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Abstract Let M be a complete, simply connected Riemannian manifold with negative cur-
vature. We obtain some Moser–Trudinger inequalities with sharp constants on M .
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1 Introduction

Moser [14] found the largest positive constant β0 such that if � is an open domain in R
n ,

n ≥ 2, with finite n-measure, then there exists a constant C0 which depends only on n such
that if u is smooth and has compact support contained in �, then
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460 Q. Yang et al.

∫
�

exp(β|u|n/(n−1))dx ≤ C0|�| (1.1)

for any β ≤ β0 when u is normalized so that∫
�

|∇u(x)|ndx ≤ 1.

In fact, Moser showed β0 = nω
1/(n−1)
n−1 , where ωn−1 is the surface measure of the unit sphere

in R
n . This inequality sharpened the result of N. S. Trudinger [18]. In 1988, D. Adams

extended such inequality to high-order Sobolev spaces in R
n via a quite different method. In

the case of unbounded domains, Ruf [16] and Li-Ruf [11] obtained the following inequality:

∫
Rn

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dx ≤ C (1.2)

for any u ∈ C∞
0 (Rn) when u is normalized so that∫

Rn
(|∇u(x)|n + |u(x)|n)dx ≤ 1.

The constant β0 in (1.2) is also sharp.
There has also been substantial progress forMoser–Trudinger inequalities on Riemannian

manifolds. In the case of compact Riemannian manifolds, the study of Trudinger-Moser
inequalities can be traced back to Aubin [3], Cherrier [4,5], and Fontana [6]. In particular,
the following Moser–Trudinger inequality is held in n-dimensional compact Riemannian
manifold (M , g) (see [6]):

sup∫
M udvg=0,

∫
M |∇gu|ndvg≤1

∫
M
exp(β0|u|n/(n−1))dvg < ∞. (1.3)

The constant β0 in (1.3) is also sharp. In the case of complete noncompact Riemannian man-
ifolds, Yang [19] has showed that if the Ricci curvature has a lower bound and the injectivity
radius has a positive lower bound, then Trudinger-Moser inequality holds. However, the con-
stant obtained in [19] is not sharp. Furthermore, if M is the hyperbolic space H

2, Mancini
and Sandeep [12] (see also [2]) proved the following inequality on H

2:

sup
u∈C∞

0 (B2),
∫
B2 |∇u|2dx≤1

∫
B2

e4πu
2 − 1

(1 − |x |2)2 dx < ∞, (1.4)

where B
2 is the unit ball at origin of R2. Furthermore, the constants 4π is sharp. Later,

inequality (1.4) has been extended by themselves and Tintarev [13] to any dimension.
Toour knowledge,much less is knownabout sharp constants ofMoser–Trudinger inequali-

ties on complete noncompact Riemannianmanifolds except Euclidean spaces andHyperbolic
spaces. The aim of this paper is to look for the sharp constants of Moser–Trudinger inequal-
ities on a complete, simply connected Riemannian manifold M with negative curvature. In
fact, the optimal constants turn out to be the same for every such M as they are in Euclidean
space. For simplicity, we also denote by � the Laplace-Beltrami operator on M and by ∇
the corresponding gradient. Let � be a domain in M . The Sobolev space W 1,n

0 (�) is the
completion of C∞

0 (�) under the norm

(∫
�

|∇u|ndV
) 1

n +
(∫

�

|u|ndV
) 1

n

.
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Sharp Moser–Trudinger inequalities 461

One of our main results is the following

Theorem 1.1 Let M be a complete, simply connected Riemannian manifold of dimension
n ≥ 2 and � be a domain in M with |�| = ∫

�
dV < ∞. There exists a positive constant

C1 = C1(n, M) such that for all u ∈ W 1,n
0 (�) with

∫
�

|∇u|ndV ≤ 1, the following uniform
inequality holds

1

|�|
∫

�

exp(β0|u|n/(n−1))dV ≤ C1. (1.5)

Furthermore, the constant β0 in (1.5) is sharp.

Next we consider the Moser–Trudinger inequalities on the whole space M . The basic idea
of the proof is given by Lam and Lu [8,9], and the main result is the following

Theorem 1.2 Let M be a complete, simply connected Riemannian manifold of dimension
n ≥ 2 and τ be any positive number. There exists a constant C2 = C2(τ, n, M) such that for
all u ∈ W 1,n

0 (M) with
∫
M (|∇u|n + τ |u|n)dV ≤ 1, the following uniform inequality holds

∫
M

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV ≤ C2. (1.6)

Furthermore, the constant β0 in (1.6) is sharp.

2 Notations and preliminaries

We begin by quoting some preliminary facts which will be needed in the sequel and refer to
[7,10,17] for more precise information about this subject.

Let M be an n-dimensional complete Riemannian manifold with Riemannian metric ds2.
If {xi }1≤i≤n is a local coordinate system, then we can write

ds2 =
∑

gi jdx
idx j

so that the Laplace-Beltrami operator � in this local coordinate system is

� =
∑ 1√

g

∂

∂xi

(√
ggi j

∂

∂x j

)
,

where g = det(gi j ) and (gi j ) = (gi j )−1. Denote by ∇ the corresponding gradient.
Let K be the sectional curvature onM .M is said to bewith negative curvature (respectively,

with strictly negative curvature) if K ≤ 0 (respectively, K ≤ c < 0) along each plane section
at each point of M . If M is with negative curvature, then for each p ∈ M , M contains no
points conjugate to p. Furthermore, if M is simply connected, then the exponential mapping
Expp : TpM → M is a diffeomorphism, where TpM is the tangent space to M at p (see e.g.
[7]).

From now on, we let M be a complete, simply connected Riemannian manifold with
negative curvature. Let p ∈ M and denote by ρ(x) = dist(x, p) for all x ∈ M , where
dist(·, ·) denotes the geodesic distance. Then ρ(x) is smooth on M \ {p} and it satisfies

|∇ρ(x)| = 1, x ∈ M \ {p}.
By Gauss’s lemma, the radial derivative ∂ρ = ∂

∂ρ
satisfies

|∂ρ f | ≤ |∇ f |, f ∈ C1(M). (2.1)
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462 Q. Yang et al.

For any δ > 0, denote by Bδ(p) = {x ∈ M : ρ(x) < δ} the geodesic ball in M . We
introduce the density function Jp(θ, t) of the volume form in normal coordinates as follows
(see e.g. [7], page 166-167). Choose an orthonormal basis {θ, e2, . . . , en} on TpM and let
c(t) = Expptθ be a geodesic. {Yi (t)}2≤i≤n are Jacobi fields satisfying the initial conditions

Yi (0) = 0, Y ′
i (0) = ei , 2 ≤ i ≤ n

so that the density function can be given by

Jp(θ, t) = t−n+1
√
det(〈Yi (t), Y j (t)〉), t > 0.

We note that Jp(θ, t) does not depend on {e2, . . . , en} and Jp(θ, t) ∈ C∞(TpM\{p}) by the
definition of Jp(θ, t). Furthermore, if we set Jp(θ, 0) ≡ 1, then Jp(θ, t) ∈ C(TpM) and

Jp(θ, t) = 1 + O(t2) as t → 0, (2.2)

since Yi (t) has the asymptotic expansion (see e.g. [7], page 169)

Yi (t) = tei − t3

6
R(c′(t), ei )c′(t) + o(t3),

where R(·, ·) is the curvature tensor on M .
By the definition of Jp(θ, t), we have the following formula in polar coordinates on M :

∫
M

f dV =
∫ ∞

0

∫
Sn−1

fρn−1 Jp(θ, ρ)dρdσ, f ∈ L1(M),

where dσ denotes the canonical measure of the unit sphere of Tp(M).
If M is with constant sectional curvature, then Jp(θ, t) depends only on t . We denote by

Jb(t) the corresponding density function if K ≡ −b for some b ≥ 0. It is well known that
J0(t) = 1 for t > 0 since in this case M is isomorphic to the Euclidean space.

Finally, we recall a useful fact of Jp(θ, t) which play an important role in the study of
Moser–Trudinger inequalities. If the sectional curvature K on M satisfies K ≤ −b, then (see
[7], page 172, line -2, the proof of Bishop-Gunther comparison theorem)

1

Jp(θ, t)
· ∂ Jp(θ, t)

∂t
≥ J ′

b(t)

Jb(t)
, t > 0. (2.3)

Therefore, since M is with negative curvature, we have

1

Jp(θ, t)
· ∂ Jp(θ, t)

∂t
≥ J ′

0(t)

J0(t)
= 0,

which means Jp(θ, t), as a function of t on [0,+∞), is monotonically increasing.

3 Proof of Theorem 1.1

We firstly show the following pointwise estimates for f ∈ C∞
0 (M).

Lemma 3.1 There holds, for any f ∈ C∞
0 (M) and p ∈ M,

| f (p)| ≤ 1

ωn−1

∫
M

|∇ f | 1

ρn−1 Jp(θ, ρ)
dV, (3.1)

where ωn−1 is the surface measure of the unit sphere Sn−1 in R
n.
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Sharp Moser–Trudinger inequalities 463

Proof Since f has compact support, taking the radial derivative in an arbitrary direction, we
have

− f (p) =
∫ ∞

0

∂ f

∂ρ
dρ.

Integrating both sides over the unit sphere yields

−
(∫

Sn−1
dσ

)
f (p) =

∫ ∞

0

∫
Sn−1

∂ f

∂ρ
dρdσ.

Using polar coordinate and (2.1), we have

| f (p)| ≤ 1

ωn−1

∫ ∞

0

∫
Sn−1

|∂ρ f |dρdσ

≤ 1

ωn−1

∫ ∞

0

∫
Sn−1

|∇ f |dρdσ

= 1

ωn−1

∫
M

|∇ f | 1

ρn−1 Jp(θ, ρ)
dV .

This concludes the proof of lemma 3.1.

We now recall the rearrangement of functions on M . Suppose F is a nonnegative function
on M . The non-increasing rearrangement of is defined by

F∗(t) = inf{s > 0 : λF (s) ≤ t}, (3.2)

where λF (s) = |{x ∈ M : F(x) > s}|. Here we use the notation |�| for the measure of a
measurable set � ⊂ M .

Lemma 3.2 Let g = 1
ρn−1 Jp(θ,ρ)

be in the Lemma 3.1. Then

g∗(t) ≤
(

nt

ωn−1

)−(n−1)/n

, t > 0.

Proof Define, for any s > 0,

λg(s) =
∫

{x∈M :g(x)>s}
dV =

∫
{(ρ,θ)∈M :ρn−1 Jp(θ,ρ)<s−1}

dV . (3.3)

We note that ρn−1 Jp(θ, ρ), as a function of ρ on [0,+∞), is strictly decreasing since
Jp(θ, ρ), as a function of ρ on [0,+∞), is monotonically increasing. Therefore, for every
θ ∈ S

n−1 and s > 0, the equation ρn−1 Jp(θ, ρ) = s−1 has only one solution in (0,+∞)

and we denote it by ρθ (s). Then ρθ (s) satisfies

ρθ (s)
n−1 Jp(θ, ρθ (s)) = s−1

and

λg(s) =
∫

{(ρ,θ)∈M :ρn−1 Jp(θ,ρ)<s−1}
dV =

∫
Sn−1

∫ ρθ (s)

0
ρn−1 Jp(θ, ρ)dσdρ.

Therefore, since g∗(t) = inf{s > 0 : λg(s) ≤ t},

t = λg(g
∗(t)) =

∫
Sn−1

∫ ρθ (g∗(t))

0
ρn−1 Jp(θ, ρ)dσdρ, (3.4)
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464 Q. Yang et al.

where ρθ (g∗(t)) satisfies

ρθ (g
∗(t))n−1 Jp(θ, ρθ (g

∗(t))) = 1

g∗(t)
. (3.5)

For simplicity, we set ρθ (t) = ρθ (g∗(t)) in the rest of proof. Then,

t = λg(g
∗(t)) =

∫
Sn−1

∫ ρθ (t)

0
ρn−1 Jp(θ, ρ)dσdρ

and ρθ (t) satisfies

ρθ (t)
n−1 Jp(θ, ρθ (t)) = 1

g∗(t)
.

Thus, since Jp(θ, ρ), as a function of ρ on [0,+∞), is monotonically increasing and
Jp(θ, ρ) ≥ Jp(θ, 0) = 1, we have

t =
∫
Sn−1

∫ ρθ (t)

0
ρn−1 Jp(θ, ρ)dσdρ

≤
∫
Sn−1

∫ ρθ (t)

0
ρn−1 Jp(θ, ρθ (t))dσdρ

=
∫
Sn−1

Jp(θ, ρθ (t))

(∫ ρθ (t)

0
ρn−1dρ

)
dσ

= 1

n

∫
Sn−1

Jp(θ, ρθ (t))ρ
n
θ (t)dσ

≤ 1

n

∫
Sn−1

Jn/(n−1)
p (θ, ρθ (t))ρ

n
θ (t)dσ

= 1

n

∫
Sn−1

[
Jp(θ, ρθ (t))ρ

n−1
θ (t)

]n/(n−1)
dσ

= 1

n
[g∗(t)]−n/(n−1)ωn−1.

The desired result follows.

Define F∗∗(t) = 1
t

∫ t
0 F∗(t)dt , where F∗ is defined in (3.2). Before the proof of Theo-

rem 1.1, we need the following lemma from Adams’ paper [1].

Lemma 3.3 Let a(s, t) be a nonnegative measurable function on (−∞,+∞) × [0,+∞)

such that (a.e.)

a(s, t) ≤ 1, when 0 < s < t,

sup
t>0

(∫ 0

−∞
a(s, t)n

′
ds +

∫ ∞

t
a(s, t)n

′
ds

)1/n′

= b < ∞,

where n′ = n
n−1 . Then there is a constant c0 = c0(n, b) such that if for φ ≥ 0 with∫ ∞

−∞ φ(s)nds ≤ 1, then
∫ ∞

0
e−F(t)dt ≤ c0,

where

F(t) = t −
(∫ ∞

−∞
a(s, t)φ(s)ds

)n′

.
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Proof of Theorem 1.1. The proof use ideas from [1] and the main tool is O’Neil’s lemma
([15], Lemma 1.5). Let u ∈ C∞

0 (�) be such that
∫
�

|∇u|ndV ≤ 1.Without loss of generality,
we may assume u ≥ 0. By Lemma 3.1 and O’Neil’s lemma, for t > 0,

u∗(t) ≤ 1

ωn−1

(
t |∇u|∗∗(t)g∗∗(t) +

∫ ∞

t
|∇u|∗(s)g∗(s)dt

)
, (3.6)

where g = 1
ρn−1 Jp(θ,ρ)

. By Lemma 3.2,

g∗(t) ≤
(

nt

ωn−1

)−(n−1)/n

, g∗∗(t) = 1

t

∫ t

0
g∗(s)ds ≤ n

(
nt

ωn−1

)−(n−1)/n

. (3.7)

Combining (3.6) and (3.7) yields

u∗(t) ≤
(

1

nω
1/(n−1)
n−1

)(n−1)/n (
nt−

n−1
n

∫ t

0
|∇u|∗(s)ds +

∫ ∞

t
|∇u|∗(s)s− n−1

n ds

)
. (3.8)

Following [1], we set

φ(s) = (|�|e−s)1/n |∇u|∗(|�|e−s). (3.9)

Then ∫ ∞

0
φ(s)nds =

∫ |�|

0
(|∇u|∗)nds =

∫
�

|∇u|ndV ≤ 1.

The auxiliary function a(s, t) is defined to be

a(s, t) =
⎧⎨
⎩
0, s < 0;
1, s < t;
ne

t−s
n′ , t ≤ s < ∞,

(3.10)

where n′ = n/(n − 1). It is easy to check

sup
t>0

(∫ 0

−∞
+

∫ ∞

t
a(s, t)n

′
ds

)1/n′

= n.

By Lemma 3.3,

∫ ∞

0
e−F(t)dt =

∫ ∞

0
exp

[
−t +

(∫ ∞

−∞
a(s, t)φ(s)ds

)n′]
dt < ∞,

where
∫ ∞

−∞
a(s, t)φ(s)ds = n|�|−1/n′

et/n
′
∫ |�|e−t

0
|∇u|∗(s)ds +

∫ |�|

|�|e−t
|∇u|∗(s)s−1/n′

ds.

On the other hand, by (3.8),
∫

�

exp(β0|u|n/(n−1))dV =
∫ |�|

0
exp(β0|u∗(t)|n/(n−1))dt

≤
∫ |�|

0
e

β0

nω
1/(n−1)
n−1

(
nt− n−1

n
∫ t
0 |∇u|∗(s)ds+∫ ∞

t |∇u|∗(s)s− n−1
n ds

)n/(n−1)

ds
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=
∫ |�|

0
e

(
nt− n−1

n
∫ t
0 |∇u|∗(s)ds+∫ ∞

t |∇u|∗(s)s− n−1
n ds

)n/(n−1)

ds.

Using the change of variables t → |�|e−t , one can check that

1

|�|
∫

�

exp(β0|u|n/(n−1))dV ≤ 1

|�|
∫ |�|

0
e

(
nt− n−1

n
∫ t
0 |∇u|∗(s)ds+∫ ∞

t |∇u|∗(s)s− n−1
n ds

)n/(n−1)

ds

=
∫ ∞

0
e−F(t)dt < ∞.

This concludes the proof of the first statement of the theorem.
To prove the second statement, we let � = B1 = {x ∈ M : ρ(x) < 1}. Set, for each

ε ∈ (0, 1),

fε(x) =
{

(ln ε−1)−1 ln ρ, on B1 \ Bε;
1, on Bε,

where Bε = {x ∈ M : ρ(x) < ε}. We compute

‖∇ fε‖n′
n =

(∫
B\Bε

|∇ fε|ndV
) 1

n−1 = 1
ln ε−1

(
1

ln ε−1

∫ 1
ε

∫
Sn−1

Jp(θ,ρ)

ρ
dρdσ

) 1
n−1

and

|Bε| =
∫
Bε

dV =
∫ ε

0

∫
Sn−1

ρn−1 Jp(θ, ρ)dρdσ.

By the asymptotic expansion of Jp(θ, ρ) (see (2.2)), it is easy to check

lim
ε→0+ ‖∇ fε‖n′

n ln ε−1 = ω
1/(n−1)
n−1 , lim

ε→0+
ln |Bε|−1

ln ε−1 = n. (3.11)

Now assume that

1

|B|
∫
B
exp

[
β

( | fε|
‖∇ fε‖n

)n′]
dV ≤ C1

for some β > 0. Using the fact fε ≡ 1 on Bε , we have

|Bε|
|B| exp

(
β

1

‖∇ fε‖n′
n

)
≤ C1,

i.e.,

β ≤ (
lnC1 + ln |B| + ln |Bε|−1) ‖∇ fε‖n′

n .

Passing the limit ε → 0+ and using (3.11) yields

β ≤ nω
1/(n−1)
n−1 .

This concludes the proof of Theorem.
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4 Proof of Theorem 1.2

The proof of Theorem1.2 follows closely LamandLu’s proof (see [8], section 2 or [9], section
5). Let u ∈ C∞

0 (M) be such that
∫
M (|∇u|n + τ |u|n)dV ≤ 1. Without loss of generality, we

may assume u ≥ 0.

Set A(u) = 2− 1
n(n−1) τ

1
n ‖u‖n and �(u) = {x ∈ M : u(x) > A(u)}, where ‖u‖n =

n
√∫

M |u|ndV . Then

A(u)n = 2− 1
n−1 τ‖u‖nn ≤ τ‖u‖nn = τ

∫
M

|u|ndV ≤ 1; (4.1)

|�(u)| =
∫

�(u)

dV ≤ 1

A(u)n

∫
�(u)

|u|ndV

≤ 1

A(u)n

∫
M

|u|ndV = 2
1

n−1 τ−1. (4.2)

We write

∫
M

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV

=
∫

�(u)

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV +

∫
M\�(u)

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV

=: I1 + I2.

By (4.1), M \ �(u) = {x ∈ M : 0 ≤ u(x) ≤ A(u)} ⊂ {x ∈ M : 0 ≤ u(x) ≤ 1}.
Therefore,

I2 =
∫
M\�(u)

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV

=
∫
M\�(u)

∞∑
k=n−1

βk
0

k! |u|kn/(n−1)dV

≤
∫

{x∈M :0≤u(x)≤1}

∞∑
k=n−1

βk
0

k! |u|kn/(n−1)dV

≤
∫

{x∈M :0≤u(x)≤1}

∞∑
k=n−1

βk
0

k! |u|ndV

≤
( ∞∑
k=n−1

βk
0

k!

) ∫
M

|u|ndV

≤
( ∞∑
k=n−1

βk
0

k!

)
τ−1. (4.3)
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Now we will show I1 is also bounded by a constant C3(τ, n, M). Set

v(x) = u(x) − A(u), x ∈ �(u).

Then v ∈ W 1,n
0 (�) and

|u|n′ = (v + A(u))n
′ ≤ |v|n′ + n′2n′−1(|v|n′−1A(u) + A(u)n

′
), (4.4)

where we used the following elementary inequality

(a + b)q ≤ aq + q2q−1(aq−1b + bq), q ≥ 1, a, b ≥ 0.

By Young’s inequality,

|v|n′−1A(u) = |v|n′−1A(u) · 1 ≤ |v|n′
A(u)n

n
+ 1

n′ . (4.5)

Combing (4.4) and (4.5) yields

|u|n′ ≤ |v|n′ + n′2n′−1A(u)n

n
|v|n′ + 2n

′−1 + n′2n′−1A(u)n
′

=
(
1 + 2n

′−1|A(u)|n
n − 1

)
|v|n′ + C4, (4.6)

where
C4 = 2n

′−1 + n′2n′−1A(u)n
′
. (4.7)

Set

w =
(
1 + 2n

′−1|A(u)|n
n − 1

) n−1
n

v.

Since v ∈ W 1,n
0 (�), so does w. Moreover, by (4.6),

|u|n′ ≤ |w|n′ + C4. (4.8)

We compute

∫
�(u)

|∇w|ndV =
(
1 + 2n

′−1|A(u)|n
n − 1

)n−1 ∫
�(u)

|∇v|ndV

=
(
1 + 2n

′−1|A(u)|n
n − 1

)n−1 ∫
�(u)

|∇u|ndV

≤
(
1 + 2n

′−1|A(u)|n
n − 1

)n−1 ∫
M

|∇u|ndV

≤
(
1 + 2n

′−1|A(u)|n
n − 1

)n−1 (
1 − τ

∫
M

|u|ndV
)

. (4.9)

Therefore,
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(∫
�(u)

|∇w|ndV
) 1

n−1 ≤
(
1 + 2n

′−1|A(u)|n
n − 1

) (
1 − τ

∫
M

|u|ndV
) 1

n−1

=
(
1 + 2n

′−1

n − 1
2− 1

n−1 τ‖u‖nn
) (

1 − τ

∫
M

|u|ndV
) 1

n−1

=
(
1 + τ

n − 1

∫
M

|u|ndV
)(

1 − τ

∫
M

|u|ndV
) 1

n−1

≤
(
1 + τ

n − 1

∫
M

|u|ndV
)(

1 − τ

n − 1

∫
M

|u|ndV
)

≤ 1. (4.10)

To get the second inequality in (4.10), we use the following elementary inequality

(1 − a)q ≤ 1 − qa, 0 ≤ a ≤ 1, 0 < q ≤ 1.

By Theorem 1.1, there exists a constant C5 = C5(n, M) such that

1

|�(u)|
∫

�(u)

exp(β0|w|n/(n−1))dV ≤ C5. (4.11)

We have, by (4.8), (4.11) and (4.2),

I1 =
∫

�(u)

(
exp(β0|u|n/(n−1)) −

n−2∑
k=0

βk
0 |u|kn/(n−1)

k!

)
dV

≤
∫

�(u)

exp(β0|u|n/(n−1))dV =
∫

�(u)

exp(β0|u|n′
)dV

≤ eC4

∫
�(u)

exp(β0|w|n′
)dV

≤ eC4C5|�(u)|
≤ eC4C52

1
n−1 τ−1 (4.12)

This concludes the proof of the first statement of the theorem.
To prove the second statement, we employ the following Moser function sequence:

gε(x) = 1

ω
1/n
n

×
⎧⎨
⎩

(ln ε−1)(n−1)/n, on Bεδ;
(ln ε−1)−1/n ln(δ/ρ), on Bδ \ Bεδ;
0, on M \ Bδ,

where δ > 0 and ε ∈ (0, 1). We compute
∫
M

|gε|ndV = (ln ε−1)n−1

ωn−1

∫ εδ

0

∫
Sn−1

ρn−1 Jp(θ, ρ)dρdσ +
1

ωn−1 ln ε−1

∫ δ

εδ

∫
Sn−1

lnn(δ/ρ)ρn−1 Jp(θ, ρ)dρdσ ;
∫
M

|∇gε|ndV = ln ε−1

ωn−1

∫ δ

εδ

∫
Sn−1

Jp(θ, ρ)

ρ
dρdσ.

By the asymptotic expansion of Jp(θ, ρ) (see (2.2)), we have∫
M

|gε|ndV = O(εn(ln ε−1)n−1) + O

(
1

ln ε−1

)
;
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∫
M

|∇gε|ndV = 1 + O(ε2).

Thus

‖gε‖W 1,n
0 (M)

= 1 + O

(
1

ln ε−1

)
.

Let g̃ε = gε/‖gε‖W 1,n
0 (M)

. It follows that, for β > β0 = nω
1/(n−1)
n−1 ,

∫
M

(
exp(β |̃gε|n/(n−1)) −

n−2∑
k=0

βk |̃gε|kn/(n−1)

k!

)
dV

≥
∫
Bεδ

(
exp(β |̃gε|n/(n−1)) −

n−2∑
k=0

βk |̃gε|kn/(n−1)

k!

)
dV

=
[(

1

ε

) β

ω
1/(n−1)
n−1 eO(1) + O((ln ε−1)n−2)

] ∫ εδ

0

∫
Sn−1

ρn−1 Jp(θ, ρ)dρdσ

=
[(

1

ε

) β

ω
1/(n−1)
n−1 eO(1) + O((ln ε−1)n−2)

]
ωn−1ε

nδn(1 + O(ε2)) → +∞

as ε → 0+. This shows

sup
u∈W 1,n

0 (M)

∫
M

(
exp(β|u|n/(n−1)) −

n−2∑
k=0

βk |u|kn/(n−1)

k!

)
dV = +∞

if β > β0. The proof of Theorem 1.2 is thereby completed.
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