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Abstract We consider real hypersurfaces M in complex projective space equipped with both
the Levi-Civita and generalized Tanaka-Webster connections. For any non-null constant k
and any vector field X tangent to M, we can define an operator on M, F (k), related to both
connections. We study commutativity problems of these operators and the structure Jacobi
operator of M.

Keywords g-Tanaka-Webster connection - Complex projective space -
Real hypersurface - kth Cho operator

Mathematics Subject Classification 53C15 - 53B25

1 Introduction

Let CP™, m > 2, be a complex projective space endowed with the metric g of constant
holomorphic sectional curvature 4. Let M be a connected real hypersurface of CP" without
boundary. Let V be the Levi-Civita connection on M and J the complex structure of CP™.
Take a locally defined unit normal vector field N on M and denote by & = —JN. This is a
tangent vector field to M called the structure vector field on M. On M, there exists an almost
contact metric structure (¢, &, n, g) induced by the Kaehlerian structure of CP™, where ¢ is
the tangent component of J and 7 is an one form given by n(X) = g(X, &) for any X tangent
to M. The classification of homogeneous real hypersurfaces in CP™ was obtained by Takagi,
see [5,12—-14]. His classification contains 6 types of real hypersurfaces. Among them, we find
type (A1) real hypersurfaces that are geodesic hyperspheres of radius 7,0 < r < 7 and type
(A»>) real hypersurfaces that are tubes of radius 7,0 < r < %, over totally geodesic complex
projective spaces CP", 0 < n < m — 1. We will call both types of real hypersurfaces type
(A) real hypersurfaces.
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Ruled real hypersurfaces can be described as follows: take a regular curve y in CP™ with
tangent vector field X. At each point of y, there is a unique CP™~! cutting y so as to be
orthogonal not only to X but also to J X. The union of these hyperplanes is called a ruled real
hypersurface. It will be an embedded hypersurface locally, although globally it will in general
have self-intersections and singularities. Equivalently, a ruled real hypersurface satisfies that
the maximal holomorphic distribution on M, D, given at any point by the vectors orthogonal
to &, is integrable or g(AD, D) = 0. For examples of ruled real hypersurfaces, see [6] or [8].

The Tanaka-Webster connection, [15—17], is the canonical affine connection defined on
a non-degenerate, pseudo-Hermitian CR manifold. As a generalization of this connection,
Tanno, [16], defined the generalized Tanaka-Webster connection for contact metric manifolds
by

VxY = Vx¥ + (Vxn)(Y)E — n(Y)Vxé — n(X)¢Y. (1.1)

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster
connection, Cho defined the g-Tanaka-Webster connection V¥ for a real hypersurface M in
CP™ given, see [3,4], by

VY = Vx¥ + g(@AX, V)E — n(V)$AX — kn(X)g¥ (12)

for any X, Y tangent to M where k is a nonzero real number. Then, @(k)n =0, @(k)é =0,
VW g =0, VO = 0. In particular, if the shape operator of a real hypersurface satisfies
PA + Ap = 2k¢, the g-Tanaka-Webster connection coincides with the Tanaka-Webster
connection.

Here, we can consider the tensor field of type (1,2) given by the difference in both con-
nections F®O (X, Y) = g(pAX, Y)E — n(Y)pAX — kn(X)@Y, for any X, Y tangent to M,
see [7] Proposition 7.10, pages 234-235. We will call this tensor the kth Cho tensor on M.
Associated to it, for any X tangent to M and any non-null real number k, we can consider the
tensor field of type (1,1) F)((k), given by F)((k)Y = FW(X,Y)forany Y € T M. This operator
will be called the kth Cho operator corresponding to X. The torsion of the connection v
is given by f"(k)(X, Y)= F)((k)Y - F)(,k)X for any X, Y tangent to M.

The Jacobi operator Ry with respect to a unit vector field X is definedby Rx = R(., X)X,
where R is the curvature tensor field on M. Then, we see that Ry is a self-adjoint endomor-
phism of the tangent space. It is related to Jacobi vector fields, which are solutions of the
second-order differential equation (the Jacobi equation) V;(V,;Y) + R(Y, y)y = 0 along
a geodesic y in M. The Jacobi operator with respect to the structure vector field &, Rg, is
called the structure Jacobi operator on M.

The purpose of the present paper was to study real hypersurfaces M in CP™ such that
the covariant and g-Tanaka-Webster derivatives of the structure Jacobi operator coincide.
VR: = v® R¢ is equivalent to the fact that, for any X tangent to M, Rg F )((k) =F )((k) Rg. The
meaning of this condition is that every eigenspace of R is preserved by the kth Cho operator
F )((k) for any X tangent to M.

On the other hand, TM = Span{&} @ D. Thus, we will obtain the following

Theorem 1 Let M be a real hypersurface in CP™, m > 3. Let k be a non-null constant.

Then, F)((k) Re = R: F)((k) for any X € D if and only if M is locally congruent to a ruled real
hypersurface.

Theorem 2 Let M be a real hypersurface in CP™, m > 3. Let k be a non-null constant.
Then, Fg(k) R: = R: F;k) if and only if M is locally congruent to either a tube of radius J
over a complex submanifold of CP™ or to a type (A) real hypersurface with radius r # %.
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As a direct consequence of these Theorems, we have

Corollary There do not exist real hypersurfaces M in CP™, m > 3, such that for a non-null
constant k, F' )((k) R: = R: F }((k) for any X tangent to M.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class C* unless
otherwise stated. Let M be a connected real hypersurface in CP™, m > 2, without boundary.
Let N be alocally defined unit normal vector field on M. Let V be the Levi-Civita connection
on M and (J, g) the Kaehlerian structure of CP™.

For any vector field X tangent to M, we write JX = ¢X +n(X)N,and —J N = &. Then,
(¢, &, n, g) is an almost contact metric structure on M, see [1], that is, we have

P*X ==X +n(X)E 1@ =1, g@X,¢Y)=gX,¥)—nXn¥) (2.1

for any tangent vectors X, Y to M. From (2.1), we obtain
¢$5 =0, n(X)=g(X.$§). 2.2)
From the parallelism of J, we get
(Vx@)Y =n(Y)AX — g(AX,Y)§ 2.3)
and
Vxé = ¢pAX 24

for any X, Y tangent to M, where A denotes the shape operator of the immersion. As the
ambient space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi
are given, respectively, by
R(X,Y)Z =g(Y, 2)X — g(X, 2)Y +g(¢Y, Z)pX — g(9pX, Z)ppY
—2g($X, Y)PZ + g(AY, Z)AX — g(AX, Z)AY, 2.5)

and
(VxA)Y — (VyA)X = n(X)¢Y —n(Y)pX — 2g(¢X, Y)§ (2.6)

for any tangent vectors X, Y, Z to M, where R is the curvature tensor of M. We will call
the maximal holomorphic distribution D on M to the following one: atany p € M, D(p) =
{X e T,M|g(X, &) = 0}. We will say that M is Hopf if £ is principal, that is, A = & for
a certain function o on M.

From the above formulas, we have that the structure Jacobi operator on M is given by

Re(X) = X —n(X)§ + g(A§,§)AX — g(AX, §)AS 2.7

for any X tangent to M
In the sequel, we need the following results:

Theorem 2.1 [10] Let M be a real hypersurface of CP™, m > 2. Then, the following are
equivalent:

L. M is locally congruent to either a geodesic hypersphere or a tube of radius r, 0 <r < %

over a totally geodesic CP",0 <n <m — 1.
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2. pA = Ad.

Theorem 2.2 [9] If € is a principal curvature vector with corresponding principal curvature
o and X € D is principal with principal curvature A, then ¢ X is principal with principal

ar+2
curvature 57—

3 Proof of Theorem 1

If we suppose that F)((k) Re = R: F)((k) forany X € D, we get

(Y, pAX)E +n(AE)g(PAX, AY)E — n(AY)g(pAX, A)E
+n(Y)PAX +n(Y)n(AE)APAX — n(Y)n(ApAX)AE =0 (3.1

forany X € D, Y € TM. Let us suppose that M is non-Hopf. Thus, locally we can write
A& = & + BU, where U is a unit vector field in D, o and B are functions on M and 8 # 0.
We also call Dy to the orthogonal complementary distribution in D to the one spanned by
U, ¢U.

If wetake X =Y = ¢U in (3.1), we get

§(AU, ¢U) = 0. (3.2)
And taking Y = £ in (3.1), we obtain
PAX + aAPAX — aBfg(pAX, U)E — B2g(pAX, U)U =0 (3.3)

for any X € D. In particular, from (3.2) and (3.3), we have
QAU +aApAU = 0. 3.4
The scalar product of (3.3) and U yields
(B2 — )g(ApU, X) — ag(ApAU, X) =0 (3.5)

for any X € . Thus, (;32 — 1)ApU — aAp AU has not a component in D, and taking its
scalar product with &, it follows

(B% = DAQU — ¢ ApAU = 0. (3.6)
From (3.4) and (3.6), we get
HAU = (1 — BHAPU. (3.7)

Therefore, we can write ApU = 6¢U + wZ, where Z; € Dy is a unit vector field. The
scalar product of (3.3) and ¥ € Dy yields A¢Y + o A¢Y has not component in D. Then,

APY + aAPAY = —aBg(AgU, Y)E (3.8)

forany Y € Dy. Taking Y = ¢Z;, we obtain —AZ| + aApApZ; = 0. Its scalar product
with & gives

aBw (B> —1) =0. (3.9)

As B # 0, the following cases appear
Case l.a = 0.
Case 2. B2 = 1. In this case, from (3.7), AU = BE.
Case 3. w = 0, thus Dy is A-invariant.
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Commutativity of Cho and structure Jacobi operators 1785

Case 1.« = 0. From (3.4) pAU = 0, thatis, AU = B¢ and A§ = BU and from (3.6)
(8% — 1)ApU = 0. So we have the following subcases

Subcase 1.1. Let us suppose that 8% # 1. Then, A¢U = 0. Moreover, from (3.8) for any
Y € Dy A¢Y = 0. That means that M is a minimal ruled hypersurface.

Subcase 1.2. @ = 0, 2 = 1. We can suppose B = 1, maybe after changing £ by
—£&. As above, ApY = O for any ¥ € Dy, AU = &, A§ = U. Then, AZ; = 0 and
o = g(A¢U, Z1) = 0. Thus, ApU = §¢U.

By the Codazzi equation g((V: A)U — (Vy A)é, pU) = 1 yields

8g(VeU, oU) + g(Vy U, ¢U) = 0. (3.10)

From g((V:A)pU — (Vypy A)§, &) = 0, we obtain
g(VegU, U) = —36. 3.11)

From (3.10) and (3.11), we have

g(VuU. pU) = —35°. (3.12)

As g((VyA)pU — (Vpy AU, &) = =2, it follows
g(VyU,¢U) = -2 (3.13)

and from g((Vy A)pU — (Vyu AU, U) = 0, we get
3g(VyopU,U) +25 =0. (3.14)

From (3.13) and (3.14), we have § = 0. Therefore, M is still a minimal ruled real hyper-
surface.

Case 2. /32 = 1. As above, we suppose f = 1. As the case « = 0 has been studied,
we suppose @ # 0. Then, from (3.6), ApAU = 0, and from (3.4), pAU = 0. Therefore,
A¢ = a& + U, AU = &. Moreover, we know that —AZ| + ¢ ApAZ; = 0. Taking its
scalar product with ¢U, we get w + awg(ApZ1, $Z1) = 0. Supposing @ # 0, we have
g(ApZ1, ¢Z1) = —1.

Taking X = Y € Dy in (3.1), we obtain ¢pAY + 0 APAY + wg(Y, Z1)AE = 0. Its
scalar product with ¢U gives ag(ApAY,pU) = 0 = —awg(Y, ApZ1). As aw # 0,
g(Y,ApZ,) = Oforany Y € Dy.Thisyields ApZ; = 0and0 = —é. This is a contradiction,
and we have w = 0, A§ = aé + U, AU =& and A¢pU = §¢U.

This yields Dy is A-invariant and ¢-invariant, and we arrive to Case 3. As also pAU =
11— ,32)A¢U, we have two possible subcases:

Subcase 3.1. 82 = 1. In this case, AU = BE&.

Subcase 3.2. 82 # 1 and AU = B& + oU, where o = (1 — 82)8.

If we take ¥ = ¢X € Dy in (3.1) for X € Dy such that AX = AX, we have A +
arg(@pX, ApX) = 0. This yields that either any eigenvalue in Dy is O or that if there exists a
non-null eigenvalue A in Dy, @ # 0 and A = —é. In this case, the eigenspace corresponding
to this eigenvalue is ¢-invariant.

Let us suppose that for any ¥ € Dy AY = 0. As g((VyA)¢Y — (Vypy A)Y, §) = =2, we
obtain

2
g(¢Y. YL U) = 5 (3.15)
And as g((VyA)epY — (Vgy A)Y, U) = 0, it follows

og(l¢Y, Y], U) =0. (3.16)

@ Springer



1786 J. D. Pérez

From (3.15) and (3.16), we get o = 0. If also B% £ 1,8 = 0 and our real hypersurface
should be ruled.

Let us then suppose that 2 = 1. As above, we will take 8 = 1 and o = 0. If we develop
g(Vy AU — (Vyy A)Y, §) = 0, we get

g(VyoU,U) =g(VyuY,U) (3.17)
and from g((Vy A)pU — (Vgy A)Y, U) = 0, it follows
8g(VyopU,U) = 0. (3.18)

From (3.17) and (3.18), suppose g(VyopU, U) = g(VyuY,U) = 0. As g(Vpu AU —
(VyA)oU, &) = 2, we obtain

gVyoU,U) =2+ ab (3.19)
and from g((Vepu A)U — (Vy A)pU, U) = 0, we have
26 +8g(VyoU,U) = 0. (3.20)
If § # 0, from (3.20) g(Vy¢U, U) = —2 and from (3.19)
ol = —4. (3.21)
Now, g((Vpu A — (VeA)pU, U) = 1 gives §g(VepU, U) = 2 — 8. From (3.21)
8g(VepU,U) = 6. (3.22)
But from g((V: A)U — (Vy A)é, pU) = 1, we obtain
—68g(VeU, 9U) =0. (3.23)

From (3.22) and (3.23), we arrive to a contradiction. Thus, § = 0 and M is also a ruled
real hypersurface.

Therefore, we have only to study the following case: A& = w& + U, AU = BE +oU,
ApU = §¢U, Dy is A-invariant, and there exists Z € Dy such that AZ = —éZ, ApZ =
—$¢>Z. As (1 — B2)ApU = ¢ AU, two subcases appear

Subcase 1. ,32 = 1,and theno = 0.

Subcase 2. B2 # 1,0 = (1 — p2)8.

From g((VzA)¢Z — (VyzA)Z, &) = —2, we obtain

2
Bg(9Z, Z),U) = ") (3.24)

and from g((VzA)$Z — (V7 A)Z,U) =0, we get

(*4‘0) g(9Z,Z],U) = —. (3.25)
a a

From (3.24) and (3.25), we obtain
14 ao = a?B>. (3.26)

In Subcase 1, as /32 = 1 and o = 0, we should obtain «? = 1. Changing, if necessary,
& by —£, we can take o« = 1. This case cannot occur by Proposition 3.2, page 1607 in [11].
Therefore, we have 82 # 1 and from (3.26) 1 + a8(1 — %) = ?>B2. Thus,
a2ﬁ2 —1
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Now, g(VZA)pZ — (Vg7 A)Z, pU) = 0 yields
(é + 5) ¢(Z,$Z1, ¢U) = 0. (3.28)

Let us suppose that § = —é. Then, o = % and from (3.26) a? = 1. As above, we
suppose o« = 1. Thus, A& = & 4+ BU, AU = B¢ + (B = WU, ApU = —¢U, and there
exists aunit Z € Dy suchthat AZ = —Z, A¢pZ = —¢Z.

Suppose that there exists a unit W € Dy such that AW = A¢pW = 0. From g((Vw A)& —
(VeA)W, &) = 0, we obtain g(VeW, U) = 0, and from g((VwA)§ — (V:A)W,U) = 0,
we get W(B) + (8% — Dg(VeW,U) = 0. Thus, W(B) = 0. This fact and the proof of
Proposition 3.3, page 1608 in [11], yield grad(8) = —(28% + 1)¢U. The same proof yields
this case cannot occur. Therefore, § # —é and ¢g([Z, ¢Z], ¢pU) = 0.

Then, from g(VZA)PZ — (VpzA)VZ, Z) = g(VZA)PZ — (Vyz AV Z, $pZ) = 0, we get

Z(a) = (@Z)(@) =0. (3.29)
From g((VzA)€ — (V:A)Z, &) = 0, it follows
Z(a) + Bg(VeZ,U) = 0. (3.30)
From (3.29) and (3.30), we obtain

g(V:Z,U) = 0. (3.31)
As g((VzA)E — (V:A)Z, U) = 0, we have, bearing in mind (3.31),
Z(B) =0. (3.32)
From g((VeA)U — (Vy A)E, &) = 0, we get
§(B) =Ul(a) (3.33)
and as g((Ve A)U — (Vy A)g, U) = 0, it follows

§(0) =U(B). (3.34)
Now, g((VzA)U — (VyA)Z, €) = 0 yields

ZB)+og(VyZ,U)=0 (3.35)
and from (3.26) and g((VZzA)U — (VyA)Z, U) = 0, we obtain
Z(o) +ap?g(VyZ,U) = 0. (3.36)

From (3.32) and (3.36), we have og(VyZ,U) = 0. This and (3.36) yield Z(o) +
ég(VUZ, U)=0.As Z(x) = Z(B) = 0, from (3.26) Z(o) = 0. Therefore,

gVyzZ,U)=0. (3.37)
As g((VzA)U — (VyA)Z, ¢pU) = 0, this gives

(o0 —98)g(VzU, ¢U) + (8 + é) gVuZ,9U) =0 (3.38)
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and g(VzA)U — (Vy A)Z, Z) = 0 yields

U (l) = (o + l) g(VzZ,U). (3.39)
o o

From g((VzA)§ — (Ve A)Z, Z) = 0, we obtain

1
& (&) =Bg(VzZ,U) (3.40)

and from g((VzA)pU — (Vyy A)Z,U) = 0, we get

(6 —0)g(VzoU,U) + (o + é) g(VouZ, U) =0. (3.41)

We also have from g((VzA)pU) — (Vpu A)Z,E) =0
8([oU, Z],U) = 0. (3.42)

Thus, from (3.41) and (3.42), we have a homogeneous system of linear equations where
g(VzoU,U) and g(Vyy Z, U) are unknown. The determinant of its matrix of coefficients
isd+ 1. As8 # —1, we obtain

g(VzoU,U) =g(VpuZ,U) = 0. (3.43)

Asg(VzA)pU —(Vyy A)Z, ¢ Z) = 0, we have (8+$)g(VZ¢U, ¢Z) =0.As§ # —é,
g(VzoU, »pZ) = 0. By (2.3), this gives g(VzU, Z) = 0. From (3.39) and (3.40), it follows

£(a) = U(a) = 0. (3.44)
From g((VzA)¢pU — (Vyu A)Z, Z) = 0, we have (§ + 2)g(Vz9U, Z) + (¢pU)(L) = 0.
Now, from (2.3)

1 1
(oU) (*) = (* + 5) §(VzU,¢Z). (3.45)
o o

Developing g((VzA)U — (VyA)Z, $Z) = 0 and bearing in mind (3.26), we get
o?B2e(VzU, $Z) = B. (3.46)
Now, from (3.45) and (3.46), we obtain

l+a8 B —a?)

GV = == =

(3.47)

From (3.33) and (3.44), we have
§B)=U(B) =0. (3.48)

The equality g((Ve A)U — (Vi A)E, pU) = 1 yields
Bg(VyU, ¢U) = B2+ 0% —ao — 1. (3.49)

From g((VyA)pU — (VeuA)U,§) = -2, we arrive to —280 + ao + ad —
Bg(VyopU, U) — (¢U)(B) = 2. This and (3.49) yield

(U)(B) = =280 +ad + B>+ 0%+ 1. (3.50)
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Commutativity of Cho and structure Jacobi operators 1789

Bearing in mind all these facts, we arrive to
grad(@) = ppU
grad(B) = 0¢U 3.51)

where p = —(%) and 0 = —280 + a8 + B2 + o2 + 1. As g(Vxgrad(«),Y) =
g(Vygrad(a), X) for any X, Y tangent to M, we have, taking X = &, £(p)g(oU,Y) +
pg(VepU,Y) = —pg(U, AY). If Y = ¢U, this yields §(p) = 0. Thus, pg(VegpU,Y) =
—pg(U, AY), for any Y tangent to M. As p # 0, taking Y = U, we get

g(VegpU,U) = —o. (3.52)

From g((V:A)pU — (Vypy A)é, &) = 0 and bearing in mind (3.52), we have

(¢U)(a) = =388 + af — Bo. (3.53)
From (3.47) and (3.53) 2 4+ a8 + oo — 30828 + aof? = 0, or equivalently
> 287 =38 = g+ B2+ ) - 1=0. (3.54)

If 2 — 382 — B* = 0, we should have 8* + 282 — 1 = 0. Both equalities yield 8 = 1,
that is impossible. From (3.54), we have

RTINSt Gl
- 2/32_3134_/36'

If we take the derivative of (3.54) in the direction of ¢ U and bear in mind (3.47), (3.48),
and (3.54), we find that § is a root of a polynomial with constant coefficients. Therefore, 8
is constant. From (3.55), « is also constant, which is impossible.

Thus, we have proved that if M is not Hopf, it is locally congruent to a ruled real hyper-
surface. It is easy to see that these real hypersurfaces satisfy (3.1).

Let us now suppose that M is a Hopf real hypersurface with Aé = £ and that M satisfies
(3.1). Then, we have for any X € D that pAX + 0 ApAX =0.If o« =0, we get pAX = 0.
Thus, AX = 0 for any X € D and M should be totally geodesic, which is impossible.

Suppose now that @ # 0 and take a unit X € D such that AX = A X. From (3.1), we
get either A = 0 or A¢pX = —$¢X . Applying the same reasoning to ¢ X, we obtain that

(3.55)

the eigenspaces in D) are ¢-invariant and correspond to the eigenvalues 0 and —é. This is
impossible by Theorem 2.2, and we finish the proof.

4 Proof of Theorem 2

If we suppose that R¢ Fé(k) = Fé(k) Rg, we get

g(Y, pAE)E + g(AE, §)g(9AE, AY)E + n(Y)PAE + n(Y)n(A§)APAE
—n()n(APAE)AE — kpR:(Y) + kR:(¢Y) =0 4.1)

forany Y € TM. Let us suppose that M is non-Hopf. Thus, we write A = a& + BU fora
unit U € D and functions & and § on M, B being nonvanishing. From (4.1), we have

Bg(Y, pU)E + aBg(dU, AY)E + Bn(Y)pU
+afn(Y)ApU = k¢ R: (Y) — kRs (¢Y) 4.2)
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1790 J. D. Pérez

forany Y € TM. Taking Y = £ in (4.2), we obtain

BoU + apAgpU = 0. 4.3)
As B # 0, this yields
a #0,
ApU = —éw. (4.4)

If now we take ¥ = U in (4.2), as k # 0, we get ¢R:(U) = R:(¢U). This yields

apAU = (B> — 1)¢U, that is, pAU = @(ﬁU. By applying ¢ to such an equality, it
follows

AU = B +

2 _
P ! U. 4.5)
o

From (4.4) and (4.5), we obtain that Dy is ¢-invariant and A-invariant. Take aunit Y € Dy
such that AY = AY. Introducing this Y in (4.2), we get ¢R:(Y) = Re(¢Y). This yields
arpY = aAPY.Asa # 0, ApY = L¢Y. Therefore, the eigenspaces in Dy are ¢-invariant.

The Codazzi equation gives (Vg A)¢pY — (Vyy A)Y = —2&. Taking its scalar product with
@Y, respectively, with Y, we have

Y(A) = (¢Y)(A) =0. (4.6)
Its scalar product with & implies
Bg([9Y, Y], U) = 21> — 2ai —2 (4.7)

and its scalar product with U gives

B -1
()L R ) g(loY, Y], U) =2BA. (4.8)

From (4.7) and (4.8), we get
(@h+ D> —ar—1) =pZR2 = 1). (4.9)

From g((Vgu A)Y — (VyA)¢U, ¢Y) = 0, we have (A + é)g(Vyd)U, ¢Y) = 0. Then,
either g(VyoU, ¢Y) = g(VyU, Y) = 0, where we have applied (2.3) or A = —é. In this
second case from (4.9), we have 0 = B2(A% — 1). As B # 0, this yields A2 = 1 and o = 1.

Changing, if necessary, £ by —&, we can suppose « = 1 and then A = —1.
The scalar product of (Ve A)Y — (VyA)§ = @Y and Y gives

§() — Bg(VyU,Y) =0. (4.10)
Aseither A = —1 or g(VyU, Y) = 0, we always have
§() =0. 4.11)

Developing (Vy A)pU — (Vyy A)U = —2£ and taking its scalar product with ¢U, we
get

1
al (;) = B*g(VpudU, U) (4.12)
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The same procedure applied to g((Ve A)pU — (Vypy A)é, ¢U) = 0 yields

3 (é) = pe(Vyu U, U). (4.13)
From (4.12) and (4.13), we obtain
aU(a) = B&(a). (4.14)
From g((VeA)U — (VyA)¢, &) =0, &(B) = U(x) and from (4.14), we have
B&(a) = a&(p). (4.15)
By derivating (4.9) in the direction of £ and bearing in mind (4.11) and (4.15), it follows
A2 —ar —1) — A(@r + D))E(@) = 2%2(12 — Dé(w). (4.16)

If we suppose &(«) # 0 and bear in mind (4.9), from (4.16), we have
ard —2ax+22* -2 =0. (4.17)

Derivating (4.17) in the direction of &, we obtain 3= 20)&(a) = 0. As we suppose
£() # 0, we have A(A2 —2) = 0. If A = 0 from (4.9), it follows 82 = 1 and g should
be constant. From (4.15), £(e) = 0, and we arrive to a contradiction. Therefore, A2 =2.
From (4.9), we obtain 1 — 2a> = B2. By derivating this equality in the direction of £ and
bearing in mind (4.15) and that we suppose &() # 0, we get —2a® = B2 and we have a
new contradiction. This proves

§(@)=§(B)=U(a) =0. (4.18)

The equality g((VeA)Y — (Vy A)&, &) = 0 yields

Y(a) = —Bg(VeY, U). 4.19)

Analogously, from g((V:A)Y — g(VyA)&, U) = 0, we obtain

B* —
Y(B) = (A - ) g(VeY, U). (4.20)
From (4.19) and (4.20), we get
B*—1
BY(B) = ( — - x) Y (). 4.21)
As Y (1) = 0, from (4.9), it follows
A2 —ar —1) — A(ar + )Y (@) = A% — 1)2BY(B) (4.22)

and from (4.21) and (4.22), if we suppose Y («) # 0, we have
a(3r —2ax% —41) =2(ar + DA —ar — 1) =232 — 1). (4.23)

Derivating once again in the direction of Y and bearing in mind that we suppose Y () # O,
we obtain A3 = 0, that is, A = 0 and /32 = 1. Therefore, § is constant and Y (8) = 0.
From g((Ve A)pU — (Vypu A)§, &) = 0, we have

3
(PU)(a) = ;ﬂ +aB + Bg(VeU, ¢U). (4.24)
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And g% =1and g((VeA)pU — (Vyy A)E, U) = —1 yield
g(VelU, ¢U) = —a.
From (4.24) and (4.25), we conclude
3
@U) (@) = ﬁ.
o

As g((VeA)U — (VyA)é, oU) =1, we get

ég(VsU, oU) — Bg(VyU, 9U) =0
and from the Codazzi equation g((Vy A)¢U — (Vyy A)U, U) = 0, it follows
g(VyU, oU) =28.
From (4.27) and (4.28), bearing in mind that 82 = 1, we have
¢(VeU, 9U) = 2a.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Now, from (4.27) and (4.29), « should vanish. As this is a contradiction, we arrive to

Y(o) =Y(B) =0

By linearity, we have X («¢) = X(8) = 0 forany X € Dy.
The Codazzi equation g((V: A)pU — (Vypy A)E, U) = —1 yields

g -1 B’

@UIB) = == + 7 + (Ve U, ¢U).
As g((VeA)U — (VyA)é, pU) = 1, we have
B g1

T g(VsU, ¢U) — g (VyU, $U) = =~
o o

and g(VyA)pU — (Vyu A)U, U) = 0 shows

-1
Bs(VuU. pU) + B> — 3 — 26U () — ﬂaﬂ (U)(@) = 0.
From (4.31), (4.32), and (4.33), we have
2 _ 1 2 _ 1
pevuugr) - L Lewev. o0y + L1 —a <o

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

Now, from (4.33) and (4.34), it follows g(V; U, U) = —da and g(Vy U, ¢U) = ‘& —

4B. Then, from (4.24) and (4.32), we get

a?p

1 —a?
(@U)(a) =38 ” (4.35)
and
2, B -1
(@U)(B) = —3B" + - (4.36)
From all the facts we have until now, we obtain grad(«) = w¢U, where v =

3,13(1;—“2). As g(Vxgrad(a),Y) = g(Vygrad(a),X) for any X,Y € TM, we get
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X(@)g(@U. Y) — Y(@)g(@U, X) + w(g(VxpU., Y) — g(VypU, X)) = 0. Taking ¥ = £,
this yields w(g(Vx¢U, &) — g(VegpU, X)) = 0 for any X € TM. Thus, either o = 0
or g(VxoU,&) = g(VegpU, X) for any X € TM. If we take X = U, we have
—g(U, AU) = g(VeopU, U). Then, 42+ B% = 1. This yields 4a (¢pU) (o) + B (@U)(B) = 0.
From (4.35) and (4.36), we have 9> + % = 1. Therefore, @ = 0, which is impossible. So we
have @ = 0 and @2 = 1. From (4.35) (¢U)(a) = 0 and from (4.36) (¢U)(B) = —(2B%+1).
Then, from (4.18) and the fact that g((V: A)U — (Vy A)é, U) = 0, we have U(B) = 0 and
then grad(B8) = —(28% + 1)oU.

Applying the same reasoning to grad(8), —(1 +28%)(g(VxoU, &) — g(VepU, X)) =0
forany X € TM.Thisyields g(VxoU, &) = g(VeopU, X) forany X € TM.Taking X = U,
it follows 42 + 2 = 1 and being o = 1, 82 = —3, which is impossible and proves that
M must be Hopf.

If M is Hopf with A§ = «&, from (4.1), we get ¢R: = R:¢. Let Y € D a unit vector
field such that AY = AY. Therefore, «AY = aA¢Y. Then, either « = 0 and M is locally
congruent to a tube of radius % around a complex submanifold of CP™, see [2],0r Ap = pA
and from Theorem 2.1, M is locally congruent to a type (A) real hypersurface.

It is very easy to see that these real hypersurfaces satisfy (4.1), and we finish the
proof. O
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