defining μZ(n,x) as in Definition 2.1,
(iii), by the last formula of calculation in Definition 2.1, (ii), for Ln( f )(x) in Theorem 3.1
(taking into account Remark 3.2 too), we easily recapture the classical Bernstein polynomials

Ln( f )(x) = (C)

∫
�n

f ◦ Z(n, x)dμn,x =
n∑

i=0

f (i/n)pn,i (x) = Bn( f )(x), x ∈ [0, 1].

Secondly, define μn,x : P(�n) → [0, 1], n ∈ N, n ≥ 2, x ∈ [0, 1], by μn,x ({i}) =
pn,i (x), if i ∈ �n \ {1}, μn,x ({1}) = ϕn,1(x), where ϕn,1(x) is chosen arbitrarily satisfying
pn,1(x) ≤ ϕn,1(x) ≤ pn,1(x) + min{pn,i (x); i ∈ �n \ {1}}, for all x ∈ [0, 1], n ∈ N,
n ≥ 2 and for any A ⊂ �n , A = �n , μn,x (A) = ∑

i∈A pn,i (x) if 1 /∈ A, μn,x (A) =∑
i∈A,i =1 pn,i (x) + ϕn,1(x), if 1 ∈ A. Finally, define μn,x (�n) = 1
It easily follows that μn,x is a normalized, monotone and non-additive but subadditive set

function.
Now, let us consider that f : [0, 1] → R is non-decreasing on [0, 1] and Z(n, x)(i) = i

n ,
i ∈ �n . By the last formula of calculation in Definition 2.1, (ii), since f ◦ Z(n, x) is non-
decreasing, we immediately get the Bernstein–Choquet kind operator

Ln( f )(x) = f (0)
[
μn,x ({0, 1, . . . , n}) − μn,x ({1, 2, . . . , n})]

+ f (1/n)
[
μn,x ({1, 2, . . . , n}) − μn,x ({2, 3, . . . , n})]

+
n∑

i=2

f (i/n)
[
μn,x ({i, . . . , n} x) − μn,x ({i + 1, . . . , n})]
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= f (0)
[
pn,0(x) + pn,1(x) − ϕn,1(x)

]+ f (1/n)ϕn,1(x) +
n∑

i=2

f (i/n)pn,i (x)

= Bn( f )(x) + f (0) · [pn,1(x) − ϕn,1(x)
]+ f (1/n) · [ϕn,1(x) − pn,1(x)

]
,

that is

Ln( f )(x) = Bn( f )(x) + [ f (1/n) − f (0)] · [ϕn,1(x) − pn,1(x)
]
, (3)

where ϕn,1(x) satisfies

0 ≤ ϕn,1(x) − pn,1(x) ≤ min{pn,0(x), pn,n(x)} = min{xn, (1 − x)n} ≤
(
1

2

)n

, (4)

which implies that ϕn,1 − pn,1 → 0, uniformly on [0, 1].
This immediately implies that

Ln(e1)(x) = Bn(e1)(x) + [1/n − 0] · [ϕn,1(x) − pn,1(x)
] → x,

(as n → ∞), uniformly on [0, 1].
Similarly, if f is non-increasing on [0, 1], since f ◦ Z(n, x) is non-increasing on [0, 1],

then by the formula of calculation in Definition 2.1, (ii), we easily get that

Ln( f )(x) = (C)

∫
�n

f ◦ Z(n, x)dμn,x

= Bn( f )(x) + [ f (1/n) − f (1)]
[
ϕn,1(x) − pn,1(x)

]
,

formula which is somehow symmetric to the formula in the case when f is non-decreasing
on [0, 1].

Now, in order to evaluate the order of the expression σ 2
n,x in the statement of Theorem 3.1,

let us denote

Y (n, x)(t) = (Z(n, x)(t) − Ln(e1)(x))
2 =

(
x − Z(n, x)(t) + 1

n

[
ϕn,1(x) − pn,1(x)

])2

.

We clearly have

Y (n, x)(t) ≤ 2 ·
[
(x − Z(n, x)(t))2 + 1

n2
· (ϕn,1(x) − pn,1(x)

)2]
,

which implies

σ 2
n,x = Ln(Y (n, x)(·))(x)

≤ 2 · (C)

∫
�n

[
(x − Z(n, x)(t))2dμn,x (t) + 1

n2
(
ϕn,1(x) − pn,1(x)

)2] dμn,x (t)

≤ 2 · (C)

∫
�n

[
(x − Z(n, x)(t))2 + 1

n2

]
dμn,x (t)

= 2 · (C)

∫
�n

(x − Z(n, x)(t))2 dμn,x (t) + 2

n2
.

DenotingW (n, x)(t) = (x − Z(n, x)(t))2, it remains to put in increasing order the values
W (n, x)(k), k = 0, 1, . . . , n, depending of course on the values of x .
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Let k0 ∈ {0, . . . , n − 1} be fixed. For x ∈
[
k0
n , k0+1

n

]
, by simple calculation, we get : if

x ∈
[
k0
n , 2k0+1

2n

]
, then

W (n, x)(k0) ≤ W (n, x)(k0 + 1) ≤ W (n, x)(k0 − 1)

≤ W (n, x)(k0 + 2) ≤ W (n, x)(k0 − 2) ≤ W (n, x)(k0 + 3)

≤ · · · ≤ W (n, x)(2k0) ≤ W (n, x)(0) ≤ W (n, x)(2k0 + 1)

≤ W (n, x)(2k0 + 2) ≤ · · · ≤ W (n, x)(n),

and if x ∈
[
2k0+1
2n , k0+1

n

]
, then

W (n, x)(k0 + 1) ≤ W (n, x)(k0) ≤ W (n, x)(k0 + 2)

≤ W (n, x)(k0 − 1) ≤ W (n, x)(k0 + 3) ≤ W (n, x)(k0 − 2)

≤ · · · ≤ W (n, x)(2k0 + 1) ≤ W (n, x)(0) ≤ W (n, x)(2k0 + 2)

≤ W (n, x)(2k0 + 3) ≤ · · · ≤ W (n, x)(n).

Suppose first that x ∈
[
k0
n , 2k0+1

2n

]
. By the formula in Definition 2.1, (ii), we obtain

Ln(W (n, x)(·))(x) = W (n, x)(k0)

⎡
⎣1 −

n∑
i =k0,i =1

pn,i (x) − ϕn,1(x)

⎤
⎦

+W (n, x)(k0 + 1)pn,k0+1(x) + W (n, x)(k0 − 1)pn,k0−1(x)

+W (n, x)(k0 + 2)pn,k0+2(x)

+ · · · + W (n, x)(2k0 − 1)pn,2k0−1(x)

+W (n, x)(1)ϕn,1(x) + W (n, x)(2k0)pn,2k0(x)

+W (n, x)(0)pn,0(x) + W (n, x)(2k0 + 1)pn,2k0+1(x) + · · ·
+W (n, x)(n)pn,n(x)

=
n∑

i=0

W (n, x)(i)pn,i (x) + W (n, x)(k0)[pn,1(x) − ϕn,1(x)]

+W (n, x)(1)[ϕn,1(x) − pn,1(x)]

= x(1 − x)

n
+ [

ϕn,1(x) − pn,1(x)
] [(

x − 1

n

)2

−
(
x − k0

n

)2
]

.

For x ∈
[
2k0+1
2n , k0+1

n

]
, in a similar way, we obtain

Ln (W (n, x)(·)) (x) = x(1 − x)

n
+ [

ϕn,1(x) − pn,1(x)
] [(

x − 1

n

)2

−
(
x − k0 + 1

n

)2
]

.

Now, since 0 ≤ ϕn,1 − pn,1(x) ≤ 1
2n , for all x ∈ [0, 1], n ≥ 2, we immediately obtain

|Ln(W (n, x)(·))(x)| ≤ x(1 − x)

n
+ C

2n
,

for all x ∈ [0, 1], n ≥ 2, with an absolute constant C > 0 (independent of k0 and x).
This implies that Ln(W (n, x)(·))(x) → 0, uniformly on [0, 1], which by the second part

of Theorem 3.1 implies that Ln( f ) → f , uniformly on [0, 1], for any continuous function
f : [0, 1] → R.
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It is worth noting that for continuous non-decreasing functions f , the order of approxi-
mation given by Ln( f )(x) in (3) is not worst than the order of approximation given by the
Bernstein polynomials Bn( f )(x). However, for example, in the subclass of increasing and
concave functions on [0, 1], Ln( f )(x) can approximate better than the Bernstein polynomials
Bn( f )(x). Indeed, since for all x ∈ (0, 1) and n ∈ N, we have Bn( f )(x) − f (x) < 0 and
[ f (1/n) − f (0)] · [ϕn,1(x) − pn,1(x)] > 0, by (3), we easily obtain

|Ln( f )(x) − f (x)| < max
{|Bn( f )(x) − f (x)|, [ f (1/n) − f (0)] · [ϕn,1(x) − pn,1(x)

]}
,

for all x ∈ (0, 1) and n ∈ N, which by (4) easily leads us to the above conclusion.
A similar approach can be made for the subclass of decreasing and concave functions on

[0, 1].
Other n examples of nonlinear Bernstein–Choquet type operators onC[0, 1]which satisfy

the approximation properties in Theorem 3.1 can be obtained if in the definition of μn,x

we replace the index 1 ∈ {0, . . . , n} by another arbitrary fixed i0 ∈ {0, . . . , n} (that is
μn,x ({i0}) = ϕn,i0(x), μn,x ({i}) = pn,i (x) if i = i0) and repeat the same construction as
above. Also, obviously that these kinds of constructions can be applied to other kinds of
Bernstein-type operators too.

Example 4.2 In what follows, we consider an example of operator satisfying Theorem 3.3.

Let us define the nonlinear Picard–Choquet operators attached to f : R → R+ and to the
monotone, submodular set function μ, by

Tn( f )(x) = 1

c(n, x)
· (C)

∫
R

f (t)e−n|x−t |dμ(t)

= 1

c(n, x)
·
∫ ∞

0
μ
[
Fα

(
f (·)e−n|x−·|)] dα,

where c(n, x) = ∫∞
0 μ[Fα(e−n|x−·|)]dα, Fα(e−n|x−·|) = {t ∈ R : e−n|x−t | ≥ α}. By simple

calculation, we get Fα(e−n|x−·|) = ∅ for α > 1 and Fα(e−n|x−·|) =
[
x + ln(α)

n , x − ln(α)
n

]
,

if α ≤ 1, which leads us to

c(n, x) =
∫ 1

0
μ

([
x + ln(α)

n
, x − ln(α)

n

])
dα.

Indeed, {t ∈ R; e−n|t−x | ≥ α} = ∅ for α > 1 and for all 0 ≤ α ≤ 1, we have
{
t ∈ R; e−n|t−x | ≥ α

}

=
{
t ∈ R; t ≥ x, e−n(t−x) ≥ α

}⋃{
t ∈ R; t < x, e−n(x−t) ≥ α

}

=
{
t ∈ R; x ≤ t ≤ nx − ln(α)

n

}⋃{
t ∈ R; ln(α) + nx

n
≤ t ≤ x

}

=
[
nx + ln(α)

n
,
nx − ln(α)

n

]
.

By Theorem 3.3, for all n ∈ N, x ∈ R and δ > 0, we get

|Tn( f )(x) − f (x)| ≤
[
1 + 1

δ
Tn(ϕx )(x)

]
ω1( f ; δ)R, (5)
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whereϕx (t) = |t−x |. Therefore, the convergence of Tn( f ) to f one relies on the convergence
to zero, as n → ∞, of the quantity

Tn(ϕx )(x) = 1

c(n, x)
· (C)

∫
R

|x − t |e−n|x−t |dμ(t)

= 1

c(n, x)
·
∫ ∞

0
μ
[{

t ∈ R; |t − x | · e−n|t−x | ≥ α
}]

dα.

Since any possibility measure also is monotone and submodular (see Remark 2.4, (ii)), let
use consider the possibilistic measure μn,x (A) = sup{e−n|t−x |; t ∈ A}, if A ⊂ R, A = ∅
and μn,x (∅) = 0. The Picard–Choquet integral for f : R → R+ becomes

Tn( f )(x) = 1

c(n, x)
· (C)

∫
R

f (t) · e−n|t−x |dμn,x (t)

= 1

c(n, x)
·
∫ ∞

0
sup

{
e−n|t−x |; t ∈ R, f (t) · e−n|t−x | ≥ α

}
dα

and its convergence to f depends on the upper estimates of the quantity

Tn(ϕx )(x) = 1

c(n, x)
·
∫ ∞

0
sup{e−n|t−x |; t ∈ R, |t − x |e−n|t−x | ≥ α}dα.

By the above formula of c(n, x) with μ replaced by the possibilistic measure μn,x , we
obtain

c(n, x) =
∫ ∞

0
sup

{
e−n|t−x |; t ∈ R, e−n|t−x | ≥ α

}
dα

=
∫ 1

0
sup

{
e−n|t−x |; t ∈ [x + ln(α)/n, x − ln(α)/n]

}
dα.

Since t ∈ [x + ln(α)/n, x − ln(α)/n] is equivalent with 0 ≤ |t − x | ≤ − ln(α)
n , it follows

c(n, x) =
∫ 1

0
sup

{
e−n|t−x |; t ∈ [x + ln(α)/n, x − ln(α)/n]

}
dα =

∫ 1

0
1dα = 1.

On the other hand, we have

Tn(ϕx )(x) = 1

c(n, x)
·
∫ ∞

0
sup

{
e−n|t−x |; t ∈ R, |t − x |e−n|t−x | ≥ α

}
dα

=
∫ ∞

0
sup

{
e−ny; y ≥ 0, ye−ny ≥ α

}
dα.

Now, denoting F(v) = ve−nv , v ≥ 0, we have F ′(v) = (1−nv)e−nv , which immediately
implies that v = 1

n is a maximum point for F on [0,+∞) and F(1/n) = 1
ne is the maximum

value for F .
This implies that for α > 1/(ne), we have {t ∈ R; |t − x | · e−n|t−x | ≥ α} = ∅, and

therefore, it follows

Tn(ϕx )(x) =
∫ 1/(ne)

0
sup

{
e−ny; y ≥ 0, ye−ny ≥ α

}
dα ≤

∫ 1/(ne)

0
1 · dα = 1

ne
.

Then, choosing δ = 1
ne in Theorem 3.3, we immediately get the good approximation

estimate

|Tn( f )(x) − f (x)| ≤ 2ω1

(
f ; 1

ne

)
R

.
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It is worth mentioning that there are classes of functions for which Tn( f )(x) gives an
essentially better estimate. For example, for all functions of the form f (t) = ce−λt , with c
a real constant and λ > 0, we have Tn( f )(x) = f (x), for all x ∈ R and n > λ. For the
simplicity of calculation, take, for example, f (t) = e−t . We get

Tn( f )(x) =
∫ +∞

0
sup

{
e−n|t−x |; t ∈ R, e−t · e−n|t−x | ≥ α

}
dα

=
∫ 1

0
sup

{
e−n|t−x |; t ∈ R, e−t · e−n|t−x | ≥ α

}
dα.

But for α ∈ [0, 1], we have
{
t ∈ R, e−t · e−n|t−x | ≥ α

}

=
{
t ∈ R, t ≥ x, e−t · e−n(t−x) ≥ α

}⋃{
t ∈ R, t < x, e−t · e−n(x−t) ≥ α

}

=
{
t ∈ R, x ≤ t ≤ nx − ln(α)

n + 1

}⋃{
t ∈ R,

nx + ln(α)

n − 1
≤ t < x

}
.

But x ≤ nx−ln(α)
n+1 if and only if α ≤ e−x , and nx+ln(α)

n−1 ≤ x if and only if α ≤ e−x , which
immediately implies

Tn( f )(x) =
∫ e−x

0
sup

{
e−n|t−x |; t ∈

[
nx + ln(α)

n − 1
,
nx − ln(α)

n + 1

]}
dα

=
∫ e−x

0
1 · dα = e−x ,

since x ∈ [ nx+ln(α)
n−1 ,

nx−ln(α)
n+1 ].

By simple calculation, it is easy to check that for the classical Picard operator Pn( f )(x) =
n
2 · ∫

R
f (t) · e−n|t−x |dt , we do not have Pn( f )(x) = f (x), x ∈ R, for f (x) = e−x .

Now, instead of themeasure of possibility in the definition of the Picard–Choquet operator,
we can considerμ : M(R) → R+ given byμ(A) = √

m(A), whereM(R) denotes the class
of all bounded, Lebesgue measurable subsets of R and m(A) denotes the Lebesgue measure.
Since γ (t) = √

t , t ≥ 0, is increasing and concave, according to Remark 2.4, (ii), it follows
that μ is a monotone and submodular set function on M(R).

In this case, we easily get

c(n, x) =
√
2√
n

·
∫ 1

0

√− ln(α)dα =
√
2√
n

·
∫ +∞

0
t1/2e−tdt =

√
2√
n

· �(3/2) =
√

π√
2
√
n

and by similar reasonings with those for the possibility measure, we can find an estimate for
Tn(ϕx )(x) and consequently, by Theorem 3.3, a quantitative estimate in approximation of f
by Tn( f ).

As it was pointed out by Remark 3.4 too, the above estimates hold for any bounded and
uniformly continuous function f : R → R+. But it can easily be determined unbounded,
uniformly continuous functions F0, such that Tn(F0)(x) < +∞, for all x ∈ R, n ∈ N, and
for which the above estimate still holds. Then, according to Remark 3.4, we get that for all
f satisfying 0 ≤ f (t) ≤ F0(t), for all t ∈ R, we have Tn( f )(x) < +∞, n ∈ N, x ∈ R.
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Example 4.3 Similar to the Picard–Choquet operators, the Gauss–Weierstrass–Choquet
operators given by

Wn( f )(x) = 1

c(n, x)
· (C)

∫
R

f (ξ)e−n(x−ξ)2dμ(ξ)

could be studied, with c(n, x) = (C)
∫
R
e−n(x−ξ)2dμ(ξ), n ∈ N, f : R → R+. In this case,

we get

c(n, x) =
∫ 1

0
μ
([

x −√−ln(α)/n, x +√−ln(α)/n
])

dα,

and the convergence of Wn( f ) to f (as n → 0) relies on the convergence to zero of the
quantityWn(ϕx )(x) = 1

c(n,x) ·(C)
∫
R

|x−ξ |e−n(x−ξ)2dμ(ξ). As in the previous Example 4.2,

for the possibility measure μn,x (A) = sup{e−n|t−x |; t ∈ A}, if A ⊂ R, A = ∅ and for
μ(A) = √

m(A), where “m” is the Lebesgue measure), we can derive that Wn(ϕx )(x) → 0
as n → ∞ and obtain quantitative estimates in approximation by using Theorem 3.3.
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