Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space

Juan de Dios Pérez

Received: 7 February 2014 / Accepted: 14 August 2014 / Published online: 3 September 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

We consider real hypersurfaces M in complex projective space equipped with both the Levi-Civita and generalized Tanaka-Webster connections. For any non-null constant k and any vector field X tangent to M, we can define an operator on $M, F_{X}^{(k)}$, related to both connections. We study commutativity problems of these operators and the structure Jacobi operator of M.

Keywords g-Tanaka-Webster connection • Complex projective space . Real hypersurface $\cdot k$ th Cho operator

Mathematics Subject Classification 53C15 53B25

1 Introduction

Let $\mathbb{C} P^{m}, m \geq 2$, be a complex projective space endowed with the metric g of constant holomorphic sectional curvature 4 . Let M be a connected real hypersurface of $\mathbb{C} P^{m}$ without boundary. Let ∇ be the Levi-Civita connection on M and J the complex structure of $\mathbb{C} P^{m}$. Take a locally defined unit normal vector field N on M and denote by $\xi=-J N$. This is a tangent vector field to M called the structure vector field on M. On M, there exists an almost contact metric structure (ϕ, ξ, η, g) induced by the Kaehlerian structure of $\mathbb{C} P^{m}$, where ϕ is the tangent component of J and η is an one form given by $\eta(X)=g(X, \xi)$ for any X tangent to M. The classification of homogeneous real hypersurfaces in $\mathbb{C} P^{m}$ was obtained by Takagi, see [5,12-14]. His classification contains 6 types of real hypersurfaces. Among them, we find type $\left(A_{1}\right)$ real hypersurfaces that are geodesic hyperspheres of radius $r, 0<r<\frac{\pi}{2}$ and type $\left(A_{2}\right)$ real hypersurfaces that are tubes of radius $r, 0<r<\frac{\pi}{2}$, over totally geodesic complex projective spaces $\mathbb{C} P^{n}, 0<n<m-1$. We will call both types of real hypersurfaces type (A) real hypersurfaces.

[^0]Ruled real hypersurfaces can be described as follows: take a regular curve γ in $\mathbb{C} P^{m}$ with tangent vector field X. At each point of γ, there is a unique $\mathbb{C} P^{m-1}$ cutting γ so as to be orthogonal not only to X but also to $J X$. The union of these hyperplanes is called a ruled real hypersurface. It will be an embedded hypersurface locally, although globally it will in general have self-intersections and singularities. Equivalently, a ruled real hypersurface satisfies that the maximal holomorphic distribution on M, \mathbb{D}, given at any point by the vectors orthogonal to ξ, is integrable or $g(A \mathbb{D}, \mathbb{D})=0$. For examples of ruled real hypersurfaces, see [6] or [8].

The Tanaka-Webster connection, [15-17], is the canonical affine connection defined on a non-degenerate, pseudo-Hermitian CR manifold. As a generalization of this connection, Tanno, [16], defined the generalized Tanaka-Webster connection for contact metric manifolds by

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

Using the naturally extended affine connection of Tanno's generalized Tanaka-Webster connection, Cho defined the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for a real hypersurface M in $\mathbb{C} P^{m}$ given, see $[3,4]$, by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{1.2}
\end{equation*}
$$

for any X, Y tangent to M where k is a nonzero real number. Then, $\hat{\nabla}^{(k)} \eta=0, \hat{\nabla}^{(k)} \xi=0$, $\hat{\nabla}^{(k)} g=0, \hat{\nabla}^{(k)} \phi=0$. In particular, if the shape operator of a real hypersurface satisfies $\phi A+A \phi=2 k \phi$, the g-Tanaka-Webster connection coincides with the Tanaka-Webster connection.

Here, we can consider the tensor field of type $(1,2)$ given by the difference in both connections $F^{(k)}(X, Y)=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y$, for any X, Y tangent to M, see [7] Proposition 7.10, pages 234-235. We will call this tensor the k th Cho tensor on M. Associated to it, for any X tangent to M and any non-null real number k, we can consider the tensor field of type $(1,1) F_{X}^{(k)}$, given by $F_{X}^{(k)} Y=F^{(k)}(X, Y)$ for any $Y \in T M$. This operator will be called the k th Cho operator corresponding to X. The torsion of the connection $\hat{\nabla}^{(k)}$ is given by $\hat{T}^{(k)}(X, Y)=F_{X}^{(k)} Y-F_{Y}^{(k)} X$ for any X, Y tangent to M.

The Jacobi operator R_{X} with respect to a unit vector field X is defined by $R_{X}=R(., X) X$, where R is the curvature tensor field on M. Then, we see that R_{X} is a self-adjoint endomorphism of the tangent space. It is related to Jacobi vector fields, which are solutions of the second-order differential equation (the Jacobi equation) $\nabla_{\dot{\gamma}}\left(\nabla_{\dot{\gamma}} Y\right)+R(Y, \dot{\gamma}) \dot{\gamma}=0$ along a geodesic γ in M. The Jacobi operator with respect to the structure vector field ξ, R_{ξ}, is called the structure Jacobi operator on M.

The purpose of the present paper was to study real hypersurfaces M in $\mathbb{C} P^{m}$ such that the covariant and g -Tanaka-Webster derivatives of the structure Jacobi operator coincide. $\nabla R_{\xi}=\hat{\nabla}^{(k)} R_{\xi}$ is equivalent to the fact that, for any X tangent to $M, R_{\xi} F_{X}^{(k)}=F_{X}^{(k)} R_{\xi}$. The meaning of this condition is that every eigenspace of R_{ξ} is preserved by the k th Cho operator $F_{X}^{(k)}$ for any X tangent to M.

On the other hand, $T M=\operatorname{Span}\{\xi\} \oplus \mathbb{D}$. Thus, we will obtain the following
Theorem 1 Let M be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Let k be a non-null constant. Then, $F_{X}^{(k)} R_{\xi}=R_{\xi} F_{X}^{(k)}$ for any $X \in \mathbb{D}$ if and only if M is locally congruent to a ruled real hypersurface.

Theorem 2 Let M be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Let k be a non-null constant. Then, $F_{\xi}^{(k)} R_{\xi}=R_{\xi} F_{\xi}^{(k)}$ if and only if M is locally congruent to either a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C} P^{m}$ or to a type (A) real hypersurface with radius $r \neq \frac{\pi}{4}$.

As a direct consequence of these Theorems, we have
Corollary There do not exist real hypersurfaces M in $\mathbb{C} P^{m}, m \geq 3$, such that for a non-null constant $k, F_{X}^{(k)} R_{\xi}=R_{\xi} F_{X}^{(k)}$ for any X tangent to M.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class C^{∞} unless otherwise stated. Let M be a connected real hypersurface in $\mathbb{C} P^{m}, m \geq 2$, without boundary. Let N be a locally defined unit normal vector field on M. Let ∇ be the Levi-Civita connection on M and (J, g) the Kaehlerian structure of $\mathbb{C} P^{m}$.

For any vector field X tangent to M, we write $J X=\phi X+\eta(X) N$, and $-J N=\xi$. Then, (ϕ, ξ, η, g) is an almost contact metric structure on M, see [1], that is, we have

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for any tangent vectors X, Y to M. From (2.1), we obtain

$$
\begin{equation*}
\phi \xi=0, \quad \eta(X)=g(X, \xi) . \tag{2.2}
\end{equation*}
$$

From the parallelism of J, we get

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{2.4}
\end{equation*}
$$

for any X, Y tangent to M, where A denotes the shape operator of the immersion. As the ambient space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi are given, respectively, by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& -2 g(\phi X, Y) \phi Z+g(A Y, Z) A X-g(A X, Z) A Y, \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{2.6}
\end{equation*}
$$

for any tangent vectors X, Y, Z to M, where R is the curvature tensor of M. We will call the maximal holomorphic distribution \mathbb{D} on M to the following one: at any $p \in M, \mathbb{D}(p)=$ $\left\{X \in T_{p} M \mid g(X, \xi)=0\right\}$. We will say that M is Hopf if ξ is principal, that is, $A \xi=\alpha \xi$ for a certain function α on M.

From the above formulas, we have that the structure Jacobi operator on M is given by

$$
\begin{equation*}
R_{\xi}(X)=X-\eta(X) \xi+g(A \xi, \xi) A X-g(A X, \xi) A \xi \tag{2.7}
\end{equation*}
$$

for any X tangent to M
In the sequel, we need the following results:
Theorem 2.1 [10] Let M be a real hypersurface of $\mathbb{C} P^{m}, m \geq 2$. Then, the following are equivalent:

1. M is locally congruent to either a geodesic hypersphere or a tube of radius $r, 0<r<\frac{\pi}{2}$ over a totally geodesic $\mathbb{C} P^{n}, 0<n<m-1$.
2. $\phi A=A \phi$.

Theorem 2.2 [9] If ξ is a principal curvature vector with corresponding principal curvature α and $X \in \mathbb{D}$ is principal with principal curvature λ, then ϕX is principal with principal curvature $\frac{\alpha \lambda+2}{2 \lambda-\alpha}$.

3 Proof of Theorem 1

If we suppose that $F_{X}^{(k)} R_{\xi}=R_{\xi} F_{X}^{(k)}$ for any $X \in \mathbb{D}$, we get

$$
\begin{align*}
& g(Y, \phi A X) \xi+\eta(A \xi) g(\phi A X, A Y) \xi-\eta(A Y) g(\phi A X, A \xi) \xi \\
& \quad+\eta(Y) \phi A X+\eta(Y) \eta(A \xi) A \phi A X-\eta(Y) \eta(A \phi A X) A \xi=0 \tag{3.1}
\end{align*}
$$

for any $X \in \mathbb{D}, Y \in T M$. Let us suppose that M is non-Hopf. Thus, locally we can write $A \xi=\alpha \xi+\beta U$, where U is a unit vector field in \mathbb{D}, α and β are functions on M and $\beta \neq 0$. We also call \mathbb{D}_{U} to the orthogonal complementary distribution in \mathbb{D} to the one spanned by $U, \phi U$.

If we take $X=Y=\phi U$ in (3.1), we get

$$
\begin{equation*}
g(A U, \phi U)=0 \tag{3.2}
\end{equation*}
$$

And taking $Y=\xi$ in (3.1), we obtain

$$
\begin{equation*}
\phi A X+\alpha A \phi A X-\alpha \beta g(\phi A X, U) \xi-\beta^{2} g(\phi A X, U) U=0 \tag{3.3}
\end{equation*}
$$

for any $X \in \mathbb{D}$. In particular, from (3.2) and (3.3), we have

$$
\begin{equation*}
\phi A U+\alpha A \phi A U=0 . \tag{3.4}
\end{equation*}
$$

The scalar product of (3.3) and U yields

$$
\begin{equation*}
\left(\beta^{2}-1\right) g(A \phi U, X)-\alpha g(A \phi A U, X)=0 \tag{3.5}
\end{equation*}
$$

for any $X \in \mathbb{D}$. Thus, $\left(\beta^{2}-1\right) A \phi U-\alpha A \phi A U$ has not a component in \mathbb{D}, and taking its scalar product with ξ, it follows

$$
\begin{equation*}
\left(\beta^{2}-1\right) A \phi U-\alpha A \phi A U=0 . \tag{3.6}
\end{equation*}
$$

From (3.4) and (3.6), we get

$$
\begin{equation*}
\phi A U=\left(1-\beta^{2}\right) A \phi U . \tag{3.7}
\end{equation*}
$$

Therefore, we can write $A \phi U=\delta \phi U+\omega Z_{1}$, where $Z_{1} \in \mathbb{D}_{U}$ is a unit vector field. The scalar product of (3.3) and $Y \in \mathbb{D}_{U}$ yields $A \phi Y+\alpha A \phi Y$ has not component in \mathbb{D}. Then,

$$
\begin{equation*}
A \phi Y+\alpha A \phi A Y=-\alpha \beta g(A \phi U, Y) \xi \tag{3.8}
\end{equation*}
$$

for any $Y \in \mathbb{D}_{U}$. Taking $Y=\phi Z_{1}$, we obtain $-A Z_{1}+\alpha A \phi A \phi Z_{1}=0$. Its scalar product with ξ gives

$$
\begin{equation*}
\alpha \beta \omega\left(\beta^{2}-1\right)=0 . \tag{3.9}
\end{equation*}
$$

As $\beta \neq 0$, the following cases appear
Case 1. $\alpha=0$.
Case 2. $\beta^{2}=1$. In this case, from (3.7), $A U=\beta \xi$.
Case 3. $\omega=0$, thus \mathbb{D}_{U} is A-invariant.

Case 1. $\alpha=0$. From (3.4) $\phi A U=0$, that is, $A U=\beta \xi$ and $A \xi=\beta U$ and from (3.6) $\left(\beta^{2}-1\right) A \phi U=0$. So we have the following subcases

Subcase 1.1. Let us suppose that $\beta^{2} \neq 1$. Then, $A \phi U=0$. Moreover, from (3.8) for any $Y \in \mathbb{D}_{U} A \phi Y=0$. That means that M is a minimal ruled hypersurface.

Subcase 1.2. $\alpha=0, \beta^{2}=1$. We can suppose $\beta=1$, maybe after changing ξ by $-\xi$. As above, $A \phi Y=0$ for any $Y \in \mathbb{D}_{U}, A U=\xi, A \xi=U$. Then, $A Z_{1}=0$ and $\omega=g\left(A \phi U, Z_{1}\right)=0$. Thus, $A \phi U=\delta \phi U$.

By the Codazzi equation $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \phi U\right)=1$ yields

$$
\begin{equation*}
\delta g\left(\nabla_{\xi} U, \phi U\right)+g\left(\nabla_{U} U, \phi U\right)=0 . \tag{3.10}
\end{equation*}
$$

From $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, \xi\right)=0$, we obtain

$$
\begin{equation*}
g\left(\nabla_{\xi} \phi U, U\right)=-3 \delta . \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we have

$$
\begin{equation*}
g\left(\nabla_{U} U, \phi U\right)=-3 \delta^{2} \tag{3.12}
\end{equation*}
$$

As $g\left(\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U, \xi\right)=-2$, it follows

$$
\begin{equation*}
g\left(\nabla_{U} U, \phi U\right)=-2 \tag{3.13}
\end{equation*}
$$

and from $g\left(\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U, U\right)=0$, we get

$$
\begin{equation*}
\delta g\left(\nabla_{U} \phi U, U\right)+2 \delta=0 \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14), we have $\delta=0$. Therefore, M is still a minimal ruled real hypersurface.

Case 2. $\beta^{2}=1$. As above, we suppose $\beta=1$. As the case $\alpha=0$ has been studied, we suppose $\alpha \neq 0$. Then, from (3.6), $A \phi A U=0$, and from (3.4), $\phi A U=0$. Therefore, $A \xi=\alpha \xi+U, A U=\xi$. Moreover, we know that $-A Z_{1}+\alpha A \phi A Z_{1}=0$. Taking its scalar product with ϕU, we get $\omega+\alpha \omega g\left(A \phi Z_{1}, \phi Z_{1}\right)=0$. Supposing $\omega \neq 0$, we have $g\left(A \phi Z_{1}, \phi Z_{1}\right)=-\frac{1}{\alpha}$.

Taking $X=Y \in \mathbb{D}_{U}$ in (3.1), we obtain $\phi A Y+\alpha A \phi A Y+\omega g\left(Y, Z_{1}\right) A \xi=0$. Its scalar product with ϕU gives $\alpha g(A \phi A Y, \phi U)=0=-\alpha \omega g\left(Y, A \phi Z_{1}\right)$. As $\alpha \omega \neq 0$, $g\left(Y, A \phi Z_{1}\right)=0$ for any $Y \in \mathbb{D}_{U}$. This yields $A \phi Z_{1}=0$ and $0=-\frac{1}{\alpha}$. This is a contradiction, and we have $\omega=0, A \xi=\alpha \xi+U, A U=\xi$ and $A \phi U=\delta \phi U$.

This yields \mathbb{D}_{U} is A-invariant and ϕ-invariant, and we arrive to Case 3 . As also $\phi A U=$ $\left(1-\beta^{2}\right) A \phi U$, we have two possible subcases:

Subcase 3.1. $\beta^{2}=1$. In this case, $A U=\beta \xi$.
Subcase 3.2. $\beta^{2} \neq 1$ and $A U=\beta \xi+\sigma U$, where $\sigma=\left(1-\beta^{2}\right) \delta$.
If we take $Y=\phi X \in \mathbb{D}_{U}$ in (3.1) for $X \in \mathbb{D}_{U}$ such that $A X=\lambda X$, we have $\lambda+$ $\alpha \lambda g(\phi X, A \phi X)=0$. This yields that either any eigenvalue in \mathbb{D}_{U} is 0 or that if there exists a non-null eigenvalue λ in $\mathbb{D}_{U}, \alpha \neq 0$ and $\lambda=-\frac{1}{\alpha}$. In this case, the eigenspace corresponding to this eigenvalue is ϕ-invariant.

Let us suppose that for any $Y \in \mathbb{D}_{U} A Y=0$. As $g\left(\left(\nabla_{Y} A\right) \phi Y-\left(\nabla_{\phi Y} A\right) Y, \xi\right)=-2$, we obtain

$$
\begin{equation*}
g([\phi Y, Y], U)=-\frac{2}{\beta} \tag{3.15}
\end{equation*}
$$

And as $g\left(\left(\nabla_{Y} A\right) \phi Y-\left(\nabla_{\phi Y} A\right) Y, U\right)=0$, it follows

$$
\begin{equation*}
\sigma g([\phi Y, Y], U)=0 . \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we get $\sigma=0$. If also $\beta^{2} \neq 1, \delta=0$ and our real hypersurface should be ruled.

Let us then suppose that $\beta^{2}=1$. As above, we will take $\beta=1$ and $\sigma=0$. If we develop $g\left(\left(\nabla_{Y} A\right) \phi U-\left(\nabla_{\phi U} A\right) Y, \xi\right)=0$, we get

$$
\begin{equation*}
g\left(\nabla_{Y} \phi U, U\right)=g\left(\nabla_{\phi U} Y, U\right) \tag{3.17}
\end{equation*}
$$

and from $g\left(\left(\nabla_{Y} A\right) \phi U-\left(\nabla_{\phi U} A\right) Y, U\right)=0$, it follows

$$
\begin{equation*}
\delta g\left(\nabla_{Y} \phi U, U\right)=0 \tag{3.18}
\end{equation*}
$$

From (3.17) and (3.18), suppose $g\left(\nabla_{Y} \phi U, U\right)=g\left(\nabla_{\phi U} Y, U\right)=0$. As $g\left(\left(\nabla_{\phi U} A\right) U-\right.$ $\left.\left(\nabla_{U} A\right) \phi U, \xi\right)=2$, we obtain

$$
\begin{equation*}
g\left(\nabla_{U} \phi U, U\right)=2+\alpha \delta \tag{3.19}
\end{equation*}
$$

and from $g\left(\left(\nabla_{\phi U} A\right) U-\left(\nabla_{U} A\right) \phi U, U\right)=0$, we have

$$
\begin{equation*}
2 \delta+\delta g\left(\nabla_{U} \phi U, U\right)=0 \tag{3.20}
\end{equation*}
$$

If $\delta \neq 0$, from (3.20) $g\left(\nabla_{U} \phi U, U\right)=-2$ and from (3.19)

$$
\begin{equation*}
\alpha \delta=-4 \tag{3.21}
\end{equation*}
$$

Now, $g\left(\left(\nabla_{\phi U} A\right) \xi-\left(\nabla_{\xi} A\right) \phi U, U\right)=1$ gives $\delta g\left(\nabla_{\xi} \phi U, U\right)=2-\alpha \delta$. From (3.21)

$$
\begin{equation*}
\delta g\left(\nabla_{\xi} \phi U, U\right)=6 . \tag{3.22}
\end{equation*}
$$

But from $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \phi U\right)=1$, we obtain

$$
\begin{equation*}
-\delta g\left(\nabla_{\xi} U, \phi U\right)=0 \tag{3.23}
\end{equation*}
$$

From (3.22) and (3.23), we arrive to a contradiction. Thus, $\delta=0$ and M is also a ruled real hypersurface.

Therefore, we have only to study the following case: $A \xi=\alpha \xi+\beta U, A U=\beta \xi+\sigma U$, $A \phi U=\delta \phi U, \mathbb{D}_{U}$ is A-invariant, and there exists $Z \in \mathbb{D}_{U}$ such that $A Z=-\frac{1}{\alpha} Z, A \phi Z=$ $-\frac{1}{\alpha} \phi Z$. As $\left(1-\beta^{2}\right) A \phi U=\phi A U$, two subcases appear

Subcase 1. $\beta^{2}=1$, and then $\sigma=0$.
Subcase 2. $\beta^{2} \neq 1, \sigma=\left(1-\beta^{2}\right) \delta$.
From $g\left(\left(\nabla_{Z} A\right) \phi Z-\left(\nabla_{\phi Z} A\right) Z, \xi\right)=-2$, we obtain

$$
\begin{equation*}
\beta g([\phi Z, Z], U)=\frac{2}{\alpha^{2}} \tag{3.24}
\end{equation*}
$$

and from $g\left(\left(\nabla_{Z} A\right) \phi Z-\left(\nabla_{\phi Z} A\right) Z, U\right)=0$, we get

$$
\begin{equation*}
\left(\frac{1}{\alpha}+\sigma\right) g([\phi Z, Z], U)=\frac{2 \beta}{\alpha} . \tag{3.25}
\end{equation*}
$$

From (3.24) and (3.25), we obtain

$$
\begin{equation*}
1+\alpha \sigma=\alpha^{2} \beta^{2} \tag{3.26}
\end{equation*}
$$

In Subcase 1 , as $\beta^{2}=1$ and $\sigma=0$, we should obtain $\alpha^{2}=1$. Changing, if necessary, ξ by $-\xi$, we can take $\alpha=1$. This case cannot occur by Proposition 3.2, page 1607 in [11]. Therefore, we have $\beta^{2} \neq 1$ and from (3.26) $1+\alpha \delta\left(1-\beta^{2}\right)=\alpha^{2} \beta^{2}$. Thus,

$$
\begin{equation*}
\delta=\frac{\alpha^{2} \beta^{2}-1}{\alpha\left(1-\beta^{2}\right)} \tag{3.27}
\end{equation*}
$$

Now, $g\left(\left(\nabla_{Z} A\right) \phi Z-\left(\nabla_{\phi Z} A\right) Z, \phi U\right)=0$ yields

$$
\begin{equation*}
\left(\frac{1}{\alpha}+\delta\right) g([Z, \phi Z], \phi U)=0 \tag{3.28}
\end{equation*}
$$

Let us suppose that $\delta=-\frac{1}{\alpha}$. Then, $\sigma=\frac{\beta^{2}-1}{\alpha}$ and from (3.26) $\alpha^{2}=1$. As above, we suppose $\alpha=1$. Thus, $A \xi=\xi+\beta U, A U=\beta \xi+\left(\beta^{2}-1\right) U, A \phi U=-\phi U$, and there exists a unit $Z \in \mathbb{D}_{U}$ such that $A Z=-Z, A \phi Z=-\phi Z$.

Suppose that there exists a unit $W \in \mathbb{D}_{U}$ such that $A W=A \phi W=0$. From $g\left(\left(\nabla_{W} A\right) \xi-\right.$ $\left.\left(\nabla_{\xi} A\right) W, \xi\right)=0$, we obtain $g\left(\nabla_{\xi} W, U\right)=0$, and from $g\left(\left(\nabla_{W} A\right) \xi-\left(\nabla_{\xi} A\right) W, U\right)=0$, we get $W(\beta)+\left(\beta^{2}-1\right) g\left(\nabla_{\xi} W, U\right)=0$. Thus, $W(\beta)=0$. This fact and the proof of Proposition 3.3, page 1608 in [11], yield $\operatorname{grad}(\beta)=-\left(2 \beta^{2}+1\right) \phi U$. The same proof yields this case cannot occur. Therefore, $\delta \neq-\frac{1}{\alpha}$ and $g([Z, \phi Z], \phi U)=0$.

Then, from $g\left(\left(\nabla_{Z} A\right) \phi Z-\left(\nabla_{\phi Z} A\right) Z, Z\right)=g\left(\left(\nabla_{Z} A\right) \phi Z-\left(\nabla_{\phi Z} A\right) Z, \phi Z\right)=0$, we get

$$
\begin{equation*}
Z(\alpha)=(\phi Z)(\alpha)=0 \tag{3.29}
\end{equation*}
$$

From $g\left(\left(\nabla_{Z} A\right) \xi-\left(\nabla_{\xi} A\right) Z, \xi\right)=0$, it follows

$$
\begin{equation*}
Z(\alpha)+\beta g\left(\nabla_{\xi} Z, U\right)=0 . \tag{3.30}
\end{equation*}
$$

From (3.29) and (3.30), we obtain

$$
\begin{equation*}
g\left(\nabla_{\xi} Z, U\right)=0 . \tag{3.31}
\end{equation*}
$$

As $g\left(\left(\nabla_{Z} A\right) \xi-\left(\nabla_{\xi} A\right) Z, U\right)=0$, we have, bearing in mind (3.31),

$$
\begin{equation*}
Z(\beta)=0 \tag{3.32}
\end{equation*}
$$

From $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \xi\right)=0$, we get

$$
\begin{equation*}
\xi(\beta)=U(\alpha) \tag{3.33}
\end{equation*}
$$

and as $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, U\right)=0$, it follows

$$
\begin{equation*}
\xi(\sigma)=U(\beta) . \tag{3.34}
\end{equation*}
$$

Now, $g\left(\left(\nabla_{Z} A\right) U-\left(\nabla_{U} A\right) Z, \xi\right)=0$ yields

$$
\begin{equation*}
Z(\beta)+\sigma g\left(\nabla_{U} Z, U\right)=0 \tag{3.35}
\end{equation*}
$$

and from (3.26) and $g\left(\left(\nabla_{Z} A\right) U-\left(\nabla_{U} A\right) Z, U\right)=0$, we obtain

$$
\begin{equation*}
Z(\sigma)+\alpha \beta^{2} g\left(\nabla_{U} Z, U\right)=0 \tag{3.36}
\end{equation*}
$$

From (3.32) and (3.36), we have $\sigma g\left(\nabla_{U} Z, U\right)=0$. This and (3.36) yield $Z(\sigma)+$ $\frac{1}{\alpha} g\left(\nabla_{U} Z, U\right)=0$. As $Z(\alpha)=Z(\beta)=0$, from (3.26) $Z(\sigma)=0$. Therefore,

$$
\begin{equation*}
g\left(\nabla_{U} Z, U\right)=0 \tag{3.37}
\end{equation*}
$$

As $g\left(\left(\nabla_{Z} A\right) U-\left(\nabla_{U} A\right) Z, \phi U\right)=0$, this gives

$$
\begin{equation*}
(\sigma-\delta) g\left(\nabla_{Z} U, \phi U\right)+\left(\delta+\frac{1}{\alpha}\right) g\left(\nabla_{U} Z, \phi U\right)=0 \tag{3.38}
\end{equation*}
$$

and $g\left(\left(\nabla_{Z} A\right) U-\left(\nabla_{U} A\right) Z, Z\right)=0$ yields

$$
\begin{equation*}
U\left(\frac{1}{\alpha}\right)=\left(\sigma+\frac{1}{\alpha}\right) g\left(\nabla_{Z} Z, U\right) \tag{3.39}
\end{equation*}
$$

From $g\left(\left(\nabla_{Z} A\right) \xi-\left(\nabla_{\xi} A\right) Z, Z\right)=0$, we obtain

$$
\begin{equation*}
\xi\left(\frac{1}{\alpha}\right)=\beta g\left(\nabla_{Z} Z, U\right) \tag{3.40}
\end{equation*}
$$

and from $g\left(\left(\nabla_{Z} A\right) \phi U-\left(\nabla_{\phi U} A\right) Z, U\right)=0$, we get

$$
\begin{equation*}
(\delta-\sigma) g\left(\nabla_{Z} \phi U, U\right)+\left(\sigma+\frac{1}{\alpha}\right) g\left(\nabla_{\phi U} Z, U\right)=0 . \tag{3.41}
\end{equation*}
$$

We also have from $\left.g\left(\left(\nabla_{Z} A\right) \phi U\right)-\left(\nabla_{\phi U} A\right) Z, \xi\right)=0$

$$
\begin{equation*}
g([\phi U, Z], U)=0 . \tag{3.42}
\end{equation*}
$$

Thus, from (3.41) and (3.42), we have a homogeneous system of linear equations where $g\left(\nabla_{Z} \phi U, U\right)$ and $g\left(\nabla_{\phi U} Z, U\right)$ are unknown. The determinant of its matrix of coefficients is $\delta+\frac{1}{\alpha}$. As $\delta \neq-\frac{1}{\alpha}$, we obtain

$$
\begin{equation*}
g\left(\nabla_{Z} \phi U, U\right)=g\left(\nabla_{\phi U} Z, U\right)=0 \tag{3.43}
\end{equation*}
$$

As $g\left(\left(\nabla_{Z} A\right) \phi U-\left(\nabla_{\phi U} A\right) Z, \phi Z\right)=0$, we have $\left(\delta+\frac{1}{\alpha}\right) g\left(\nabla_{Z} \phi U, \phi Z\right)=0$. As $\delta \neq-\frac{1}{\alpha}$, $g\left(\nabla_{Z} \phi U, \phi Z\right)=0$. By (2.3), this gives $g\left(\nabla_{Z} U, Z\right)=0$. From (3.39) and (3.40), it follows

$$
\begin{equation*}
\xi(\alpha)=U(\alpha)=0 \tag{3.44}
\end{equation*}
$$

From $g\left(\left(\nabla_{Z} A\right) \phi U-\left(\nabla_{\phi U} A\right) Z, Z\right)=0$, we have $\left(\delta+\frac{1}{\alpha}\right) g\left(\nabla_{Z} \phi U, Z\right)+(\phi U)\left(\frac{1}{\alpha}\right)=0$. Now, from (2.3)

$$
\begin{equation*}
(\phi U)\left(\frac{1}{\alpha}\right)=\left(\frac{1}{\alpha}+\delta\right) g\left(\nabla_{Z} U, \phi Z\right) . \tag{3.45}
\end{equation*}
$$

Developing $g\left(\left(\nabla_{Z} A\right) U-\left(\nabla_{U} A\right) Z, \phi Z\right)=0$ and bearing in mind (3.26), we get

$$
\begin{equation*}
\alpha^{2} \beta^{2} g\left(\nabla_{Z} U, \phi Z\right)=\beta \tag{3.46}
\end{equation*}
$$

Now, from (3.45) and (3.46), we obtain

$$
\begin{equation*}
(\phi U)(\alpha)=-\frac{1+\alpha \delta}{\alpha \beta}=\frac{\beta\left(1-\alpha^{2}\right)}{\alpha\left(1-\beta^{2}\right)} . \tag{3.47}
\end{equation*}
$$

From (3.33) and (3.44), we have

$$
\begin{equation*}
\xi(\beta)=U(\beta)=0 \tag{3.48}
\end{equation*}
$$

The equality $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \phi U\right)=1$ yields

$$
\begin{equation*}
\beta g\left(\nabla_{U} U, \phi U\right)=\beta^{2}+\sigma^{2}-\alpha \sigma-1 \tag{3.49}
\end{equation*}
$$

From $g\left(\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U, \xi\right)=-2$, we arrive to $-2 \delta \sigma+\alpha \sigma+\alpha \delta-$ $\beta g\left(\nabla_{U} \phi U, U\right)-(\phi U)(\beta)=2$. This and (3.49) yield

$$
\begin{equation*}
(\phi U)(\beta)=-2 \delta \sigma+\alpha \delta+\beta^{2}+\sigma^{2}+1 \tag{3.50}
\end{equation*}
$$

Bearing in mind all these facts, we arrive to

$$
\begin{align*}
& \operatorname{grad}(\alpha)=\rho \phi U \\
& \operatorname{grad}(\beta)=\theta \phi U \tag{3.51}
\end{align*}
$$

where $\rho=-\left(\frac{1+\alpha \delta}{\alpha \beta}\right)$ and $\theta=-2 \delta \sigma+\alpha \delta+\beta^{2}+\sigma^{2}+1$. As $g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=$ $g\left(\nabla_{Y} \operatorname{grad}(\alpha), X\right)$ for any X, Y tangent to M, we have, taking $X=\xi, \xi(\rho) g(\phi U, Y)+$ $\rho g\left(\nabla_{\xi} \phi U, Y\right)=-\rho g(U, A Y)$. If $Y=\phi U$, this yields $\xi(\rho)=0$. Thus, $\rho g\left(\nabla_{\xi} \phi U, Y\right)=$ $-\rho g(U, A Y)$, for any Y tangent to M. As $\rho \neq 0$, taking $Y=U$, we get

$$
\begin{equation*}
g\left(\nabla_{\xi} \phi U, U\right)=-\sigma . \tag{3.52}
\end{equation*}
$$

From $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, \xi\right)=0$ and bearing in mind (3.52), we have

$$
\begin{equation*}
(\phi U)(\alpha)=-3 \beta \delta+\alpha \beta-\beta \sigma . \tag{3.53}
\end{equation*}
$$

From (3.47) and (3.53) $2+\alpha \delta+\alpha \sigma-3 \alpha \beta^{2} \delta+\alpha \sigma \beta^{2}=0$, or equivalently

$$
\begin{equation*}
\alpha^{2}\left(2 \beta^{2}-3 \beta^{4}-\beta^{6}\right)+\beta^{2}\left(2+\beta^{2}\right)-1=0 \tag{3.54}
\end{equation*}
$$

If $2-3 \beta^{2}-\beta^{4}=0$, we should have $\beta^{4}+2 \beta^{2}-1=0$. Both equalities yield $\beta^{2}=1$, that is impossible. From (3.54), we have

$$
\begin{equation*}
\alpha^{2}=\frac{1-\beta^{2}\left(2+\beta^{2}\right)}{2 \beta^{2}-3 \beta^{4}-\beta^{6}} \tag{3.55}
\end{equation*}
$$

If we take the derivative of (3.54) in the direction of ϕU and bear in mind (3.47), (3.48), and (3.54), we find that β is a root of a polynomial with constant coefficients. Therefore, β is constant. From (3.55), α is also constant, which is impossible.

Thus, we have proved that if M is not Hopf, it is locally congruent to a ruled real hypersurface. It is easy to see that these real hypersurfaces satisfy (3.1).

Let us now suppose that M is a Hopf real hypersurface with $A \xi=\alpha \xi$ and that M satisfies (3.1). Then, we have for any $X \in \mathbb{D}$ that $\phi A X+\alpha A \phi A X=0$. If $\alpha=0$, we get $\phi A X=0$. Thus, $A X=0$ for any $X \in \mathbb{D}$ and M should be totally geodesic, which is impossible.

Suppose now that $\alpha \neq 0$ and take a unit $X \in \mathbb{D}$ such that $A X=\lambda X$. From (3.1), we get either $\lambda=0$ or $A \phi X=-\frac{1}{\alpha} \phi X$. Applying the same reasoning to ϕX, we obtain that the eigenspaces in \mathbb{D} are ϕ-invariant and correspond to the eigenvalues 0 and $-\frac{1}{\alpha}$. This is impossible by Theorem 2.2, and we finish the proof.

4 Proof of Theorem 2

If we suppose that $R_{\xi} F_{\xi}^{(k)}=F_{\xi}^{(k)} R_{\xi}$, we get

$$
\begin{align*}
& g(Y, \phi A \xi) \xi+g(A \xi, \xi) g(\phi A \xi, A Y) \xi+\eta(Y) \phi A \xi+\eta(Y) \eta(A \xi) A \phi A \xi \\
& \quad-\eta(Y) \eta(A \phi A \xi) A \xi-k \phi R_{\xi}(Y)+k R_{\xi}(\phi Y)=0 \tag{4.1}
\end{align*}
$$

for any $Y \in T M$. Let us suppose that M is non-Hopf. Thus, we write $A \xi=\alpha \xi+\beta U$ for a unit $U \in \mathbb{D}$ and functions α and β on M, β being nonvanishing. From (4.1), we have

$$
\begin{gather*}
\beta g(Y, \phi U) \xi+\alpha \beta g(\phi U, A Y) \xi+\beta \eta(Y) \phi U \\
+\alpha \beta \eta(Y) A \phi U=k \phi R_{\xi}(Y)-k R_{\xi}(\phi Y) \tag{4.2}
\end{gather*}
$$

for any $Y \in T M$. Taking $Y=\xi$ in (4.2), we obtain

$$
\begin{equation*}
\beta \phi U+\alpha \beta A \phi U=0 . \tag{4.3}
\end{equation*}
$$

As $\beta \neq 0$, this yields

$$
\begin{align*}
\alpha & \neq 0, \\
A \phi U & =-\frac{1}{\alpha} \phi U . \tag{4.4}
\end{align*}
$$

If now we take $Y=U$ in (4.2), as $k \neq 0$, we get $\phi R_{\xi}(U)=R_{\xi}(\phi U)$. This yields $\alpha \phi A U=\left(\beta^{2}-1\right) \phi U$, that is, $\phi A U=\frac{\beta^{2}-1}{\alpha} \phi U$. By applying ϕ to such an equality, it follows

$$
\begin{equation*}
A U=\beta \xi+\frac{\beta^{2}-1}{\alpha} U \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5), we obtain that \mathbb{D}_{U} is ϕ-invariant and A-invariant. Take a unit $Y \in \mathbb{D}_{U}$ such that $A Y=\lambda Y$. Introducing this Y in (4.2), we get $\phi R_{\xi}(Y)=R_{\xi}(\phi Y)$. This yields $\alpha \lambda \phi Y=\alpha A \phi Y$. As $\alpha \neq 0, A \phi Y=\lambda \phi Y$. Therefore, the eigenspaces in \mathbb{D}_{U} are ϕ-invariant.

The Codazzi equation gives $\left(\nabla_{\xi} A\right) \phi Y-\left(\nabla_{\phi Y} A\right) Y=-2 \xi$. Taking its scalar product with ϕY, respectively, with Y, we have

$$
\begin{equation*}
Y(\lambda)=(\phi Y)(\lambda)=0 . \tag{4.6}
\end{equation*}
$$

Its scalar product with ξ implies

$$
\begin{equation*}
\beta g([\phi Y, Y], U)=2 \lambda^{2}-2 \alpha \lambda-2 \tag{4.7}
\end{equation*}
$$

and its scalar product with U gives

$$
\begin{equation*}
\left(\lambda-\frac{\beta^{2}-1}{\alpha}\right) g([\phi Y, Y], U)=2 \beta \lambda . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), we get

$$
\begin{equation*}
(\alpha \lambda+1)\left(\lambda^{2}-\alpha \lambda-1\right)=\beta^{2}\left(\lambda^{2}-1\right) \tag{4.9}
\end{equation*}
$$

From $g\left(\left(\nabla_{\phi U} A\right) Y-\left(\nabla_{Y} A\right) \phi U, \phi Y\right)=0$, we have $\left(\lambda+\frac{1}{\alpha}\right) g\left(\nabla_{Y} \phi U, \phi Y\right)=0$. Then, either $g\left(\nabla_{Y} \phi U, \phi Y\right)=g\left(\nabla_{Y} U, Y\right)=0$, where we have applied (2.3) or $\lambda=-\frac{1}{\alpha}$. In this second case from (4.9), we have $0=\beta^{2}\left(\lambda^{2}-1\right)$. As $\beta \neq 0$, this yields $\lambda^{2}=1$ and $\alpha^{2}=1$. Changing, if necessary, ξ by $-\xi$, we can suppose $\alpha=1$ and then $\lambda=-1$.

The scalar product of $\left(\nabla_{\xi} A\right) Y-\left(\nabla_{Y} A\right) \xi=\phi Y$ and Y gives

$$
\begin{equation*}
\xi(\lambda)-\beta g\left(\nabla_{Y} U, Y\right)=0 \tag{4.10}
\end{equation*}
$$

As either $\lambda=-1$ or $g\left(\nabla_{Y} U, Y\right)=0$, we always have

$$
\begin{equation*}
\xi(\lambda)=0 \tag{4.11}
\end{equation*}
$$

Developing $\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U=-2 \xi$ and taking its scalar product with ϕU, we get

$$
\begin{equation*}
\alpha U\left(\frac{1}{\alpha}\right)=\beta^{2} g\left(\nabla_{\phi U} \phi U, U\right) \tag{4.12}
\end{equation*}
$$

The same procedure applied to $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, \phi U\right)=0$ yields

$$
\begin{equation*}
\xi\left(\frac{1}{\alpha}\right)=\beta g\left(\nabla_{\phi U} \phi U, U\right) . \tag{4.13}
\end{equation*}
$$

From (4.12) and (4.13), we obtain

$$
\begin{equation*}
\alpha U(\alpha)=\beta \xi(\alpha) . \tag{4.14}
\end{equation*}
$$

From $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \xi\right)=0, \xi(\beta)=U(\alpha)$ and from (4.14), we have

$$
\begin{equation*}
\beta \xi(\alpha)=\alpha \xi(\beta) \tag{4.15}
\end{equation*}
$$

By derivating (4.9) in the direction of ξ and bearing in mind (4.11) and (4.15), it follows

$$
\begin{equation*}
\left(\lambda\left(\lambda^{2}-\alpha \lambda-1\right)-\lambda(\alpha \lambda+1)\right) \xi(\alpha)=\frac{2 \beta^{2}}{\alpha}\left(\lambda^{2}-1\right) \xi(\alpha) \tag{4.16}
\end{equation*}
$$

If we suppose $\xi(\alpha) \neq 0$ and bear in mind (4.9), from (4.16), we have

$$
\begin{equation*}
\alpha \lambda^{3}-2 \alpha \lambda+2 \lambda^{2}-2=0 . \tag{4.17}
\end{equation*}
$$

Derivating (4.17) in the direction of ξ, we obtain $\left(\lambda^{3}-2 \lambda\right) \xi(\alpha)=0$. As we suppose $\xi(\alpha) \neq 0$, we have $\lambda\left(\lambda^{2}-2\right)=0$. If $\lambda=0$ from (4.9), it follows $\beta^{2}=1$ and β should be constant. From (4.15), $\xi(\alpha)=0$, and we arrive to a contradiction. Therefore, $\lambda^{2}=2$. From (4.9), we obtain $1-2 \alpha^{2}=\beta^{2}$. By derivating this equality in the direction of ξ and bearing in mind (4.15) and that we suppose $\xi(\alpha) \neq 0$, we get $-2 \alpha^{2}=\beta^{2}$ and we have a new contradiction. This proves

$$
\begin{equation*}
\xi(\alpha)=\xi(\beta)=U(\alpha)=0 . \tag{4.18}
\end{equation*}
$$

The equality $g\left(\left(\nabla_{\xi} A\right) Y-\left(\nabla_{Y} A\right) \xi, \xi\right)=0$ yields

$$
\begin{equation*}
Y(\alpha)=-\beta g\left(\nabla_{\xi} Y, U\right) . \tag{4.19}
\end{equation*}
$$

Analogously, from $g\left(\left(\nabla_{\xi} A\right) Y-g\left(\nabla_{Y} A\right) \xi, U\right)=0$, we obtain

$$
\begin{equation*}
Y(\beta)=\left(\lambda-\frac{\beta^{2}-1}{\alpha}\right) g\left(\nabla_{\xi} Y, U\right) . \tag{4.20}
\end{equation*}
$$

From (4.19) and (4.20), we get

$$
\begin{equation*}
\beta Y(\beta)=\left(\frac{\beta^{2}-1}{\alpha}-\lambda\right) Y(\alpha) . \tag{4.21}
\end{equation*}
$$

As $Y(\lambda)=0$, from (4.9), it follows

$$
\begin{equation*}
\left(\lambda\left(\lambda^{2}-\alpha \lambda-1\right)-\lambda(\alpha \lambda+1)\right) Y(\alpha)=\left(\lambda^{2}-1\right) 2 \beta Y(\beta) \tag{4.22}
\end{equation*}
$$

and from (4.21) and (4.22), if we suppose $Y(\alpha) \neq 0$, we have

$$
\begin{equation*}
\alpha\left(3 \lambda^{2}-2 \alpha \lambda^{2}-4 \lambda\right)=2(\alpha \lambda+1)\left(\lambda^{2}-\alpha \lambda-1\right)-2\left(\lambda^{2}-1\right) . \tag{4.23}
\end{equation*}
$$

Derivating once again in the direction of Y and bearing in mind that we suppose $Y(\alpha) \neq 0$, we obtain $\lambda^{3}=0$, that is, $\lambda=0$ and $\beta^{2}=1$. Therefore, β is constant and $Y(\beta)=0$.

From $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, \xi\right)=0$, we have

$$
\begin{equation*}
(\phi U)(\alpha)=\frac{3 \beta}{\alpha}+\alpha \beta+\beta g\left(\nabla_{\xi} U, \phi U\right) . \tag{4.24}
\end{equation*}
$$

And $\beta^{2}=1$ and $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, U\right)=-1$ yield

$$
\begin{equation*}
g\left(\nabla_{\xi} U, \phi U\right)=-\alpha . \tag{4.25}
\end{equation*}
$$

From (4.24) and (4.25), we conclude

$$
\begin{equation*}
(\phi U)(\alpha)=\frac{3 \beta}{\alpha} . \tag{4.26}
\end{equation*}
$$

As $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \phi U\right)=1$, we get

$$
\begin{equation*}
\frac{1}{\alpha} g\left(\nabla_{\xi} U, \phi U\right)-\beta g\left(\nabla_{U} U, \phi U\right)=0 \tag{4.27}
\end{equation*}
$$

and from the Codazzi equation $g\left(\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U, U\right)=0$, it follows

$$
\begin{equation*}
g\left(\nabla_{U} U, \phi U\right)=2 \beta . \tag{4.28}
\end{equation*}
$$

From (4.27) and (4.28), bearing in mind that $\beta^{2}=1$, we have

$$
\begin{equation*}
g\left(\nabla_{\xi} U, \phi U\right)=2 \alpha \tag{4.29}
\end{equation*}
$$

Now, from (4.27) and (4.29), α should vanish. As this is a contradiction, we arrive to

$$
\begin{equation*}
Y(\alpha)=Y(\beta)=0 \tag{4.30}
\end{equation*}
$$

By linearity, we have $X(\alpha)=X(\beta)=0$ for any $X \in \mathbb{D}_{U}$.
The Codazzi equation $g\left(\left(\nabla_{\xi} A\right) \phi U-\left(\nabla_{\phi U} A\right) \xi, U\right)=-1$ yields

$$
\begin{equation*}
(\phi U)(\beta)=\frac{\beta^{2}-1}{\alpha^{2}}+\beta^{2}+\frac{\beta^{2}}{\alpha} g\left(\nabla_{\xi} U, \phi U\right) . \tag{4.31}
\end{equation*}
$$

As $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, \phi U\right)=1$, we have

$$
\begin{equation*}
\frac{\beta^{2}}{\alpha} g\left(\nabla_{\xi} U, \phi U\right)-\beta g\left(\nabla_{U} U, \phi U\right)=\frac{\beta^{2}-1}{\alpha^{2}} \tag{4.32}
\end{equation*}
$$

and $g\left(\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U, U\right)=0$ shows

$$
\begin{equation*}
\beta g\left(\nabla_{U} U, \phi U\right)+\beta^{2}-3-2(\phi U)(\beta)-\frac{\beta^{2}-1}{\alpha \beta}(\phi U)(\alpha)=0 . \tag{4.33}
\end{equation*}
$$

From (4.31), (4.32), and (4.33), we have

$$
\begin{equation*}
\beta g\left(\nabla_{U} U \phi U\right)-\frac{\beta^{2}-1}{\alpha} g\left(\nabla_{\xi} U, \phi U\right)+\frac{\beta^{2}-1}{\alpha^{2}}-4=0 . \tag{4.34}
\end{equation*}
$$

Now, from (4.33) and (4.34), it follows $g\left(\nabla_{\xi} U, \phi U\right)=-4 \alpha$ and $g\left(\nabla_{U} U, \phi U\right)=\frac{1-\beta^{2}}{\alpha^{2} \beta}-$ 4β. Then, from (4.24) and (4.32), we get

$$
\begin{equation*}
(\phi U)(\alpha)=3 \beta\left(\frac{1-\alpha^{2}}{\alpha}\right) \tag{4.35}
\end{equation*}
$$

and

$$
\begin{equation*}
(\phi U)(\beta)=-3 \beta^{2}+\frac{\beta^{2}-1}{\alpha^{2}} . \tag{4.36}
\end{equation*}
$$

From all the facts we have until now, we obtain $\operatorname{grad}(\alpha)=\omega \phi U$, where $\omega=$ $3 \beta\left(\frac{1-\alpha^{2}}{\alpha}\right)$. As $g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=g\left(\nabla_{Y} \operatorname{grad}(\alpha), X\right)$ for any $X, Y \in T M$, we get
$X(\omega) g(\phi U, Y)-Y(\omega) g(\phi U, X)+\omega\left(g\left(\nabla_{X} \phi U, Y\right)-g\left(\nabla_{Y} \phi U, X\right)\right)=0$. Taking $Y=\xi$, this yields $\omega\left(g\left(\nabla_{X} \phi U, \xi\right)-g\left(\nabla_{\xi} \phi U, X\right)\right)=0$ for any $X \in T M$. Thus, either $\omega=0$ or $g\left(\nabla_{X} \phi U, \xi\right)=g\left(\nabla_{\xi} \phi U, X\right)$ for any $X \in T M$. If we take $X=U$, we have $-g(U, A U)=g\left(\nabla_{\xi} \phi U, U\right)$. Then, $4 \alpha^{2}+\beta^{2}=1$. This yields $4 \alpha(\phi U)(\alpha)+\beta(\phi U)(\beta)=0$. From (4.35) and (4.36), we have $9 \alpha^{2}+\beta^{2}=1$. Therefore, $\alpha=0$, which is impossible. So we have $\omega=0$ and $\alpha^{2}=1$. From (4.35) $(\phi U)(\alpha)=0$ and from $(4.36)(\phi U)(\beta)=-\left(2 \beta^{2}+1\right)$. Then, from (4.18) and the fact that $g\left(\left(\nabla_{\xi} A\right) U-\left(\nabla_{U} A\right) \xi, U\right)=0$, we have $U(\beta)=0$ and then $\operatorname{grad}(\beta)=-\left(2 \beta^{2}+1\right) \phi U$.

Applying the same reasoning to $\operatorname{grad}(\beta),-\left(1+2 \beta^{2}\right)\left(g\left(\nabla_{X} \phi U, \xi\right)-g\left(\nabla_{\xi} \phi U, X\right)\right)=0$ for any $X \in T M$. This yields $g\left(\nabla_{X} \phi U, \xi\right)=g\left(\nabla_{\xi} \phi U, X\right)$ for any $X \in T M$. Taking $X=U$, it follows $4 \alpha^{2}+\beta^{2}=1$ and being $\alpha^{2}=1, \beta^{2}=-3$, which is impossible and proves that M must be Hopf.

If M is Hopf with $A \xi=\alpha \xi$, from (4.1), we get $\phi R_{\xi}=R_{\xi} \phi$. Let $Y \in \mathbb{D}$ a unit vector field such that $A Y=\lambda Y$. Therefore, $\alpha \lambda Y=\alpha A \phi Y$. Then, either $\alpha=0$ and M is locally congruent to a tube of radius $\frac{\pi}{4}$ around a complex submanifold of $\mathbb{C} P^{m}$, see [2], or $A \phi=\phi A$ and from Theorem $2.1, M$ is locally congruent to a type (A) real hypersurface.

It is very easy to see that these real hypersurfaces satisfy (4.1), and we finish the proof.

Acknowledgments This work was supported by Grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea and partially supported by MEC Project MTM 2010-18099.

References

1. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, vol. 203. Birkhauser Boston Inc., Boston (2002)
2. Cecil, T.E., Ryan, P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269, 481-499 (1982)
3. Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473-487 (1999)
4. Cho, J.T.: Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido Math. J. 37, 1-17 (2008)
5. Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 296, 137-149 (1986)
6. Kimura, M.: Sectional curvatures of holomorphic planes of a real hypersurface in $P^{n}(\mathbb{C})$. Math. Ann. 276, 487-497 (1987)
7. Kobayashi, S., Nomizu, K.: Foundations on Differential Geometry, vol. 1. Interscience, New York (1963)
8. Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedic. 74, 267-286 (1999)
9. Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28(529), 540 (1976)
10. Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212, 355-364 (1975)
11. Ortega, M., Pérez, J.D., Santos, F.G.: Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms. Rocky Mount. J. Math. 36, 1603-1613 (2006)
12. Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495-506 (1973)
13. Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 27, 43-53 (1975)
14. Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures II. J. Math. Soc. Jpn. 27, 507-516 (1975)
15. Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Jpn. J. Math. 2, 131-190 (1976)
16. Tanno, S.: Variational problems on contact Riemennian manifolds. Trans. Am. Math. Soc. 314, 349-379 (1989)
17. Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Diff. Geom. 13, 25-41 (1978)

[^0]: J. D. Pérez (\boxtimes)

 Departamento de Geometria y Topologia, Universidad de Granada, 18071 Granada, Spain e-mail: jdperez@ugr.es

