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Abstract In this paper, we study regular prism tilings and corresponding least dense hyper-
ball coverings in n-dimensional hyperbolic space Hn (n = 3, 4, 5) by congruent hyperballs.
We determine the densities of the least dense hyperball coverings, we formulate two conjec-
tures for the candidates of the least dense hyperball coverings by congruent hyperballs in 3-
and 5-dimensional hyperbolic spaces.
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1 Introduction

Finding the densest (not necessarily periodic) ball packings in 3-dimensional Euclidean
space is known as the Kepler Conjecture:No packing of spheres of equal radius has a density
greater than the face-centred cubic packing. This density can be realized by hexagonal layers
(in continuum many ways). This conjecture was first published by Johannes Kepler in his
monograph The Six-Cornered Snowflake (1611). In 1953, László Fejes Tóth reduced the
Kepler conjecture to an enormous calculation procedure that involved specific cases, and
later suggested that computers may be helpful for solving the problem. In this way, the above
four hundred year mathematical problem has finally been solved by Thomas Hales [9]. He
had proved that the Kepler’s conjecture from 1611 was correct.

Ball, horoball and hyperball packings of hyperbolic spaces are extensively discussed in
the literature [2,4,5,8,13–15,18,22] and [20]; however, there remain several open problems.
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236 J. Szirmai

Moreover, there are few results in the literature about the ball, horoball and hyperball cover-
ings.

Ball (sphere) packing and covering problems can be generalized to the other 3-dimensional
Thurston geometries, but a difficult problem is—similarly to hyperbolic space—a suitable
definition of packing density. We have an extensive program in finding globally and locally
optimal ball packings and least dense ball coverings in the eight Thurston geometries arising
from Thurston’s geometrization conjecture (e.g. [19,21,24,25]).

In this paper, we consider the hyperball covering problem in n-dimensional hyperbolic
space.

In the hyperbolic space H
n(n ≥ 3), a regular prism is the convex hull of two congruent

(n − 1) dimensional regular polyhedra in ultraparallel hyperplanes, (i.e. (n − 1)-planes),
related by “translation” along the line joining their centres that is the common perpendicular
of the two hyperplanes. Each vertex of such a tiling is either proper point or every vertex lies
on the absolute quadric ofHn , in which case the prism tiling is called fully asymptotic. Thus,
the prism is a polyhedron having at each vertex one (n − 1)-dimensional regular polytope
and some (n − 1)-dimensional prisms, meeting at this vertex.

From the definition of regular prism tilings and complete Coxeter orthoschemes of degree
d = 1 (see next section), it follows that a prism tiling exists in n-dimensional hyperbolic
space H

n, (n ≥ 3) if and only if there exists an appropriate complete Coxeter orthoscheme
of degree d = 1.

The complete Coxeter orthoschemes were classified by Im Hof in [10] by generalizing
the method of Coxeter and Böhm [6]. He showed that they exist only for dimensions ≤9.
From this classification, it follows that the complete orthoschemes of degree d = 1 exist up
to 5 dimensions.

The formulas for the hyperbolic covolumes of the considered n-dimensional Coxeter
tilings are determined in [1], [7] and [11]. Therefore, it is possible to compute the covolumes
of the regular prisms and the densities of the corresponding ball, horoball and hyperball
packings.

In [16] and [17], we studied regular prism tilings and corresponding optimal hyperball
packings in n-dimensional hyperbolic space H

n (n = 3, 4) and determined their metric
data and their densities. In [23], we extended the method developed in the above papers to
5-dimensional regular prism tilings.

Vermes [28] proved that in the hyperbolic plane H
2 the universal upper bound of the

hypercycle packing density is 3
π
. Recently, (to the author’s best knowledge) the candidates

for the densest hyperball (hypersphere) packings in 3,4 and 5-dimensional hyperbolic space
H
n are derived from the above regular prism tilings.

In H
2, the universal lower bound of the hypercycle covering density is

√
12
π

determined
by Vermes in [29], but in higher dimensions there is no result on hyperball coverings and
covering densities.

In this paper, we study the n-dimensional (n ≥ 3) hyperbolic regular prism honeycombs
(see [16,17,27]) and their corresponding coverings by congruent hyperballs, and we deter-
mine their least dense covering densities. Finally, we formulate two conjectures for the candi-
dates of the least dense hyperball coverings by congruent hyperballs in 3- and 5-dimensional
hyperbolic spaces.
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The least dense hyperball covering of regular prism tilings 237

2 The projective model and the complete orthoschemes

For Hn , we use the projective model in the Lorentz space E
1,n of signature (1, n), i.e. E1,n

denotes the real vector spaceVn+1 equippedwith the bilinear formof signature (1, n) 〈x, y〉 =
−x0y0 + x1y1 + · · · + xn yn where the nonzero vectors x = (x0, x1, . . . , xn) ∈ Vn+1 and
y = (y0, y1, . . . , yn) ∈ Vn+1, are determined up to real factors, for representing points of
Pn(R). Then H

n can be interpreted as the interior of the quadric Q = {[x] ∈ Pn |〈x, x〉 =
0} =: ∂Hn in the real projective space Pn(Vn+1, V n+1).

The points of the boundary ∂Hn in Pn are called points at infinity of Hn , the points lying
outside ∂Hn are said to be outer points ofHn relative to Q. Let P([x]) ∈ Pn , a point [y] ∈ Pn

is said to be conjugate to [x] relative to Q if 〈x, y〉 = 0 holds. The set of all points which are
conjugate to P([x]) form a projective (polar) hyperplane pol(P) := {[y] ∈ Pn |〈x, y〉 = 0}.
Thus the quadric Q induces a bijection (linear polarity Vn+1 → V n+1)) from the points of
Pn onto its hyperplanes.

The point X [x] and the hyperplane α[a] are called incident if xa = 0 (x ∈ Vn+1 \ {0},
a ∈ V n+1 \ {0}).
Definition 2.1 An orthoscheme S in H

n(2 ≤ n ∈ N) is a simplex bounded by n + 1
hyperplanes H0, . . . , Hn such that (see [3,11]) Hi⊥H j , for j �= i − 1, i, i + 1.

The orthoschemes of degree d in H
n are bounded by n + d + 1 hyperplanes

H0, H1, . . . , Hn+d such that Hi ⊥ H j for j �= i −1, i, i +1, where, for d = 2, indices are
taken modulo n+3. For a usual orthoscheme we denote the (n+1)-hyperface opposite to the
vertex Ai by Hi (0 ≤ i ≤ n). An orthoscheme S has n dihedral angles which are not right
angles. Let αi j denote the dihedral angle of S between the faces Hi and H j . Then we have
αi j = π

2 , if 0 ≤ i < j − 1 ≤ n. The n remaining dihedral angles αi,i+1, (0 ≤ i ≤ n − 1)
are called the essential angles of S. Geometrically, complete orthoschemes of degree d can
be described as follows:

1. For d = 0, they coincide with the class of classical orthoschemes introduced by Schläfli
(see Definition 2.1). The initial and final vertices, A0 and An of the orthogonal edge-path
Ai Ai+1, i = 0, . . . , n − 1, are called principal vertices of the orthoscheme.

2. A complete orthoscheme of degree d = 1 can be interpreted as an orthoscheme with one
outer principal vertex, say An , which is truncated by its polar plane pol(An) (see Figs. 1,
3). In this case, the orthoscheme is called simply truncated with outer vertex An .

3. A complete orthoscheme of degree d = 2 can be interpreted as an orthoscheme with two
outer principal vertices, A0, An , which is truncated by its polar hyperplanes pol(A0) and
pol(An). In this case, the orthoscheme is called doubly truncated. We distinguish two
different types of orthoschemes but I will not enter into the details (see [11]).

A n-dimensional tiling P (or solid tessellation, honeycomb) is an infinite set of congruent
polyhedra (polytopes) that fit together to fill all space (Hn(n � 2)) exactly once, so that
every face of each polyhedron (polytope) belongs to another polyhedron as well. At present,
the cells are congruent orthoschemes. A tiling with orthoschemes exists if and only if each
dihedral angle of a tile is submultiple of 2π (in the hyperbolic plane, the zero angle is also
possible).

Another approach to describing tilings involves the analysis of their symmetry groups. If
P is such a simplex tiling, then any motion taking one cell into another maps the entire tiling
onto itself. The symmetry group of this tiling is denoted by SymP . Therefore, the simplex is
a fundamental domain of the group SymP generated by reflections in its (n−1)-dimensional
hyperfaces.

123



238 J. Szirmai

The scheme of an orthoscheme S is aweighted graph (characterizing S ⊂ H
n up to congru-

ence) in which the nodes, numbered by 0, 1, . . . , n correspond to the bounding hyperplanes
of S. Two nodes are joined by an edge if the corresponding hyperplanes are not orthogonal.

k k k k1 2 n-1 n

For the schemes of complete Coxeter orthoschemes S ⊂ H
n , we adopt the usual conventions

and sometimes even use them in the Coxeter case: If two nodes are related by the weight
cos π

p then they are joined by a (p − 2)-fold line for p = 3, 4 and by a single line marked
p for p ≥ 5. In the hyperbolic case, if two bounding hyperplanes of S are parallel, then the
corresponding nodes are joined by a line marked ∞. If they are divergent, then their nodes
are joined by a dotted line.

The ordered set [k1, . . . , kn−1, kn] is said to be the Coxeter–Schläfli symbol of the simplex
tiling P generated by S. To every scheme, there is a corresponding symmetric matrix (ci j )
of size (n+1)× (n+1)where cii = 1 and, for i �= j ∈ {0, 1, 2, . . . , n}, ci j equals − cos π

ki j
with all angles between the facets i , j of S.

For example, (ci j ) below is the so-called Coxeter–Schläfli matrix of the orthoscheme S in
5-dimensional hyperbolic space H

5 with parameters (nodes) k1 = p, k2 = q, k3 = r, k4 =
s, k5 = t :

(ci j ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − cos π
p 0 0 0 0

− cos π
p 1 − cos π

q 0 0 0
0 − cos π

q 1 − cos π
r 0 0

0 0 − cos π
r 1 − cos π

s 0
0 0 0 − cos π

s 1 − cos π
t

0 0 0 0 − cos π
t 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.1)

3 Regular prism tilings and their least dense hyperball coverings in H
n

3.1 The structure of n-dimensional regular prism tilings

In hyperbolic space Hn (n ≥ 3), a regular prism is the convex hull of two congruent (n − 1)
dimensional regular polyhedra in ultraparallel hyperplanes, i.e. (n − 1)-planes, related by
“translation” along the line joining their centres that is the common perpendicular of the two
hyperplanes. The two regular (n − 1)-faces of a regular prism are called cover-polytopes,
and its other (n − 1)-dimensional facets are called side-prisms.

In this section, we consider the n-dimensional regular prism tilings. We show that their
existence is equivalent to the existence of the complete Coxeter orthoschemes of degree
d = 1 that are characterized by their Coxeter–Schläfli symbols (see Fig. 1a, b).

Remark 3.1 In H
3 (see [16]), the corresponding prisms are called regular p-gonal prisms

(p ≥ 3) in which the regular polyhedra (the cover faces) are regular p-gons, and the side-
faces are rectangles. Figure 1b shows a part of such a prismwhere A2 is the centre of a regular
p-gonal face, A1 is a midpoint of a side of this face, and A0 is one vertex (end) of that side.
Let B0, B1, B2 be the corresponding points of the other p-gonal face of the prism.

The complete Coxeter orthoschemes were classified by ImHof in [10] by generalizing the
method of Coxeter and Böhm, who showed that they exist only for dimensions ≤ 9. From
this classification, it follows that the complete orthoschemes of degree d = 1 exist up to 5
dimensions.
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The least dense hyperball covering of regular prism tilings 239

a b

Fig. 1 a A 3-dimensional complete orthoscheme of degree d = 1 (simple frustum orthoscheme) with outer
vertex A3. This orthoscheme is truncated by its polar planeπ = pol(A3).bApart of a regular prism containing
two congruent adjacent simple frustum orthoschemes

1. In 3-dimensional hyperbolic space H
3, the regular p-gonal non-uniform prism tilings

Tpqr with parameters [p, q, r ] are the following:
(a) The vertex figure is either a tetrahedron, octahedron or icosahedron: [q, r ] =

[3, 3], [3, 4], [3, 5] �⇒ p > 6,
(b) The vertex figure is a cube: [q, r ] = [4, 3], �⇒ p > 4,
(c) The vertex figure is a dodecahedron: [q, r ] = [5, 3], �⇒ p > 3.

Remark 3.2 In 3-dimensional hyperbolic space, there are 3 infinite series of totally asymp-
totic regular prism tilings. We do not consider these honeycombs in this paper because
hyperball coverings cannot be derived from them.

2. The non-uniform compact prism tilings Tpqrs in H
4 with parameters [p, q, r, s] are the

following:

(a) [3, 5, 3, 3] : the vertex figure of the tiling is the “120-cell”: [q, r, s] = [5, 3, 3] and
the cover faces are icosahedra [p, q, r ] = [3, 5, 3].

(b) [5, 3, 4, 3] : the vertex figure of the tiling is “24-cell”: [q, r, s] = [3, 4, 3] and the
cover faces are dodecahedra [p, q, r ] = [5, 3, 4].

Remark 3.3 The uniform compact tiling [4, 3, 3, 5] in H
4 is the regular cubic honeycomb.

Here the prism is a cube and this tiling is not related to any hyperball packing. Thus, we do
not consider it in this work.

3. The non-uniform compact prism tilings Tpqrst in H
5 with parameters [p, q, r, s, t] are

the following:

(a) [5, 3, 3, 3, 3] : the vertex figure of the tiling is: [q, r, s, t] = [3, 3, 3, 3] and the cover
faces are [p, q, r, s] = [5, 3, 3, 3].

(b) [5, 3, 3, 4, 3] : the vertex figure of the tiling is: [q, r, s, t] = [3, 3, 4, 3] and the cover
faces are [p, q, r, s] = [5, 3, 3, 4].

(c) [5, 3, 3, 3, 4] : the vertex figure of the tiling is: [q, r, s, t] = [3, 3, 3, 4] and the cover
faces are [p, q, r, s] = [5, 3, 3, 3].

4. There is no regular prism tiling in hyperbolic space Hn when (n ≥ 6).

Figure 2 shows a part of a 5-prism [p, q, r, s, t] where A5 is the outer vertex of the
orthoscheme, A4 is the centre of a cover-polyhedron, A3 is the centre of a 3-face of the
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240 J. Szirmai

Fig. 2 A 5-dimensional complete orthoscheme of degree d = 1 (simple frustum orthoscheme) with outer
vertex A5. This orthoscheme is truncated by its polar plane π = pol(A5). The points P0P1P2P3P4 lie on the
plane π and form a 4-dimensional orthoscheme

cover-polyhedron, A2 is the midpoint of its 2-face, A1 is a midpoint of an edge of this
face, and A0 is one vertex (end) of that edge (A0A1A2A3A4 is a 4-dimensional hyperbolic
orthoscheme see Fig. 2).

Let B0, B1, B2, B3, B4 be the corresponding points of the other cover-polytope of the
regular 5-prism. The midpoints of the edges Ai Bi (i ∈ {0, 1, 2, 3, 4} form a hyperplane
denoted by π . The foot points Pi (i ∈ {0, 1, 2, 3, 4}) of the perpendiculars dropped from the
points Ai on the plane π form the characteristic (or fundamental) simplex P0P1P2P3P4
with Coxeter–Schläfli symbol [p, q, r, s] (see Fig. 2) where π is the polar hyperplane
of A5.

As in the 3-dimensional case, in n-dimensional hyperbolic space H
n (n = 4, 5), it can

be seen that S = A0A1A2, . . . , An P0P1P2, . . . , Pn is an complete orthoscheme with
degree d = 1 where An is a outer vertex of H

n and the points P0, P1, P2, . . . , Pn−1

lie on its polar hyperplane π (see Fig. 2 in 5-dimensional hyperbolic space). The corre-
sponding regular prism P can be obtained by reflections on facets of S containing seg-
ment An−1Pn−1. We consider the images of P under reflections on its side facets (side-
prisms). The union of these n-dimensional regular prisms (having the commonπ hyperplane)
forms an infinite polyhedron denoted by F . F and its images under reflections on its “cover
facets” fill hyperbolic space H

n without overlap and generate n-dimensional regular prism
tilings T .

From the definition of the regular prism tilings and complete orthoschemes of degree
d = 1, it follows that a regular prism tiling T exists in n-dimensional hyperbolic space Hn

where n ≥ 3 if and only if there exists a complete Coxeter orthoscheme of degree d = 1
with two divergent faces.

On the other hand, if an n-dimensional regular prism tiling [k1, k2, . . . , kn] exists, then it
has to satisfy the following two requirements:
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The least dense hyperball covering of regular prism tilings 241

1. The orthogonal projection of the cover-polytope on the hyperbolic hyperplane π is a
regular Coxeter honeycomb with proper vertices and centres. Using the classical nota-
tion of the tessellations, these honeycombs are given by their Coxeter–Schläfli symbols
[k1, . . . , kn−1].

2. The vertex figures about a vertex of such a prism tiling forms an n-dimensional regular
polyhedron.

3.2 Volumes of the n-dimensional Coxeter orthoschemes

1. 3-dimensional hyperbolic space H3:
Our polyhedron A0A1A2P0P1P2 is a simple frustum orthoscheme with outer vertex A3

(see Fig. 1) whose volume can be calculated by the following theorem of Kellerhals [11]:

Theorem 3.4 The volume of a three-dimensional hyperbolic complete orthoscheme (except
Lambert cube cases) S is expressed with the essential angles α01, α12, α23, (0 ≤ αi j ≤ π

2 )

(Fig. 1) in the following form:

Vol3(S) = 1

4

{
L(α01 + θ) − L(α01 − θ) + L

(π

2
+ α12 − θ

)

+L
(π

2
− α12 − θ

)
+ L(α23 + θ) − L(α23 − θ) + 2L

(π

2
− θ

)}
,

where θ ∈ [0, π
2 ) is defined by the following formula:

tan(θ) =
√
cos2 α12 − sin2 α01 sin2 α23

cosα01 cosα23

and where L(x) := −
x∫
0
log |2 sin t |dt denotes the Lobachevsky function.

For our prism tilings Tpqr , we have: α01 = π
p , α12 = π

q , α23 = π
r .

2. 4-dimensional hyperbolic space H4:
The volumes Vol4(Spqrs) were determined by Kellerhals in [11]:

Vol4(S3533) = 41π2

1,0800
≈ 0.03746794, Vol4(S5343) = 17π2

4,320
≈ 0.03883872. (3.1)

3. 5-dimensional hyperbolic space H5:
Kellerhals in [12] developed a procedure to determine the volumes of 5-dimensional
hyperbolic orthoschemes, moreover, the volumes of the complete orthoschemes Spqrst

with Coxeter–Schläfli symbol [5, 3, 3, 3, 3] and [5, 3, 3, 3, 4] can be computed by the
differential volume formula of Schläfli (see [7]):

Vol5(Spqrst ) = 1

4

∫ 2π
5

αi

Vol3([5, 3, β(t)])dt + ζ(3)

3,200

with a compact tetrahedron [5, 3, β(t)] whose angle parameter 0 < β(t) < π
2 is given

by

β(t) = arctan
√
2 − cot2 t .
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242 J. Szirmai

Fig. 3 The smallest hypersphere
Hh

3 that covers the infinite
polyhedron F (and the cover
faces which contain the triangles
A0A1A2 and B0B1B2) with
minimal covering height
h = P0A0 > Pi Ai i ∈ {1, 2}

Then, the volume of the 3-dimensional orthoscheme face [5, 3, β(t)] as given by
Lobachevsky’s formula:

Vol3([5, 3, β(t)]) = 1

4
{L2

(π

5
+ θ(t)

) − L2
(π

5
− θ(t)

) − L2
(π

6
+ θ(t)

) +
L2

(π

6
− θ(t)

) + L2
(
β(t) + θ(t)

) − L2
(
β(t) − θ(t)

) + 2L2
(π

2
− θ(t)

)
(3.2)

where L(ω) is the Lobachevsky’s function, θ(t) = arctan

√
1−4 sin2 π

5 sin2 β(t)

2 cos π
5 cosβ(t) and β(t) =

π
3 or π

4 .

3.3 The least dense hyperball coverings

The equidistant surface (or hypersphere) is a quadratic surface that lies at a constant distance
from a plane in both halfspaces. The infinite body of the hypersphere is called a hyperball. The
n-dimensional half-hypersphere (n = 3, 4, 5) with distance h to a hyperplane π is denoted
byHh

n . The volume of a bounded hyperball pieceHh
n(An−1) bounded by an (n−1)-polytope

An−1 ⊂ π , Hh
n and by hyperplanes orthogonal to π derived from the facets of An−1 can be

determined by the formulas (3.3), (3.4) and (3.5) that follow from the suitable extension of
the classical method of J. Bolyai:

Vol3(Hh
3(A2)) = 1

4
Vol2(A2)

[
k sinh

2h

k
+ 2h

]
, (3.3)

Vol4(Hh
4(A3)) = 1

8
Vol3(A3)k

[
2

3
sinh

3h

k
+ 6 sinh

h

k

]
, (3.4)

Vol5(Hh
5(A4)) = 1

16
Vol4(A4)

[
k

(
1

2
sinh

4h

k
+ 4 sinh

2h

k

)
+ 6h

]
, (3.5)

where the volume of the hyperbolic (n − 1)-polytope An−1 lying in the plane π is

Voln−1(An−1). The constant k =
√

−1
K is the natural length unit in H

n . K is set to be
the constant negative sectional curvature.
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The least dense hyperball covering of regular prism tilings 243

We consider one of the previously described n-dimensional (n = 3, 4, 5) regular prism
tilings T and the corresponding infinite polyhedron F derived from it (the union of n-
dimensional regular prisms that share the common hyperplane π). F and its images under
reflections on its “cover facets” fill hyperbolic space Hn without overlap.

If we start with a given congruent hyperball covering in n-dimensional hyperbolic space
H
n and shrink the heights of hyperballs until they finally do not cover the space anymore, then

the minimal height (radius) gives the least dense covering of a given hyperball arrangement.
The threshold value is called the minimal covering height (radius) of the given hyperball
arrangement.

We are looking for the smallest half-hyperball Hh
n containing F with minimal covering

height.
The smallest half-hypersphere Hh

n contains the cover faces of the regular n-prisms
containing by F . Therefore, the minimal distance from the (n − 1)-midplane π will be
h = P0A0 > Pi Ai (i ∈ {1, 2, 3, 4} (Figs. 2, 3).

The smallest hypersphere Hh
n covers the infinite polyhedron F with minimal covering

height, thus we obtain the locally least dense hyperball covering of the tiling T by the images
of Hh

n .

3.4 The computation of the minimal covering height

The points P0[p0] and A0[a0] are proper points of hyperbolic n-space and P0 lies on the
polar hyperplane pol(An)[an] of the outer point An thus

p0 ∼ c · an + a0 ∈ an ⇔ c · anan + a0an = 0 ⇔ c = −a0an

anan
⇔

p0 ∼ −a0an

anan
an + a0 ∼ a0(anan) − an(a0an) = a0hnn − anh0n, (3.6)

where hi j is the inverse of the Coxeter–Schläfli matrix ci j (see (2.1)) of the orthoscheme S.
The hyperbolic distance h can be calculated by the following formula:

cosh P0A0 = cosh h = −〈p0, a0〉√〈p0,p0〉〈a0, a0〉

= h20n − h00hnn√
h00〈p0,p0〉 =

√
h00 hnn − h20n

h00 hnn
. (3.7)

The volume of the polyhedron (complete orthoscheme of degree 1) S is denoted by
Voln(S).

For the density of the covering, it is sufficient to relate the volume of the minimal covering
hyperball piece to that of corresponding polyhedron S (see Figs. 2, 3) because the tiling
can be constructed of such polyhedra. This polytope and its images in F divide Hh

n into
congruent horoball pieces whose volume is denoted by Voln(Hh

n(An−1)). We illustrate the
3-dimensional case of such a hyperball piece A0A′

1A
′
2P0P1P2 in Fig. 2.

The density of the least dense hyperball covering to the n-dimensional regular prism tiling
T (n = 3, 4, 5) is defined by the following formula:

Definition 3.5

δmin(T ) := Voln(Hh
n(An−1))

Voln(S)
. (3.8)
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Table 1 q = 3, r = 3

p h Vol3(Spqr ) Vol3(Hh
3) δmin

pqr

7 1.06738516 0.08856157 0.11786931 1.33093073

8 0.89197684 0.10721273 0.15304272 1.42746787

9 0.81695936 0.11824897 0.17882183 1.51224843

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 0.68135915 0.14636009 0.29212819 1.99595522

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 0.66193428 0.15167070 0.35361352 2.33145566

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

100 0.65933594 0.15241399 0.37580045 2.46565592

p → ∞ 0.65847895 0.15266093 0.39911431 2.61438404

Table 2 q = 4, r = 3

p h Vol3(Spqr ) Vol3(Hh
3) δmin

pqr

5 1.16973604 0.16596371 0.29370599 1.76970002

6 1.03171853 0.19616337 0.38853781 1.98068483

7 0.97766375 0.21217704 0.45589711 2.14866375

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 0.89038430 0.24655736 0.73257578 2.97121844

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 0.88277651 0.25026133 0.83138640 3.32207298

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

100 0.88172298 0.25078571 0.86594296 3.45291981

p → ∞ 0.88137359 0.25096025 0.901474965 3.59210258

4 The data of the hyperball coverings

1. 3-dimensional hyperbolic space H3

By formulas (3.3), (3.7), (3.8) andTheorem3.4,we can calculate the data and the densities
of the least dense hyperball coverings to each regular prism tiling in hyperbolic space
H
3. The results are summarized in Tables 1, 2, 3, 4 and 5.

For each prism tiling, we determined, in a suitable interval, the graph of the functions
Vol3(Hh

3)(p) and δmin
pqr (p) as continuous functions of p with fixed q and r . In Fig. 4, we

show these functions for the case [p, 3, 3].
From the formulas (3.7), it follows that the function h(p) is decreasing and the function
Vol3(Hh

3) is increasing in its domain of definition. By Theorem 3.4 and formula (3.3), it
can be seen that the function Vol3(Spqr )(p) increases similarly to the function δmin

pqr (p)
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Table 3 q = 3, r = 4

p h Vol3(Spqr ) Vol3(Hh
3) δmin

pqr

7 1.67069036 0.16297337 0.32636556 2.00256989

8 1.45701769 0.18789693 0.39605076 2.10780855

9 1.36099521 0.20295023 0.44917804 2.21324236

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 1.17836243 0.24206876 0.69524288 2.87208836

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 1.15109755 0.24956032 0.83516608 3.34654595

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

100 1.14742750 0.25061105 0.88666316 3.53800507

p → ∞ 1.14621583 0.25096025 0.94135352 3.75100645

Table 4 q = 5, r = 3

p h Vol3(Spqr ) Vol3(Hh
3) δmin

pqr

4 1.59191259 0.21298841 0.59818156 2.80851695

5 1.40035889 0.26319948 0.86382502 3.28201651

6 1.34187525 0.28635531 1.04400841 3.64584964

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 1.26417766 0.32848945 1.71902032 5.23310655

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 1.25939250 0.33171659 1.90998817 5.75789160

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

100 1.25872455 0.33217467 1.97599824 5.94867215

p → ∞ 1.25850276 0.33232721 2.04337965 6.14869802

in its domain of definition. We have depicted these functions as the continuous functions
of p with fixed q = 3, r = 3, but [p, q, r ] provides prism tiling in H

3 iff p > 6 is
an integer parameter. We have determined in [16] for each case the limit of the function
Vol3(Spqr )(p) as p → ∞ (see Tables 1, 2, 3, 4, 5).

2. 4-dimensional hyperbolic space H4

We obtain the densities of the least dense hyperball covering of the regular prism tilings
by the results of (3.1) and by the formulas (3.4) and (3.7) which are summarized in
Table 6.

3. 5-dimensional hyperbolic space H5

The data of the least dense hyperball covering of the regular prism tilings can be deter-
mined by the formulas (3.2), (3.5) and (3.7) which are summarized in the Table 7.
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Table 5 q = 3, r = 5

p h Vol3(Spqr ) Vol3(Hh
3 ) δmin

pqr

7 2.26142836 0.23325784 0.94559299 4.05385304

8 2.03433214 0.26094396 1.08972405 4.17608465

9 1.93012831 0.27782716 1.20377506 4.33291999

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 1.726831092 0.32216770 1.76349123 5.47383009

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 1.69577933 0.33072584 2.10004252 6.34979864

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

100 1.69158357 0.33192770 2.22690186 6.70899675

p → ∞ 1.69019748 0.33232721 2.36333702 7.11147614

Fig. 4 The functions Vol3(Hh
3)(p) and δmin

pqr (p) to parameters q = 3, r = 3

Table 6 4-dimensional cases

T h Vol4(Spqrs ) Vol4(Hh
4) δmin

pqrs

[3,5,3,3] 1.96333162 41π2

10800 0.69028590 18.42337348

[5,3,4,3] 1.46935174 17π2

4320 0.178146199 4.58681940

Table 7 5-dimensional cases

T h Vol5(Spqrst ) Vol5(Hh
5 ) δmin

pqrst

[5,3,3,3,3] 0.85377329 0.00076730 0.00133580 1.74091729

[5,3,3,3,4] 1.59191259 0.00198470 0.01161836 5.85397509
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Remark 4.1 In 5-dimensional hyperbolic space, there is a totally asymptotic regular prism
tiling [5, 3, 3, 4, 3] but we do not consider this honeycomb in this paper because no hyperball
covering can be derived from it.

We formulate the following conjecture for the least dense hyperball coverings for 3 and 5
dimensional hyperbolic spaces:

Conjecture 4.1 The hyperball covering described above for Coxeter tiling [7, 3, 3] provides
the least dense hyperball covering in 3-dimensional hyperbolic space H3.

Conjecture 4.2 The hyperball covering described above for Coxeter tiling [5, 3, 3, 3, 3]
provides the least dense hyperball covering in 5-dimensional hyperbolic space H5.

Remark 4.2 The question of finding the densest hyperball packing and least dense hyperball
covering in n-dimensional hyperbolic space is not settled yet, but in [26] we have developed
a decomposition procedure to determine the upper bound density of the hyperball packings
and the lower bound density of the hyperball coverings in hyperbolic 3-space. This decom-
position procedure also confirms the above conjectures and shows that the optimal densities
of packings and coverings probably belong to regular prism tilings whose vertex figures are
regular tetrahedra. This is the reason why the 4-dimensional cases (probably) do not provide
the least dense hyperball covering in hyperbolic 4-space.

We note here, that the discussion of the densest horoball packings in n-dimensional hyper-
bolic space n ≥ 3 with horoballs of different types has not been settled yet either (see
[14,15,20,22]).

Optimal sphere packings in other homogeneous Thurston geometries represent another
huge class of open mathematical problems. For these non-Euclidean geometries, only very
few results are known (e.g. [19,21,24,25]). Detailed studies are the objective of ongoing
research. The applications of the above projective method seem to be interesting in (non-
Euclidean) crystallography as well.

Acknowledgments I thank Emil Molnár for his helpful comments regarding this paper.
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