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Abstract This paper considers the equations of the steady viscous, compressible, and heat
conducting magnetohydrodynamic flows in a bounded three-dimensional domain. By an
approximation scheme and a weak convergence method, for any γ > 4

3 , the existence of
a weak solution to the three-dimensional steady full magnetohydrodynamic equations with
large data is obtained. Here, γ describes the heat capacity ratio.
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1 Introduction

We consider the full system of partial differential equations for the three-dimensional viscous
steady compressible magnetohydrodynamic flows in the Eulerian coordinates [14,15]

div(ρu) = 0, (1.1)

div(ρu ⊗ u) + ∇P(ρ, θ) = (∇ × H) × H + div�(u) + ρF, (1.2)

div(u(Φ ′ + P)) = div ((u × H) × H + νH × (∇ × H) + u�(u) + κ(θ)∇θ), (1.3)

∇ × (u × H) = ∇ × (ν∇ × H), divH = 0. (1.4)

where ρ is the density, u ∈ R3 is the velocity, H ∈ R3 is the magnetic field, and θ is the
temperature; F is the external force; � is the viscous stress tensor given by

�(u) = μD(u) + λdivuI,

and Φ is the total energy given by
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2 W. Yan

Φ = ρ(e + 1

2
|u|2) + 1

2
|H|2 and Φ ′ = ρ(e + 1

2
|u|2),

with the internal energy e(ρ, θ), the kinetic energy 1
2ρ|u|2, and the magnetic energy 1

2 |H|2.
D(u) = ∇u+∇uT is the symmetric part of the velocity gradient,∇uT is the transpose of the
matrix∇×u, and I is the 3×3 identitymatrix. The viscosity coefficientsλ,μof theflowsatisfy
2μ + 3λ > 0 and μ > 0; ν > 0 is the magnetic diffusivity acting as a magnetic diffusion
coefficient of the magnetic field, κ > 0 is the heat conductivity. Equations (1.1), (1.2), (1.3)
describe the conservation of mass, momentum, and energy, respectively. It is well known that
the electromagnetic fields are governed byMaxwell’s equations. In magnetohydrodynamics,
the displacement current can be neglected [14,15]. As a consequence, Eq. (1.4) is called the
induction equation, and the electric field can be written in terms of the magnetic fieldH and
the velocity u,

E = ν∇ × H − u × H.

The pressure P(ρ, θ) is determined through a general constitutive equation:

P(ρ, θ) = pe(ρ) + θpθ (ρ) (1.5)

with certain functions pe, pθ ∈ C[0,∞) ∩ C1(0,∞). The basic principles of classical
thermodynamics imply that the internal energy e and pressure P are interrelated through
Maxwell’s relationship:

∂ρe = 1

ρ2 (P − θ∂θ P), ∂θe = ∂θ Q = cν(θ),

where cν(θ) denotes the specific heat and Q = Q(θ) is a function of θ . Thus, the constitutive
relation (1.5) implies that the internal energy e can be decomposed as a sum:

e(ρ, θ) = Pe(θ) + Q(θ), (1.6)

where

Pe(ρ) =
∫ ρ

1

pe(t)

t2
dt, Q(θ) =

∫ θ

0
cν(t)dt. (1.7)

We impose the slip boundary condition

u · n = 0, τk · (T(P,u)n) + f u · τk = 0, at ∂�,

where τk (k = 1, 2) are two perpendicular tangent vectors to ∂�, n is the outer normal vector,
and T (P,u) = −P I + �(u) is the stress tensor. The friction coefficient f is nonnegative
(if f = 0 we assume additionally that � is not axially symmetric).

For temperature, we assume that

κ(θ)
∂θ

∂n
+ L(θ)(θ − θ0) = 0, at ∂�, (1.8)

where θ0 : ∂� −→ R+ is a strictly positive sufficiently smooth given function, and there
exist θ̄ , θ ∈ R+ such that

0 < θ ≤ θ0 ≤ θ̄ < +∞ for almost all (a.a.) x ∈ �,

and

L(θ) = c(1 + θ l), l ∈ R+. (1.9)
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Large data existence result 3

We also add the prescribed mass of the gas∫
�

ρdx = M > 0, (1.10)

and the heat conductivity depending on the temperature

κ(θ) = κ0(1 + θm), κ0,m > 0. (1.11)

The study of steady flows of compressible fluids is also intriguing mathematical questions.
Lions [16] proved the existence of weak solutions to the steady compressible Navier–Stokes
equation under the assumption that the heat capacity ratio γ > 1 in two dimensions and
γ > 5

3 in three dimensions. Meanwhile, he got rid of the smallness of the data. Roughly
speaking, the condition on γ comes from the integrability of the density ρ in Lp . The higher
integrability of ρ has, the smaller γ can be allowed. If there is potential, then weak solutions
are shown to exist for any γ > 3

2 , see [20]. Frehse, Steinhauer, and Weigant [6] established
the existence of weak solutions to the Dirichlet problem in three dimensions for any γ > 4

3 .
Also, the existence of a weak solution to the steady compressible Navier–Stokes equation
with periodic or mixed boundary conditions was obtained in the two-dimensional isothermal
case (γ = 1) [7]. Mucha and Pokorný [17] modified the method in [20] to reduce the
number of technical tricks; then, they obtained the existence of weak solutions to the steady
compressible Navier–Stokes equations in the isentropic regime.

The steady compressible Navier–Stokes–Fourier system is also considered in [18] with
the slip boundary condition (γ > 3 andm >

3γ−1
3γ−7 ). Themethod from [18] has been extended

to γ > 7
3 for both no-slip and slip boundary conditions in [19]. The condition for m remains

the same. However, as the integrability of the density and velocity gradient is lower than
for the case γ > 3. Recently, Novotný and Pokorný [22] extended the method in [18,21]
and obtained the existence of weak solution and variable entropy solution to Navier–Stokes–

Fourier system for γ > 4
3 and γ > 3+√

41
8 , respectively.

In fact, one of important restriction to the value of γ is due to the priori estimates. In
the present paper, inspired by the work of [18,22], we will prove that the steady viscous,
compressible, and heat conducting magnetohydrodynamic flows (1.1)–(1.4) have a weak
solution for γ > 4

3 by working with suitable priori estimates (see Lemma 2).
If the solution is smooth, multiplying the momentum Eq. (1.2) by u and the induction

equation by H, and summing them together, we obtain

div
(
1

2
ρ|u|2u

)
+ ∇P · u = div�(u) · u + (∇ × H) × H · u

+∇ × (u × H) · H − ∇ × (ν∇ × H) · H. (1.12)

Then using

div(νH × (∇ × H)) = ν|∇ × H|2 − ∇ × (ν∇ × H) · H,

and

div((u × H) × H) = (∇ × H) × H · u + ∇ × (u × H) · H,

subtracting (1.12) from (1.3), we get the internal energy equation

div(ρue) + (divu)P = ν|∇ × H|2 + �(u) : ∇u + div(κ(θ)∇θ). (1.13)

It follows from multiplying the continuity equation (1.1) by (ρpe(ρ))′ that

div(ρupe(ρ)) + pe(ρ)divu = 0.

123



4 W. Yan

Then, subtracting above equation from (1.13), we obtain the thermal energy equation

div(κ(θ)∇θ) − div(ρQ(θ)u) + �(u) : ∇u + ν|∇ × H|2 − θpθ (ρ)divu = 0, (1.14)

where

�(u) : ∇u = μ

2

3∑
i, j=1

(
∂ui

∂x j
+ ∂u j

∂xi

)2

+ λ|divu|2.

There have been much work on magnetohydrodynamics by mathematicians because of its
physical importance, complexity, and widely application (see [1,14,15,23]). Magnetohydro-
dynamics (MHD) is a combination of the compressible Navier–Stokes equations of fluid
dynamics and Maxwell’s equations of electromagnetism. Duvaut and Lions [4], Sermange
and Temam [24] obtained some existence and long-time behavior results for incompressible
case. For compressible case, Ducomet and Feireisl [3] proved existence of global in time
weak solutions to a multi-dimensional nonisentropic MHD system for gaseous stars coupled
with the Poisson equation with all the viscosity coefficients and the pressure depends on
temperature and density asymptotically, respectively. Hu and Wang [8] studied the global
variational weak solution to the three-dimensional full magnetohydrodynamic equationswith
large data by an approximation scheme and a weak convergence method. In [9], by using
the Faedo–Galerkin method and the vanishing viscosity method, they also studied the exis-
tence and large-time behavior of global weak solutions for the three-dimensional equations
of compressible magnetohydrodynamic isentropic flows (1.1)–(1.3). They [10] showed that
the convergence of weak solutions of the compressible MHD system to a weak solution
of the viscous incompressible MHD system. Jiang, et all. [11,12] obtained that the con-
vergence toward the strong solution of the ideal incompressible MHD system in the whole
space and periodic domain, respectively. Recently, Yan [26] showed the weak-strong unique-
ness property for full compressible magnetohydrodynamics flows. After that, he [27,28]
obtained that the existence of time-periodic weak solution for compressible magnetic flu-
ids in three-dimensional torus, and the existence of weak solution for the three-dimensional
density-dependent generalized incompressible magnetohydrodynamic flows, respectively.

The main difficulty of the study of MHD is the presence of the magnetic field and its
interaction with the hydrodynamic motion in the MHD flow of large oscillation. This leads
to many fundamental problems for MHD are still open. For example, the global existence of
classical solution to the full perfect MHD equations with large data in one-dimensional case
is unsolved. But the corresponding problem about Navier–Stokes equation has solved in [13]
a long time ago. In present paper, we study one of the fundamental problem about MHD,
that is, the existence of weak solution for the equations of the steady viscous, compressible,
and heat conducting magnetohydrodynamic flows in a bounded three-dimensional domain.
Inspired by the work of [2,5,8,16,18], we will overcome a lack of a priori estimates on
MHD and the large oscillation to establish the existence of weak solution for the steady full
compressible MHD for any γ > 4

3 .
The paper is organized in the following way: In the next section, we provide the precise

definition of the notion of weak solution to system (1.1)–(1.2), (1.4), and (1.14) after intro-
ducing the appropriate function spaces. The main result of this paper is also stated. In Sect. 3,
we introduce the corresponding approximation system and prove the existence of solution
about it. In last section, an important quantity: the effective viscous flux is introduced; then,
the convergence of the approximation solution is proved.
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Large data existence result 5

2 Some notations and main results

Before given the definition of the weak solution to the problem (1.1)–(1.2), (1.4), and (1.14)
with the boundary condition (1.8) and (1.9), we state the following notation of relevant
Banach spaces of functions defined on a bounded domain � ⊂ R3. For any p ∈ [1,∞],
Lp(�) denotes the Lebesgue spaces with the norm ‖ · ‖Lp(�) and , Wa,p(�) denotes the
Sobolev spaces with the norm ‖ · ‖Wa,p(�). We do not distinguish between function spaces
for scalar and vector valued functions. Generic constants are denoted by C; their values may
vary in the same formula or in the same line.

Definition A vector (ρ,u, θ,H) is said to be a weak solution to the problem (1.1)–(1.2),
(1.4), and (1.14) of the full compressible steady MHD equations if the following conditions
hold:

• The densityρ ∈ Lp(�), p ≥ γ , the velocityu ∈ W1,2(�), The temperature θ ∈ W1,2(�),
θm∇θ ∈ L1(�), and the magnetic field H ∈ W1,2

0 (�) satisfy the Eqs. (1.1)–(1.2), (1.4),
and (1.14) in the sense of distributions, and∫

�

ρu · ∇ϕdx = 0,

for any ϕ ∈ C∞(�).
• The temperature nonnegative θ function, the velocity function u, and the magnetic field

H satisfying∫
�

(−ρu ⊗ u : ∇ϕ + 2μD(u) : D(ϕ) + λdivu · divϕ − P(ρ, θ)divϕ)dx

+
∫

�

(HT∇ϕH + 1

2
∇(|H|2) · ϕ)dx + f

∫
∂�

(u � τ) · (ϕ � τ)dσ

=
∫

�

ρF · ϕdx,

∫
�

(κ(θ)∇θ · ∇ϕ − ρQ(θ)u · ∇ϕ)dx +
∫

∂�

L(θ)(θ − θ0)ϕdx

=
∫

�

(
2μ|D(u)|2� + λ(divu)2ϕ + ν|∇ × H|2 · ϕ − θpθ (ρ)divu · ϕ

)
dx,

∫
�

(νcurlH · curlϕ + (divu + u · ∇)H · ϕ − (H · ∇)u · ϕ) dx = 0,

for any ϕ ∈ C∞(�), ϕ · n = 0 and u · n = 0 at ∂� in the sense of traces.
The aim of this paper was to establish the following result.

Theorem 1 Let � ⊂ R3 be a bounded domain of class C2 which is not axially symmetric if
f = 0, F ∈ L∞(�) and 2γ

3(γ−1) < m = 1 + l < m+, where m+ is given in (3.48). Suppose
that the following conditions hold:

(i) The pressure P(ρ, θ) is given by (1.5), where pe, pθ ∈ C1[0,∞) and

pe(0) = 0, pθ (0) = 0,

p′
e(ρ) ≥ a1ρ

γ−1, p′
θ (ρ) ≥ 0, (2.1)
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6 W. Yan

pe(ρ) ≤ a2ρ
γ , pθ (ρ) ≤ a3ρ

γ
3 ,

with some constant γ > 4
3 , a1 > 0, a2 > 0 and a3 > 0.

(ii) The specific heat cν(θ) satisfies

0 < cν ≤ cν(θ) ≤ cν < +∞, (2.2)

where cν and cν are two positive constants.

Then, the steady full compressible MHD has a weak solution (ρ,u, θ,H) such that for
1 ≤ p < ∞

ρ ∈ L∞(�), u ∈ W1,p(�), θ ∈ W1,p(�), H ∈ W1,2(�).

Moreover, the temperature θ > 0 a.e. in �.

Remark 1 The assumption on the specific heat cν(θ) in (i i) means that it can be controlled
by a positive constant. Moreover, by (1.7), we can get that cνθ ≤ Q(θ) ≤ cνθ . This is used
in deriving (3.8) in Lemma 1. In addition, this assumption on cν(θ) is the same as the work
of [8,9].

Finally, note that, in order to simplify the presentation, we will put a1 = a2 = a3 = 1.

3 The existence of solution for the approximation system

In this section, we first introduce an auxiliary function K (·) defined by number k > 0 as
follows

K (t) :=
⎧⎨
⎩
1 for t < k − 1,
∈ [0, 1] for k − 1 ≤ t ≤ k,
0 for t > k.

Moreover, we assume that K ′(t) < 1 for t ∈ (k − 1, k), where k ∈ R+. Then, an approxi-
mation problem which consists of a system of regularized equations can be showed

div(K (ρ)ρu) + ερ − ε�ρ = εhK (ρ), (3.1)

1

2
div(K (ρ)ρu ⊗ u) + ∇P(ρ, θ) = (∇ × H) × H + div�(u) + K (ρ)ρF, (3.2)

−div((1 + θm)
(ε + θ)

θ
∇θ) + div(K (ρ)ρQ(θ)u) + div

(
upθ

(∫ ρ

0
K (t)dt

))
θ

−K (ρ)uθp′
θ

(∫ ρ

0
K (t)dt

)
∇ρ

= ν|∇ × H|2 + �(u) : ∇u, (3.3)

∇ × (u × H) = ∇ × (ν∇ × H), (3.4)

where h = M
|�| and

P1(ρ, θ) = pe

(∫ ρ

0
K (t)dt

)
+ θpθ

(∫ ρ

0
K (t)dt

)
= pb(ρ) + θpc(ρ). (3.5)
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Large data existence result 7

To estimate the temperature, the entropy is introduced by

s = ln θ.

Then, the corresponding entropy equation of (3.3) can be reformulated

−div((1 + esm)
(ε + es)

es
∇s) + div(K (ρ)ρu)Q(es)e−s + K (ρ)ρuQ′(es)∇s

+div
(
upθ

(∫ ρ

0
K (t)dt

))
− K (ρ)up′

θ (

∫ ρ

0
K (t)dt)∇ρ

= (1 + esm)(ε + es)|∇s|2e−s + ν|∇ × H|2e−s + (� : ∇u)e−s . (3.6)

We consider the boundary condition at ∂� for the approximation system (3.1)–(3.4):

(1 + θm)(ε + θ)
∂s

∂n
+ L(θ)(θ − θ0) + εs = 0,

τk · (T(P,u)n) + f u · τk = 0, k = 1, 2, (3.7)
∂ρ

∂n
= 0, u · n = 0, H|∂� = 0.

The main tool of solving (3.1)–(3.4) is by the standard Leray–Schauder fixed point theorem.
Firstly, the solvability of the continuity equation (3.1) is taken from [20] (also can be found
in [17,18]). Denote

Xp = {u ∈ W2,p(�) : u · n = 0 at ∂�}.
Lemma 1 Let p > 3. Then, for any fix u ∈ Xp, the continuity equation (3.1) with the
boundary condition ∂ρ

∂n = 0 has a solution ρ ∈ W2,q(�). Furthermore, for 1 < q < ∞, the
operator

F : Xp −→ W2,q(�)

is a well-defined continuous operator from Xp to W2,q(�) such that F(u) = ρ. Moreover,

‖ρ‖W1,q (�) ≤ C(k, ε)
(
1 + ‖u‖Lq (�)

)
, 1 < q < ∞,

‖ρ‖W2,q (�) ≤ C(k, ε)
(
1 + ‖u‖W1,q (�)(1 + ‖u‖L3(�))

)
, 1 < q < 3,

‖ρ‖W2,q (�) ≤ C(k, ε)
(
1 + ‖u‖2W1,q (�)

)
, 3 ≤ q < ∞.

(3.8)

Before showing the approximation system (3.2)–(3.4) is solvable, we derive a priori esti-
mates. We recall the following basic theory to the stationary Stokes system (see [20] for
details). Consider the following problem:

div� = pb(ρ) − pb(ρ), x ∈ �,

� = 0, x ∈ ∂�,

where pb(ρ) = 1
|�|

∫
∂�

pb(ρ)dx . Then, above problem possess a solution � such that

‖�‖H1
0 (�) ≤ C‖pb(ρ)‖L2(�). (3.9)

Furthermore, using the interpolation inequality and (1.10), we deduce that for any δ > 0,

pb(ρ) ≤ δ‖pb(ρ)‖L2(�) + C(δ, M).
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8 W. Yan

Lemma 2 Under the assumptions of Theorem 1, let (ρε,uε, θε,Hε) be the solution of
approximation system (3.1)–(3.4) in W2,p(�) × W2,p(�) × W2,p(�) × W1,2(�), for any
p < ∞, and θ > 0. Then,

0 ≤ ρ ≤ k,
∫

�

ρdx ≤ M

and

‖u‖H1(�) + ‖K (ρ)ρ‖L2γ (�) + ‖P(ρ, θ)‖L2γ (�) + ‖θ‖L3m (�) + ‖∇θ‖
L

3m
m+1 (�)

+‖H‖H1(�) +
∫

∂�

(es + e−s)dσ + ‖∇s‖L2γ (�)

≤ C(‖F‖L∞(�), M), (3.10)

where C(‖F‖L∞(�), M) is independent of ε, k, s, and m.

Proof The proof of the estimate of ρ is similar with [17]. Hence, we only prove (3.10).
Multiplying the approximative momentum equation (3.2) by u, integrating over �, we get∫

�

(2μD2(u) + λdiv2u)dx +
∫

�

f |u � τ |2dx +
∫

�

u · ∇ pb(ρ)dx

=
∫

�

(∇ × H) × H · udx +
∫

�

K (ρ)ρuFdx +
∫

�

θpc(ρ)divudx . (3.11)

Denote Pf (ρ) = ∫ ρ

0
p′
e(t)
t dt . Using (3.1) and (3.5), we have

∫
�

u · ∇ pb(ρ)dx =
∫

�

uK (ρ)ρ∇Pf (ρ)dx

= −
∫

�

∇(uK (ρ)ρ)Pf (ρ)dx

= ε

∫
�

(ρ − hK (ρ))Pf (ρ)dx + ε

∫
�

∇ρ∇Pf (ρ)dx

= ε

∫
�

(ρ − hK (ρ))Pf (ρ)dx + ε

∫
�

p′
e(ρ)∇ρ∇ ln ρdx . (3.12)

Note that

−
∫

�

(∇ × H) × H · udx =
∫

�

(HT∇uH + 1

2
∇(|H|2) · u)dx . (3.13)

Thus, by (3.11)–(3.13), we derive∫
�

�(u) : ∇udx +
∫

�

f |u � τ |2dx + ε

∫
�

(ρ − hK (ρ))Pf (ρ)dx + ε

∫
�

p′
e(ρ)∇ρ∇ ln ρdx

+
∫

�

(HT∇uH + 1

2
∇(|H|2) · u)dx −

∫
�

θpc(ρ)divudx

≤ C(1 +
∫

�

|K (ρ)ρu · F|dx). (3.14)

Multiplying the approximative equation (3.2) byH, integrating over�, and using the bound-
ary condition and divH = 0, we get∫

�

∇ × (u × H) · Hdx =
∫

�

∇ × (ν∇ × H) · Hdx . (3.15)
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Direct calculations show that∫
�

∇ × (u × H) · Hdx =
∫

�

(HT∇uH + 1

2
∇(|H|2) · u)dx,

∫
�

∇ × (ν∇ × H) · Hdx = ν

∫
�

|∇ × H|2dx .

Thus, by (3.1), it has

ν

∫
�

|∇ × H|2dx =
∫

�

(HT∇uH + 1

2
∇(|H|2) · u)dx,

which together with (3.14) yields∫
�

�(u) : ∇udx +
∫

�

f |u � τ |2dx + ε

∫
�

ρPf (ρ)dx + ε

∫
�

p′
e(ρ)∇ρ∇ ln ρdx

+ν

∫
�

|∇ × H|2dx −
∫

�

θpc(ρ)divudx

≤ C(1 +
∫

�

|K (ρ)ρu · F|dx). (3.16)

Furthermore, by Hölder’s inequality, we obtain

‖u‖2H1(�)
+ ν‖H‖2H1(�)

+ ε

∫
�

ρPf (ρ)dx + ε

∫
�

p′
e(ρ)∇ρ∇ ln ρdx

≤ C(1 +
∫

�

|K (ρ)ρu · F|dx +
∫

�

|θpc(ρ)|2dx). (3.17)

In what follows, our target is to estimate the temperature θ , the term pb(ρ), the velocity u,
and the magnetic field H. We notice that the estimation of last three term is related to the
temperature θ , so we first estimate it.

Integrating (3.3) and by the first boundary condition of (3.7), we get∫
∂�

(L(θ)(θ − θ0) + εs)dσ =
∫

�

(ν|∇ × H|2 + � : ∇u)dx

−
∫

�

(K (ρ)ρQ(θ))divudx . (3.18)

Denote s+ and s− as the positive and negative parts of the entropy, respectively. Summing
up (3.16) and (3.18) yields∫

∂�

(L(θ)θ + εs+)dσ + ε

∫
�

ρPf (ρ)dx + ε

∫
�

p′
e(ρ)∇ρ∇ ln ρdx

+
∫

�

(K (ρ)ρQ(θ) − θpc(ρ))divudx

≤
∫

∂�

εs−dσ + C(1 +
∫

�

|K (ρ)ρu · F|dx). (3.19)

Integrating the entropy equation (3.6) over �, we have
∫

∂�

(
L(θ)(θ − θ0)

θ
+ εse−s

)
dσ −

∫
�

K (ρ)up′
θ

(∫ ρ

0
K (t)dt

)
∇ρdx

=
∫

�

(
(1 + θm)(ε + θ)|∇s|2

θ
+ ν

|∇ × H|2
θ

+ � : ∇u
θ

)
dx, (3.20)
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10 W. Yan

which implies that
∫

�

(
(1 + θm)(ε + θ)|∇s|2

θ
+ ν

|∇ × H|2
θ

+ � : ∇u
θ

− K (ρ)up′
θ (

∫ ρ

0
K (t)dt)∇ρ

)
dx

+
∫

∂�

(
L(θ)θ0

θ
+ ε|s−||es−|

)
)dσ ≤

∫
∂�

(L(θ) + εs+e−s+)dσ. (3.21)

It derives from (3.19) and (3.21) that
∫

�

(
(1 + θm)|∇θ |2

θ2
+ ν

|∇ × H|2
θ

+ � : ∇u
θ

)dx +
∫

∂�

(
L(θ)θ0

θ
+ ε|s|)dσ

≤
∫

�

((θpc(ρ) − K (ρ)ρQ(θ) − pθ (

∫ ρ

0
K (t)dt))divudx

+C(1 +
∫

�

|K (ρ)ρu · F|dx). (3.22)

Using generalized Hölder inequality, for 1
p1

+ 1
p1

= 1
2 , we derive

∣∣∣∣
∫

�

θpc(ρ)divudx

∣∣∣∣ ≤ ‖u‖H1(�)‖pc(ρ)‖Lp1 (�)‖θ‖Lp2 (�), (3.23)
∣∣∣∣
∫

�

K (ρ)ρQ(θ)divudx

∣∣∣∣ ≤ ‖u‖H1(�)‖K (ρ)ρ‖Lp1 (�)‖Q(θ)‖LP2 (�), (3.24)
∣∣∣∣
∫

�

pθ

(∫ ρ

0
K (t)dt

)
divudx

∣∣∣∣ ≤ ‖u‖H1(�)‖pθ (

∫ ρ

0
K (t)dt)‖L2(�), (3.25)

∣∣∣∣
∫

�

K (ρ)ρu · Fdx
∣∣∣∣ ≤ ‖u‖L6(�)‖K (ρ)ρ‖

L
6
5 (�)

‖F‖L∞(�). (3.26)

Thus, by (3.22)–(3.26) we obtain
∫

�

(
(1 + θm)|∇θ |2

θ2
+ ν

|∇ × H|2
θ

+ � : ∇u
θ

)dx +
∫

∂�

(
L(θ)θ0

θ
+ ε|s|

)
)dσ ≤N , (3.27)

where

N = ‖u‖H1(�)(‖pc(ρ)‖Lp1 (�)‖θ‖Lp2 (�) + ‖K (ρ)ρ‖Lp1 (�)‖Q(θ)‖LP2 (�)

+‖pθ

(∫ ρ

0
K (t)dt

)
‖L2(�)) + C(1 + ‖u‖L6(�)‖K (ρ)ρ‖

L
6
5 (�)

‖F‖L∞(�)). (3.28)

It follows from (1.9) and (3.27) that

C

(∫
∂�

θ l+1dx

) 1
l+1 ≤

(∫
∂�

L(θ)θdx

) 1
l+1 ≤ N

1
l+1 ,

C

(∫
�

|∇θ
m
2 |2dx

) 1
m ≤

(∫
�

(1 + θm)|∇θ |2
θ2

dx

) 1
m

≤ N
1
m .

By Poincaré type inequality ‖u‖L1(�) ≤ C(�)(‖u‖L1(�) + ‖u‖H1(�)), we derive

(∫
�

|θ m
2 |2dx

) 1
m ≤ C(�)

((∫
�

|∇θ
m
2 |2dx

) 1
m +

(∫
∂�

θ l+1dσ

) 1
l+1

)
.
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Then, it derive from W1,2(�) ↪→ L6(�) that

(∫
�

|θ3m |2dx
) 1

3m ≤ N
1

l+1 + N
1
m . (3.29)

Multiplying (3.2) by �, using (3.9) and (3.16), we conclude after standard estimates that

‖pb(ρ)‖L2(�) ≤ C

(
1 +

∫
�

|K (ρ)ρu ⊗ u|2dx +
∫

�

|θpc(ρ)|2dx
)

. (3.30)

Note that ∫
�

|K (ρ)ρu ⊗ u|2dx ≤ C‖u‖4H1(�)
‖K (ρ)ρ‖2L6(�)

≤ C‖u‖4H1(�)
‖K (ρ)ρ‖

2(γ−1)
3(2γ−1)

L1(�)
‖K (ρ)ρ‖

10γ
3(2γ−1)

L2γ (�)

≤ δ‖pb(ρ)‖L2(�) + C(δ, M)‖u‖
6(2γ−1)
3γ−4

H1(�)
, (3.31)

where we use (getting by the form of pb(ρ) and (2.1))

‖pb(ρ)‖L2(�) ≥ C

(∫
�

(K (ρ)ρ)2γ dx +
∫

�

(

∫ ρ

0
K (t)dt)2γ dx

)
. (3.32)

Thus, by a suitable choice of δ, it deduce from (3.30)–(3.31) that

‖pb(ρ)‖L2(�) ≤ C

(
1 + ‖u‖

6(2γ−1)
3γ−4

H1(�)
dx +

∫
�

|θpc(ρ)|2dx
)

. (3.33)

Combining (3.32)–(3.33), we get

‖K (ρ)ρ‖L2γ (�) + ‖
∫ ρ

0
K (t)dt‖L2γ (�)

≤ C

(
1 + ‖u‖

3
γ

2γ−1
3γ−4

H1(�)
dx +

(∫
�

|θpc(ρ)|2dx
) 1

2γ
)

. (3.34)

Using (2.1) and the Interpolation between 1 and 2γ , we have for m > 2
3

(∫
�

|θpc(ρ)|2dx
) 1

2γ ≤ ‖θ‖
1
γ

L3m (�)
‖pc(ρ)‖

1
γ

L
6m

3m−2 (�)

≤ ‖θ‖
1
γ

L3m (�)
‖
∫ ρ

0
K (t)dt‖

1
3

L
6m

3m−2 (�)

≤ ‖θ‖
1
γ

L3m (�)
‖
∫ ρ

0
K (t)dt‖

4mγ−3m+2
(3m−2)(2γ−1)

L1(�)
‖
∫ ρ

0
K (t)dt‖

2γ (m−2)
(3m−2)(2γ−1)

L2γ (�)
. (3.35)

This combining with (3.34), by Young inequality, for m >
4γ−6
4γ−3 , we derive

‖K (ρ)ρ‖L2γ (�) + ‖
∫ ρ

0
K (t)dt‖L2γ (�)

≤ C

(
1 + ‖u‖

3
γ

2γ−1
3γ−4

H1(�)
+ ‖θ‖

(3m−2)(2γ−1)
γ (4mγ−3m−4γ+6)

L3m (�)

)
. (3.36)
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12 W. Yan

Now we estimate N . By the Interpolation inequality, for 1 < p1 < 2γ and 1 < p2 < 3m,
we derive

‖u‖H1(�)‖pc(ρ)‖Lp1 (�)‖θ‖Lp2 (�)

≤ ‖u‖H1(�)‖
∫ ρ

0
K (t)dt‖

2γ−p1
p1(2γ−1)

L1(�)
‖
∫ ρ

0
K (t)dt‖

2γ (p1−1)
p1(2γ−1)

L2γ (�)
‖θ‖

2(3m−p2)

p2(3m−1)

L1(�)
‖θ‖

6m(p2−1)
p2(3m−1)

L3m (�)
, (3.37)

‖u‖H1(�)‖K (ρ)ρ‖Lp1 (�)‖Q(θ)‖Lp2 (�)

≤ C‖u‖H1(�)‖K (ρ)ρ‖
2γ−p1

p1(2γ−1)

L1(�)
‖K (ρ)ρ‖

2γ (p1−1)
p1(2γ−1)

L2γ (�)
‖θ‖

2(3m−p2)

p2(3m−1)

L1(�)
‖θ‖

6m(p2−1)
p2(3m−1)

L3m (�)
, (3.38)

‖u‖H1(�)‖pθ (

∫ ρ

0
K (t)dt)‖L2(�) ≤ C(γ )(‖u‖

γ
γ−1

H1(�)
+ ‖

∫ ρ

0
K (t)dt‖

1
3
L2(�)

)

≤ C(γ )(‖u‖
γ

γ−1

H1(�)
+ ‖

∫ ρ

0
K (t)dt‖

γ−3
3(2γ−1)

L1(�)
‖
∫ ρ

0
K (t)dt‖

5γ
3(2γ−1)

L2γ (�)
), (3.39)

‖u‖L6(�)‖K (ρ)ρ‖
L

6
5 (�)

‖F‖L∞(�) ≤ C‖u‖H1(�)‖K (ρ)ρ‖
γ

3(2γ−1)

L2γ (�)
. (3.40)

Let l + 1 = m in (3.29). By (2.2), (3.28)–(3.29), and (3.37)–(3.40), using standard Hölder
inequality, it derive

‖θ‖L3m (�) ≤ C(1 + ‖u‖
1
m
H1(�)

(‖
∫ ρ

0
K (t)dt‖

2γ (p1−1)
mp1(2γ−1)

L2γ (�)
+ ‖K (ρ)ρ‖

2γ (p1−1)
mp1(2γ−1)

L2γ (�)

+‖K (ρ)ρ‖
γ

3m(2γ−1)

L2γ (�)
) + ‖u‖

γ
m(γ−1)

H1(�)
+ ‖

∫ ρ

0
K (t)dt‖

5γ
3m(2γ−1)

L2γ (�)
). (3.41)

Inserting (3.41) into (3.36), by Hölder inequality and direct computation, we conclude that

‖K (ρ)ρ‖L2γ (�) + ‖
∫ ρ

0
K (t)dt‖L2γ (�)

≤ C

(
1 + ‖u‖

3
γ

2γ−1
3γ−4

H1(�)
+ ‖u‖

(3m−2)(2γ−1))
m(4mγ−3m−4γ+6)(γ−1)

H1(�)

)
, (3.42)

which implies that

‖θ‖L3m (�) ≤ C(1 + ‖u‖
γ

m(γ−1)

H1(�)
), (3.43)

where m > 0 for γ ∈ ( 43 , γ
∗), m−

0 ≤ m ≤ m+
0 for γ > γ ∗ and

m−
0 = 3(7γ 2 − 14γ + 6) − √

�

6(4γ − 1)(γ − 1)
<

4γ − 6

4γ − 3
< 1,

m+
0 = 3(7γ 2 − 14γ + 6) + √

�

6(4γ − 1)(γ − 1)
> 1, (3.44)

� = 153γ 4 − 876γ 3 + 1632γ 2 − 1224γ + 324,

2 < γ ∗ < 3 is the zero solution of � = 0.

Here, we use the restriction

(3m − 2)(2γ − 1)

m(4mγ − 3m − 4γ + 6)(γ − 1)
<

3

γ

2γ − 1

3γ − 4
, for γ >

4

3
.
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Furthermore, by (3.26), (3.35), (3.40), and (3.43), we derive

∫
�

|θpc(ρ)|2dx ≤ ‖θ‖2L3m (�)
‖
∫ ρ

0
K (t)dt‖

4γ 2(m−2)
(3m−2)(2γ−1)

L2γ (�)

≤ C

(
1 + ‖u‖

2γ
m(γ−1) + 12γ (m−2)

(3γ−4)(3m−2)

L2γ (�)

)
, (3.45)

∫
�

|K (ρ)ρu · F|dx ≤ C

(
1 + ‖u‖

3γ−3
3γ−4

L2γ (�)

)
. (3.46)

Combining (3.45)–(3.46) with (3.17), we obtain

‖u‖2H1(�)
+ ν‖H‖2H1(�)

≤ C(‖F‖L∞(�), M),

where C(‖F‖L∞(�), M) is positive constant depending on ‖F‖L∞(�) and M . Here we need

2γ

m(γ − 1)
+ 12γ (m − 2)

(3γ − 4)(3m − 2)
< 2. (3.47)

In fact for γ ≥ 4, there holds 2γ
3γ−4 < 1. So for any m > 0, it is easy to check

2γ

m(γ − 1)
+ 12γ (m − 2)

(3γ − 4)(3m − 2)
<

2γ

m(γ − 1)
+ 6(m − 2)

3m − 2
< 2.

Next, we prove that (3.47) holds for 4
3 < γ < 4. Note that

4

3m
<

2γ

m(γ − 1)
<

8

m
, for m > 0,

12γ (m − 2)

(3γ − 4)(3m − 2)
<

48(m − 2)

(3γ − 4)(3m − 2)
< (1 − 4

3m − 2
)

16

3γ − 4
, for m > 0.

Thus, to make (3.47) hold, we need

(1 − 4

3m − 2
)

16

3γ − 4
< 1,

which gives that

0 < m < m+ = (4 − γ )(3γ − 2) + √
�

6(4 − γ )(γ − 1)
>

2γ

3(γ − 1)
> 1, (3.48)

with

� = −63γ 4 + 372γ 3 − 524γ 2 + 160γ + 64.

Note that m = 1 + l, l ∈ R+
0 . Finally, we conclude that the result holds for 1 < m < m+.

This completes the proof. ��
To solve the approximation system (3.2)–(3.4), we need to use the Leary-Schauder fixed

point theorem. Define the operator

G : Xp × W2,p(�) × W1,2(�) −→ Xp × W2,p(�) × W1,2(�)

such that

G(u, s,H) = (v, z,m).
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14 W. Yan

Here, (v, z,m) is the solution to the system

− div�(v) = −1

2
div(K (ρ)ρu ⊗ u) − ∇P(ρ, es) + (∇ × H) × H + K (ρ)ρF, (3.49)

− div((1 + ems)(ε + es)∇z) = −div(K (ρ)ρQ(es)u) − esdiv(upθ (

∫ ρ

0
K (t)dt))

+ es K (ρ)up′
θ

(∫ ρ

0
K (t)dt

)
∇ρ + ν|∇ × H|2 + �(u) : ∇u, (3.50)

∇ × (ν∇ × m) = ∇ × (u × H), divm = 0, (3.51)

with the boundary condition

(1 + ems)(ε + es)∇z + εz + L(es)(es − θ0) = 0, x ∈ ∂�

n · �(v) · τk + f v · τk = 0, k = 1, 2, (3.52)

v · n = 0, m|∂� = 0.

By the identities

∇ × (∇ × m) = ∇divm − �m,

and

∇ × (u × H) = (divH + H · ∇)u − (divu + u · ∇)H.

together with the constraint divm = 0 and divH = 0, the equation (3.51) can be expressed
as

ν�m = (divu)H + (u · ∇)H − (H · ∇)u. (3.53)

We notice that the system (3.49)–(3.50), and (3.53) is strictly elliptic for ε > 0. W1,p(�)-

space is algebra for p > 3, and the boundary term belongs toW1− 1
p ,p

(∂�), so the right-hand
side of the system (3.49)–(3.50), and (3.53) belongs to Lp(�). Meanwhile, the coefficient in
the operator in the left-hand side of (3.50) are of the C1+α(�̄)-class. Hence, by the standard
elliptic theory, the existence of the solution of the system (3.49)–(3.50), and (3.53) in space
Xp × W2,p(�) × W1,2(�) can be obtained. ‖v‖W2,p(�) + ‖z‖W2,p(�) + μ‖m‖W1,2(�) can
be controlled by the right-hand side of the system (3.49)–(3.50) and (3.53) under suitable
norm. Combining with the right-hand side of the system (3.49)–(3.50), and (3.53) being at
most of the first-order derivative of sought functions, the continuous and compactness of the
operator G is obtained.

Hence, we conclude the following result on the continuous and compact of the operator
G.

Lemma 3 Under the assumption of Theorem 1, let p > 3. Then, G is a continuous and
compact operator from Xp × W2,p(�) × W1,2(�) to Xp × W2,p(�) × W1,2(�).

To apply the Leray–Schauder fixed point theorem, we also need to verify that all the
solution satisfying for any t ∈ [0, 1]

tG(v, z,m) = (v, z,m) (3.54)
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are bounded in Xp × W2,p(�) × W1,2(�). Note that ρ = F(u) given by Lemma 1. (3.54)
leads us to consider

− div�(v) = − t

2
div(K (ρ)ρv ⊗ v) − t∇P(ρ, ez) + t (∇ × m) × m + t K (ρ)ρF, (3.55)

− div((1 + emz)(ε + ez)∇z) = −tdiv(K (ρ)ρQ(ez)v) − tezdiv
(
vpθ

(∫ ρ

0
K (t)dt

))

+ tez K (ρ)vp′
θ

(∫ ρ

0
K (t)dt

)
∇ρ + νt |∇ × m|2 + t�(v) : ∇v, (3.56)

ν�m = t (divv)m + t (v · ∇)m − t (m · ∇)v, (3.57)

with the boundary condition

(1 + emz)(ε + ez)∇z + εz + t L(ez)(ez − θ0) = 0, x ∈ ∂�

n · �(v) · τk + f v · τk = 0, k = 1, 2, (3.58)

v · n = 0, m|∂� = 0.

The same process as in Lemma 1, the following priori estimates of (3.55)–(3.58) can be
obtained.

Lemma 4 Assume that (v, z,m) be the solution of (3.55)–(3.57)with the boundary condition
(3.58). Then,

‖v‖H1(�) + √
ε‖∇ρ‖L2(�) + ‖θ‖L3m (�) + ‖∇θ‖

L
3m
m+1 (�)

+ ‖m‖H1(�) ≤ C(k),

where θ = ez and C(k) is independent of ε and t.

In the following, we state our main result in this section.

Theorem 2 Under the assumption of Theorem 1, let ε > 0 and k > 0. Then, the approxi-
mation system (3.1)–(3.4) has a strong solution (ρ,u, θ,H) such that

ρ ∈ W2,p(�), u ∈ W2,p(�), s ∈ W2,p(�), H ∈ W1,2(�), f or 1 ≤ p < ∞.

Moreover, there holds

0 ≤ ρ ≤ k,
∫

�

ρdx ≤ M, f or x ∈ �,

and

‖u‖W1,3m (�) + √
ε‖∇ρ‖L2(�) + ‖∇θ‖

L
3m
m+1 (�)

+ ‖H‖H1(�) ≤ C(k),

where θ = es and C(k) is independent of ε.

Proof Define

�(z) =
∫ z

0
(1 + emτ )(ε + eτ )dτ. (3.59)

Then, we can rewrite the approximation momentum equation(3.56) as
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16 W. Yan

−��(z) = −tdiv(K (ρ)ρQ(ez)v) − tezdiv(vpθ (

∫ ρ

0
K (t)dt))

+tez K (ρ)vp′
θ

(∫ ρ

0
K (t)dt

)
∇ρ + νt |∇ × m|2 + t�(v) : ∇v, x ∈ �, (3.60)

with the boundary condition

∂�(z)

∂n
+ εz + t L(ez)(ez − θ0) = 0, x ∈ ∂�.

From Lemma 3.4, we can conclude that

K (ρ)ρv is bounded in L3(�),

v is bounded in W1,3m(�),

m is bounded in W1,2(�),

ρ is bounded in W2,3m(�),

for some constant C , which is independent of ε.
Multiplying (3.60) by � and integrating over �, we have

‖∇�(z)‖L2(�) +
∫

∂�

(εz� + t L(ez)(ez − θ0))dσ

≤ C‖�(z)‖L6(�)‖F(v, θ,m)‖
L

6
5 (�)

, (3.61)

where

F(v, θ,m) = −div(K (ρ)ρQ(ez)v) − ezdiv
(
vpθ

(∫ ρ

0
K (t)dt

))

+ezK (ρ)vp′
θ (

∫ ρ

0
K (t)dt)∇ρ + ν|∇ × m|2 + �(v) : ∇v.

We notice that

�(z) ∼ εz for z −→ −∞,

�(z) ∼ εe(m+1)z for z −→ +∞.

Thus, ∫
∂�

(εz� + t L(ez)(ez − θ0))I{�≤0}dσ ≥ C1ε
2‖�I{�≤0}‖2L2(∂�)

− C2,

∫
∂�

(εz� + t L(ez)(ez − θ0))I{�≥0}dσ ≥ C1ε‖�I{�≥0}‖2L1(∂�)
− C2.

This combines with Lemma 3.4 and (3.61), we derive

‖�‖W1,2(�) ≤ C, ‖θm+1‖L6(�) = ‖e(m+1)z‖L6(�) ≤ C,

‖∇θ‖L2(�) = ‖ez∇z‖L2(�) ≤ C,

where C independent of t .
Furthermore, it can derive from (3.60) that for 1 ≤ q ≤ q∗ = p∗

3−p∗ > 3,

‖�‖W2,p∗ (�) ≤ C, for p∗ = min

{
3m

2
, 2

}
,

‖z‖L∞(�) + ‖θ‖L∞(�) ≤ C, ‖∇z‖Lq (�) + ‖∇θ‖Lq (�) ≤ C.
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Then, from (3.56) and (3.59), and the imbedding theorem, it has

‖v‖W2,q∗
(�) ≤ C, ‖z‖W2,q∗

(�) + ‖θ‖W2,q∗
(�) ≤ C,

‖∇z‖L∞(�) + ‖∇θ‖L∞(�) ≤ C.

Thus, we conclude for 1 ≤ p < ∞,

‖ρ‖W2,p(�) + ‖v‖W2,p(�) + ‖H‖W1,2(�) + ‖z‖W2,p(�) + ‖θ‖W2,p(�) ≤ C,

where C independent of t . This completes the proof. ��

4 Effective viscous flux and limit passage

To define the effective viscous flux, we introduce the Helmholtz decomposition

u = H[u] + H⊥[u],
H⊥[u] = ∇φ, H[u] = curlϕ,

where φ is given by the solution to the Neumann problem

�φ = divu x ∈ �,
∂φ
∂n = 0 x ∈ ∂�,

∫
�

φdx = 0,
(4.1)

and ϕ satisfying the following elliptic problem

curlH⊥[u] = ∇u = ω, x ∈ �,

divH⊥[u] = 0, x ∈ �,

H⊥[u] · n = 0 x ∈ ∂�.

(4.2)

By the classical theory for elliptic equations [25,29], we can get for 1 < p < ∞
‖∇H[u]‖Lp(�) ≤ C‖ω‖Lp(�), ‖�H[u]‖Lp(�) ≤ C‖ω‖W1,p(�),

‖∇H⊥[u]‖Lp(�) ≤ C‖divu‖Lp(�), ‖�H⊥[u]‖Lp(�) ≤ C‖divu‖W1,p(�).

From Theorem 2, we can conclude that for ε −→ 0+

ρε −→ ρ weak − ∗ in L∞(�),

pb(ρε) −→ pb(ρε) weak − ∗ in L∞(�),

uε −→ u weak in W1,3m(�), uε −→ u in L∞(�),

K (ρε) −→ K (ρ) weak − ∗ in L∞(�),

K (ρε)ρε −→ K (ρ)ρ weak − ∗ in L∞(�),∫ ρε

0
K (t)dt −→

∫ ρ

0
K (t)dt weak − ∗ in L∞(�),

θε −→ θ weak in W1, 3m
m+1 (�), θε −→ θ in Lp(�), for p < 3m,

Hε −→ H weak in W1,2(�),

where we use the notation that a weak limit of a sequence uε is denoted by u, as ε −→ 0+.
Taking the limit in the weak formulation of the approximation system (3.1)–(3.4), we have

div(K (ρ)ρu) = 0, (4.3)

div
(
�(u) − pb(ρ)I − θ pc(ρ)I

)
+ (∇ × H) × H + K (ρ)ρF = 0, (4.4)
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18 W. Yan

−div((1 + θm)∇θ) + div(K (ρ)ρQ(θ)u) + θ pθ (

∫ ρ

0
K (t)dt)divu

= ν|∇ × H|2 + 2μ|D(u)|2 + λ(divu)2, (4.5)

∇ × (u × H) = ∇ × (ν∇ × H), (4.6)

In the following, we give some priori estimates, which is dependent of k.

Lemma 5 Under the assumptions of Theorem 1 and 2, it has

‖ρε‖L∞(�) ≤ k,

‖uε‖W1,3m (�) ≤ C(1 + k
γ (3m−2)

3m ), (4.7)

‖Hε‖W1,r (�) ≤ C(1 + k
2γ (3m−2)

3m ) f or r > 3m. (4.8)

Proof The first estimate on ρε follows directly from Theorem 2.We only estimate the second
one. Rewrite (3.2) as

− div�(uε) = −1

2
div(K (ρε)ρεuε ⊗ uε) − ∇P1(ρε, θε) + (∇ × Hε) × Hε

+K (ρε)ρεF. (4.9)

Then, we have

‖uε‖W1,3m (�) ≤ C(‖K (ρε)ρεuε ⊗ uε‖L3m (�) + ‖P1(ρε, θε)‖L3m (�) + ‖(Hε · ∇)Hε‖2L3m (�)

+‖Hε‖2L3m (�)
+ ‖K (ρε)ρεF‖

L
3m
m+1 (�)

). (4.10)

By (2.1), we deduce

‖P1(ρε, θε)‖L3m (�) ≤ a1‖pe(
∫ ρε

0
K (t)dt)‖L3m (�) + a3‖θpθ (

∫ ρε

0
K (t)dt)‖L3m (�)

≤ a1‖pe(
∫ ρε

0
K (t)dt)‖

2
3m
L2(�)

‖pe(
∫ ρε

0
K (t)dt)‖

3m−2
3m

L∞(�)

+a3‖θpθ (

∫ ρε

0
K (t)dt)‖

2
3m
L2(�)

‖θpθ (

∫ ρε

0
K (t)dt)‖

3m−2
3m

L∞(�)

≤ Ck
γ (3m−2)

9m (1 + k
2γ (3m−2)

9m ).

By the interpolation inequality, the Sobolev imbedding theorem, and Young inequality, we
derive

‖K (ρε)ρεuε ⊗ uε‖L3m (�) ≤ ‖ρε‖L∞(�)‖uε‖2L6m (�)
≤ ‖ρε‖L∞(�)‖uε‖2αLp(�)‖uε‖2(1−α)

Lq (�)

≤ ‖ρε‖L∞(�)‖uε‖2αW1,2(�)
‖uε‖2(1−α)

W1,3m (�)

≤ C(1 + 1

2
‖uε‖W1,3m (�)),

where 2 < 6mα < p < 6m < q , 1
2 < α < 1 and

q = 6mp(1 − α)

p − 6mα
> 6m.

Hence, using the Sobolev imbedding theorem and (4.10), we have

‖uε‖W1,3m (�) ≤ C

(
1 + 1

2
‖uε‖W1,3m (�) + k

γ (3m−2)
9m (1 + k

2γ (3m−2)
9m ) + ‖Hε‖2W1,2(�)

)
.
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Note that γ (3m−2)
3m > 1 for γ > 4

3 and m >
2γ

3(γ−1) . Thus, we get

‖uε‖W1,3m (�) ≤ C
(
1 + k

γ (3m−2)
3m

)
.

Next, by (3.4), the interpolation inequality and Young inequality , we have

ν‖∇ × H‖Lr (�) = ν‖H‖W1,r (�) = ‖u × H‖Lr (�)

≤ ‖u‖α
L3m (�)

‖H‖1−α

L
3mr(1−α)
3m−rα (�)

≤ 2

ν
‖u‖2αL3m (�)

+ ν

2
‖H‖2(1−α)

L
3mr(1−α)
3m−rα (�)

,

where 1
2 < α < 1 and 1 ≤ 3m < r <

3mr(1−α)
3m−rα . Then, using the Sobolev imbedding theorem

Wm,p(�) ↪→ Lq(�) f or p ≤ q < ∞, m ≥ 1.

Thus, we have

‖H‖W1,r (�) ≤ C(ν)‖uε‖2W1,3m (�)
≤ C(ν)

(
1 + k

2γ (3m−2)
3m

)
.

This completes the proof. ��

We also need to prove that the limit temperature is positive. This proof is similar with
[18]. For reader’s convenience, we will show it. From Lemma 2, we have

∫
∂�

(esε + e−sε )dσ +
∫

�

∇sεdx ≤ C,

which gives that
∫

∂�

s2ε dσ +
∫

�

∇sεdx ≤ C.

Note that� is bounded. Hence, above inequality means we can choose a subsequence sε −→
s inL2(�). Recall that θε = esε and θε −→ θ strongly inLp , p < 3m. UsingVitali’s theorem,
we have

esε −→ es in Lp(�), p < 3m,

with

θ = es, s ∈ L2(�).

Therefore, we conclude the following result:

Lemma 6 There exists a subsequence {sε} such that
sε −→ s in L2(�).

Moreover, it holds

θε −→ θ in Lp(�), p < 3m,

with θ > 0 a.e. in �.
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20 W. Yan

Consider the following problem which is set by the properties of the slip boundary con-
dition:

−μ�ωε = curl
(
(∇ × H) × H + K (ρε)ρF − ε

2
hK (ρε)ρεuε + ε

2
ρεuε

)

−curl
( ε

2
�ρεuε

)
, x ∈ �,

with the boundary condition

ωε · τ1 = −(2η2 − f/μ)uε · τ2 x ∈ ∂�,

ωε · τ2 = −(2η1 − f/μ)uε · τ1 x ∈ ∂�.

It deduce from the structure of ωε that

ωε = A1 + A2 + A3, (4.11)

which satisfying

− μ�A1 = 0, x ∈ �,

A1 · τ1 = −(2η2 − f/μ)uε · τ2 x ∈ ∂�,

A1 · τ2 = −(2η1 − f/μ)uε · τ1 x ∈ ∂�,

divA1 = 0 x ∈ ∂�,

−μ�A2 = curl((∇ × H) × H + K (ρε)ρF

− ε

2
hK (ρε)ρεuε + ε

2
ρεuε), x ∈ �,

A2 · τ1 = 0 x ∈ ∂�,

A2 · τ2 = 0 x ∈ ∂�,

divA2 = 0 x ∈ ∂�, (4.12)

and
μ�A3 = curl

(
ε
2�ρεuε

)
, x ∈ �,

A2 · τ1 = 0 x ∈ ∂�,

A2 · τ2 = 0 x ∈ ∂�,

divA3 = 0 x ∈ ∂�.

(4.13)

To solve the first elliptic equation about A1, we transform it to the form

−μ�(A1 − β) = μ�β, x ∈ �,

(A1 − β) · τ1 = 0 x ∈ ∂�,

(A1 − β) · τ2 = 0 x ∈ ∂�,

div(A1 − β) = 0 x ∈ ∂�,

where β satisfying the following stokes problem

−μ�β + ∇ p0 = 0, x ∈ �,

divβ = 0 x ∈ �,

β · τ1 = −(2η2 − f/μ)uε · τ2 x ∈ ∂�,

β · τ2 = −(2η1 − f/μ)uε · τ1 x ∈ ∂�,

β · n = 0 x ∈ ∂�.
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Large data existence result 21

Note that uε ∈ W1− 1
3m ,3m(∂�). So we have β ∈ W1,3m(�) with ‖β‖W1,p(�) ≤

C‖uε‖W1,p(�), for 1 < p ≤ 3m. Furthermore, as done in [18,25,29], we can get

‖A1‖W1,p(�) ≤ C‖uε‖W1,p(�) ≤ C(1 + k
γ (3m−2)

3m ) for 1 < p ≤ 3m.

Lemma 7 The vorticity ωε written in (4.11), it holds

‖A1‖W1,p(�) + ‖A2‖W1,p(�) ≤ C
(
1 + k

2γ (3m−2)
3m

)
f or 2 ≤ p ≤ 3m,

‖A3‖Lq (�) ≤ C(k)ε
1
2 f or 1 ≤ q ≤ 2.

Proof It derive from (4.8) in Lemma 4.2 and the interpolation inequality that

‖(∇ × H) × H‖Lp(�) ≤ ‖H‖α
L2(�)

‖H‖1−α

W1,q (�)

≤ ‖H‖α
W1,2(�)

‖H‖1−α

W1,q (�)
≤ C

(
1 + k

2γ (3m−2)
3m

)
,

where 1 < p ≤ 3m < q , 0 < α < 1 and q = 2p(1−α)
2−αp .

Hence, by above estimate, (4.12) and Lemma 4.2, we have for 1 < p ≤ 3m

‖A2‖W1,p(�) ≤ C‖curl
(
(∇ × H) × H + K (ρε)ρF − ε

2
hK (ρε)ρεuε + ε

2
ρεuε

)
‖W−1,p(�)

≤ C(‖(∇ × H) × H‖Lp(�) + ‖K (ρε)ρF‖Lp(�) + ‖hK (ρε)ρεuε‖Lp(�)

+‖ρεuε‖Lp(�))

≤ C
(
1 + k

2γ (3m−2)
3m

)
.

Finally, we estimate the term A3. Note that by Lemma 3.4
√

ε‖ρε‖L2� ≤ C(k).

Thus, for any test function χ ∈ W1,p(�), we derive

‖A3‖Lp� ≤ Cε‖�ρεuε‖W−1,p(�) ≤ Cε sup
χ

|
∫

�

�ρεuεχdx |.

Combining above two estimates and (4.7) in Lemma 4.1, we obtain

‖A3‖Lp� ≤ Cε
(‖∇ρε‖L2(�)‖uε‖L∞(�) + ‖∇ρε‖L2(�)‖∇uε‖L3m (�)

) ≤ C(k)ε
1
2 .

This completes the proof. ��
To introduce the effective viscous fluxG, we first use the Helmholtz decomposition to the

approximation momentum, and get

∇Gε = μ�H[v] + (∇ × H) × H + K (ρε)ρF − ε

2
hK (ρε)ρεuε + ε

2
ρεuε − ε

2
�ρεuε,

where

Gε = −(2μ + λ)divuε + P(ρε, θε).

G as the limit version of Gε is defined as

G = −(2μ + λ)divu + P(ρ, θ).

The quantities G is in the theory of compressible Navier–Stokes equations known as the
effective viscous fluxes. Due to the special structure of the steady full compressible magne-
tohydrodynamic system, we can derive the bound of G.
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Lemma 8 Let ε −→ 0+. Then we have

Gε −→ G strongly in L2(�).

Moreover,

‖G‖L∞(�) ≤ C
(
1 + k

2γ (3m−2)
3m

)
.

Proof Decompose the function Gε as

Gε = G1ε + G2ε,

with ∫
�

G2εdx = 0 and ∇G2ε = − ε

2
�ρεuε − μcurlA2.

Then, using Lemma 4.3, we have for 1 ≤ p < 2

‖G2ε‖Lp(�) ≤ C(ε‖�ρεuε‖W−1,p(�) + μ‖curlA2‖W−1,p(�))

≤ C(k)ε
1
2 .

Recalling calculations from Lemma 4.3, we have

‖G1ε‖W1,p(�) ≤ C
(
1 + k

2γ (3m−2)
3m

)
.

Thus, there exist a subsequence (denoted by itself) such that

G1ε −→ G1 in L∞(�),

G2ε −→ 0 in L2(�).

Gε = G1ε + G2ε −→ G1 in Lp(�), 1 ≤ p ≤ 2.

Furthermore, we obtain

‖G‖L∞(�) ≤ C(p)‖G‖W1,p(�) ≤ C(p) sup
ε>0

‖Gε‖W1,p(�) ≤ C(p)
(
1 + k

2γ (3m−2)
3m

)
.

This completes the proof. ��
By the small modification of Theorem 3 in [18], we can prove the pointwise convergence

of the density.

Lemma 9 There exist a sufficiently large number k0 > 0 such that for k > k0,

k − 3

k
(k − 3)γ − ‖G‖L∞(�) ≥ 1

and for a subsequence ε −→ 0+ it holds

lim
ε−→0+ |{x ∈ � : ρε(x) > k − 3}| = 0.

Moreover, K (ρ)ρ = ρ a.e. in �.

Now we will adopt the technique in [17,18] to show the pointwise convergence of the
density. By Lemma 4.5, we can omit K (ρ) in the limit system (4.3)–(4.6).
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Lemma 10 Let 0 < p < ∞. Then,
∫

�

P(ρ, θ)ρdx ≤
∫

�

Gρdx,
∫

�

P(ρ, θ)ρdx =
∫

�

Gρdx .

Furthermore, there holds

P(ρ, θ)ρdx = P(ρ, θ)ρdx,

and up to a subsequence ε −→ 0+,

ρε −→ ρ strongly in Lp(�).

Proof By (3.8),we can set ι = ‖ρ‖L∞(�)+1.Choosing a test function ln(ρ+δ) for δ ∈ (0, 1).
Then, we have

∫
�

ε�ρε(ln ι − ln(ρε + δ))dx = ε

∫
�

|∇ρε |2
ρn + δ

dx ≥ 0.

It follows from the approximation continuity equation and above equality that
∫

�

(div(ρεuε) + ερε − εh)(ln ι − ln(ρε + δ))dx ≥ 0,

which implies that
∫

�

(
ρεuε · ∇ρε

ρε + δ
+ ερε ln

ι

ρε + δ

)
dx − εh

∫
�

ln
ι

ρε + δ
≥ 0.

Let δ −→ 0+, it has ∫
�

uε · ∇ρεdx ≥ −ε

∫
�

ρε ln
ι

ρε

dx,

which implies that for sufficient small ε > 0,

−
∫

�

ρεdivuεdx ≥ o(ε).

From the definition Gε , we derive∫
�

P(ρε, θε)ρεdx ≤
∫

�

ρεGεdx + o(ε).

Taking ε −→ 0, we get for γ > 3
∫

�

P(ρ, θ)ρdx ≤
∫

�

Gρdx . (4.14)

Now, we return to the limit continuity equation div(ρu) = 0, i.e.,
∫

�

ρu · ∇ϕdx = 0, ∀ϕ ∈ C∞(�). (4.15)

As done in [17], using Friedrich’s Lemma, we have
∫

�

(ρdivu + u · ∇ρ)dx = 0.
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Choosing the test function ϕ = ln δ
ρε+δ

with δ > 0. Then, by (4.15), it has
∫

�

ρu · ∇ ln
δ

ρε + δ
dx =

∫
�

ρ
u · ∇ρε

ρε + δ
dx .

Taking ε −→ 0 and δ −→ 0+, we have∫
�

P(ρ, θ)ρdx =
∫

�

Gρdx .

It follows from the properties of weak limits that

P(ρ, θ)ρ ≥ P(ρ, θ)ρ a.e. in �.

But (4.14) shows that ∫
�

(P(ρ, θ)ρ − P(ρ, θ)ρ) ≤ 0dx .

So

P(ρ, θ)ρ = P(ρ, θ)ρ a.e. in �,

i.e.,

ρpe(ρ) + θρpθ (ρ) = ρ pe(ρ) + θρ pθ (ρ).

However, ρpe(ρ) ≥ ρ pe(ρ), θρpθ (ρ) ≥ θρ pθ (ρ) and the temperature θ > 0. Hence,

ρpe(ρ) = ρ pe(ρ) and ρpθ (ρ) = ρ pθ (ρ) a.e. in �.

Note that pe(t) ≥ 0 for t ≥ 0. We conclude that for a suitably taken subsequence

lim
ε−→0

‖pe(ρ)ρε − pe(ρ)ρ‖2L2(�)
=

∫
�

p2e (ρ)(ρ − ρ)2dx ≤ ‖ρpe(ρ) − ρ pe(ρ)‖2L1(�)
= 0,

which implies that

pe(ρ)ρε −→ pe(ρ)ρ strongly in L2(�).

Thus, by the pointwise boundedness of ρ, ρε and pe(t) ≥ 0 for t ≥ 0, we can get

ρε −→ ρ strongly in Lp(�) f or 0 < p < ∞.

This completes the proof. ��
In what follows, we study the limit of the energy equation and the induction equation. We

recall that

ρε −→ ρ in Lp(�) for p < ∞,

uε −→ u in W1,p(�) for p < 3m,

Hε −→ H in W1,2(�),

θε −→ θ in Lp(�) for p < 3m,

θε −→ θ weakly in W1, 3m
m+1 (�). (4.16)

Since the strong convergence of the density and temperature, and Lemma 10, then

pe(ρε) −→ pe(ρ) strongly in L2(�),
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pθ (ρε) −→ pθ (ρ) strongly in L2(�),

P(ρε, θε) −→ P(ρ, θ) strongly in L2(�).

The strong convergence of the effective flux Gε in Lemma 4.4 implies that

divuε −→ divu strongly in L2(�).

Moreover, due to the Helmholtz decomposition, we have

curluε −→ curlu strongly in L2(�).

It follows from the regularity of (4.1)–(4.2) that

�(uε) : ∇uε −→ �(u) : ∇u strongly in L1(�).

For a smooth function ϕ, we consider the weak form of (3.3)–(3.4) as
∫

�

((1 + θmε )
(ε + θε)

θε

∇θε · ∇ϕ)dx +
∫

∂�

L(θε)(θε − θ0)ϕσ + ε

∫
∂�

ln θε · ϕdσ

−
∫

�

(
K (ρε)ρεQ(θε)uε · ∇ϕ + uε pθ (

∫ ρε

0
K (t)dt) · ∇(θεϕ)

)
dx

+
∫

�

pθ (

∫ ρε

0
K (t)dt)∇(uεθεϕ)dx

=
∫

�

(
ν|∇ × Hε |2 · ϕ + (�(uε) : ∇uε) · ϕ

)
dx,

and ∫
�

(νcurlHε · curlϕ + (divuε + uε · ∇)Hε · ϕ − (Hε · ∇)uε · ϕ) dx = 0.

Then, by (4.16) and Lemma 4.2, we deduce that

(1 + θmε )
(ε + θε)

θε

∇θε −→ (1 + θm)∇θ in L1(�),

θε −→ θ strongly in Lm(∂�), x ∈ ∂�,

ln θε −→ ln θ strongly in L2(∂�), x ∈ ∂�,

curlHε −→ curlH strongly in L2(�),

(divuε)Hε −→ (divu)H strongly in L2(�),

(uε · ∇)Hε −→ (u · ∇)H strongly in L2(�),

(Hε · ∇)uε −→ (H · ∇)u strongly in L2(�).

Let ε −→ 0+. We have

−
∫

�

(ρQ(θ)u · ∇ϕ + upθ (ρ) · ∇(θϕ)) dx +
∫

�

pθ (ρ)∇(uθϕ)dx

=
∫

�

(pθ (ρ)θϕ∇u − ρQ(θ)u · ∇ϕ) dx .

Hence, let ε −→ 0+, we obtain
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∫
�

(1 + θm)∇θ · ∇ϕdx +
∫

∂�

L(θ)(θ − θ0)ϕdσ +
∫

�

(pθ (ρ)θϕ∇u − ρQ(θ)u · ∇ϕ) dx

=
∫

�

(
ν|∇ × H|2 · ϕ + (�(u) : ∇u) · ϕ

)
dx, (4.17)

and
∫

�

(νcurlH · curlϕ + (divu + u · ∇)H · ϕ − (H · ∇)u · ϕ) dx = 0.

Finally, recall the definition of � in (3.59), we introduce �(θ) = ∫ θ

0 (1 + tm)dt . Then, it
follows from (4.17) that θ ∈ L∞(�) and u ∈ W1,p(�) for 0 < p < ∞. Using the energy
equation again, we obtain that θ ∈ W1,p(�) for 0 < p < ∞.
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