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Abstract We consider the nonlinear problem

(P)

{
I u = f (x, u) in �,

u = 0 on R
N\�

in an open bounded set � ⊂ R
N , where I is a nonlocal operator, which may be anisotropic

and may have varying order. We assume mild symmetry and monotonicity assumptions on
I,� and the nonlinearity f with respect to a fixed direction, say x1, and we show that any
nonnegative weak solution u of (P) is symmetric in x1. Moreover, we have the follow-
ing alternative: Either u ≡ 0 in �, or u is strictly decreasing in |x1|. The proof relies on
new maximum principles for antisymmetric supersolutions of an associated class of linear
problems.
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1 Introduction

In this work, we study the following class of nonlocal and semilinear Dirichlet problems in
a bounded open set � ⊂ R

N :

(P)

{
I u = f (x, u) in �;
u = 0 on R

N\�.
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274 S. Jarohs, T. Weth

Here, the nonlinearity f : �×R → R is ameasurable functionwith properties to be specified
later, and I is a nonlocal linear operator. Due to various applications in physics, biology
and finance with anomalous diffusion phenomena, nonlocal problems have gained enormous
attention recently. In particular, problem (P) has been studiedwith I = (−�)

α
2 , the fractional

Laplacian of order α ∈ (0, 2). In this case, special properties of the fractional Laplacian have
been used extensively to study existence, regularity and symmetry of solutions to (P). In
particular, some approaches rely on available Green function representations associated with
(−�)

α
2 , (see, e.g., [6,7,10–12,14]), whereas other techniques are based on a representation

of (−�)
α
2 as a Dirichlet-to-Neumann map (see, e.g., [8,9,17]). These useful features of the

fractional Laplacian are closely linked to its isotropy and its scaling laws. However, in the
modeling of anisotropic diffusion phenomena and of processes which do not exhibit similar
properties, it is necessary to study more general nonlocal operators I . In this spirit, general
classes of nonlocal operators have been considered, e.g., in [2,3,15,16,19,25].

In the present work, we consider (P) for a class of nonlocal operators I , which includes
the fractional Laplacian but also more general operators which may be anisotropic and may
have varying order. More precisely, the class of operators I in (P) is related to nonnegative
nonlocal bilinear forms of the type

J (u, v) = 1

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))J (x − y) dxdy (1.1)

with a measurable function J : R
N\{0} → [0,∞). We assume that J is even, i.e., J (−z) =

J (z) for z ∈ R
N\{0}. Moreover, we assume the following integral condition:

(J1)
∫

RN

min(1, |z|2) J (z) dz < ∞ and
∫

RN

J (z) dz = ∞.

By similar arguments as in the recent paper [16], we shall see in Sect. 2 below that this
assumption ensures thatJ is a closed and symmetric quadratic form in L2(�) with a dense
domain given by

D(�) :=
{
u : R

N → R measurable : J (u, u) < ∞ and u ≡ 0 on R
N\�

}
. (1.2)

Here, and in the following, we identify L2(�) with the space of functions u ∈ L2(RN ) with
u ≡ 0 on R

N\�. Consequently, J is the quadratic form of a unique self-adjoint operator I
on L2(�), which also satisfies

[I u](x) = lim
ε→0

∫
|y−x |≥ε

[u(x) − u(y)]J (x − y) dy for u ∈ C 2
c (�), x ∈ R

N

see Corollary 2.4 below. One may study solutions u of (P) in strong sense, requiring that u is
contained in the domain of the operator I . However, it is more natural to consider the weaker
notion of solutions given by the quadratic form J itself. More precisely, we call a function
u ∈ D(�) a solution of (P) if the integral

∫
�

f (x, u(x))ϕ(x) dx exists for all ϕ ∈ D(�) and

J (u, ϕ) =
∫
�

f (x, u(x))ϕ(x) dx for all ϕ ∈ D(�).

We note that the fractional Laplacian I := (−�)α/2 corresponds to the kernel J (z) =
cN ,α|z|−N−α with cN ,α = α(2 − α)π−N/22α−2 �( N+α

2 )

�(2− α
2 )
. Our paper is motivated by
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Symmetry via antisymmetric maximum principles 275

recent symmetry results for nonlinear equations involving the fractional Laplacian (see
[4,6,10,11,14,20]). More precisely, we present a general approach, based onmaximum prin-
ciples for antisymmetric functions, to investigate symmetry properties of bounded nonnega-
tive solutions of (P) in bounded Steiner symmetric open sets �. We claim that this approach
is simpler and more general than the techniques applied in the papers cited above. In partic-
ular, it also applies to anisotropic operators and operators of variable order. To state our main
symmetry result, we first introduce the following geometric assumptions on J and the set �.

(D) � ⊂ R
N is an open bounded set which is Steiner symmetric in x1, i.e., for every x ∈ �

and s ∈ [−1, 1], we have (sx1, x2, . . . , xN ) ∈ �.
(J2) The kernel J is strictly monotone in |x1|, i.e., for all z′ ∈ R

N−1, s, t ∈ R with |s| < |t |,
we have J (s, z′) > J (t, z′).

Note that (J2) in particular implies that J is positive on R
N\{0}. We may now state our main

symmetry result.

Theorem 1.1 Let (J1), (J2) and (D) be satisfied, and assume that the nonlinearity f has
the following properties.

(F1) f : � × R → R, (x, u) 	→ f (x, u) is a Carathéodory function such that for every
bounded set K ⊂ R, there exists L = L(K ) > 0 with

sup
x∈�

| f (x, u) − f (x, v)| ≤ L|u − v| for u, v ∈ K .

(F2) f is symmetric in x1 andmonotone in |x1|, i.e., for every u ∈ R, x ∈ � and s ∈ [−1, 1],
we have f (sx1, x2, . . . , xN , u) ≥ f (x, u).

Then, every nonnegative solution u ∈ L∞(�) ∩ D(�) of (P) is symmetric in x1. Moreover,
either u ≡ 0 in R

N , or u is strictly decreasing in |x1| and therefore satisfies
essinf

K
u > 0 for every compact set K ⊂ �. (1.3)

Here, and in the following, if � satisfies (D) and u : � → R is measurable, we say that u is

• symmetric in x1 if u(−x1, x ′) = u(x1, x ′) for almost every x = (x1, x ′) ∈ �.
• strictly decreasing in |x1| if for every λ ∈ R\{0} and every compact set K ⊂ {x ∈ � :

x1
λ

> 1} we have
essinf
x∈K

[
u(2λ − x1, x2, . . . , xN ) − u(x)

]
> 0.

Remark 1.2 We wish to single out a particular class of operators satisfying (J1) and (J2).
Let α, β ∈ (0, 2), c > 1 and consider a measurable map k : (0,∞) → (0,∞) such that

ρ−N

c
≤ k(ρ) ≤ cρ−N−α for ρ ≤ 1 and k(ρ) ≤ cρ−N−β for ρ > 1.

Suppose moreover that k is strictly decreasing on (0,∞), and let | · |� denote a norm on R
N

with the property that |(s, z′)|� < |(t, z′)|� for every s, t ∈ R with |s| < |t | and z′ ∈ R
N−1.

Then, the kernel
J : R

N\{0} → R, J (z) = k(|z|�) (1.4)

satisfies (J1) and (J2). As remarked before, the case where | · |� = | · | is the euclidean
norm on R

N and k(ρ) = cN ,αρ−N−α corresponds to the fractional Laplacian I = (−�)α/2.
The class defined here also includes operators of order varying between 0 and α ∈ (0, 2).
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276 S. Jarohs, T. Weth

In particular, zero-order operators are admissible. Moreover, the choice of non-Euclidean
norms | · |� leads to anisotropic operators. In particular, for 1 ≤ p < ∞, the norm

|x |� = |x |p :=
(

N∑
i=1

|xi |p
)1/p

for x ∈ R
N (1.5)

has the required properties. We also remark that the very recent work [19] of Kassmann and
Mimica shows that harmonic functions with respect to the operator in (1.4) are continuous (a
probabilistic definition of harmonicity is used in [19]). We therefore conjecture that in this
case, solutions u ∈ L∞(�) ∩D(�) of (P) are also continuous if we assume in addition that
f is locally bounded in u uniformly in x ∈ �. Up to now, this seems open.

As a direct consequence of Theorem 1.1, we have the following. Here, e j ∈ R
N denotes

the j-th coordinate vector for j = 1, . . . , N .

Corollary 1.3 Let J (z) = k(|z|p), where k is as in Remark 1.2, 1 ≤ p < ∞ and | · |p is
given in (1.5).

(i) Let � ⊂ R
N be Steiner symmetric in x1, . . . , xN , i.e., for every x ∈ �, j = 1, . . . , N

and s ∈ [0, 2], we have x−sx j e j ∈ �. Moreover, let f fulfill (F1) and be symmetric and
monotone in x1, . . . , xN , i.e., for every u ∈ R, x ∈ �, j = 1, . . . , N and s ∈ [0, 2], we
have f (x − sx j e j , u) ≥ f (x, u). Then, every nonnegative solution u ∈ L∞(�)∩D(�)

of (P) is symmetric in x1, . . . , xN . Moreover, either u ≡ 0 in R
N or u is strictly

decreasing in |x1|, . . . , |xN | and therefore satisfies (1.3).
(ii) If p = 2,� ⊂ R

N is a ball centered in 0 and f fulfills (F1), (F2) and is radial in x, i.e.,
f (x, u) = f (|x |e1, u) for x ∈ �, then every nonnegative solution u ∈ L∞(�) ∩D(�)

of (P) is radially symmetric. Moreover, either u ≡ 0 in R
N or u is strictly decreasing

in |x | and therefore satisfies (1.3).
In the special case where I = (−�)

α
2 , α ∈ (0, 2), Theorem 1.1 has been obtained by

the authors in [20, Corollary 1.2] as a corollary of result on asymptotic symmetry for the
corresponding parabolic problem. While some of the parabolic estimates in [20] are not
available for the class of nonlocal operators considered here, we will be able to formulate
elliptic counterparts of some of the tools from [20] in the present setting. Independently
from our work [20], a weaker variant of Theorem 1.1 in the special case I = (−�)

α
2 ,

restricted to strictly positive solutions, is proved in the very recent preprint [4, Theorem 1.2],
where also related problems for the fractional Laplacian with singular local linear terms are
considered. Corollary 1.3(ii) for I = (−�)

α
2 , α ∈ (0, 2) has been proved first by Birkner,

López-Mimbela and Wakolbinger [6] for I = (−�)
α
2 and a nonlinearity f = f (u) which

is nonnegative and increasing. In the very recent papers [10,14], Corollary 1.3(ii) is proved
for strictly positive solutions in the case I = (−�)

α
2 under different assumptions on f . The

proofs in these papers rely on the explicit form of the Green function associated with (−�)
α
2

in balls.
In order to explain the difference between considering nonnegative or positive solutions, we
point out that the conclusion (1.3) can be seen as a strong maximum principle for bounded
solutions of (P) in open sets satisfying (D), which has no counterpart in the context of the
corresponding Dirichlet problem

{−�u = f (x, u) in �;
u = 0 on ∂�.

(1.6)
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Symmetry via antisymmetric maximum principles 277

Note that we do not assume � to be connected in Theorem 1.1, but even in domains � ⊂
R
N the assumptions (D) and (F1), (F2) do not guarantee that nonnegative solutions of

(1.6) are either strictly positive or identically zero in �, see, e.g., [21] for examples for
nonnegative solutions of (1.6) with interior zeros. The positivity property (1.3) can be seen
as a consequence of the long-range nonlocal interaction enforced by (J2). Note that (J2) is
not satisfied for kernels of the form

z 	→ J (z) = 1Br (0)|z|−N−α with α ∈ (0, 2), r > 0. (1.7)

It is therefore natural to ask whether a result similar to Theorem 1.1 also holds for kernels of
the type (1.7), which vanish outside a compact set and therefore model short-range nonlocal
interaction. Related to this case, we have to follow result for a.e. positive solutions of (P) in
�.

Theorem 1.4 Let� ⊂ R
N satisfy (D), and let the even kernel J : R

N\{0} → [0,∞) satisfy
(J1) and

(J2)′ For all z′ ∈ R
N−1, s, t ∈ R with |s| ≤ |t | we have J (s, z′) ≥ J (t, z′). Moreover, there

is r0 > 0 such that

J (s, z′) > J (t, z′) for all z′ ∈ R
N−1 and s, t ∈ R, with |z′| ≤ r0 and |s| < |t | ≤ r0.

Furthermore, suppose that the nonlinearity satisfies (F1) and (F2). Then, every a.e. positive
solution u ∈ L∞(�) ∩ D(�) of (P) is symmetric in x1 and strictly decreasing in |x1| on �.
Consequently, it satisfies (1.3).

Note that the kernel class given by (1.7) satisfies (J1) and (J2)′. We recall that Gidas, Ni
and Nirenberg [18] proved the corresponding symmetry result for strictly positive solutions
of (1.6) under some restrictions on � which were then removed in [5]. These results rely on
the moving plane method which, in other variants, had already been introduced in [1,24]. For
nonlocal problems involving the fractional Laplacian, themoving planemethodwas used in a
stochastic framework by Birkner, López-Mimbela and Wakolbinger in the above-mentioned
paper [6]. Chen, Li andOu [11] used the explicit formof the inverse of the fractional Laplacian
to prove symmetry results for I = (−�)

α
2 and f (u) = u(N+α)/(N−α) in R

N . For this, they
developed a variant of the moving plane method for integral equations. Similar methods were
used in the above-mentioned papers [10,14].

The results on the present paper rely on a different variant of the moving plane method
which partly extends recent techniques of [13,20,23] and, independently, [4]. More pre-
cisely, we show that (J1) and (J2)—or, alternatively, (J2)′—are sufficient assumptions for
the bilinear form J to provide maximum principles for antisymmetric solutions of associ-
ated linear operator inequalities in weak form, see Sect. 3. Here, antisymmetry refers to a
reflection at a given hyperplane. Combining different (weak and strong) versions of these
maximum principles, we then develop a framework for the moving plane method for non-
negative solutions of (P), which are not necessarily strictly positive. The approach seems
more direct and more flexible than the ones in [10,11,14] since it does not depend on Green
function representations.

The paper is organized as follows. In Sect. 2, we collect useful properties of the nonlocal
bilinear forms which we consider. Section 3 is devoted to classes of linear problems related
to (P) and hyperplane reflections. In particular, we prove a small volume type maximum
principle and a strong maximum principle for antisymmetric supersolutions of these prob-
lems. In Sect. 4, we complete the proof of Theorem 1.1, and in Sect. 5, we complete the proof
of Theorem 1.4.
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278 S. Jarohs, T. Weth

2 Preliminaries

We fix some notation. For subsets D,U ⊂ R
N , we write dist(D,U ) := inf{|x − y| : x ∈

D, y ∈ U }. If D = {x} is a singleton, we write dist(x,U ) in place of dist({x},U ). For
U ⊂ R

N and r > 0, we consider Br (U ) := {x ∈ R
N : dist(x,U ) < r}, and we let, as

usual Br (x) = Br ({x}) be the open ball in R
N centered at x ∈ R

N with radius r > 0. For
any subset M ⊂ R

N , we denote by 1M : R
N → R the characteristic function of M and by

diam(M) the diameter of M . If M is measurable, |M | denotes the Lebesgue measure of M .
Moreover, if w : M → R is a function, we let w+ = max{w, 0} and w− = −min{w, 0}
denote the positive and negative part of w, respectively.

Throughout the remainder of the paper, we assume that J : R
N\{0} → [0,∞) is even

and satisfies (J1). We let J be the corresponding quadratic form defined in (1.1), and for
an open set � ⊂ R, we consider D(�) as defined in (1.2). It follows from (J1) that J is
positive on a set of positive measure. Thus, by [16, Lemma 2.7], we have D(�) ⊂ L2(�)

and

�1(�) := inf
u∈D(�)

J (u, u)

‖u‖2
L2(�)

> 0 for every open bounded set � ⊂ R
N , (2.1)

which amounts to a Poincaré–Friedrichs type inequality. We will need lower bounds for
�1(�) in the case where |�| is small. For this, we set

�1(r) := inf{�1(�) : � ⊂ R
N open, |�| = r} for r > 0.

Lemma 2.1 We have �1(r) → ∞ as r → 0.

Proof Let

Jc := {z ∈ R
N\{0} : J (z) ≥ c} and J c := {z ∈ R

N\{0} : J (z) < c}
for c ∈ [0,∞]. We also consider the decreasing rearrangement d : (0,∞) → [0,∞] of J
given by d(r) = sup{c ≥ 0 : |Jc| ≥ r}. We first note that

|Jd(r)| ≥ r for every r > 0 (2.2)

Indeed, this is obvious if d(r) = 0, since J0 = R
N\{0}. If d(r) > 0, we have |Jc| ≥ r

for every c < d(r) by definition, whereas |Jc| < ∞ for every c > 0 as a consequence of
the fact that J ∈ L1(RN\B1(0)) by (J1). Consequently, since Jd(r) = ⋂

c<d(r) Jc, we have|Jd(r)| = infc<d(r) |Jc| ≥ r. Next we claim that

�1(r) ≥
∫

Jd(r)

J (z) dz for r > 0. (2.3)

Indeed, let r > 0 and � ⊂ R
N be measurable with |�| = r . For u ∈ D(�), we have

J (u, u) = 1

2

∫

RN

∫

RN

(u(x) − u(y))2 J (x − y) dxdy

= 1

2

∫
�

∫
�

(u(x) − u(y))2 J (x − y) dxdy +
∫
�

u2(x)
∫

RN \�
J (x − y) dy dx

≥ inf
x∈�

( ∫

RN \�x

J (y) dy

)
‖u‖2L2(�)

(2.4)
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Symmetry via antisymmetric maximum principles 279

with �x := x + �. Let d := d(r). Since |Jd | ≥ r = |�| by (2.2), we have |Jd\�x | ≥
|�x\Jd |, and thus, for every x ∈ �,

∫

RN \�x

J (y) dy =
∫

RN \Jd

J (y) dy +
∫

Jd\�x

J (y) dy −
∫

�x\Jd
J (y) dy

≥
∫

Jd

J (y) dy +
(
|Jd\�x | − |�x\Jd |

)
d ≥

∫

Jd

J (y) dy.

Combining this with (2.4), we obtain (2.3), as claimed. As a consequence of the second
property in (J1), the decreasing rearrangement of J satisfies d(r) → ∞ as r → 0 and

∫

Jd(r)

J (y) dy → ∞ as r → 0.

Together with (2.3), this shows the claim. 
�

Proposition 2.2 Let � ⊂ R
N be open and bounded. Then,D(�) is a Hilbert space with the

scalar product J .

Proof We argue similarly as in the proof of [16, Lemma 2.3]. Let (un)n ⊂ D(�) be a Cauchy
sequence. By (2.1) and the completeness of L2(�), we have that un → u ∈ L2(�) for a
function u ∈ L2(�). Hence, there exists a subsequence such that unk → u almost everywhere
in � as k → ∞. By Fatou’s Lemma, we therefore have that

J (u, u) ≤ lim inf
k→∞ J (unk , unk ) ≤ sup

k∈N
J (unk , unk ) < ∞,

so that u ∈ D(�). Applying Fatou’s Lemma again, we find that

J (unk − u, unk − u) ≤ lim inf
j→∞ J (unk − un j , unk − uu j )

≤ sup
j≥k

J (unk − un j , unk − uu j ) for k ∈ N.

Since (un)n is a Cauchy sequence with respect to the scalar product J , it thus follows that
lim
k→∞ unk = u and therefore also lim

n→∞ un = u in D(�). This shows the completeness of

D(�). 
�

Proposition 2.3 (i) We have C 0,1
c (RN ) ⊂ D(RN ).

(ii) Let v ∈ C 2
c (RN ). Then, the principle value integral

[Iv](x) := P.V .

∫

RN

(v(x) − v(y))J (x − y) dy = lim
ε→0

∫
|x−y|≥ε

(v(x) − v(y))J (x − y) dy

(2.5)
exists for every x ∈ R

N . Moreover, Iv ∈ L∞(RN ), and for every bounded open set
� ⊂ R

N and every u ∈ D(�), we have

J (u, v) =
∫

RN

u(x)[Iv](x) dx .
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280 S. Jarohs, T. Weth

Proof (i) Let u ∈ C 0,1
c (RN ), and let K > 0, R > 2 be such that supp(u) ⊂ BR−2(0),

|u(x)| ≤ K and |u(x) − u(y)| ≤ K |x − y| for x, y ∈ R
N , x �= y.

Then, as a consequence of (J1),

2J (u, u) =
∫

BR(0)

∫
BR(0)

(u(x) − u(y))2 J (x − y) dxdy

+ 2
∫

BR(0)

u2(x)
∫

RN \BR(0)

J (x − y) dydx

≤ K 2
∫

BR(0)

∫
BR(0)

|x − y|2 J (x − y) dxdy

+ 2K 2
∫

BR−2(0)

∫

RN \BR(0)

J (x − y) dydx

≤ 2K 2|BR(0)|
⎛
⎜⎝

∫
B2R(0)

|z|2 J (z) dz +
∫

RN \B1(0)
J (z) dz

⎞
⎟⎠ < ∞

and thus u ∈ D(RN ).
(ii) Since v ∈ C 2

c (RN ), there exist a constant K > 0 such that

|2v(x) − v(x + z) − v(x − z)| ≤ K min(|z|2, 1) for all x, z ∈ R
N . (2.6)

Hence, by the first inequality in (J1), we have∫

RN

|2v(x) − v(x + z) − v(x − z)|J (z) dz ≤ K̃ := K
∫

RN

min(|z|2, 1) J (z) dz < ∞.

(2.7)
Put h(x, y) := (v(x) − v(y))J (x − y) for x, y ∈ R

N , x �= y. For every x ∈ R
N , ε > 0, we

then have, since J is even,∫
|y−x |≥ε

h(x, y) dy =
∫

|z|≥ε

[v(x) − v(x + z)]J (z) dz =
∫

|z|≥ε

[v(x) − v(x − z)]J (z) dz

= 1

2

∫
|z|≥ε

[2v(x) − v(x + z) − v(x − z)]J (z) dz. (2.8)

By (2.7) and Lebesgue’s theorem, we thus conclude the existence of the limit

[Iv](x) = lim
ε→0

∫
|z|≥ε

h(x, y) dy = 1

2

∫

RN

[2v(x) − v(x + z) − v(x − z)]J (z) dz,

whereas |[Iv](x)| ≤ K̃
2 for every x ∈ R

N . Hence, Iv ∈ L∞(RN ). Next, let � ⊂ R
N be

open and bounded and u ∈ D(�), so that also u ∈ L2(�). Since, by (2.7) and (2.8),

∣∣∣
∫

|y−x |≥ε

h(x, y) dy
∣∣∣ ≤ K̃

2
for every x ∈ R

N , ε > 0,
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Symmetry via antisymmetric maximum principles 281

Lebesgue’s Theorem implies that

J (u, v) = 1

2
lim
ε→0

∫
|x−y|≥ε

(u(x) − u(y))h(x, y) dx dy

= lim
ε→0

∫

RN

u(x)
∫

|y−x |≥ε

h(x, y) dydx =
∫

RN

u(x)

⎡
⎢⎣ lim

ε→0

∫
|y−x |≥ε

h(x, y) dy

⎤
⎥⎦ dx

=
∫

RN

u(x)[Iv](x) dx .

The proof is finished. 
�

Corollary 2.4 Let � ⊂ R
N be open and bounded. Then,J is a closed quadratic form with

dense form domain D(�) in L2(�). Consequently, J is the quadratic form of a unique
self-adjoint operator I in L2(�). Moreover, C2

c (�) is contained in the domain of I , and for
every v ∈ C 2

c (�), the function Iv ∈ L2(�) is a.e. given by (2.5).

Proof Since C 0,1
c (�) ⊂ L2(�) is dense, D(�) is a dense subset of L2(�) by Proposition

2.3(i). Moreover, the quadratic form J is closed in L2(�) as a consequence of (2.1) and
Lemma 2.2. Hence, J is the quadratic form of a unique self-adjoint operator I in L2(�)

(see, e.g., [22, Theorem VIII.15, p. 278]). Moreover, for every v ∈ C 2
c (�), u ∈ D(�),

we have |J (u, v)| ≤ |�|‖Iv‖L∞(�)‖u‖L2(�) by Proposition 2.3(ii). Consequently, v is con-
tained in the domain of I and satisfies J (u, v) = ∫

RN u[Iv] dx for every u ∈ D(�). From
Proposition 2.3(ii), it then follows that Iv is a.e. given by (2.5). 
�

Next, we wish to extend the definition of J (v, ϕ) to more general pairs of functions
(v, ϕ). In the following, for a measurable subset U ′ ⊂ R

N , we define H (U ′) as the space
of all functions v ∈ L2(RN ) such that

ρ(v,U ′) :=
∫
U ′

∫
U ′

(v(x) − v(y))2 J (x − y) dxdy < ∞. (2.9)

Note that D(RN ) ∩ L2(RN ) ⊂ H (U ′) for any measurable subset U ′ ⊂ R
N , and thus also

D(U ) ⊂ H (U ′) for any bounded open set U ⊂ R
N by (2.1).

Lemma 2.5 Let U ′ ⊂ R
N be an open set and v, ϕ ∈ H (U ′). Moreover, suppose that ϕ ≡ 0

on R
N\U for some subset U ⊂ U ′ with dist(U, R

N\U ′) > 0. Then,
∫

RN

∫

RN

|v(x) − v(y)||ϕ(x) − ϕ(y)|J (x − y) dxdy < ∞, (2.10)

and thus,

J (v, ϕ) := 1

2

∫

RN

∫

RN

(v(x) − v(y))(ϕ(x) − ϕ(y))J (x − y) dxdy

is well defined.
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282 S. Jarohs, T. Weth

Proof Since J satisfies (J1), we have K := ∫
RN \Br (0) J (z) dz < ∞ with r :=

dist(U, R
N\U ′) > 0. As a consequence,∫

RN

∫

RN

|v(x) − v(y)||ϕ(x) − ϕ(y)|J (x − y) dxdy

=
∫
U ′

∫
U ′

|v(x) − v(y)||ϕ(x) − ϕ(y)|J (x − y) dxdy

+ 2
∫
U

∫

RN \U ′

|v(x) − v(y)||ϕ(x)|J (x − y) dydx

≤ 1

2

[
ρ(v,U ′) + ρ(ϕ,U ′)

] +
∫
U

∫

RN \U ′

[
2
(|v(x)|2 + |v(y)|2) + |ϕ(x)|2

]
J (x − y) dydx

≤ 1

2

[
ρ(v,U ′) + ρ(ϕ,U ′)

] + K
(
4‖v‖2L2(RN )

+ ‖ϕ‖2L2(RN )

)
< ∞.


�
Lemma 2.6 If U ′ ⊂ R

N is open and v ∈ H (U ′), then v± ∈ H (U ′) and ρ(v±,U ′) ≤
ρ(v,U ′).

Proof We have v± ∈ L2(RN ) since v ∈ L2(RN ). Moreover, v+(x)v−(x) = 0 for x ∈ R
N ,

and thus,

ρ(v,U ′) = ρ(v+,U ′)+ρ(v−,U ′)−2
∫
U ′

∫
U ′

(v+(x)−v+(y))(v−(x)−v−(y))J (x−y) dxdy

= ρ(v+,U ′) + ρ(v−,U ′) + 2
∫
U ′

∫
U ′

[v+(x)v−(y) + v+(y)v−(x)]J (x − y) dxdy

≥ ρ(v+,U ′) + ρ(v−,U ′).

The claim follows. 
�
We close this section with a remark on assumption (J2).

Remark 2.7 Suppose that (J2) is satisfied. Then, for every fixed z′ ∈ R
N , the function

t 	→ J (t, z′) is strictly decreasing in |t | and therefore coincides a.e. on R with the function
t 	→ J̃ (t, z′) := lim

s→t−
J (s, z′). Hence, J and the function J̃ differ only on a set of measure

zero inR
N . Replacing J by J̃ if necessary, wemay therefore deduce from (J2) the symmetry

property
J (−t, z′) = J (t, z′) for every z′ ∈ R

N−1, t ∈ R. (2.11)

This will be used in the following section.

3 The linear problem associated with a hyperplane reflection

In the following, we consider a fixed open affine half space H ⊂ R
N , and we let Q : R

N →
R
N denote the reflection at ∂H . For the sake of brevity, we sometimes write x̄ in place of
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Symmetry via antisymmetric maximum principles 283

Q(x) for x ∈ R
N . A function v : R

N → R
N is called antisymmetric (with respect to Q) if

v(x̄) = −v(x) for x ∈ R
N . As before, we consider an even kernel J : R

N\{0} → [0,∞)

satisfying (J1). We also assume the following symmetry and monotonicity assumptions on
J :

J (x̄ − ȳ) = J (x − y) for all x, y ∈ R
N ; (3.1)

J (x − y) ≥ J (x − ȳ) for all x, y ∈ H. (3.2)

Remark 3.1 If (J1), (J2) and (2.11) are satisfied and

H = {x ∈ R
N : x1 > λ} or H = {x ∈ R

N : x1 < −λ}
for some λ ∈ R, then (3.1) and (3.2) hold. In this case, J even satisfies the following strict
variant of (3.2):

J (x − y) > J (x − ȳ) for all x, y ∈ H. (3.3)

We will need this property in Proposition 3.6 below.

Lemma 3.2 Let J satisfy (J1), (3.1) and (3.2). Moreover, let U ′ ⊂ R
N be an open set with

Q(U ′) = U ′, and let v ∈ H (U ′) be an antisymmetric function such that v ≥ 0 on H\U for
some open bounded set U ⊂ H with U ⊂ U ′. Then, the function w := 1H v− is contained
in D(U ) and satisfies

J (w,w) ≤ −J (v,w) (3.4)

Proof We first show that w ∈ H (U ′). Clearly, we have w ∈ L2(RN ), since v ∈ L2(RN ).
Moreover, by (3.1), the symmetry of U ′, the antisymmetry of v and (3.2), we have

ρ(v,U ′) =
∫

U ′∩H

∫
U ′∩H

(v(x) − v(y))2 J (x − y) dxdy

+
∫

U ′\H

∫
U ′\H

(v(x) − v(y))2 J (x − y) dxdy

+ 2
∫

U ′\H

∫
U ′∩H

(v(x) − v(y))2 J (x − y) dxdy

= 2
∫

U ′∩H

∫
U ′∩H

[
(v(x) − v(y))2 J (x − y) + (v(x) + v(y))2 J (x − ȳ)

]
dxdy

≥
∫

U ′∩H

∫
U ′∩H

[
(v(x) − v(y))2 J (x − y) + [(v(x) − v(y))2

+ (v(x) + v(y))2]J (x − ȳ)
]
dxdy

≥
∫

U ′∩H

∫
U ′∩H

[
(v(x) − v(y))2 J (x − y) + 2v2(x)J (x − ȳ)

]
dxdy

=
∫
U ′

∫
U ′

(1Hv(x) − 1Hv(y))2 J (x − y) dxdy = ρ(1H v,U ′) (3.5)

and thusρ(1H v,U ′) < ∞. Hence, 1H v ∈ H (U ′) and thus alsow ∈ H (U ′) byLemma2.6.
Since w ≡ 0 in R

N\U , the right-hand side of (3.4) is well defined and finite by Lemma 2.5.
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To show (3.4), we first note that

[w + v]w = [1Hv+ + 1
RN \Hv]1Hv− ≡ 0 on R

N

and therefore

[w(x) − w(y)]2 + [v(x) − v(y)][w(x) − w(y)]
= −

(
w(x)[w(y) + v(y)] + w(y)[w(x) + v(x)]

)

for x, y ∈ R
N . Using this identity in the following together with the antisymmetry of v, the

symmetry properties of J and the fact that w ≡ 0 on R
N\H , we find that

J (w,w) + J (v,w) = −
∫
H

∫

RN

w(x)[w(y) + v(y)]J (x − y) dydx

= −
∫
H

∫

RN

w(x)[1H (y)v+(y) + 1
RN \Hv(y)]J (x − y) dydx

= −
∫
H

∫
H

w(x)[v+(y)J (x − y) − v(y)J (x − ȳ)] dydx ≤ 0,

where in the last step, we used the fact that v+(y) ≥ v(y) and J (x − y) ≥ J (x − ȳ) ≥ 0 for
x, y ∈ H . Hence, (3.4) is true, and in particular, we have J (w,w) < ∞. Since w ≡ 0 on
R
N\U , it thus follows that w ∈ D(U ). 
�
In order to implement the moving plane method, we have to deal with the class of anti-

symmetric supersolutions of a class of linear problems. A related notion was introduced in
[20] in a parabolic setting related to the fractional Laplacian.

Definition 3.3 LetU ⊂ H be an open bounded set and let c ∈ L∞(U ). We call an antisym-
metric function v : R

N → R
N an antisymmetric supersolution of the problem

Iv = c(x)v in U, v ≡ 0 on H\U (3.6)

if v ∈ H (U ′) for some open bounded set U ′ ⊂ R
N with Q(U ′) = U ′ and U ⊂ U ′, v ≥ 0

on H\U and

J (u, ϕ) ≥
∫
U

c(x)u(x)ϕ(x) dx for all ϕ ∈ D(U ), ϕ ≥ 0. (3.7)

Remark 3.4 Assume (J1) and (3.1), and let � ⊂ R
N be an open bounded set such that

Q(� ∩ H) ⊂ �. Furthermore, let f : � × R → R be a Carathéodory function satisfying
(F1) and such that

f (x̄, τ ) ≥ f (x, τ ) for every τ ∈ R, x ∈ H ∩ �. (3.8)

If u ∈ D(�) is a nonnegative solution of (P), then v := u ◦ Q − u is an antisymmetric
supersolution of (3.6) with U := � ∩ H and c ∈ L∞(U ) defined by

c(x) =
{

f (x,u(x̄))− f (x,u(x))
v(x) if v(x) �= 0;

0 if v(x) = 0.

Indeed, since u ∈ D(�), we have v ∈ D(RN ) ∩ L2(RN ) and thus v ∈ H (U ′) for any
open set U ′ ⊂ R

N . Moreover, v ≥ 0 on H\U since u is nonnegative and u ≡ 0 on H\U .
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Symmetry via antisymmetric maximum principles 285

Furthermore, if ϕ ∈ D(U ), then ϕ ◦ Q − ϕ ∈ D(�) by the symmetry properties of J and
since Q(U ) ⊂ �. If, in addition, ϕ ≥ 0, then we have, using (3.1),

J (v, ϕ) = J (u ◦ Q − u, ϕ) = J (u, ϕ ◦ Q − ϕ) =
∫
�

f (x, u)[ϕ ◦ Q − ϕ] dx

=
∫

Q(U )

f (x, u(x))ϕ ◦ Q dx −
∫
U

f (x, u(x))ϕ dx

=
∫
U

[ f (x̄, u(x̄)) − f (x, u(x))]ϕ(x) dx ≥
∫
U

c(x)vϕ dx .

Here, (3.8) was used in the last step. The boundedness of c follows from (F1).

We now have all the tools to establish maximum principles for antisymmetric supersolu-
tions of (3.6).

Proposition 3.5 Assume that J satisfies (J1), (3.1) and (3.2), and let U ⊂ H be an open
bounded set. Let c ∈ L∞(U ) with ‖c+‖L∞(U ) < �1(U ), where �1(U ) is given in (2.1).

Then, every antisymmetric supersolution v of (3.6) in U satisfies v ≥ 0 a.e. in H.

Proof By Lemma 3.2, we have that w := 1Hv− ∈ D(U ) and J (w,w) ≤ −J (v,w).
Consequently,

�1(U )‖w‖2L2(U )
≤ J (w,w) ≤ −J (v,w) ≤ −

∫
U

c(x)v(x)w(x) dx

=
∫
U

c(x)w2(x) dx ≤ ‖c+‖L∞(U )‖w‖2L2(U )
.

Since ‖c+‖L∞(U ) < �1(U ) by assumption, we conclude that ‖w‖L2(U ) = 0 and hence v ≥ 0
a.e. in H . 
�

We note that a combination of Proposition 3.5 with Lemma 2.1 gives rise to an “antisym-
metric” small volume maximum principle which generalizes the available variants for the
fractional Laplacian, see [13, Proposition 3.3 and Corollary 3.4] and [23, Lemma 5.1]. Next,
we prove a strong maximum principle which requires the strict inequality (3.3).

Proposition 3.6 Assume that J satisfies (J1), (3.1) and (3.3). Moreover, let U ⊂ H be an
open bounded set and c ∈ L∞(U ). Furthermore, let v be an antisymmetric supersolution of
(3.6) such that v ≥ 0 a.e. in H. Then, either v ≡ 0 a.e. in R

N , or

essinf
K

v > 0 for every compact subset K ⊂ U.

Proof We assume that v �≡ 0 in R
N . For given x0 ∈ U , it then suffices to show that

essinf
Br (x0)

v > 0 for r > 0 sufficiently small. Since v �≡ 0 in R
N and v is antisymmetric with

v ≥ 0 in H , there exists a bounded set M ⊂ H of positive measure with x0 /∈ M and such
that

δ := inf
M

v > 0. (3.9)
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By Lemma 2.1, we may fix 0 < r < 1
4dist(x0, [RN\H ] ∪ M) such that �1(B2r (x0)) >

‖c‖L∞(U ). Next, we fix a function f ∈ C 2
c (RN ) such that 0 ≤ f ≤ 1 on R

N and

f (x) :=
{
1, for |x − x0| ≤ r,
0, for |x − x0| ≥ 2r.

Moreover, we define

w : R
N → R, w(x) := f (x) − f (x̄) + a

[
1M (x) − 1M (x̄))

]
,

where a > 0 will be fixed later.We also putU0 := B2r (x0) andU ′
0 := B3r (x0)∪Q(B3r (x0)).

Note that the function w is antisymmetric and satisfies

w ≡ 0 on H\(U0 ∪ M), w ≡ a on M. (3.10)

We claim that w ∈ H (U ′
0). Indeed, by Proposition 2.3(i), we have f − f ◦ Q ∈ D(RN ) ∩

L2(RN ) ⊂ H (U ′
0), whereas 1M −1Q(M) ∈ H (U ′

0) since M is bounded and [M ∪Q(M)]∩
U ′
0 = ∅.

Next, let ϕ ∈ D(U0), ϕ ≥ 0. By Proposition 2.3(ii), we have

J ( f, ϕ) ≤ C
∫
U0

ϕ(x) dx (3.11)

with C = C( f ) > 0 independent of ϕ. Since

f (x̄)ϕ(x) = 1M (x)ϕ(x) = 1Q(M)(x)ϕ(x) = 0 for every x ∈ R
N ,

we have

J (w, ϕ) = J ( f, ϕ) − J ( f ◦ Q, ϕ) + a
[
J (1M , ϕ) − J (1Q(M), ϕ)

]
≤ C

∫
U0

ϕ(x) dx +
∫
U0

∫
Q(U0)

ϕ(x) f (y)J (x − y) dydx

− a
[∫
U0

∫
M

ϕ(x)J (x − y) dydx −
∫
U0

∫
Q(M)

ϕ(x)J (x − y) dydx
]

≤
(
C + sup

x∈U0

∫
Q(U0)

J (x − y) dy
) ∫
U0

ϕ(x) dx

− a
∫
U0

ϕ(x)
∫
M

[J (x − y) − J (x − ȳ)] dydx

≤ Ca

∫
U0

ϕ(x) dx

with

Ca := C + sup
x∈U0

∫
Q(U0)

J (x − y) dy − a inf
x∈U0

∫
M

(J (x − y) − J (x − ȳ)) dy ∈ R
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Since U0 ⊂ H , (3.3) and the continuity of the function x 	→ ∫
M (J (x − y) − J (x − ȳ)) dy

on U0 imply that

inf
x∈U0

∫
M

(J (x − y) − J (x, ȳ)) dy > 0

Consequently, we may fix a > 0 sufficiently large such that Ca ≤ −‖c‖L∞(U0). Since
0 ≤ w ≤ 1 in U0, we then have

J (w, ϕ) ≤ −‖c‖L∞(U0)

∫
U0

ϕ(x) dx ≤
∫
U0

c(x)w(x)ϕ(x) dx . (3.12)

We now consider the function ṽ := v − δ
aw ∈ H (U ′

0), which by (3.9) and (3.10) satisfies
ṽ ≥ 0 on H\U0. Hence, by assumption and (3.12), ṽ is an antisymmetric supersolution of
the problem

I ṽ = c(x)ṽ in U0, ṽ ≡ 0 on H\U0 (3.13)

Since ‖c‖L∞(U0) < �1(U0), Proposition 3.5 implies that ṽ ≥ 0 a.e. inU0, so that v ≥ δ
aw =

δ
a > 0 a.e. in Br (x0). This ends the proof. 
�

4 Proof of the main symmetry result

In this section, we complete the proof of Theorem 1.1. So throughout this section, we assume
that J : R

N\{0} → [0,∞) is even and satisfies (J1) and (J2), � ⊂ R
N satisfies (D)

and the nonlinearity f satisfies (F1) and (F2). Moreover, we let u ∈ L∞(�) ∩ D(�) be a
nonnegative solution of (P). For λ ∈ R, we consider the open affine half space

Hλ :=
{ {x ∈ R

N : x1 > λ} if λ ≥ 0;
{x ∈ R

N : x1 < λ} if λ < 0.

Moreover, we let Qλ : R
N → R

N denote the reflection at ∂Hλ, i.e. Qλ(x) = (2λ − x1, x ′).
By Remark 2.7, we may assume without loss of generality that (2.11) holds. As noted in
Remark 3.1, J therefore satisfies the symmetry and monotonicity conditions (3.1) and (3.3)
with H replaced by Hλ. Let � := supx∈� x1. Setting �λ := Hλ ∩ � for λ ∈ R, we note that
Qλ(�λ) ⊂ � for all λ ∈ (−�, �) and Q0(�) = � as a consequence of assumption (D).
Then, for all λ ∈ (−�, �), Remark 3.4 implies that vλ := u ◦ Qλ − u ∈ D(RN ) ∩ L2(RN ) is
an antisymmetric supersolution of the problem

Iv = cλ(x)v in �λ, v ≡ 0 on Hλ\�λ (4.1)

with

cλ ∈ L∞(�λ) given by cλ(x) =
{

f (x,u(Qλ(x)))− f (x,u(x))
vλ(x) , vλ(x) �= 0;

0, vλ(x) = 0.

Note that, as a consequence of (F1) and since u ∈ L∞(�), we have

c∞ := sup
λ∈(−�,�)

‖cλ‖L∞(�λ) < ∞.

We now consider the statement

(Sλ) essinf
K

vλ > 0 for every compact subset K ⊂ �λ.
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Assuming that u �≡ 0 from now on, we will show (Sλ) for all λ ∈ (0, �). Since |�λ| → 0
as λ → �, Lemma 2.1 implies that there exists ε ∈ (0, �) such that �1(�λ) > c∞ for all
λ ∈ [ε, �). Applying Proposition 3.5, we thus find that

vλ ≥ 0 a.e. in Hλ for all λ ∈ [ε, �). (4.2)

We now show

Claim 1 If vλ ≥ 0 a.e. in Hλ for some λ ∈ (0, �), then (Sλ) holds.

To prove this, by Proposition 3.6, it suffices to show that vλ �≡ 0 in R
N . If, arguing by

contradiction, vλ ≡ 0 in R
N , then ∂Hλ is a symmetry hyperplane of u. Since λ ∈ (0, �) and

u ≡ 0 in R
N\�, we then have u ≡ 0 in the nonempty set �−�+2λ. Setting λ′ = −� + λ, we

thus infer that vλ′ ≡ 0 in �λ′ . Consequently, vλ′ ≡ 0 in R
N by Proposition 3.6. Thus, u has

the two different parallel symmetry hyperplanes ∂Hλ and ∂Hλ′ . Since u vanishes outside a
bounded set, this implies that u ≡ 0, which is a contradiction. Thus, Claim 1 is proved.

Next, we show

Claim 2 If (Sλ) holds for some λ ∈ (0, �), then there is δ ∈ (0, λ) such that (Sμ) holds for
all μ ∈ (λ − δ, λ).

To prove this, suppose that (Sλ) holds for some λ ∈ (0, �). Using Lemma 2.1, we fix
s ∈ (0, |�λ|) such that �1(s) > c∞, which implies that �1(U ) > c∞ for all open sets
U ⊂ R

N with |U | ≤ s. Since � is bounded, we may also fix δ0 > 0 such that

|�μ\�μ+δ0 | < s/2 for all μ ≥ 0.

By Lusin’s Theorem, there exists a compact subset K ⊂ � such that |�\K | < s/4 and such
that the restriction u|K is continuous. For μ ≥ 0, we now consider the compact set

Kμ := �μ+δ0 ∩ K ∩ Qμ(K ) ⊂ K ∩ �μ

and the open set Uμ := �μ\Kμ. Note that

|Uμ|≤|�μ\�μ+δ0 |+|�μ\K |+|�μ\Qμ(K )| ≤ s

2
+ 2|�\K | < s for μ ≥ 0. (4.3)

As a consequence, for 0 ≤ μ ≤ λ, we have |Kμ| > |�μ| − s ≥ |�λ| − s > 0, and thus,
Kμ �= ∅. Property (Sλ) and the continuity of u|K imply that minKλ vλ > 0. Thus, again by
the continuity of u|K , there exists δ ∈ (0,min{λ, δ0}) such that

min
Kμ

vμ > 0 for all μ ∈ [λ − δ, λ].

Consequently, for μ ∈ (λ − δ, λ), the function vμ is an antisymmetric supersolution of the
problem

Iv = cμ(x)v in Uμ, v ≡ 0 on Hμ\Uμ,

whereas �1(Uμ) > c∞ by (4.3) and the choice of s. Hence, vμ ≥ 0 in Hμ by Proposition
3.5, and thus, (Sμ) holds by Claim 1. This proves Claim 2.

To finish the proof, we consider

λ0 := inf{λ̃ ∈ (0, �) : (Sλ) holds for all λ ∈ (λ̃, �)} ∈ [0, �).
We then have vλ0 ≥ 0 in Hλ0 . Hence, Claim 1 and Claim 2 imply that λ0 = 0. Since the
procedure can be repeated in the same way starting from −�, we find that v0 ≡ 0. Hence,
the function u has the asserted symmetry and monotonicity properties.
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It remains to show (1.3). So let K ⊂ � be compact. Replacing K by K ∪ Q0(K ) if
necessary, we may assume that K is symmetric with respect to Q0. Let K ′ := {x ∈ K :
x1 ≤ 0}. Since for λ > 0 sufficiently small Qλ(K ′) is a compact subset of �λ, the property
(Sλ) and the symmetry of u then imply that

essinf
K

u = essinf
K ′ u ≥ essinf

Qλ(K ′)
vλ > 0,

as claimed in (1.3).

5 Proof of a variant symmetry result

In this section, we prove Theorem 1.4, which is concerned with the class of even kernel
functions satisfying (J2)′ in place of (J2). Throughout this section, we consider a symmetric
kernel J : R

N\{0} → [0,∞) satisfying (J1). We fix an open affine half space H ⊂ R
N , and

we consider the notation of Sect. 3. Moreover, we assume the symmetry and monotonicity
assumptions (3.1) and (3.2), so that Lemma 3.2 and Proposition 3.5 are available. In order to
derive a variant of the strong maximum principle given in Proposition 3.6, we introduce the
following strict monotonicity condition:

There exists r0>0 such that J (x − y)> J (x − ȳ) for all x, y∈H with |x − y| ≤ r0 (5.1)

We then have the following.

Proposition 5.1 Assume that J satisfies (J1), (3.1), (3.2) and (5.1). Moreover, let U ⊂ H
be a subdomain and c ∈ L∞(U ). Furthermore, let v be an antisymmetric supersolution of
(3.6) such that v ≥ 0 a.e. in H.

Then, either v ≡ 0 a.e. in a neighborhood of U, or

essinf
K

v > 0 for every compact subset K ⊂ U.

We stress that in contrast to Proposition 3.6, we require connectedness of U here.

Proof Let W denote the set of points y ∈ U such that essinf Br (y) v > 0 for r > 0
sufficiently small, and let r0 > 0 be as in (5.1). We claim the following.

If x0 ∈ U is such that v �≡ 0 in Br0
2
(x0), then x0 ∈ W. (5.2)

To prove this, let x0 ∈ U be such that v �≡ 0 in Br0
2
(x0). Then, there exists a bounded set

M ⊂ H ∩ Br0
2
(x0) of positive measure with x0 /∈ M and such that

δ := inf
M

v > 0 (5.3)

By Lemma 2.1, we may fix 0 < r < 1
4 min{r0 , dist(x0, [RN\H ] ∪ M)} such that

�1(B2r (x0)) > ‖c‖L∞(U ). Next, we put U0 := B2r (x0) and U ′
0 := B3r (x0) ∪ Q(B3r (x0)).

Moreover, we define the functions f ∈ C2
c (R

N ) and w ∈ H (U ′
0), depending on a > 0, as

in the proof of Proposition 3.6. As noted there, w is antisymmetric and satisfies

w ≡ 0 on H\(U0 ∪ M), w ≡ a on M. (5.4)

As in the proof of Proposition 3.6, we also see that

J (w, ϕ) ≤ Ca

∫
U0

ϕ(x) dx for all ϕ ∈ D(U0), ϕ ≥ 0
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with

Ca := C + sup
x∈U0

∫
Q(U0)

J (x − y) dy − a inf
x∈U0

∫
M

(J (x − y) − J (x − ȳ)) dy

Since U 0 ⊂ H ∩ Br0
2
(x0) and M ⊂ H ∩ Br0

2
(x0), (5.1) and the continuity of the function

x 	→ ∫
M (J (x − y) − J (x − ȳ)) dy on U 0 imply that

inf
x∈U0

∫
M

(J (x − y) − J (x, ȳ)) dy > 0

Hence, we may proceed precisely as in the proof of Proposition 3.6 to prove that v ≥ δ
a > 0

a.e. in Br (x0) for a > 0 sufficiently large, so that x0 ∈ W . Hence, (5.2) is true.
From (5.2), it immediately follows that W is both open and closed in U . Moreover, if

v �≡ 0 in {x ∈ H : dist(x,U ) < r0
2 }, then W is nonempty and therefore W = U by the

connectedness of U . This ends the proof. 
�

Next, we complete the proof of Theorem 1.4. So, throughout the remainder of this section,
we assume that J : R

N\{0} → [0,∞) is even and satisfies (J1) and (J2)′,� ⊂ R
N satisfies

(D) and the nonlinearity f satisfies (F1) and (F2). Moreover, we let u ∈ L∞(�) ∩ D(�)

denote an a.e. positive solution of (P). For λ ∈ R, we let Hλ, Qλ, �λ, cλ and vλ be defined
as in Sect. 4, and again, we put � := supx∈� x1. As a consequence of (J1) and (J2)′, we
may assume that J satisfies (3.1) (3.2) and (5.1) with H replaced by Hλ (the argument of
Remark 3.1 still applies). As in Sect. 4, we then consider the statement

(Sλ) essinf
K

vλ > 0 for every compact subset K ⊂ �λ.

We wish to show (Sλ) for all λ ∈ (0, �). As in Sect. 4, we find ε ∈ (0, �) such that

vλ ≥ 0 a.e. in Hλ for all λ ∈ [ε, �). (5.5)

We now show

Claim 1 If vλ ≥ 0 a.e. in Hλ for some λ ∈ (0, �), then (Sλ) holds.

To prove this, we argue by contradiction. If (Sλ) does not hold, then, by Proposition 5.1, there
exists a connected component �′ of �λ and a neighborhood N of �′ such that vλ ≡ 0 in N .
However, since λ ∈ (0, �), the set Ñ := Qλ(N\�) ∩ � has positive measure and vλ ≡ 0 in
Ñ by the antisymmetry of vλ. However, v ≡ −u on Ñ , so u ≡ 0 a.e. on Ñ , contrary to the
assumption that u > 0 a.e. in �. Thus, Claim 1 is proved.

Precisely as in Sect. 4, we may now show

Claim 2 If (Sλ) holds for some λ ∈ (0, �), then there is δ ∈ (0, λ) such that (Sμ) holds for
all μ ∈ (λ − δ, λ).

Moreover, based on (5.5), Claim 1 and Claim 2, we may now finish the proof of Theorem 1.4
precisely as in the end of Sect. 4.
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