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Abstract We consider the problem of finding the optimal constant for the embedding of the
space

W 2,1
�,0(�) := {u ∈ W 1,1

0 (�)
∣
∣ there exists {uk} ⊂ C∞

c (�) s.t. ‖�uk − �u‖1 → 0}
into the space L1(�), where � ⊂ R

n is a bounded domain with boundary of class C1,1.
This is equivalent to find the first eigenvalue �c

1,1(�) of the clamped 1-biharmonic operator.
In this paper, we identify the correct relaxation of the problem on BL0(�), the space of
functions whose distributional Laplacian is a finite Radon measure, we obtain the associated
Euler–Lagrange equation, and we give lower bounds for �c

1,1(�), investigating the validity
of an inequality of Faber–Krahn type.
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1 Introduction

Let � ⊂ R
n be a bounded domain, and let W 2,1

� (�) be defined as

W 2,1
� (�) :=

{

u ∈ W 1,1
0 (�) | �u ∈ L1(�)

}

.

This function space turns out to be strictly larger than the Sobolev spaceW 2,1(�)∩W 1,1
0 (�),

in which all second-order derivatives are taken into account. This is in contrast to the case
p > 1 where one always has W 2,p

� (�) = W 2,p(�) ∩ W 1,p
0 (�), provided ∂� is sufficiently

smooth: The equivalence between the full Sobolev norm and ‖�u‖p can be achieved by
standard elliptic regularity theory, see [11, Lemma 9.17]. This difference is highlighted by
the corresponding sharp Sobolev embeddings: in particular, in the so-called limiting case
n = 2 (p = 1 = n

2 ), one has W
2,1(�) ↪→ L∞(�) (see e.g., [1]), while this embedding fails

for the larger space W 2,1
� (�), which embeds only into Lexp(�) (see [5], [2]).

In [18], the authors addressed the minimization problem

�1,1(�) = inf
u∈W 2,1

� (�)\{0}
‖�u‖1
‖u‖1 , (1)

which is strictly related to the optimal constant for the embedding ofW 2,1
� (�) into L1(�). A

physical interpretation of�1,1(�)was given in terms of the L∞-norm of the torsion function,
and a Faber–Krahn-type result was proved. Actually, the infimum is not attained inW 2,1

� (�),
but in the broader space

BL0(�) := {u ∈ W 1,1
0 (�)

∣
∣ |�u|(�) < ∞},

consisting of all functions u ∈ W 1,1
0 (�) such that �u is a Radon measure with finite total

variation. The minimizers satisfy, in an appropriate sense, the (formal) eigenvalue problem
⎧

⎪⎨

⎪⎩

�2
1u = λ

u

|u| in �,

u = �u

|�u| = 0 on ∂�,

where we denote by�2
1u the 1-biharmonic operator�2

1u := �
(

�u
|�u|

)

, which can be seen as

the limiting case, for p → 1, of the p-biharmonic operator �2
pu := �

(|�u|p−2�u
)

. The
1-biharmonic operator, hence, can be interpreted as a ‘higher-order’ case of the well-known

1-Laplacian operator �1u := div
( ∇u

|∇u|
)

which has been widely studied in recent years due

to its numerous applications.
Howdoes problem (1) change ifwe replaceW 2,1

� (�)with the subspace of the smooth com-
pactly supported functions, C∞

c (�)? The aim of this paper is to investigate the minimization
problem

�c
1,1(�) = inf

u∈C∞
c (�)\{0}

∫

�
|�u|

∫

�
|u| , (2)

which can be seen as the L1-counterpart of the minimization of the quotient

μ1(�) = inf
u∈W 2,2

0 (�)\{0}

∫

�
|�u|2

∫

�
|u|2 . (3)
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Functional inequalities related to the clamped 1-biharmonic operator 1837

The value μ1 coincides with the first eigenvalue of the clamped plate equation; when the
domain � is a ball, its value can be expressed as the smallest positive root of a functional
equality involving Bessel functions.

Investigating the minimization problem (2) is equivalent to determine the value of the
quantity

inf
u∈W 2,1

�,0(�)\{0}

∫

�
|�u|

∫

�
|u| , (4)

where W 2,1
�,0(�) denotes the closure of C∞

c (�), with respect to ‖� · ‖1, that is,

W 2,1
�,0(�) :=

{

u ∈ W 1,1
0 (�)

∣
∣
∣ there exists {uk} ⊂ C∞

c (�) s.t. ‖�uk − �u‖1 → 0
}

,

Hence, �c
1,1(�) is the inverse of the optimal constant for the embedding

W 2,1
�,0(�) ↪→ L1(�).

Embeddings ofW 2,1
�,0(�) into other function spaceswere investigated in [5] andmore recently

in [10]. However, the method used in this paper, which avoids looking for particular mini-
mizing sequences when computing the value of �c

1,1(�), is new in this context.

Set in the space W 2,1
�,0(�), the minimization problem (4) resembles the analogous one,

(3), in W 2,2
0 (�). Nevertheless, while the existence of a minimizer for (3) in W 2,2

0 (�) is

easily shown, the quotient (4) does not admit minimizers in W 2,1
�,0(�), but in the broader

space BL0(�). Of course, one needs to find the relaxation of the functional in BL0(�), and
therefore, the main difficulty is its correct identification. Observe that we cannot relax the
functional simply replacing ‖�u‖1 by |�u|(�), the total variation of �u measured in �,
since this would give the infimum of the quotient on W 2,1

� (�), as shown in [18]; therefore,
one can think to penalize the numerator by adding the L1-norm of the normal derivative un
on ∂�, in order to “force” the functions to have zero normal derivative, that is, to consider
the new minimization problem

inf
u∈BL0(�)\{0}

|�u|(�) + ‖un‖L1(∂�)

‖u‖1 .

This intuitive approach turns out to be correct, but it requires some work in order to give it a
precise mathematical meaning. First of all, we have to make sure that functions in BL0(�)

admit a normal derivative on ∂� which belongs to L1(∂�) and that an integration by parts
formula holds; this question was addressed by Brezis and Ponce, [4, Theorem 1.2], who
also showed that the numerator in the previous ratio is nothing but the total variation of �u
calculated in the whole space Rn , that is,

|�u|(Rn) = |�u|(�) + ‖un‖L1(∂�)

so that one can equivalently consider one of the following minimization problems

�c
1,1(�) = inf

u∈W 2,1
�,0(�)\{0}

‖�u‖1
‖u‖1 = inf

u∈BL0(�)\{0}
|�u|(Rn)

‖u‖1 (5)

= inf
u∈W 2,1

� (�)\{0}
‖�u‖1 + ‖un‖L1(∂�)

‖u‖1 .
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1838 E. Parini et al.

Analogously to the eigenvalue problem studied in [18], a minimizer satisfies formally
⎧

⎨

⎩

�

(
�u

|�u|
)

= λ
u

|u| in �,

u = 0 on ∂�.

(6)

Observe that this boundary value problem seems under-determined, since the boundary con-
dition un = 0 does not appear; indeed, minimizers in BL0(�) need not have zero normal
derivative on ∂�. This feature is actually shared with the eigenvalue problem for the 1-
Laplacian operator: in that case, one minimizes the Rayleigh quotient

|Du|(Rn)

‖u‖1 = |Du|(�) + ‖u‖L1(∂�)

‖u‖1
among all non-trivial functions u ∈ BV (�). Since minimizers are given by characteristic
functions of Cheeger sets, whose boundary always intersect ∂�, the Dirichlet boundary
condition u = 0 is never satisfied on the whole boundary; we refer to [13] for further details
on the eigenvalue problem for the 1-Laplacian and to [17] for general properties of Cheeger
sets.

Let us now go back to the first eigenvalue of the clamped plate Eq. (3). A long-standing
conjecture (see Payne [19]) states that, for any bounded domain �, the ratio

μ1(�)

μ1(�#)

is bounded from below by 1, where �# denotes the ball in R
n having the same volume of �.

The question was first investigated by Talenti in [22] and then solved in the case n = 2 by
Nadirashvili [16] and for n = 3 by Ashbaugh–Benguria [3], but it is still an open problem
for n ≥ 4. One of the major difficulties is the fact that the associated first eigenfunction
may be sign-changing, as is, for example, the case when � is a square. Here, we address the
analogous question for the first eigenvalue of the ’clamped’ 1-biharmonic operator: does a
Faber–Krahn-type inequality hold? The answer is affirmative in the case n = 1 and n = 2,
whereas we give a (non-optimal) lower bound for the ratio

�c
1,1(�)

�c
1,1(�

#)

if n ≥ 3, and we leave the question as an open problem.
We are now ready to state our main theorems that summarize the results described above.

The following theorem provides equivalent formulations for the minimization problem (4),
(2), the existence of a minimizer in BL0(�) and the associated Euler–Lagrange equation.
We denote by D1,2(Rn) the closure ofC∞

c (Rn)with respect to the norm ‖u‖ := ‖∇u‖2 (see,
for instance [14]).

Theorem 1.1 Let � ⊂ R
n be a bounded domain with boundary of class C1,1. Consider the

minimization problem

�c
1,1(�) := inf

u∈W 2,1
�,0(�)\{0}

‖�u‖1
‖u‖1 . (7)

Then,

�c
1,1(�) = inf

u∈BL0(�)\{0}
|�u|(Rn)

‖u‖1 = inf
u∈W 2,1

� (�)\{0}
‖�u‖1 + ‖un‖L1(∂�)

‖u‖1 . (8)
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Functional inequalities related to the clamped 1-biharmonic operator 1839

Moreover,

(i) the first infimum in (8) is attained: There exists v ∈ BL0(�) \ {0} such that |�v|(Rn) =
�c

1,1(�)‖v‖1;
(ii) the minimizer satisfies formally

⎧

⎪⎪⎨

⎪⎪⎩

�

(
�u

|�u|
)

= λ
u

|u| in �

u = 0 on ∂�;
in the sense that for any measurable sign selection s ∈ Sgn(u) there exists
z ∈ D1,2(Rn) ∩ L∞(Rn) such that

• ‖z‖∞ = 1, supp �z ⊂ �, �z ∈ Ln(�);

• |�u|(Rn) =
∫

�

u�z;

• �z = λs almost everywhere in �, with λ = |�u|(Rn)

‖u‖1 .

The next theorem provides a lower bound for the ratio
�c

1,1(�)

�c
1,1(�

#)
and states a Faber–Krahn-type

inequality when the minimization problem is restricted to the positive cone of W 2,1
�,0(�). We

recall that, by Theorem 1.3 in [18],

�1,1(�) ≥ �1,1(�
#) = 2n

R2

where �# is the ball of radius R having the same measure of � : |�| = |�#| = ωn Rn , ωn

being the measure of the unit ball.

Theorem 1.2 For any bounded domain � with boundary of class C1,1,

�c
1,1(�) ≥ �c

1,1(�
#) = 2 · �1,1(�

#) if n = 1, 2

�c
1,1(�) ≥ 1

2
n−2
n

· �c
1,1(�

#) if n ≥ 3
(9)

Further, if

W +(�) :=
{

u ∈ W 2,1
�,0(�) | u ≥ 0

}

denotes the cone of positive functions in W 2,1
�,0(�), and

�
c,+
1,1 (�) = inf

u∈W +(�)

‖�u‖1
‖u‖1

then

�
c,+
1,1 (�) ≥ �

c,+
1,1 (�#) (10)

and equality holds if � = BR, where BR is the ball of radius R, when

�
c,+
1,1 (BR) = 4n

R2
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1840 E. Parini et al.

The paper is organized as follows: after giving the necessary definitions and proving
some preliminary results in Sect. 2, we study the existence and the properties of the normal
derivative for functions in BL0(�) (Sect. 3). In the fourth section, we discuss the well-
posedness of our minimization problem and its relaxation on BL0(�), while in Sect. 5 we
describe the Euler–Lagrange problem satisfied by the minimizers; Sect. 5 ends with the proof
of Theorem 1.1, which summarizes all the arguments introduced above. Section 6 is devoted
to the radial case: when the domain is a ball, we solve the minimization problem when
restricted to the subspace of radial functions. The last section is dedicated to the discussion
on Faber–Krahn-type inequalities for �c

1,1 (Theorem 1.2).
The authors would like to thank Samuel Littig for providing an earlier version of [15].

2 Definitions and preliminary results

The aim of this section is to recall definitions and results about the space BL0(�) proved in
[18], to which we refer for further details.

Let � ⊂ R
n be a bounded domain; unless otherwise specified, we will suppose that its

boundary is of class Lipschitz. We define BL0(�) as the space of functions u ∈ W 1,1
0 (�)

whose Laplacian �u is representable by a finite measure μ, i.e.,
∫

�

∇u ∇ϕ =
∫

�

ϕdμ ∀ ϕ ∈ C∞
c (�;R)

Recalling that the total variation of a measure μ is defined as

|μ|(�) = sup

{∫

�

ϕ dμ

∣
∣
∣
∣
ϕ ∈ Cc(�), ‖ϕ‖∞ ≤ 1

}

we define the total variation of the Laplacian of u (in �) the quantity

|�u|(�) := sup

{∫

�

ϕd�u
∣
∣
∣ ϕ ∈ Cc(�), ‖ϕ‖∞ ≤ 1

}

= sup

{∫

�

ϕd�u
∣
∣
∣ϕ ∈ C∞

c (�), ‖ϕ‖∞ ≤ 1

}

= sup

{∫

�

∇u∇ϕ

∣
∣
∣ ϕ ∈ C∞

c (�), ‖ϕ‖∞ ≤ 1

}

where we used the fact that C∞
c (�) is dense in Cc(�). Hence,

BL0(�) = {u ∈ W 1,1
0 (�) | |�u|(�) < ∞}.

For n = 1, the space BL0(�) coincides with the space of functions of bounded Hessian
BH(�) introduced in [7], which are functions whose gradient is locally in BV (�). However,
if n ≥ 2 the latter space is strictly contained in BL0(�), as a consequence of the results in
[6, Theorem 3]; indeed, the authors prove the existence of a function u : [0, 1] × [0, 1] → R

such that uxx and uyy are Radon measures with finite total variation, but the total variation
of uxy is infinite, so that u �∈ BH(�). The space BL0(�) was already introduced by Brezis
and Ponce in [4]; using their notation, it holds BL0(�) = W 1,1

0 (�) ∩ X.
We will also make use of the total variation of �u in R

n , that is,

|�u|(Rn) = sup

{∫

Rn
∇u∇ϕ

∣
∣
∣ ϕ ∈ C∞

c (Rn), ‖ϕ‖∞ ≤ 1

}
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Functional inequalities related to the clamped 1-biharmonic operator 1841

and of the space

BL0(R
n) = {

u ∈ W 1,1(Rn)
∣
∣ |�u|(Rn) < ∞}

.

Finally, we define the space

W 2,1
� (�) :=

{

u ∈ W 1,1
0 (�)

∣
∣ �u ∈ L1(�)

}

and

W 2,1
�,0(�) :=

{

u ∈ W 1,1
0 (�)

∣
∣ there exists {uk} ⊂ C∞

c (�) s.t. ‖�uk − �u‖1 → 0
}

Note that W 2,1
�,0(�) ⊂ W 2,1

� (�) ⊂ BL0(�); indeed, for any u ∈ W 2,1
� (�) the distributional

Laplacian is given by �u dx , but the inclusion is strict.
We recall the following approximation result, whose proof can be found in [18, Theorem

4.1].

Proposition 2.1 Let u ∈ BL0(�). Then, there exists a sequence of functions uk ∈ C∞(�)∩
BL0(�) such that uk → u in W 1,1

0 (�), and |�uk |(�) → |�u|(�) as k → ∞.

Note that, indeed, a function of C∞(�) ∩ BL0(�) belongs to W 2,1
� (�).

In order to investigate the minimization problem (8), we are naturally interested to guar-
antee existence and uniqueness of solution (in a suitable sense) of the equation

{−�u = μ in �

u = 0 on ∂�

The question is not trivial, as one can see by means of explicit counterexamples. However,
if the boundary of � is of class C1,1, uniqueness of distributional solutions in the space
W 1,1

0 (�) holds. More precisely, the following slightly more general result was proven in [18,
Corollary 4.5].

Proposition 2.2 Let � be a bounded, convex domain or a bounded domain whose boundary
is of class C1,α with α ∈ (0, 1]. If u ∈ W 1,1

0 (�) is harmonic in � in distributional sense,
then u ≡ 0.

This allows a decomposition of a function u ∈ BL0(�) into its “superharmonic” and
“subharmonic” part as in Proposition 3.1; hence, from now on, we will suppose that the
boundary of � is of class C1,1.

3 Normal derivative and integration by parts

As remarked in the introduction, in order to identify a proper relaxation of the minimization
problem (4) in BL0(�), we need to guarantee the existence of a normal derivative on the
boundary ∂�, for functions u in BL0(�). This question was addressed by Brezis and Ponce,
who proved that every function in BL0(�) admits a normal derivative in L1(∂�;H n−1),
the symbol H n−1 standing for the (n − 1)-dimensional Hausdorff measure ([4, Theorem
1.2]). We observe that our space BL0(�) corresponds to X∩ W 1,1

0 (�) in their notation. For
the sake of completeness, we wish to give a slightly different proof, in order to state more
precisely the regularity assumptions on the boundary, and to show that functions inW 2,1

�,0(�)

are such that their normal derivative is identically zero on the boundary.

123



1842 E. Parini et al.

Proposition 3.1 Let � ⊂ R
n be a bounded domain with boundary of class C1,1. Let u ∈

BL0(�). Then, there exists a unique linear application Tn : BL0(�) → L1(∂�;H n−1)

such that
∫

�

∇u∇ϕ = −
∫

�

ϕ d�u +
∫

∂�

(Tnu) ϕ

for all ϕ ∈ C1(�). Further, it holds
∫

∂�

|Tnu| ≤
∫

�

|�u| (11)

If u ∈ BL0(�) ∩ C1(�), then Tnu = un on ∂�. Moreover, if u ∈ W 2,1
�,0(�), then Tnu ≡ 0.

Proof We begin by supposing that u ∈ C∞(�) ∩ W 2,p(�) for every p ≥ 1, and −�u ≥ 0.
Then, ∇u ∈ C(�), u ≥ 0 and un ≤ 0. Therefore,

∫

∂�

|un | = −
∫

∂�

un = −
∫

�

div(∇u) =
∫

�

|�u|. (12)

Moreover,
∫

�

∇u∇ϕ = −
∫

�

ϕ �u +
∫

∂�

ϕun

for all ϕ ∈ C1(�). A similar reasoning applies in the case −�u ≤ 0. Let now u ∈ W 2,1
� (�)

with f := −�u ≥ 0. Since ∂� is of class C1,1, we can approximate u by a sequence
uk ∈ C∞(�) ∩ W 2,p(�) for every p ≥ 1 such that �uk ∈ C∞

c (�) with −�uk ≥ 0
in such a way that uk → u in W 1,1

0 (�) and �uk → �u in L1(�). By (12), the sequence
{Tnuk} is aCauchy sequence in L1(∂�;H n−1), and therefore, there exists a (unique) function
g ∈ L1(∂�;H n−1) such that Tnuk → g in L1(∂�;H n−1).Wewill set Tnu := g.Moreover,
from

∫

�

∇uk∇ϕ = −
∫

�

�uk ϕ +
∫

∂�

(Tnuk) ϕ

we obtain
∫

�

∇u∇ϕ = −
∫

�

�u ϕ +
∫

∂�

(Tnu) ϕ (13)

for all ϕ ∈ C1(�). Furthermore, the equality
∫

∂�

|Tnu| =
∫

�

|�u|

holds true. To show uniqueness of Tnu, suppose by contradiction that there exists another
g̃ ∈ L1(∂�;H n−1) such that (13) holds true. Then,

∫

∂�

(Tnu − g̃) ϕ = 0 for every ϕ ∈ C1(�). (14)

By Whitney’s extension Theorem [23], for every ψ ∈ C∞
c (∂�), there exists ϕ ∈ C1(�)

such that ϕ|∂� = ψ . Therefore (14) is equivalent to
∫

∂�

(Tnu − g̃) ψ = 0 for every ψ ∈ C∞
c (∂�)

123



Functional inequalities related to the clamped 1-biharmonic operator 1843

which implies g̃ = Tnu. Now, we consider an arbitrary function u ∈ W 2,1
� (�). Let w and z

the solutions of the problems
{−�w = f + in �

w = 0 on ∂�

{−�z = f − in �

z = 0 on ∂�

where f + and f − are the positive and negative parts of f , respectively. Then, u = w + z,
and we can define

Tnu := Tnw + Tnz.

Relation (13) holds true also for u, and
∫

∂�

|Tnu| ≤
∫

∂�

|Tnw| +
∫

∂�

|Tnz| =
∫

�

|�w| +
∫

�

|�z| =
∫

�

|�u|.

The extension of the result for functions in BL0(�) can be proved as in [4, Proposition
4.2] (their extension argument works also for domains with boundary of class C1,1). If u is
of classC1(�), it is clear that Tnu must coincide with the usual normal derivative. Moreover,
if u ∈ W 2,1

�,0(�), then it is the limit of a sequence of functions uk ∈ C∞
c (�). Since Tnuk ≡ 0

on ∂�, by continuity we have Tnu ≡ 0 on ∂� as well. ��
We will now investigate the trivial extension of functions in BL0(�). Let us denote with

u(x) :=
{

u(x) if x ∈ �,

0 if x ∈ R
n \ �.

Observe that if v ∈ W 1,1
0 (�), then

|�v|(Rn) = sup

{∫

�

v�ϕ

∣
∣
∣ ϕ ∈ C∞

c (Rn), ‖ϕ‖∞ ≤ 1

}

= sup

{∫

�

∇v∇ϕ

∣
∣
∣ ϕ ∈ C∞

c (Rn), ‖ϕ‖∞ ≤ 1

}

= sup

{∫

�

∇v∇ϕ

∣
∣
∣ ϕ ∈ C1(�), ‖ϕ‖∞ ≤ 1

}

In the following, when no ambiguity arises, we will denote by un the normal derivative of a
function u ∈ BL0(�).

Proposition 3.2 Let u ∈ BL0(�). Then, u ∈ BL(Rn), and

|�u|(Rn) = |�u|(�) + ‖un‖L1(∂�).

In particular,

|�u|(Rn) ≤ 2|�u|(�).

Proof We argue as in [9, Section 5.4, Theorem 1]. Since in particular u ∈ W 1,1
0 (�), we have

that u ∈ W 1,1(Rn). Let ϕ ∈ C1(�) such that ‖ϕ‖∞ ≤ 1; then,
∫

Rn
∇u ∇ϕ =

∫

�

∇u ∇ϕ = −
∫

�

ϕ d�u +
∫

∂�

ϕundH
n−1

≤ |�u|(�) + ‖un‖L1(∂�) (15)

Hence, u ∈ BL0(�) implies that u ∈ BL(Rn) with

|�u|(Rn) ≤ |�u|(�) + ‖un‖L1(∂�).
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To obtain the equality, observe that d�u ∈ M(�), so that, by the Riesz representation
Theorem, it admits a unique decomposition

∫

�

ϕd�u =
∫

�

ϕdμ +
∫

∂�

ϕdν ∀ ϕ ∈ C1(�)

Hence, we obtain that

dμ = d�u and dν = undH
n−1

and the first part of the claim follows. The second part is a consequence of Proposition 3.1,
since

‖un‖L1(∂�) ≤ |�u|(�).

��
Looking carefully at the proof of Proposition 2.1, one can observe that it is possible to

write |�u|(Rn) instead of |�u|(�), obtaining the following approximation result.

Proposition 3.3 Let u ∈ BL0(�). Then, there exists a sequence of functions uk ∈ C∞(�)∩
BL0(�) (and hence in W 2,1

� (�)) such that uk → u in W 1,1
0 (�), and |�uk |(Rn) → |�u|(Rn)

as k → ∞.

Remark 3.4 If u ∈ W 2,1
� (�) it is not true, in general, that u ∈ W 2,1

� (Rn). As an example,
one can consider � = B1 in R

2 and the function u(x) = 1 − |x |2 defined on B1. Clearly,
u ∈ W 2,1

� (B1); on the other hand, for any radial ϕ ∈ C∞
c (R2),

∫

R2
∇u ∇ϕ dx = 2π

∫ 1

0
−2rϕ′(r)rdr = −4πϕ(1) + 8π

∫ 1

0
rϕ(r) dr

= −4πϕ(1) + 4
∫

B1
ϕ dx �=

∫

R2
gϕ dx for any g ∈ L1(R2)

This proves that u /∈ W 2,1
� (R2).

Remark 3.5 If u ∈ W 2,1
�,0(�), then Tnu ≡ 0 and u ∈ W 2,1

� (Rn) by Proposition 3.1. In
particular,

|�u|(Rn) =
∫

Rn
|�u| =

∫

�

|�u|.

From now on, we will not distinguish between a function and its trivial extension.

4 An approximation result: relaxation on BL0(�)

The aim of this section is to obtain the relaxation of our original minimization problem (4)
on BL0(�), that is, to prove (8)

�c
1,1(�) = inf

u∈W 2,1
�,0(�)\{0}

‖�u‖1
‖u‖1 = inf

u∈BL0(�)\{0}
|�u|(Rn)

‖u‖1 .

To this end, we will show that each function u in BL0(�) can be approximated by a
sequence {uk} of smooth functions with compact support, in such a way that uk → u
in W 1,1

0 (�) and ‖�uk‖1 = |�uk |(Rn) → |�u|(Rn). Our results are inspired by those
contained in [15]. We will need some preliminary lemmas.
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Lemma 4.1 [15, Lemma 3.4] Let � ⊂ R
n be an open, bounded subset with Lipschitz

boundary. Then, there exists a τ0 > 0 and a family of C∞-diffeomorphisms �τ : Rn → R
n,

0 ≤ τ ≤ τ0, with inverses �τ , such that:

• �0 = �0 = I d;
• �τ → I d and �τ → I d as τ → 0 uniformly on R

n;
• D�τ (x) → I d and D�τ (x) → I d as τ → 0 uniformly with respect to x on R

n

• �τ (�) ⊂⊂ � for 0 < τ ≤ τ0.

Moreover, the higher derivatives of �τ and �τ converge uniformly to zero as τ → 0.

Lemma 4.2 Let u ∈ BL0(�). Then, there exists a sequence {uk} in C∞(�) ∩ W 2,p(�) for
every p ≥ 1 such that uk → u in W 1,1(�) and |�uk |(Rn) → |�u|(Rn).

Proof Since u ∈ BL0(�), by Proposition 3.3, we can say that there exists a sequence {uk} in
C∞(�) ∩ W 2,1

� (�) such that uk → u in W 1,1
0 (�) and |�uk |(Rn) → |�u|(Rn). Therefore,

it is enough to consider a function u ∈ C∞(�) ∩ W 2,1
� (�). Let f = −�u, and let { fk} be a

sequence in C∞
c (�) such that fk → f in L1(�). Let uk be the solution of

{−�uk = fk in �

uk = 0 on ∂�

Since ∂� is of class C1,1, one has that uk ∈ C∞(�) ∩ W 2,p(�) for every p ≥ 1. Moreover,
uk → u in W 1,1(�), |�uk |(�) → |�u|(�) since ‖ fk − f ‖1 → 0, and by Proposition 3.1

∫

∂�

|Tnuk | →
∫

∂�

|Tnu|

which implies |�uk |(Rn) → |�u|(Rn). ��
The following proposition, which is the main result of this section, is an adaptation of [15,

Theorem 3.2].

Proposition 4.3 Let u ∈ BL0(�). Then, there exists a sequence uk ∈ C∞
c (�) such that

uk → u in W 1,1
0 (�) and |�uk |(Rn) → |�u|(Rn).

Proof We begin by considering a function u ∈ BL0(�) with compact support. Let η be a
standard mollifier, and consider the functions uε := u ∗ηε where ηε(x) = ε−nη(x/ε). Then,
uε ∈ C∞

c (�) for ε > 0 small enough, and uε → u in W 1,1
0 (�), which implies

|�u|(Rn) ≤ lim inf
ε→0

|�uε|(Rn).

Moreover, for a function ϕ ∈ C∞
c (Rn), we have

∫

Rn
∇uε∇ϕ =

∫

Rn
∇(u ∗ ηε)∇ϕ =

∫

Rn
∇u∇(ηε ∗ ϕ) ≤ |�u|(Rn)

since |ηε ∗ ϕ| ≤ 1. Hence,

lim sup
ε→0

|�uε|(Rn) ≤ |�u|(Rn).

Now, we consider an arbitrary function u ∈ BL0(�). We notice that, by Lemma 4.2, it is
enough to consider functions in C∞(�)∩W 2,p(�) for a fixed p > n. Then, for �τ a family
of diffeomorphisms with inverses �τ as in the lemma above, one defines

uτ (x) = u(�τ (x)).
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The functions uτ have compact support, and satisfy uτ → u in L1(�) for τ → 0 (see Step
1 in [15, Theorem 3.2]). Moreover,

∇uτ (x) = ∇[u(�τ (x))] = [D�τ (x)]T · ∇u(�τ (x)).

For every ε > 0, we can choose τ so small that ‖[D�τ (x)]T − I d‖ ≤ ε and
|det D�τ (x)| ≤ 2. Therefore,

|∇uτ (x) − ∇u(x)| = |[D�τ (x)]T · ∇u(�τ (x)) − ∇u(x)|
≤ |[D�τ (x)]T · ∇u(�τ (x)) − ∇u(�τ (x))| + |∇u(�τ (x)) − ∇u(x)|
≤ ‖[D�τ (x)]T − I d‖|∇u(�τ (x))| + |∇u(�τ (x)) − ∇u(x)|
≤ ε|∇u(�τ (x))| + |∇u(�τ (x)) − ∇u(x)|

which implies

∫

�

|∇uτ (x) − ∇u(x)| ≤ ε

∫

�

|∇u(�τ (x))| +
∫

�

|∇u(�τ (x)) − ∇u(x)|.

Observe that

∫

�

|∇u(�τ (x))| dx =
∫

�

|∇u(y)| |det D�τ (y)|dy ≤ 2‖∇u‖1,

while it can be shown as in Step 1 of [15, Theorem 3.2] that

∫

�

|∇u(�τ (x)) − ∇u(x)| → 0

as τ → 0. Hence, uτ → u in W 1,1
0 (�). It follows that

|�u|(Rn) ≤ lim inf
τ→0

|�uτ |(Rn).

It remains to prove that

lim sup
τ→0

|�uτ |(Rn) ≤ |�u|(Rn).

For every y ∈ ∂�, let ν(y) be the normal vector, and let us denote by [J�(�)](y) the
tangential Jacobian at y (see [12, Definition 5.4.2] and [12, Proposition 5.4.3]), defined as

[J�(�)](y) := |[D�τ (y)]T ν(y)| · det D�τ (y).
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It holds

∫

Rn
∇uτ (x)∇ϕ(x) dx =

∫

Rn
∇[u(�τ (x))]∇ϕ(x) dx

= −
∫

�τ

�[u(�τ (x))]ϕ(x) dx +
∫

∂�τ

ϕ∇[u(�τ (x))] · ν(x) dH n−1(x)

≤
∫

�τ

∣
∣�[u(�τ (x))]∣∣ dx +

∫

∂�τ

∣
∣∇[u(�τ (x))]∣∣ dH n−1(x)

≤
∫

�τ

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(x) · D2u(�τ (x)) · ∂�τ

∂xi
(x) +

∑

j

∂u

∂x j
(�τ (x))��τ

j (x)

∣
∣
∣
∣
dx

+
∫

∂�τ

|[D�τ (x)]T · ∇u(�τ (x))| dH n−1(x)

x=�τ (y)=
∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) · ∂�τ

∂xi
(�τ (y))

+
∑

j

∂u

∂x j
(y)��τ

j (�
τ (y))

∣
∣
∣
∣
|det D�τ (y)| dy

+
∫

∂�

|[D�τ (�τ (y))]T · ∇u(y)| [J�(�)](y) dH n−1(y)

≤
∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) · ∂�τ

∂xi
(�τ (y))

∣
∣
∣
∣
|det D�τ (y)| dy

+
∫

�

∑

j

∣
∣
∣
∣

∂u

∂x j
(y)��τ

j (�
τ (y))

∣
∣
∣
∣
|det D�τ (y)| dy

+
∫

∂�

|[D�τ (�τ (y))]T · ∇u(y)| [J�(�)](y) dH n−1(y)

=: I τ
1 + I τ

2 + I τ
3

For the change of variable in the boundary integral, see [12, Proposition 5.4.3]. Since D�τ →
I d uniformly, one has that |det D�τ (y)| → 1 and [J�(�)](y) → 1 uniformly as τ → 0.
Moreover,

∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) · ∂�τ

∂xi
(�τ (y)) − ei · D2u(y) · ei

∣
∣
∣
∣
|det D�τ (y)| dy

=
∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) · ∂�τ

∂xi
(�τ (y)) − ∂�τ

∂xi
(�τ (y)) · D2u(y) · ei

+∂�τ

∂xi
(�τ (y)) · D2u(y) · ei − ei · D2u · ei

∣
∣
∣
∣
|det D�τ (y)| dy

=
∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) ·

[
∂�τ

∂xi
(�τ (y)) − ei

]

+
[

∂�τ

∂xi
(�τ (y)) − ei

]

· D2u(y) · ei
∣
∣
∣
∣
|det D�τ (y)| dy
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≤
∑

i

∫

�

∣
∣
∣
∣

∂�τ

∂xi
(�τ (y)) · D2u(y) ·

[
∂�τ

∂xi
(�τ (y)) − ei

] ∣
∣
∣
∣
|det D�τ (y)| dy

+
∑

i

∫

�

∣
∣
∣
∣

[
∂�τ

∂xi
(�τ (y)) − ei

]

· D2u(y) · ei
∣
∣
∣
∣
|det D�τ (y)| dy

Since ∂�τ

∂xi
converges uniformly to ei as τ → 0, and D2u ∈ L1(�), we have that

∫

�

∣
∣
∣
∣

∑

i

∂�τ

∂xi
(�τ (y)) · D2u(y) · ∂�τ

∂xi
(�τ (y))

∣
∣
∣
∣
|det D�τ (y)| dy →

∫

�

|�u|.

Similarly, the I τ
2 converges to zero, while I τ

3 satisfies

I τ
3 →

∫

∂�

|un |

so that finally

lim sup
τ→0

|�uτ |(Rn) ≤ |�u|(Rn)

which is the claim. ��

5 The Euler–Lagrange problem for the clamped 1-biharmonic operator

In this section, we will derive an Euler–Lagrange equation for the minimization problem (5).
Due to the homogeneity of the problem, �c

1,1(�) can also be defined as

�c
1,1(�) = min{|�u|(Rn) | ‖u‖1 = 1}.

Since the functionals involved are not differentiable, we will make use of some results from
convex analysis. We will need a suitably modified version of [18, Proposition 5.2]. Let us
define the extension of |�u|(Rn) to the space Ln′

(�) for n′ = n
n−1 (observe that BL0(�) ⊂

W 1,1
0 (�) ⊂ L

n
n−1 (�))

E(u) :=
{ |�u|(Rn) if u ∈ BL0(�),

+∞ if u ∈ Ln′
(�) \ BL0(�).

As recalled in the Introduction, we will denote by D1,2(Rn) the closure of C∞
c (Rn) with

respect to the norm ‖u‖ := ‖∇u‖2 (see, for instance, [14].)
Proposition 5.1 Let u ∈ BL0(�), and denote by ∂E(u) the subdifferential of E at u. Then,
u∗ ∈ ∂E(u) if and only if there exists z ∈ D1,2(Rn) ∩ L∞(Rn) such that:

• ‖z‖∞ ≤ 1;
• u∗ = �z ∈ Ln(Rn), supp �z ⊂ �;
• E(u) = ∫

�
u �z.

Moreover, if u �= 0, then ‖z‖∞ = 1.

Proof Let us define

M∗ := {u∗ ∈ Ln(�) | u∗ = �z for some z ∈ D1,2(Rn) ∩ L∞(Rn), ‖z‖∞ ≤ 1}.
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The functions in M∗ will be trivially extended outside�. We want to show that M∗ is closed.
To this end, take a sequence {u∗

k } in M∗ such that u∗
k → u∗ in Ln(�); hence, there exists a

sequence {zk} in D1,2(Rn) ∩ L∞(Rn) with the property that ‖zk‖∞ ≤ 1 for every k and that
u∗
k = �zk in distributional sense and also weakly, which means

∫

�

u∗
k ϕ =

∫

Rn
zk �ϕ = −

∫

Rn
∇zk∇ϕ for every ϕ ∈ C∞

c (Rn)

or equivalently

−
∫

Rn
∇zk∇ϕ =

∫

�

u∗
k ϕ for every ϕ ∈ D1,2(Rn).

The sequence {zk} is bounded also in D1,2(Rn), since {u∗
k} is uniformly bounded in Ln(�);

this follows by testing the equation with −zk in order to obtain
∫

Rn
|∇zk |2 =

∫

�

u∗
k zk ≤ ‖zk‖∞‖u∗

k‖1 ≤ ‖u∗
k‖1 ≤ |�| n−1

n ‖u∗
k‖n .

So there exists a function z ∈ D1,2(Rn)∩L∞(Rn) such that, after passing to a subsequence,

zk ⇀ z in D1,2(Rn),

zk ⇀∗ z in L∞(Rn),

which implies

‖z‖∞ ≤ lim inf
k→∞ ‖zk‖∞ ≤ 1

and

−
∫

Rn
∇z∇ϕ =

∫

�

u∗ ϕ for every ϕ ∈ D1,2(Rn).

which means that u∗ = �z weakly. Hence, u∗ ∈ M∗.
Let IM∗ : Ln(�) → R be the function defined as

IM∗(u∗) =
{

0 if u∗ ∈ M∗
+∞ otherwise

The conjugate function to IM∗ is given by

I ∗
M∗(u) = sup

u∗∈L p′ (�)

{∫

�

u∗ u − IM∗(u∗)
}

= sup
u∗∈M∗

∫

�

u∗ u.

Now take u ∈ BL0(�) and u∗ ∈ M∗; then, there exists a sequence {uk} in C∞
c (�)

such that uk → u in W 1,1
0 (�) and |�uk |(Rn) → |�u|(Rn) as k → ∞. Without loss of

generality, due to the embedding of BL0(�) intoW 1,r
0 (�) for all r ∈ [1, n′) and the fact that

|�uk |(Rn) = |�uk |(�), we can suppose that uk → u in Ln′
(�). We have

∫

�

u∗ u =
∫

�

�z u = lim
k→∞

∫

�

�z uk = lim
k→∞

∫

�

z �uk

≤ ‖z‖∞ lim
k→∞

∫

�

|�uk | ≤ lim
k→∞

∫

�

|�uk | = lim
k→∞ |�uk |(Rn) = |�u|(Rn). (16)

Hence,

I ∗
M∗(u) = sup

u∗∈M∗

∫

�

u∗ u ≤ E(u).
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Now, we have

E(u) = sup

{∫

�

u �ϕ | ϕ ∈ C∞
c (Rn), ‖ϕ‖∞ ≤ 1

}

≤ sup

{∫

�

u �z | z ∈ D1,2(Rn) ∩ L∞(Rn),�z ∈ Ln(�), ‖z‖∞ ≤ 1

}

= sup

{∫

�

u∗ u | u∗ ∈ M∗
}

= I ∗
M∗(u).

Since the above inequality is true also for u ∈ Ln′
(�) \ BL0(�), we obtain

I ∗
M∗(u) = E(u)

for every u ∈ Ln′
(�). M∗ is closed and convex and thus I ∗

M∗ is convex and lower semicon-
tinuous, which implies (see [8, Chapter 1, Propositions 3.1 and 5.1])

IM∗ = (I ∗
M∗)∗ = E∗.

By [8, Chapter 1, Proposition 5.1] one obtains that u∗ ∈ ∂E(u) if and only if
∫

�

u u∗ = E(u) + E∗(u∗) = E(u) + IM∗(u∗),

which implies that u∗ ∈ ∂E(u) if and only if u∗ ∈ M∗ and E(u) = ∫

�
u∗ u, which is the

claim. Moreover, if u �= 0, then E(u) �= 0 by Corollary 2.2 and hence ‖z‖∞ = 1 from Eq.
(16). ��

Let us define G : Ln′
(�) → R, n′ = n

n−1 , as

G(u) :=
∫

�

|u|.

For u ∈ Ln′
(�), one has that u∗ ∈ ∂G(u) if and only if

u∗ ∈ Sgn(u)

(see [13, Proposition 4.23]). We recall that v ∈ Sgn(u) if and only if:

• v(x) = 1 if u(x) > 0;
• v(x) = −1 if u(x) < 0;
• v(x) ∈ [−1, 1] if u(x) = 0.

We are now ready to characterize the first eigenfunctions of the clamped 1-biharmonic oper-
ator.

Proposition 5.2 Let u ∈ BL0(�) be a minimizer of E constrained to the set {u ∈
Ln′

(�) |G(u) = 1}. Then, for every measurable selection s ∈ Sgn(u), there exists
z ∈ D1,2(Rn) ∩ L∞(Rn) such that:

(1) ‖z‖∞ = 1;
(2) �z ∈ Ln(Rn);
(3) E(u) = |�u|(Rn) = ∫

�
u �z;

(4) �z = λs almost everywhere in �, with λ = E(u).
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Proof From [13, Proposition 6.4] (setting ũ = −u), it follows that for every g∗ ∈ ∂G(u),
there exists a e∗ ∈ ∂E(u) and a λ ∈ R such that g∗ = λ e∗, which plays the role of a Lagrange
multiplier rule in this non-smooth setting. Multiplying both sides of the equality by u and
integrating on�, one obtains that λ = E(u). The claim follows easily if one remembers how
the subdifferentials of E and G are characterized. ��

Proposition 5.2 gives only a necessary condition for u to be a first eigenfunction; therefore,
since u has support in �, one could state the result with a function z ∈ W 1,2(�) ∩ L∞(�)

satisfying the same conditions. The Euler–Lagrange equation formally reads
⎧

⎨

⎩

�

(
�u

|�u|
)

= λ
u

|u| in �,

u = 0 on ∂�.

The function s in Proposition 5.2 should be considered as a substitute for the possibly unde-
termined expression u

|u| , while z plays the role of
�u
|�u| . If compared with the problem studied

in [18], we remark that the natural boundary condition �u
|�u| = 0 has disappeared; indeed, the

function z now belongs to W 1,2(�) and not necessarily to W 1,2
0 (�). However, although we

consider this problem as a “clamped” eigenvalue problem, the boundary condition un = 0
is in general not satisfied, as it will be made clear in the following sections. This feature
actually appears also in the eigenvalue problem for the 1-Laplacian operator with Dirichlet
boundary conditions: first eigenfunctions are given by characteristic functions of Cheeger
sets and they never satisfy the condition u = 0 on the whole boundary.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let us consider the minimization problem (7). A direct consequence
of Proposition 4.3, combined with Remark 3.5, is the first part of Eq. (8),

�c
1,1(�) = inf

u∈BL0(�)\{0}
|�u|(Rn)

‖u‖1
On the other hand, by Proposition 3.3

inf
u∈BL0(�)\{0}

|�u|(Rn)

‖u‖1 = inf
u∈W 2,1

� (�)\{0}
|�u|(Rn)

‖u‖1
which is equal, in turns, to

inf
u∈W 2,1

� (�)\{0}
‖�u‖1 + ‖un‖L1(∂�)

‖u‖1 .

by Proposition 3.2. The proof of (8) is then complete.
The proof of assertion (i) follows the same lines as in [18, Proposition 5.1]. Let {uk} be

a minimizing sequence in W 2,1
�,0(�) ⊂ BL0(�) such that ‖uk‖1 = 1. By Remark 3.5, there

exists a M > 0 such that |�uk |(�) = |�uk |(Rn) = ‖�uk‖1 ≤ M , so that, by [21, Theorem
9.1] (see also [18, Theorem 4.2]) the sequence is uniformly bounded in W 1,r

0 (�) for a fixed

r ∈
(

1, n
n−1

)

. Hence, there exists a function u ∈ W 1,r
0 (�) (and hence in W 1,1

0 (�)) such

that, up to a subsequence, uk ⇀ u weakly in W 1,r
0 (�) and uk → u strongly in L1(�); this

implies in particular that ‖uk‖1 = 1. As in [18, Remark 2.1], the total variation |�u|(Rn) is
lower semicontinuous with respect to the L1-convergence, so that
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|�u|(Rn) ≤ lim inf
k→∞ |�uk |(Rn) = lim inf

k→∞ ‖�uk‖1.

This implies that actually u ∈ BL0(�) and, further, that the first minimization problem
in (i) is attained:

�c
1,1(�) = inf

v∈W 2,1
�,0(�)\{0}

‖�v‖1
‖v‖1 = |�u|(Rn)

‖u‖1 .

Assertion (ii) is a consequence of Proposition 5.2. ��

6 The radial case

The aim of this Section is to discuss the case of radial domains: One may wonder if the mini-
mizers are radial functions, and a first step in this direction is to investigate the minimization
problem restricted to the class of radial functions. The result we obtain will be applied in the
next section to study Faber–Krahn-type inequalities.

Let BR ⊂ R
n be a ball of radius R, and let us define

Wrad(BR) :=
{

u ∈ W 2,1
�,0(BR)

∣
∣
∣ u radially symmetric

}

.

We have the following approximation result, which states that radial functions may be
approximated by means of radial smooth functions.

Proposition 6.1 Let BR ⊂ R
n be a ball of radius R, and let u ∈ Wrad(BR). Then, there

exists a sequence of radially symmetric functions uk ∈ C∞
c (�) such that uk → u in W 1,1

0 (�)

and |�uk |(Rn) → |�u|(Rn).

Proof The proof is the same as in Proposition 4.3, taking into account the fact that a possible
family of diffeomorphisms in Lemma 4.1 is given for τ ∈ [0, 1] by

�τ (x) = x0 +
(

1 − τ

2

)

(x − x0),

where x0 is the center of the ball. ��

We can now approach the study of minimization problems onWrad(BR): thanks to Propo-
sition 6.1, we can reduce to radial smooth functions and then apply techniques in the spirit
of [5], [2].

Proposition 6.2 Let BR ⊂ R
n be a ball of radius R. Then,

inf
u∈Wrad (BR)

‖�u‖1
‖u‖1 = 4n

R2 .

Proof For the sake of simplicity, we will suppose that BR is centered in the origin. By the
approximation result of Proposition 6.1, we can restrict ourselves to functions u ∈ C∞

c (�)

which are radially symmetric. In the following, wewill set r := |x |. If n = 1, BR = (−R, R),
and

‖�u‖1 = 2
∫ R

0
|u′′(r)|dr, ‖u‖1 = 2

∫ R

0
|u(r)|dr

123



Functional inequalities related to the clamped 1-biharmonic operator 1853

since u ∈ C∞
c (−R, R) and it is even. Then, for any 0 < t < R,

u′(t) = 1

2

∫ t

0
u′′(s) ds + 1

2

∫ R

t
−u′′(s)ds �⇒ |u′(t)| ≤ 1

2

∫ R

0
|u′′(s)| ds = ‖�u‖1

4

so that

|u(r)| =
∣
∣
∣
∣

∫ R

r
−u′(t)dt

∣
∣
∣
∣
≤ ‖�u‖1

4

∫ R

r
dt = (R − r)

‖�u‖1
4

hence

‖u‖1 ≤ 2 · ‖�u‖1
4

∫ R

0
(R − r)dr = R2

4
‖�u‖1

so that the case n = 1 is complete.Wewill now consider the case n ≥ 2. From [5, Propositions
14 and 16], we have

|u(r)| ≤ ‖�u‖1
4π

log

(
R

r

)

if n = 2, and

|u(r)| ≤ ‖�u‖1
2n(n − 2)ωn Rn−2

(
Rn−2

rn−2 − 1

)

if n ≥ 3. Remembering that

‖u‖1 = nωn

∫ R

0
|u(t)|tn−1 dt

we obtain straightforwardly

inf
u∈Wrad

‖�u‖1
‖u‖1 ≥ 4n

R2 .

Let us now prove the reverse inequality. Let u be the solution of the problem
{−�u = δ0 in BR

u = 0 on BR,

where δ0 is a Dirac mass concentrated in 0. Hence, u has the form

u(r) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2
(R − r) if n = 1,

1

2π
log

(
R

r

)

if n = 2,

1

n(n − 2)ωn

(

r2−n − R2−n) if n ≥ 3.

In particular, u ∈ BL0(BR) and

|�u|(�) = 1

so that (see also Proposition 3.2)

|�u|(Rn) = 2.
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On the other hand, if n = 1,

‖u‖1 = 2
∫ R

0

R − r

2
dr = R2

2
,

if n = 2

‖u‖1 =
∫ R

0
log

(
R

r

)

· r dr

=
∫ R

0

1

r
· r

2

2
dr = R2

4
,

and if n ≥ 3

‖u‖1 = 1

n − 2

∫ R

0

(

r2−n − R2−n) rn−1 dr

= 1

n − 2

∫ R

0

(

r − R2−nrn−1) dr

= 1

n − 2

(
R2

2
− R2

n

)

= R2

2n
.

Hence,

inf
u∈Wrad (BR)

‖�u‖1
‖u‖1 ≤ |Du|

‖u‖1 = 4n

R2 .

��

7 Toward a Faber–Krahn-type inequality: proof of Theorem 1.2

In this section, we discuss the validity of a Faber–Krahn-type inequality for �c
1,1(�): does

�c
1,1(�) ≥ �c

1,1(�
#) or, equivalently,

�c
1,1(�)

�c
1,1(�

#)
≥ 1

hold? As recalled in the Introduction, the question resembles the well-known conjecture
about the validity of a Faber–Krahn-type inequality for the first eigenvalue of the clamped
plate, proposed by Payne (see [19]) and then investigated, among other authors, by Szegö
(see [20]) in the 2-dimensional case, and by Talenti in [22]; the conjecture was solved in the
cases n = 2 and n = 3, as recalled above, but it is still open if n ≥ 4.

The main obstacle in proving a Faber–Krahn-type inequality is that in the clamped case
we cannot assure neither the positivity of the minimizers, nor their superharmonicity; indeed,
it is true that u ∈ BL0 ⇒ |u| ∈ BL0, but the total variation of �|u| may increase, and also
comparison arguments cannot be applied as in the non-clamped case. Applying a comparison
argument, separately, to the positive and negative parts of the function u, we can prove the
following result

Proposition 7.1 Let � ⊂ R
n be such that |�| = ωn Rn. Then

�c
1,1(�) ≥ 1

2
n−2
n

4n

R2 (17)
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for n ≥ 3. If n = 2,

�c
1,1(�) ≥ 8

R2

and equality holds if � = BR. If n = 1 and � = (−R, R), then

�c
1,1(�) = 4

R2 .

Proof Let u ∈ W 2,1
�,0(�), and denote with u+, u−, respectively, its positive and negative part.

We apply the estimates obtained in [10, Theorem 1] for the decreasing rearrangement of u+
and u−; for the sake of clarity, we briefly recall the notations and the proof of the inequality
we need. Let NBR (r) denote the Green function of the Laplacian in the ball BR ,

NBR (r) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

r2−n − R2−n

n(n − 2)ωn
, n ≥ 3

1

2π
log

( R

r

)

, n = 2

0 < r < R

where ωn is the measure of the unit ball in R
n . For any bounded domain �, we denote with

N∗|�|(t) the decreasing rearrangement of the fundamental function NBR , associated to the ball
with radius R such that |�| = |BR | = ωn Rn ; that is,

N∗|�|(t) := N∗
BR

(t) = NBR

(( t

ωn

) 1
n
)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t− n−2
n − |�|− n−2

n

n(n − 2)ω2/n
n

, n ≥ 3

1

4π
log

( |�|
t

)

, n = 2

0 < t < |�|

The estimates proved in [5] and [2] can be rephrased as

u ∈ W 2,1
� (BR) and u radial �⇒ u∗(t) ≤ N∗

BR
(t)‖�u‖1,

and

u ∈ W 2,1
�,0(BR) and u radial �⇒ u∗(t) ≤ 1

2
N∗
BR

(t)‖�u‖1,
Then, applying Talenti’s comparison theorem to the two problems

{−�wε = (−�u)+ in �ε,

wε = 0 on ∂�ε,

{−�wε = (−�u)− in �′
ε,

wε = 0 on ∂�′
ε,

where �ε = {x : u(x) > ε} and �′
ε = {x : u(x) < −ε}, and defining uε = (u− ε)|�ε , u

′
ε =

(−u − ε)|�′
ε
one has

u∗
ε(t) ≤ w∗

ε (t) ≤ N∗|�ε |(t)
∫

�ε

f +dx;

here, we have used the monotonicity of the decreasing rearrangement. Now, let ε → 0: We
obtain

(u+)∗(t) ≤ ‖�u‖1
2

N∗
|�+|(t),

(u−)∗(t) ≤ ‖�u‖1
2

N∗
|�−|(t),

as in [10].
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Suppose now that |�+| = ωn Rn
1 , |�−| = ωn Rn

2 and |�| = ωn Rn . Then, Rn
1 + Rn

2 ≤ Rn ;
moreover, since

‖u‖1 =
∫ ∞

0
u∗(s) ds

we have that

‖u+‖1 ≤ ‖�u‖1
2

‖N|�+|‖1 = R2
1

4n
‖�u‖1,

‖u−‖1 ≤ ‖�u‖1
2

‖N|�−|‖1 = R2
2

4n
‖�u‖1.

Hence, if n ≥ 3,

‖u‖1 ≤ R2
1 + R2

2

4n
‖�u‖1 ≤ R2

1 + (Rn − Rn
1 )

2
n

4n
‖�u‖1 ≤ 2

n−2
n

R2

4n
‖�u‖1, (18)

since the function g(z) = z2 + (1− zn)
2
n has 2

n−2
n as maximum value on [0, 1]. If n = 2 we

have

‖u‖1 ≤ R2
1 + R2

2

8
‖�u‖1 ≤ R2

8
‖�u‖1

and thus

inf
u∈W 2,1

�,0(�)

‖�u‖1
‖u‖1 ≥ 8

R2 .

If � = BR , since

inf
u∈W 2,1

�,0(BR)

‖�u‖1
‖u‖1 ≤ inf

u∈Wrad (BR)

‖�u‖1
‖u‖1 ≤ 8

R2

by Proposition 6.2, so that equality holds. Finally, for n = 1,

‖u‖1 ≤ R2
1 + R2

2

4
‖u′′‖1 ≤ R2

1 + (R − R1)
2

4
‖u′′‖1 ≤ R2

4
‖u′′‖1

and thus

inf
u∈W 2,1

�,0(�)

‖u′′‖1
‖u‖1 ≥ 4

R2

since the function g(z) = z2 + (1− z)2 has a maximum equal to 1 for z = 0 or z = 1. Again
by Proposition 6.2, equality holds. ��
Remark 7.2 Note that, under dilation, �c

1,1(�) scales as follows

�c
1,1(t�) = min

u∈BL0(t�)

|�u|(Rn)

‖u‖1 = min
v∈BL0(�)

tn−2|�v|(Rn)

tn‖v‖1
= 1

t2
min

v∈BL0(�)

|�v|(Rn)

‖v‖1 = 1

t2
�c

1,1(�)

so that the lower bound (17) can be written in the scaling-invariant form

|�|2/n�c
1,1(�) ≥ 1

2
n−2
n

· 4nω
2/n
n
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where ωn is the Lebesgue measure of the n-dimensional unit ball.

As a consequence of Proposition 7.1, we obtain the following corollary, which concludes
the proof of (9) in Theorem 1.2.

Corollary 7.3 For any bounded domain with boundary of class C1,1,

�c
1,1(�) ≥ �c

1,1(�
#) = 2 · �1,1(�

#) if n = 1, 2

�c
1,1(�) ≥ 1

2
n−2
n

· �c
1,1(�

#) if n ≥ 3.

Proof If n = 1, 2, the previous proposition states that

�c
1,1(�) ≥ 2 · 2n

R2 = 2 · �1,1(�
#)

On the other hand, by Proposition 3.2,

�c
1,1(�

#) ≤ 2 · �1,1(�
#)

which yields directly the claim. The case n ≥ 3 follows by the same arguments. ��
Remark 7.4 If n ≥ 3, the inequality

inf
u∈W 2,1

�,0(�)

‖�u‖1
‖u‖1 ≥ 1

2
n−2
n

4n

R2

is not optimal. Indeed, if it were optimal, looking at (18) one could easily deduce that � is
the union of two disjoint, equal balls B1 and B2. Let u = v1 + v2 be the optimal function.
Then,

|�u|(Rn)

‖u‖1 = |�v1|(Rn) + |�v2|(Rn)

‖v1‖1 + ‖v2‖1 ≥ 4n

R2
1

= 2
2
n
4n

R2 ,

a contradiction.

Let us now conclude the proof of Theorem 1.2, discussing the minimization problem (4)
restricted to the positive cone of W 2,1

�,0(�).
We define

W +(�) :=
{

u ∈ W 2,1
�,0(�) | u ≥ 0

}

.

Proposition 7.5 Let � ⊂ R
n, such that |�| = |BR |. Then,

inf
u∈W +(�)

‖�u‖1
‖u‖1 ≥ 4n

R2 ,

and equality holds if � = BR.

Proof The proof follows the same notations as in Proposition 7.1. If u ∈ W +(�), by the
estimates in [5] one obtains

u∗(t) ≤ 1

2
N∗|�|(t)‖�u‖1

Now, since u ≥ 0,

‖u‖1=
∫

�

u(x) dx=
∫ |�|

0
u∗(t) dt≤ ‖�u‖1

2

∫ |�|

0
N∗|�|(t)dt=

‖�u‖1
4n

|�|2/n
ω
2/n
n

= R2

4n
‖�u‖1.
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Then,

�
c,+
1,1 (�) ≥ 4n

R2 .

Reasoning as in the previous corollary, the proof can be easily concluded. ��
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