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Abstract We consider real hypersurfacesM in complex projective space equippedwith both
the Levi-Civita and generalized Tanaka-Webster connections. For any non-null constant k
and any vector field X tangent to M , we can define an operator on M , F (k)

X , related to both
connections. We study commutativity problems of these operators and the structure Jacobi
operator of M .
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1 Introduction

Let CPm , m ≥ 2, be a complex projective space endowed with the metric g of constant
holomorphic sectional curvature 4. Let M be a connected real hypersurface of CPm without
boundary. Let ∇ be the Levi-Civita connection on M and J the complex structure of CPm .
Take a locally defined unit normal vector field N on M and denote by ξ = −J N . This is a
tangent vector field to M called the structure vector field on M . On M , there exists an almost
contact metric structure (φ, ξ, η, g) induced by the Kaehlerian structure of CPm , where φ is
the tangent component of J and η is an one form given by η(X) = g(X, ξ) for any X tangent
to M . The classification of homogeneous real hypersurfaces inCPm was obtained by Takagi,
see [5,12–14]. His classification contains 6 types of real hypersurfaces. Among them, we find
type (A1) real hypersurfaces that are geodesic hyperspheres of radius r , 0 < r < π

2 and type
(A2) real hypersurfaces that are tubes of radius r , 0 < r < π

2 , over totally geodesic complex
projective spaces CPn , 0 < n < m − 1. We will call both types of real hypersurfaces type
(A) real hypersurfaces.
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Ruled real hypersurfaces can be described as follows: take a regular curve γ in CPm with
tangent vector field X . At each point of γ , there is a unique CPm−1 cutting γ so as to be
orthogonal not only to X but also to J X . The union of these hyperplanes is called a ruled real
hypersurface. It will be an embedded hypersurface locally, although globally it will in general
have self-intersections and singularities. Equivalently, a ruled real hypersurface satisfies that
the maximal holomorphic distribution on M , D, given at any point by the vectors orthogonal
to ξ , is integrable or g(AD,D) = 0. For examples of ruled real hypersurfaces, see [6] or [8].

The Tanaka-Webster connection, [15–17], is the canonical affine connection defined on
a non-degenerate, pseudo-Hermitian CR manifold. As a generalization of this connection,
Tanno, [16], defined the generalized Tanaka-Webster connection for contactmetricmanifolds
by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇X ξ − η(X)φY. (1.1)

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster
connection, Cho defined the g-Tanaka-Webster connection ∇̂(k) for a real hypersurface M in
CPm given, see [3,4], by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.2)

for any X, Y tangent to M where k is a nonzero real number. Then, ∇̂(k)η = 0, ∇̂(k)ξ = 0,
∇̂(k)g = 0, ∇̂(k)φ = 0. In particular, if the shape operator of a real hypersurface satisfies
φA + Aφ = 2kφ, the g-Tanaka-Webster connection coincides with the Tanaka-Webster
connection.

Here, we can consider the tensor field of type (1,2) given by the difference in both con-
nections F (k)(X, Y ) = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY , for any X, Y tangent to M ,
see [7] Proposition 7.10, pages 234–235. We will call this tensor the kth Cho tensor on M .
Associated to it, for any X tangent to M and any non-null real number k, we can consider the
tensor field of type (1,1) F (k)

X , given by F (k)
X Y = F (k)(X, Y ) for any Y ∈ T M . This operator

will be called the kth Cho operator corresponding to X . The torsion of the connection ∇̂(k)

is given by T̂ (k)(X, Y ) = F (k)
X Y − F (k)

Y X for any X, Y tangent to M .
The Jacobi operator RX with respect to a unit vector field X is defined by RX = R(., X)X ,

where R is the curvature tensor field on M . Then, we see that RX is a self-adjoint endomor-
phism of the tangent space. It is related to Jacobi vector fields, which are solutions of the
second-order differential equation (the Jacobi equation) ∇γ̇ (∇γ̇ Y ) + R(Y, γ̇ )γ̇ = 0 along
a geodesic γ in M . The Jacobi operator with respect to the structure vector field ξ , Rξ , is
called the structure Jacobi operator on M .

The purpose of the present paper was to study real hypersurfaces M in CPm such that
the covariant and g-Tanaka-Webster derivatives of the structure Jacobi operator coincide.
∇Rξ = ∇̂(k)Rξ is equivalent to the fact that, for any X tangent to M , Rξ F

(k)
X = F (k)

X Rξ . The
meaning of this condition is that every eigenspace of Rξ is preserved by the kth Cho operator

F (k)
X for any X tangent to M .
On the other hand, T M = Span{ξ} ⊕ D. Thus, we will obtain the following

Theorem 1 Let M be a real hypersurface in CPm, m ≥ 3. Let k be a non-null constant.
Then, F (k)

X Rξ = Rξ F
(k)
X for any X ∈ D if and only if M is locally congruent to a ruled real

hypersurface.

Theorem 2 Let M be a real hypersurface in CPm, m ≥ 3. Let k be a non-null constant.
Then, F (k)

ξ Rξ = Rξ F
(k)
ξ if and only if M is locally congruent to either a tube of radius π

4
over a complex submanifold of CPm or to a type (A) real hypersurface with radius r �= π

4 .
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Commutativity of Cho and structure Jacobi operators 1783

As a direct consequence of these Theorems, we have

Corollary There do not exist real hypersurfaces M in CPm, m ≥ 3, such that for a non-null
constant k, F (k)

X Rξ = Rξ F
(k)
X for any X tangent to M.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of classC∞ unless
otherwise stated. Let M be a connected real hypersurface inCPm ,m ≥ 2, without boundary.
Let N be a locally defined unit normal vector field on M . Let∇ be the Levi-Civita connection
on M and (J, g) the Kaehlerian structure of CPm .

For any vector field X tangent to M , we write J X = φX +η(X)N , and−J N = ξ . Then,
(φ, ξ, η, g) is an almost contact metric structure on M , see [1], that is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X, Y ) − η(X)η(Y ) (2.1)

for any tangent vectors X, Y to M . From (2.1), we obtain

φξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J , we get

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ (2.3)

and

∇X ξ = φAX (2.4)

for any X, Y tangent to M , where A denotes the shape operator of the immersion. As the
ambient space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi
are given, respectively, by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

−2g(φX, Y )φZ + g(AY, Z)AX − g(AX, Z)AY, (2.5)

and

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ (2.6)

for any tangent vectors X, Y, Z to M , where R is the curvature tensor of M . We will call
the maximal holomorphic distribution D on M to the following one: at any p ∈ M , D(p) =
{X ∈ TpM |g(X, ξ) = 0}. We will say that M is Hopf if ξ is principal, that is, Aξ = αξ for
a certain function α on M .

From the above formulas, we have that the structure Jacobi operator on M is given by

Rξ (X) = X − η(X)ξ + g(Aξ, ξ)AX − g(AX, ξ)Aξ (2.7)

for any X tangent to M
In the sequel, we need the following results:

Theorem 2.1 [10] Let M be a real hypersurface of CPm, m ≥ 2. Then, the following are
equivalent:

1. M is locally congruent to either a geodesic hypersphere or a tube of radius r , 0 < r < π
2

over a totally geodesic CPn, 0 < n < m − 1.
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2. φA = Aφ.

Theorem 2.2 [9] If ξ is a principal curvature vector with corresponding principal curvature
α and X ∈ D is principal with principal curvature λ, then φX is principal with principal
curvature αλ+2

2λ−α
.

3 Proof of Theorem 1

If we suppose that F (k)
X Rξ = Rξ F

(k)
X for any X ∈ D, we get

g(Y, φAX)ξ + η(Aξ)g(φAX, AY )ξ − η(AY )g(φAX, Aξ)ξ

+η(Y )φAX + η(Y )η(Aξ)AφAX − η(Y )η(AφAX)Aξ = 0 (3.1)

for any X ∈ D, Y ∈ T M . Let us suppose that M is non-Hopf. Thus, locally we can write
Aξ = αξ + βU , where U is a unit vector field in D, α and β are functions on M and β �= 0.
We also call DU to the orthogonal complementary distribution in D to the one spanned by
U, φU .

If we take X = Y = φU in (3.1), we get

g(AU, φU ) = 0. (3.2)

And taking Y = ξ in (3.1), we obtain

φAX + αAφAX − αβg(φAX,U )ξ − β2g(φAX,U )U = 0 (3.3)

for any X ∈ D. In particular, from (3.2) and (3.3), we have

φAU + αAφAU = 0. (3.4)

The scalar product of (3.3) and U yields

(β2 − 1)g(AφU, X) − αg(AφAU, X) = 0 (3.5)

for any X ∈ D. Thus, (β2 − 1)AφU − αAφAU has not a component in D, and taking its
scalar product with ξ , it follows

(β2 − 1)AφU − αAφAU = 0. (3.6)

From (3.4) and (3.6), we get

φAU = (1 − β2)AφU. (3.7)

Therefore, we can write AφU = δφU + ωZ1, where Z1 ∈ DU is a unit vector field. The
scalar product of (3.3) and Y ∈ DU yields AφY + αAφY has not component in D. Then,

AφY + αAφAY = −αβg(AφU, Y )ξ (3.8)

for any Y ∈ DU . Taking Y = φZ1, we obtain −AZ1 + αAφAφZ1 = 0. Its scalar product
with ξ gives

αβω(β2 − 1) = 0. (3.9)

As β �= 0, the following cases appear
Case 1. α = 0.
Case 2. β2 = 1. In this case, from (3.7), AU = βξ .
Case 3. ω = 0, thus DU is A-invariant.
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Case 1. α = 0. From (3.4) φAU = 0, that is, AU = βξ and Aξ = βU and from (3.6)
(β2 − 1)AφU = 0. So we have the following subcases

Subcase 1.1. Let us suppose that β2 �= 1. Then, AφU = 0. Moreover, from (3.8) for any
Y ∈ DU AφY = 0. That means that M is a minimal ruled hypersurface.

Subcase 1.2. α = 0, β2 = 1. We can suppose β = 1, maybe after changing ξ by
−ξ . As above, AφY = 0 for any Y ∈ DU , AU = ξ , Aξ = U . Then, AZ1 = 0 and
ω = g(AφU, Z1) = 0. Thus, AφU = δφU .

By the Codazzi equation g((∇ξ A)U − (∇U A)ξ, φU ) = 1 yields

δg(∇ξU, φU ) + g(∇UU, φU ) = 0. (3.10)

From g((∇ξ A)φU − (∇φU A)ξ, ξ) = 0, we obtain

g(∇ξ φU,U ) = −3δ. (3.11)

From (3.10) and (3.11), we have

g(∇UU, φU ) = −3δ2. (3.12)

As g((∇U A)φU − (∇φU A)U, ξ) = −2, it follows

g(∇UU, φU ) = −2 (3.13)

and from g((∇U A)φU − (∇φU A)U,U ) = 0, we get

δg(∇UφU,U ) + 2δ = 0. (3.14)

From (3.13) and (3.14), we have δ = 0. Therefore, M is still a minimal ruled real hyper-
surface.

Case 2. β2 = 1. As above, we suppose β = 1. As the case α = 0 has been studied,
we suppose α �= 0. Then, from (3.6), AφAU = 0, and from (3.4), φAU = 0. Therefore,
Aξ = αξ + U , AU = ξ . Moreover, we know that −AZ1 + αAφAZ1 = 0. Taking its
scalar product with φU , we get ω + αωg(AφZ1, φZ1) = 0. Supposing ω �= 0, we have
g(AφZ1, φZ1) = − 1

α
.

Taking X = Y ∈ DU in (3.1), we obtain φAY + αAφAY + ωg(Y, Z1)Aξ = 0. Its
scalar product with φU gives αg(AφAY, φU ) = 0 = −αωg(Y, AφZ1). As αω �= 0,
g(Y, AφZ1) = 0 for anyY ∈ DU . This yields AφZ1 = 0 and 0 = − 1

α
. This is a contradiction,

and we have ω = 0, Aξ = αξ +U , AU = ξ and AφU = δφU .
This yields DU is A-invariant and φ-invariant, and we arrive to Case 3. As also φAU =

(1 − β2)AφU , we have two possible subcases:
Subcase 3.1. β2 = 1. In this case, AU = βξ .
Subcase 3.2. β2 �= 1 and AU = βξ + σU , where σ = (1 − β2)δ.
If we take Y = φX ∈ DU in (3.1) for X ∈ DU such that AX = λX , we have λ +

αλg(φX, AφX) = 0. This yields that either any eigenvalue in DU is 0 or that if there exists a
non-null eigenvalue λ in DU , α �= 0 and λ = − 1

α
. In this case, the eigenspace corresponding

to this eigenvalue is φ-invariant.
Let us suppose that for any Y ∈ DU AY = 0. As g((∇Y A)φY − (∇φY A)Y, ξ) = −2, we

obtain

g([φY, Y ],U ) = − 2

β
. (3.15)

And as g((∇Y A)φY − (∇φY A)Y,U ) = 0, it follows

σg([φY, Y ],U ) = 0. (3.16)
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From (3.15) and (3.16), we get σ = 0. If also β2 �= 1, δ = 0 and our real hypersurface
should be ruled.

Let us then suppose that β2 = 1. As above, we will take β = 1 and σ = 0. If we develop
g((∇Y A)φU − (∇φU A)Y, ξ) = 0, we get

g(∇YφU,U ) = g(∇φUY,U ) (3.17)

and from g((∇Y A)φU − (∇φU A)Y,U ) = 0, it follows

δg(∇YφU,U ) = 0. (3.18)

From (3.17) and (3.18), suppose g(∇YφU,U ) = g(∇φUY,U ) = 0. As g((∇φU A)U −
(∇U A)φU, ξ) = 2, we obtain

g(∇UφU,U ) = 2 + αδ (3.19)

and from g((∇φU A)U − (∇U A)φU,U ) = 0, we have

2δ + δg(∇UφU,U ) = 0. (3.20)

If δ �= 0, from (3.20) g(∇UφU,U ) = −2 and from (3.19)

αδ = −4. (3.21)

Now, g((∇φU A)ξ − (∇ξ A)φU,U ) = 1 gives δg(∇ξ φU,U ) = 2 − αδ. From (3.21)

δg(∇ξ φU,U ) = 6. (3.22)

But from g((∇ξ A)U − (∇U A)ξ, φU ) = 1, we obtain

− δg(∇ξU, φU ) = 0. (3.23)

From (3.22) and (3.23), we arrive to a contradiction. Thus, δ = 0 and M is also a ruled
real hypersurface.

Therefore, we have only to study the following case: Aξ = αξ + βU , AU = βξ + σU ,
AφU = δφU , DU is A-invariant, and there exists Z ∈ DU such that AZ = − 1

α
Z , AφZ =

− 1
α
φZ . As (1 − β2)AφU = φAU , two subcases appear
Subcase 1. β2 = 1, and then σ = 0.
Subcase 2. β2 �= 1, σ = (1 − β2)δ.
From g((∇Z A)φZ − (∇φZ A)Z , ξ) = −2, we obtain

βg([φZ , Z ],U ) = 2

α2 (3.24)

and from g((∇Z A)φZ − (∇φZ A)Z ,U ) = 0, we get(
1

α
+ σ

)
g([φZ , Z ],U ) = 2β

α
. (3.25)

From (3.24) and (3.25), we obtain

1 + ασ = α2β2. (3.26)

In Subcase 1, as β2 = 1 and σ = 0, we should obtain α2 = 1. Changing, if necessary,
ξ by −ξ , we can take α = 1. This case cannot occur by Proposition 3.2, page 1607 in [11].
Therefore, we have β2 �= 1 and from (3.26) 1 + αδ(1 − β2) = α2β2. Thus,

δ = α2β2 − 1

α(1 − β2)
. (3.27)
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Now, g((∇Z A)φZ − (∇φZ A)Z , φU ) = 0 yields(
1

α
+ δ

)
g([Z , φZ ], φU ) = 0. (3.28)

Let us suppose that δ = − 1
α
. Then, σ = β2−1

α
and from (3.26) α2 = 1. As above, we

suppose α = 1. Thus, Aξ = ξ + βU , AU = βξ + (β2 − 1)U , AφU = −φU , and there
exists a unit Z ∈ DU such that AZ = −Z , AφZ = −φZ .

Suppose that there exists a unitW ∈ DU such that AW = AφW = 0. From g((∇W A)ξ −
(∇ξ A)W, ξ) = 0, we obtain g(∇ξW,U ) = 0, and from g((∇W A)ξ − (∇ξ A)W,U ) = 0,
we get W (β) + (β2 − 1)g(∇ξW,U ) = 0. Thus, W (β) = 0. This fact and the proof of
Proposition 3.3, page 1608 in [11], yield grad(β) = −(2β2 + 1)φU . The same proof yields
this case cannot occur. Therefore, δ �= − 1

α
and g([Z , φZ ], φU ) = 0.

Then, from g((∇Z A)φZ − (∇φZ A)Z , Z) = g((∇Z A)φZ − (∇φZ A)Z , φZ) = 0, we get

Z(α) = (φZ)(α) = 0. (3.29)

From g((∇Z A)ξ − (∇ξ A)Z , ξ) = 0, it follows

Z(α) + βg(∇ξ Z ,U ) = 0. (3.30)

From (3.29) and (3.30), we obtain

g(∇ξ Z ,U ) = 0. (3.31)

As g((∇Z A)ξ − (∇ξ A)Z ,U ) = 0, we have, bearing in mind (3.31),

Z(β) = 0. (3.32)

From g((∇ξ A)U − (∇U A)ξ, ξ) = 0, we get

ξ(β) = U (α) (3.33)

and as g((∇ξ A)U − (∇U A)ξ,U ) = 0, it follows

ξ(σ ) = U (β). (3.34)

Now, g((∇Z A)U − (∇U A)Z , ξ) = 0 yields

Z(β) + σg(∇U Z ,U ) = 0 (3.35)

and from (3.26) and g((∇Z A)U − (∇U A)Z ,U ) = 0, we obtain

Z(σ ) + αβ2g(∇U Z ,U ) = 0. (3.36)

From (3.32) and (3.36), we have σg(∇U Z ,U ) = 0. This and (3.36) yield Z(σ ) +
1
α
g(∇U Z ,U ) = 0. As Z(α) = Z(β) = 0, from (3.26) Z(σ ) = 0. Therefore,

g(∇U Z ,U ) = 0. (3.37)

As g((∇Z A)U − (∇U A)Z , φU ) = 0, this gives

(σ − δ)g(∇ZU, φU ) +
(

δ + 1

α

)
g(∇U Z , φU ) = 0 (3.38)
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and g((∇Z A)U − (∇U A)Z , Z) = 0 yields

U

(
1

α

)
=

(
σ + 1

α

)
g(∇Z Z ,U ). (3.39)

From g((∇Z A)ξ − (∇ξ A)Z , Z) = 0, we obtain

ξ

(
1

α

)
= βg(∇Z Z ,U ) (3.40)

and from g((∇Z A)φU − (∇φU A)Z ,U ) = 0, we get

(δ − σ)g(∇ZφU,U ) +
(

σ + 1

α

)
g(∇φU Z ,U ) = 0. (3.41)

We also have from g((∇Z A)φU ) − (∇φU A)Z , ξ) = 0

g([φU, Z ],U ) = 0. (3.42)

Thus, from (3.41) and (3.42), we have a homogeneous system of linear equations where
g(∇ZφU,U ) and g(∇φU Z ,U ) are unknown. The determinant of its matrix of coefficients
is δ + 1

α
. As δ �= − 1

α
, we obtain

g(∇ZφU,U ) = g(∇φU Z ,U ) = 0. (3.43)

As g((∇Z A)φU −(∇φU A)Z , φZ) = 0, we have (δ+ 1
α
)g(∇ZφU, φZ) = 0. As δ �= − 1

α
,

g(∇ZφU, φZ) = 0. By (2.3), this gives g(∇ZU, Z) = 0. From (3.39) and (3.40), it follows

ξ(α) = U (α) = 0. (3.44)

From g((∇Z A)φU − (∇φU A)Z , Z) = 0, we have (δ + 1
α
)g(∇ZφU, Z) + (φU )( 1

α
) = 0.

Now, from (2.3)

(φU )

(
1

α

)
=

(
1

α
+ δ

)
g(∇ZU, φZ). (3.45)

Developing g((∇Z A)U − (∇U A)Z , φZ) = 0 and bearing in mind (3.26), we get

α2β2g(∇ZU, φZ) = β. (3.46)

Now, from (3.45) and (3.46), we obtain

(φU )(α) = −1 + αδ

αβ
= β(1 − α2)

α(1 − β2)
. (3.47)

From (3.33) and (3.44), we have

ξ(β) = U (β) = 0. (3.48)

The equality g((∇ξ A)U − (∇U A)ξ, φU ) = 1 yields

βg(∇UU, φU ) = β2 + σ 2 − ασ − 1. (3.49)

From g((∇U A)φU − (∇φU A)U, ξ) = −2, we arrive to −2δσ + ασ + αδ −
βg(∇UφU,U ) − (φU )(β) = 2. This and (3.49) yield

(φU )(β) = −2δσ + αδ + β2 + σ 2 + 1. (3.50)
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Commutativity of Cho and structure Jacobi operators 1789

Bearing in mind all these facts, we arrive to

grad(α) = ρφU

grad(β) = θφU (3.51)

where ρ = −( 1+αδ
αβ

) and θ = −2δσ + αδ + β2 + σ 2 + 1. As g(∇X grad(α), Y ) =
g(∇Y grad(α), X) for any X, Y tangent to M , we have, taking X = ξ , ξ(ρ)g(φU, Y ) +
ρg(∇ξ φU, Y ) = −ρg(U, AY ). If Y = φU , this yields ξ(ρ) = 0. Thus, ρg(∇ξ φU, Y ) =
−ρg(U, AY ), for any Y tangent to M . As ρ �= 0, taking Y = U , we get

g(∇ξ φU,U ) = −σ. (3.52)

From g((∇ξ A)φU − (∇φU A)ξ, ξ) = 0 and bearing in mind (3.52), we have

(φU )(α) = −3βδ + αβ − βσ. (3.53)

From (3.47) and (3.53) 2 + αδ + ασ − 3αβ2δ + ασβ2 = 0, or equivalently

α2(2β2 − 3β4 − β6) + β2(2 + β2) − 1 = 0. (3.54)

If 2 − 3β2 − β4 = 0, we should have β4 + 2β2 − 1 = 0. Both equalities yield β2 = 1,
that is impossible. From (3.54), we have

α2 = 1 − β2(2 + β2)

2β2 − 3β4 − β6 . (3.55)

If we take the derivative of (3.54) in the direction of φU and bear in mind (3.47), (3.48),
and (3.54), we find that β is a root of a polynomial with constant coefficients. Therefore, β
is constant. From (3.55), α is also constant, which is impossible.

Thus, we have proved that if M is not Hopf, it is locally congruent to a ruled real hyper-
surface. It is easy to see that these real hypersurfaces satisfy (3.1).

Let us now suppose that M is a Hopf real hypersurface with Aξ = αξ and that M satisfies
(3.1). Then, we have for any X ∈ D that φAX + αAφAX = 0. If α = 0, we get φAX = 0.
Thus, AX = 0 for any X ∈ D and M should be totally geodesic, which is impossible.

Suppose now that α �= 0 and take a unit X ∈ D such that AX = λX . From (3.1), we
get either λ = 0 or AφX = − 1

α
φX . Applying the same reasoning to φX , we obtain that

the eigenspaces in D are φ-invariant and correspond to the eigenvalues 0 and − 1
α
. This is

impossible by Theorem 2.2, and we finish the proof.

4 Proof of Theorem 2

If we suppose that Rξ F
(k)
ξ = F (k)

ξ Rξ , we get

g(Y, φAξ)ξ + g(Aξ, ξ)g(φAξ, AY )ξ + η(Y )φAξ + η(Y )η(Aξ)AφAξ

− η(Y )η(AφAξ)Aξ − kφRξ (Y ) + kRξ (φY ) = 0 (4.1)

for any Y ∈ T M . Let us suppose that M is non-Hopf. Thus, we write Aξ = αξ + βU for a
unit U ∈ D and functions α and β on M , β being nonvanishing. From (4.1), we have

βg(Y, φU )ξ + αβg(φU, AY )ξ + βη(Y )φU

+αβη(Y )AφU = kφRξ (Y ) − kRξ (φY ) (4.2)
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for any Y ∈ T M . Taking Y = ξ in (4.2), we obtain

βφU + αβAφU = 0. (4.3)

As β �= 0, this yields

α �= 0,

AφU = − 1

α
φU. (4.4)

If now we take Y = U in (4.2), as k �= 0, we get φRξ (U ) = Rξ (φU ). This yields

αφAU = (β2 − 1)φU , that is, φAU = β2−1
α

φU . By applying φ to such an equality, it
follows

AU = βξ + β2 − 1

α
U. (4.5)

From (4.4) and (4.5), we obtain thatDU is φ-invariant and A-invariant. Take a unit Y ∈ DU

such that AY = λY . Introducing this Y in (4.2), we get φRξ (Y ) = Rξ (φY ). This yields
αλφY = αAφY . As α �= 0, AφY = λφY . Therefore, the eigenspaces in DU are φ-invariant.

The Codazzi equation gives (∇ξ A)φY − (∇φY A)Y = −2ξ . Taking its scalar product with
φY , respectively, with Y , we have

Y (λ) = (φY )(λ) = 0. (4.6)

Its scalar product with ξ implies

βg([φY, Y ],U ) = 2λ2 − 2αλ − 2 (4.7)

and its scalar product with U gives
(

λ − β2 − 1

α

)
g([φY, Y ],U ) = 2βλ. (4.8)

From (4.7) and (4.8), we get

(αλ + 1)(λ2 − αλ − 1) = β2(λ2 − 1). (4.9)

From g((∇φU A)Y − (∇Y A)φU, φY ) = 0, we have (λ + 1
α
)g(∇YφU, φY ) = 0. Then,

either g(∇YφU, φY ) = g(∇YU, Y ) = 0, where we have applied (2.3) or λ = − 1
α
. In this

second case from (4.9), we have 0 = β2(λ2 − 1). As β �= 0, this yields λ2 = 1 and α2 = 1.
Changing, if necessary, ξ by −ξ , we can suppose α = 1 and then λ = −1.

The scalar product of (∇ξ A)Y − (∇Y A)ξ = φY and Y gives

ξ(λ) − βg(∇YU, Y ) = 0. (4.10)

As either λ = −1 or g(∇YU, Y ) = 0, we always have

ξ(λ) = 0. (4.11)

Developing (∇U A)φU − (∇φU A)U = −2ξ and taking its scalar product with φU , we
get

αU

(
1

α

)
= β2g(∇φUφU,U ) (4.12)
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The same procedure applied to g((∇ξ A)φU − (∇φU A)ξ, φU ) = 0 yields

ξ

(
1

α

)
= βg(∇φUφU,U ). (4.13)

From (4.12) and (4.13), we obtain

αU (α) = βξ(α). (4.14)

From g((∇ξ A)U − (∇U A)ξ, ξ) = 0, ξ(β) = U (α) and from (4.14), we have

βξ(α) = αξ(β). (4.15)

By derivating (4.9) in the direction of ξ and bearing in mind (4.11) and (4.15), it follows

(λ(λ2 − αλ − 1) − λ(αλ + 1))ξ(α) = 2β2

α
(λ2 − 1)ξ(α). (4.16)

If we suppose ξ(α) �= 0 and bear in mind (4.9), from (4.16), we have

αλ3 − 2αλ + 2λ2 − 2 = 0. (4.17)

Derivating (4.17) in the direction of ξ , we obtain (λ3 − 2λ)ξ(α) = 0. As we suppose
ξ(α) �= 0, we have λ(λ2 − 2) = 0. If λ = 0 from (4.9), it follows β2 = 1 and β should
be constant. From (4.15), ξ(α) = 0, and we arrive to a contradiction. Therefore, λ2 = 2.
From (4.9), we obtain 1 − 2α2 = β2. By derivating this equality in the direction of ξ and
bearing in mind (4.15) and that we suppose ξ(α) �= 0, we get −2α2 = β2 and we have a
new contradiction. This proves

ξ(α) = ξ(β) = U (α) = 0. (4.18)

The equality g((∇ξ A)Y − (∇Y A)ξ, ξ) = 0 yields

Y (α) = −βg(∇ξY,U ). (4.19)

Analogously, from g((∇ξ A)Y − g(∇Y A)ξ,U ) = 0, we obtain

Y (β) =
(

λ − β2 − 1

α

)
g(∇ξY,U ). (4.20)

From (4.19) and (4.20), we get

βY (β) =
(

β2 − 1

α
− λ

)
Y (α). (4.21)

As Y (λ) = 0, from (4.9), it follows

(λ(λ2 − αλ − 1) − λ(αλ + 1))Y (α) = (λ2 − 1)2βY (β) (4.22)

and from (4.21) and (4.22), if we suppose Y (α) �= 0, we have

α(3λ2 − 2αλ2 − 4λ) = 2(αλ + 1)(λ2 − αλ − 1) − 2(λ2 − 1). (4.23)

Derivating once again in the direction of Y and bearing inmind that we suppose Y (α) �= 0,
we obtain λ3 = 0, that is, λ = 0 and β2 = 1. Therefore, β is constant and Y (β) = 0.

From g((∇ξ A)φU − (∇φU A)ξ, ξ) = 0, we have

(φU )(α) = 3β

α
+ αβ + βg(∇ξU, φU ). (4.24)
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And β2 = 1 and g((∇ξ A)φU − (∇φU A)ξ,U ) = −1 yield

g(∇ξU, φU ) = −α. (4.25)

From (4.24) and (4.25), we conclude

(φU )(α) = 3β

α
. (4.26)

As g((∇ξ A)U − (∇U A)ξ, φU ) = 1, we get

1

α
g(∇ξU, φU ) − βg(∇UU, φU ) = 0 (4.27)

and from the Codazzi equation g((∇U A)φU − (∇φU A)U,U ) = 0, it follows

g(∇UU, φU ) = 2β. (4.28)

From (4.27) and (4.28), bearing in mind that β2 = 1, we have

g(∇ξU, φU ) = 2α. (4.29)

Now, from (4.27) and (4.29), α should vanish. As this is a contradiction, we arrive to

Y (α) = Y (β) = 0 (4.30)

By linearity, we have X (α) = X (β) = 0 for any X ∈ DU .
The Codazzi equation g((∇ξ A)φU − (∇φU A)ξ,U ) = −1 yields

(φU )(β) = β2 − 1

α2 + β2 + β2

α
g(∇ξU, φU ). (4.31)

As g((∇ξ A)U − (∇U A)ξ, φU ) = 1, we have

β2

α
g(∇ξU, φU ) − βg(∇UU, φU ) = β2 − 1

α2 (4.32)

and g((∇U A)φU − (∇φU A)U,U ) = 0 shows

βg(∇UU, φU ) + β2 − 3 − 2(φU )(β) − β2 − 1

αβ
(φU )(α) = 0. (4.33)

From (4.31), (4.32), and (4.33), we have

βg(∇UUφU ) − β2 − 1

α
g(∇ξU, φU ) + β2 − 1

α2 − 4 = 0. (4.34)

Now, from (4.33) and (4.34), it follows g(∇ξU, φU ) = −4α and g(∇UU, φU ) = 1−β2

α2β
−

4β. Then, from (4.24) and (4.32), we get

(φU )(α) = 3β

(
1 − α2

α

)
(4.35)

and

(φU )(β) = −3β2 + β2 − 1

α2 . (4.36)

From all the facts we have until now, we obtain grad(α) = ωφU , where ω =
3β( 1−α2

α
). As g(∇X grad(α), Y ) = g(∇Y grad(α), X) for any X, Y ∈ T M , we get
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Commutativity of Cho and structure Jacobi operators 1793

X (ω)g(φU, Y ) − Y (ω)g(φU, X) + ω(g(∇XφU, Y ) − g(∇YφU, X)) = 0. Taking Y = ξ ,
this yields ω(g(∇XφU, ξ) − g(∇ξ φU, X)) = 0 for any X ∈ T M . Thus, either ω = 0
or g(∇XφU, ξ) = g(∇ξ φU, X) for any X ∈ T M . If we take X = U , we have
−g(U, AU ) = g(∇ξ φU,U ). Then, 4α2+β2 = 1. This yields 4α(φU )(α)+β(φU )(β) = 0.
From (4.35) and (4.36), we have 9α2+β2 = 1. Therefore, α = 0, which is impossible. So we
have ω = 0 and α2 = 1. From (4.35) (φU )(α) = 0 and from (4.36) (φU )(β) = −(2β2 +1).
Then, from (4.18) and the fact that g((∇ξ A)U − (∇U A)ξ,U ) = 0, we have U (β) = 0 and
then grad(β) = −(2β2 + 1)φU .

Applying the same reasoning to grad(β), −(1+2β2)(g(∇XφU, ξ)− g(∇ξ φU, X)) = 0
for any X ∈ T M . This yields g(∇XφU, ξ) = g(∇ξ φU, X) for any X ∈ T M . Taking X = U ,
it follows 4α2 + β2 = 1 and being α2 = 1, β2 = −3, which is impossible and proves that
M must be Hopf.

If M is Hopf with Aξ = αξ , from (4.1), we get φRξ = Rξ φ. Let Y ∈ D a unit vector
field such that AY = λY . Therefore, αλY = αAφY . Then, either α = 0 and M is locally
congruent to a tube of radius π

4 around a complex submanifold ofCPm , see [2], or Aφ = φA
and from Theorem 2.1, M is locally congruent to a type (A) real hypersurface.

It is very easy to see that these real hypersurfaces satisfy (4.1), and we finish the
proof. �	
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