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Abstract This paper proves the existence ofweak solutions to the the spatially homogeneous
Boltzmann equation for Maxwellian molecules, when the initial data are chosen from the
space of all Borel probability measures on R

3 with finite second moments, and the (angular)
collision kernel satisfies a very weak cutoff condition, namely

∫ 1
−1 x

2b(x)dx < +∞. For the
equation at issue, the uniqueness of the solution corresponding to a specific initial datum has
been recently established in Fournier and Guérin (J Stat Phys 131:749–781, 2008). Finally,
conservation of momentum and energy is also proved for these weak solutions, without
resorting to any boundedness of the entropy.
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1 Introduction and main results

This paper deals with the spatially homogeneous Boltzmann equation forMaxwellian mole-
cules (SHBEMM), commonly written as

∂

∂t
f (v, t) =

∫

R3

∫

S2

[ f (v∗, t) f (w∗, t) − f (v, t) f (w, t)]

× b

(
w − v
|w − v| · ω

)

uS2(dω)dw, (v, t) ∈ R
3 × (0,+∞) (1)

with initial datum f (v, 0) = f0(v). Existence and evolution of low-order moments of its
solutions are the main topics at issue, in the event that grazing collisions are significantly
taken into account. Uniqueness of the solution has been established in [15]. In spite of a vast
literature on the subject, very few papers aim at minimizing as much as possible the set of
hypotheses on both the initial datum and the collision kernel, as this work intends to do.

As to the symbols in (1), uS2 denotes the uniformmeasure (i.e., the normalizedRiemannian
measure) on the unit sphere S2, embedded in R

3. The post-collisional velocities v∗ and w∗
are defined according to the ω representation:

v∗ := v + [(w − v) · ω]ω w∗ := w − [(w − v) · ω] ω (2)

where · designates the standard scalar product. The solution f (v, t) is a probability density
function, in the v-variable, which characterizes the probability law of a single molecule’s
velocity, randomly chosen in a chaotic bath of like molecules. See [7,8,36] for an exhaustive
explanation. The (angular) collision kernel b is an even measurable function from [−1, 1]
into [0,+∞], which plays a central role in the study of theMaxwellianmolecules. Originally,
this name was reserved for molecules repelling each other with a force inversely proportional
to the fifth power of their distance, after Maxwell [21] had evaluated the exact expression of
b in this peculiar case. Nowadays, the word Maxwellian indicates the presence of a generic
kernel depending only on w−v

|w−v| · ω, as in (1). The present work deals with collision kernels
satisfying

1∫

−1

x2b(x)dx < +∞, (3)

i.e., a very weak angular cutoff, which is the weakest assumption on b considered so far in
the literature, starting from [11]. The motivation for considering assumption (3) is manifold.
It is well known that the form of bmay influence the smoothness of the solution f (v, t)w.r.t.
the v-variable (the main reason adduced in [11] for studying singular kernels) and governs
the way in which f (v, t) approaches the equilibrium when t goes to infinity (as shown in
[12,26]). Therefore, it would be desirable to discover the minimal, essential conditions on
b, which originate the aforesaid mathematical properties of the solutions. As far as physical
arguments are concerned, it is worth noticing that the exact expression of the collision kernel
has been evaluated only for a very narrow class of interactions, the most representative of
which are those of pure repulsive type with potential energy Vs(r) = κr1−s , where κ > 0,
s > 2 and r stands for the relative distance between two interacting particles. See, e.g.,
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Mathematical treatment of Maxwellian molecules 1709

Subsection 1.4 and Section 3 of Chapter 2A of [36], Section 5 of Chapter 2 of [7], and
Chapter 2 of [9]. The specific angular collision kernel relative to Vs , say bs , possesses a

unique singularity at x = 0 in such a way that b(x) ∼ |x |− s+1
s−1 and meets (3) for every

s > 2. In particular, this is true for the Maxwellian interaction, which corresponds to s = 5.
Thus, it can be reasonable to study Eq. (1) with bs in place of b as a first approximation
of the true Boltzmann equation with hard or soft interactions (so disregarding the presence
of the kinetic collision kernel, according to the terminology used in Section 3 of Chapter
2A of [36]), to understand the influence of the angular collision kernel on the solutions,
inasmuch it is a common belief among physicists that there is hardly any influence at all.
Finally, condition (3) is equivalent, in the present setting, to the finiteness of the collision
kernel for momentum transfer, a basic quantity in the theory of atomic collisions. The reader
is referred to a specialized text in plasma physics, such as [31], for a precise definition and
explicit computations via experimental measurements. Here, suffice it to say that such a
finiteness has been proved to be a necessary condition for the RHS of (1) to make sense
from a mathematical point of view. See [35], Annex I, Appendix A. The collision kernel for
momentum transfer is also important in regard to the asymptotics of grazing collisions, an
asymptotic regime in which the Boltzmann equation turns into a Landau equation of plasma
physics. This theory, initiated in [10], is developed in [2,17,18,34] whence the need of a well-
consolidated theory of the SHBEMM with a collision kernel satisfying (3). To complete the
presentation, it remains to introduce the proper space for the initial data, to be considered
throughout this paper as the class P2(R

3) of all Borel probability measures (p.m.’s) on R
3

with finite second moments. Since an element of this space is not necessarily absolutely
continuous and not constrained to any finite entropy condition, the first task of our work
will consist in a weak reformulation of (1). The motivations to aim at such generality are
both theoretical and practical: For example, in [6], it is expressly remarked that “in view of
statistical physics, initial data are best chosen from the largest class, say the positive, finite
Borel measures onR3,” while in [25], the authors underline the importance of dropping finite
entropy conditions “since no control of entropy can be expected in the explicit Euler scheme.”
In fact, some noteworthy papers, such as [1,6,25], proved important facts without assuming
the finiteness of the entropy of the initial datum.

The very weak cutoff condition, in conjunction with a minimization of the hypotheses on
the initial datum, leads to study a larger class of solutions than the usual one, arising in the
context of integrable or at least not too singular collision kernels. Actually, this enlargement
makes the problems of existence and uniqueness more challenging from a mathematical
point of view and introduces new difficulties in determining the properties of such solutions.
For example, a rigorous proof that they preserve momentum and energy, in the absence of
extra condition on f0, is still lacking. This fact has even been doubted in [11], where one
wonders whether the energy may decrease. Besides, general initial data in P2(R

3) can be
completely managed when b is summable (Grad cutoff assumption), thanks to a consolidate
knowledge on the subject which started with the works [4,19,23,27,38] and culminated
with [30,33]. The same extension in the weak cutoff case, which corresponds to assuming∫ 1
−1 |x |b(x)dx < +∞, is treated in [5,32,33]. Coming to the case of kernels satisfying
(3), a general line of reasoning to tackle existence questions was devised by Arkeryd [3],
who considered a sequence of integrable truncations of the kernel b, say {bn}n≥1, to obtain
a sequence of auxiliary solutions approximating the real (unknown) solution. One of the
main difficulties in this approach is to show some weak compactness of the approximating
sequence, in order to get a converging subsequence. Actually, the more natural form of
compactness in Boltzmann’s equation can be derived from the boundedness of the entropy,
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1710 E. Dolera

as successfully done in pioneering works such as [11,14,18,34]. However, when the initial
datum is only an element of P2(R

3), not constrained to a finite entropy condition, the only
available form of compactness ought to be derived from the conservation of momentum and
energy, as first proposed in [30] and then developed in [5]. In the wake of this line of research,
the present work proposes a weak reformulation of (1) which fits the Arkeryd approach, with
the contrivance to corroborate the weak compactness with a form of uniform integrability of
the second absolute moments of the approximating solutions.

To start with this plan, the restricted class of collision kernels satisfying Grad’s cutoff
condition will be dealt with at first. Throughout the paper, this integrability condition will be
written, without affecting the generality, as

1∫

0

b(x)dx = 1. (4)

Under this condition, the standard weak reformulation, due to Maxwell, reads

d

dt

∫

R3

ψ(v)μ(dv, t) = 1

2

∫

R3

∫

R3

∫

S2

[ψ(v∗) + ψ(w∗) − ψ(v) − ψ(w)]1l{v �= w}

× b

(
w − v
|w − v| · ω

)

uS2(dω)μ(dv, t)μ(dw, t). (5)

It is derived from (1) by multiplying both sides by some regular function ψ : R
3 → C,

integrating formally in the v-variable and putting f (v, t)dv = μ(dv, t). In this setting, the
initial datum can be any Borel p.m. μ0 on R

3 (μ0 ∈ P(R3), in symbols), and a solution is
intended according to

Definition 1 (Weak solution, the cutoff case) When b satisfies (4), a weak solution of (1) is
defined to be any family {μ(·, t)}t≥0 of Borel p.m.’s on R

3 such that

(i) μ(·, 0) = μ0(·);
(ii) t 	→ ∫

R3 ψ(v)μ(dv, t) is continuous on [0,+∞) and continuously differentiable on
(0,+∞), for all ψ bounded and continuous (ψ ∈ Cb(R

3;C) in symbols);
(iii) μ(·, t) satisfies (5) for all t > 0 and for all ψ ∈ Cb(R

3;C).

Coming back to the original aim to study the SHBEMM under hypothesis (3), it has been
easily understood that the RHS of (5) could loose a precise meaning (within the standard
Lebesgue integration theory) in the presence of a too singular kernel b. See the comments
in [18,34] and in Subsection 4.1 of Chapter 2B of [36]. In particular, the key idea contained
in both [18,34] is to define a formal rule to retrieve the aforesaid meaning even when the
integrand in the RHS of (5) is not Lebesgue-summable. This rule is explained in Sect. 2.2,
which also provides a justification for the following

Definition 2 (Weak solution, the singular case) Let b satisfy (3), and let μ0 be any element
of P2(R

3). Then, a weak solution of (1) is defined to be any family {μ(·, t)}t≥0 of Borel
p.m.’s on R

3 such that

(i) μ(·, 0) = μ0(·);
(ii) t 	→ ∫

R3 ψ(v)μ(dv, t) is continuous on [0,+∞) and continuously differentiable on
(0,+∞), for all complex-valued ψ with bounded derivatives up to the order two
(ψ ∈ C2

b(R
3;C) in symbols);

(iii)
∫
R3 |v|2μ(dv, t) < +∞ for all t ≥ 0;
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Mathematical treatment of Maxwellian molecules 1711

(iv) μ(·, t) satisfies, for all t > 0 and for all ψ ∈ C2
b(R

3;C),

d

dt

∫

R3

ψ(v)μ(dv, t) = 1

8π

∫

R3

∫

R3

1∫

−1

2π∫

0

1∫

0

dsdθdξμ(dv, t)μ(dw, t)1l{v �= w}

× b(ξ)ξ2(1 − s)

[

∇ψ(v∗(sξ)) · d
2v∗
dx2

(sξ) + ∇ψ(w∗(sξ)) · d
2w∗
dx2

(sξ)

+
(
dv∗
dx

(sξ)

)t

Hess[ψ](v∗(sξ))

(
dv∗
dx

(sξ)

)

+
(
dw∗
dx

(sξ)

)t

Hess[ψ](w∗(sξ))

(
dw∗
dx

(sξ)

)]

. (6)

The RHS of (6) has now a precise mathematical meaning within the standard Lebesgue
integration theory in view of point (iii) of this last definition, as shown in Lemma 6. Further-
more, when

∫ 1
−1 |x |b(x)dx < +∞ holds, the RHS in (5) is well defined—without invoking

(6)—for any test functionψ which is bounded and Lipschitz-continuous. Hence, in the weak
cutoff context, any initial datum satisfying

∫
R3 |v|μ0(dv) < +∞ is allowed, with the proviso

that condition (iii) of Definition 2 is relaxed to
∫
R3 |v|μ(v, t) < +∞ for all t ≥ 0. See [32].

There are now the elements to state the new results, condensed in

Theorem 3 Let b satisfy (3), and let μ0 be any element of P2(R
3). Then, there exists a

unique solution {μ(·, t)}t≥0 of (1) with initial datum μ0, in the sense of Definition 2. This
solution can be obtained upon defining Bn := ∫ 1

0 [b(x) ∧ n]dx and {μn(·, t)}t≥0 as the
unique solution of (1), in the sense of Definition 1, with [b(x) ∧ n]/Bn and μ0 as collision
kernel and initial datum, respectively. Indeed, there exists an increasing subsequence {nl}l≥1

of positive integers such that liml→+∞
∫
R3 ψ(v)μnl (dv, Bnl t) = ∫

R3 ψ(v)μ(dv, t) for all
ψ ∈ Cb(R

3;C) and t ≥ 0. Moreover, if R is any orthogonal 3× 3 matrix and fR(v) := Rv,
then {μ(·, t) ◦ f −1

R }t≥0 is the solution of (1) with μ0 ◦ f −1
R as initial datum. In addition,

momentum and kinetic energy are preserved, i.e.,
∫

R3

vμ(dv, t) =
∫

R3

vμ0(dv) := V and
∫

R3

|v|2μ(dv, t) =
∫

R3

|v|2μ0(dv) (7)

are in force for all t ≥ 0, and

lim
t→+∞

⎡

⎢
⎣

∫

R3

viv jμ(dv, t) − V i V j

⎤

⎥
⎦ = δi j

3

∫

R3

|v − V|2μ0(dv) (8)

holds for every i, j ∈ {1, 2, 3}, δi j standing for theKronecker delta. Finally, there exists a pos-
itive constant C(μ0) and a continuous, non-decreasing function q : [0,+∞) → [0,+∞),
with limx→+∞ q(x) = +∞, which are both determinable only on the basis of the knowledge
of μ0, such that ∫

R3

|v|2q(|v|)μ(dv, t) ≤ C(μ0) (9)

is valid for all t ≥ 0, leading to

lim
R→+∞ sup

t≥0

∫

|v|≥R

|v|2μ(dv, t) = 0. (10)

123



1712 E. Dolera

To comment on this statement, it seems to be the first rigorous result of existence for
the SHBEMM, which, at the same time, is valid for kernels satisfying (3) and initial data
restricted to the sole condition of finite energy, and gives a genuine physical meaning to the
solutions, thanks to the conservation of momentum and kinetic energy encapsulated in (7).
The uniqueness of the solution for this general case of the SHBEMM has been established
in the recent paper [15]. The property expressed by (8) can be seen as a weak form of
propagation of chaos, as well as a macroscopic version of the principle of equipartition of
the energy. The validity of (9)–(10) expresses the desired uniform integrability previously
invoked to retrieve the proper form of compactness in the Arkeryd approach. From a physical
standpoint, (10) shows that the amount of energy actually due to the tails of the distribution
remains uniformly small in time. This property is explicitly remarked in [6] with a view to
proving relaxation to equilibrium, but the authors confine themselves to proving its validity
in the presence of smooth kernels with cutoff. The elimination of these extra conditions on
b, to comprehend all the cases of physical relevance, seems a novelty of this paper, which
completes the fruitful line of reasoning set forth in [6].

The proof of Theorem 3 relies heavily on a probabilistic representation of the solutions
recently proposed in [12]. For the sake of completeness, it is also summed up in Sect. 2.1 of
this paper. Though the analogies between kinetic theory and probability are well known in
the case of Maxwellian molecules, starting from the pioneering works by McKean [22,23],
some decisive improvements concerning the properties of the solutions have come only after
the specific formulation of the representation in [12]. In fact, it is slightly different from the
original one in [23] and enjoys the property of being particulary effective for generalizing
inequalities of Povzner-Elmroth-type about the uniform boundedness of the moments. Cf.
Proposition 6 in [12] and Lemma 8 of the present paper. It is also interesting to remark the
role of a very popular formula about the use of the Fourier transform, known as Bobylev’s
identity, in the proof of Theorem 3, since many works on the SHBEMM take advantage
from it. Actually, the Fourier representation has nothing to do with the weak form (6), but is
crucially hidden into the probabilistic representation borrowed from [12], as shown in Sect.
2.1 of that paper.

A last remark is about the placement of these results in the literature. Actually, the main
points of Theorem 3 can be found in various works, which prove them under somewhat differ-
ent hypotheses. See [3,5,11,14,19,23,27,28,30,32–34,38]. Other papers even consider these
statements as folklore. A particular mention is reserved to the recent paper [28], appeared
when the present article was a first draft, as the statements of existence and uniqueness con-
tained therein are rather similar to those in Theorem 3, even if [28] starts from a different
weak formulation. It also contains an adaptation of the Arkeryd strategy to the same context
of Theorem 3. Truthfully, my original aim was twofold: to complete some points expressly
mentioned in [12], and to seize this opportunity to deal with those points within a framework
more general than the required one. I have decided to carry through my own work even after
the publication of [28] since I found the short proof therein not completely satisfactory. In
fact, it seems not clear what kind of integral the author is adopting: on the one hand, Lemma
2.2 turns out to be false if integrals are of Lebesgue-type (see the remark after Lemma 9 of the
present paper). On the other hand, if they are thought of as improper Riemann integrals, then
there is a crucial—i.e., the core of the proof—exchange of limit with integral, immediately
after (23) therein lacking in explanation. These shortcomings are not easy to restore, since
this would require a kind of uniform convergence of the approximating sequence not yet
proved. In any case, the problem can be solved, as I do here, by following a different strategy
that shows, in addition, that the solutions conserve momentum and energy.
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Mathematical treatment of Maxwellian molecules 1713

The rest of the paper is organized as follows: section 2 contains some complements that,
on the one hand, are aimed at introducing concepts and notation to be used in the real proof
and, on the other hand, provide a justification for (6). Section 3 is devoted to the proof of
Theorem 3 along with the proof of two technical results formulated in Section 2.

2 Complements to the introduction

2.1 The Wild sum and the probabilistic representation

Assume that (4) holds and, on noting that
∫
S2 b(u · ω)uS2(dω) = 1 for all u ∈ S2, rewrite

the SHBEMM as ∂
∂t f (v, t) = Q[ f (·, t), f (·, t)](v) − f (v) with

Q[p, q](v) :=
∫

R3

∫

S2

p(v∗)q(w∗)b
(

w − v
|w − v| · ω

)

uS2(dω)dw.

The bilinear operator Q sends the couple (p, q) of probability densities into a new probability
density on R

3. Then, to include initial data that are not absolutely continuous p.m.’s, define
the operator Q, which sends a pair (ζ, η) in P(R3) × P(R3) into a new element of P(R3)

according to
Q[ζ, η](dv) := w-limn→∞Q[pn, qn](v)dv (11)

where pn (qn , respectively) denotes the density of ζn (ηn , respectively), {ζn}n≥1 and {ηn}n≥1

being two sequences of absolutely continuous p.m.’s such that ζn (ηn , respectively) converges
weakly to ζ (η, respectively). Recall that a statement as “ζn converges weakly to ζ” (ζn ⇒ ζ ,
in symbols) means that

∫
R3 ψ(v)ζn(dv) → ∫

R3 ψ(v)ζ(dv) for every ψ ∈ Cb(R
3;C). The

following result shows that Q[ζ, η] is well defined.
Lemma 4 Let b meet (4). Then, the limit in (11) exists and is independent of the choice of
the approximating sequences {ζn}n≥1 and {ηn}n≥1, and

∫

R3

ψ(v)Q[ζ, η](dv) =
∫

R3

∫

R3

∫

S2

ψ(v∗)b
(

w − v
|w − v| · ω

)

uS2(dω)ζ(dv)η(dw) (12)

holds with ψ ∈ Cb(R
3;C). Moreover, if R and fR are as in Theorem 3, then

Q
[
ζ ◦ f −1

R , η ◦ f −1
R

]
= Q [ζ, η] ◦ f −1

R . (13)

The proof of this lemma is deferred to Sect. 3.1. A remarkable corollary is the Bobylev
identity [4], namely

Q̂[ζ, η](ξ) =
∫

S2

ζ̂ (ξ − (ξ · ω)ω)η̂((ξ · ω)ω)b

(
ξ

|ξ | · ω

)

uS2(dω), (14)

which is valid for every ξ ∈ R
3\{0}. Here, ˆ denotes the Fourier transform according to

ζ̂ (ξ) := ∫
R3 eiξ ·xζ(dx). To proceed, one can put

Q1[μ0] :=μ0

Qn[μ0] := 1
n−1

∑n−1
j=1 Q

[Q j [μ0],Qn− j [μ0]
]

for n ≥ 2,
(15)

to state the following
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1714 E. Dolera

Proposition 5 When b satisfies (4) and μ0 is in P(R3), the unique solution of (1), in the
meaning of Definition 1, is given by theWild sum

μ(·, t) :=
+∞∑

n=1

e−t (1 − e−t )n−1Qn[μ0](·) (t ≥ 0). (16)

The proof of this proposition is provided in Sect. 3.2. The last tool to introduce is the proba-
bilistic representation ofμ(·, t) borrowed from [12]. Here is only a short presentation of both
ideas and notation. The reader is referred to Subsection 1.5 of [12], which shows in addition
how to deduce it by cleverly manipulating the Wild sum and the Bobylev identity. The core
of the representation, valid only upon assuming (4), is encapsulated in the identity

μ̂(ρu, t) = Et

[
eiρS(u)

]
(ρ ∈ R,u ∈ S2, t ≥ 0) (17)

where S(u) is a random sum of weighted random variables and Et is an expectation, for
every t ≥ 0. To define these two objects, consider the sample space Ω := N × T ×
[0, π]∞ × (0, 2π)∞ × (R3)∞ endowed with the σ -algebraF := 2N ⊗ 2T ⊗B([0, π]∞) ⊗
B((0, 2π)∞) ⊗ B((R3)∞) where X∞ stands for the set of all sequences (x1, x2, . . .) with
elements in X , 2X is the power set and B(X) the Borel class on X . Then, T := Xn≥1T(n)

and T(n) is the (finite) set of all McKean binary trees with n leaves, whose generic element
will be indicated as tn . Denoting by ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1, {Vn}n≥1 the coordinate
random variables ofΩ , consider for any t ≥ 0 the unique probability distribution (p.d.)Pt on
(Ω,F ), which makes these random elements stochastically independent, consistently with
the following marginal p.d.’s:

(a) Pt [ν = n] = e−t (1 − e−t )n−1 for n = 1, 2, . . ., with the proviso that 00 := 1.
(b) {τn}n≥1 is a Markov sequence driven by the initial condition Pt [τ1 = t1] = 1 and the

transition probabilities

Pt [τn+1 = tn,k | τn = tn] = 1

n
for k = 1, . . . , n

Pt [τn+1 = tn+1 | τn = tn] = 0 if tn+1 /∈ G(tn)

where, for a given tn, tn,k indicates the germination of tn at its k-th leaf, obtained by
appending a two-leaved tree to the k-th leaf of tn , and G(tn) is the subset of T(n + 1)
containing all the germinations of tn .

(c) The elements of {φn}n≥1 are independent and identically distributed (i.i.d.) random num-
bers with p.d. β(dϕ) := 1

2b(cosϕ) sin ϕdϕ, with ϕ ∈ [0, π].
(d) The elements of {ϑn}n≥1 are i.i.d. with uniform p.d. on (0, 2π).
(e) The elements of {Vn}n≥1 are i.i.d. with p.d. μ0, the initial datum for (1).

Whence, Et is defined as the expectation w.r.t. Pt . As for S(u), consider the array π :=
{π j,n | j = 1, . . . , n; n ∈ N} of [−1, 1]-valued random numbers obtained by setting π j,n :=
π∗
j,n(τn, (φ1, . . . , φn−1)) for j = 1, . . . , n and n in N. The π∗

j,ns are functions on T(n) ×
[0, π]n−1 given by π∗

1,1 ≡ 1 and, for n ≥ 2,

π∗
j,n(tn,ϕ) :=

{
π∗
j,nl

(tln,ϕ
l) cosϕn−1 for j = 1, . . . , nl

π∗
j−nl ,nr

(trn,ϕ
r ) sin ϕn−1 for j = nl + 1, . . . , n

for every ϕ = (ϕl ,ϕr , ϕn−1) in [0, π ]n−1, with ϕl := (ϕ1, . . . , ϕnl−1) and ϕr :=
(ϕnl , . . . , ϕn−2) where tln and trn symbolize the two trees, of nl and nr leaves, respectively,
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obtained by deleting the root node of tn . Apropos of the π j,n’s, one can show, for every
n ∈ N, the validity of the identity

n∑

j=1

π2
j,n = 1. (18)

Another constituent of the desired representation is the array O := {O j,n | j = 1, . . . , n;
n ∈ N} of randommatrices O j,n , taking values in the Lie group SO(3) of orthogonal matrices
with positive determinant, defined by O j,n := O∗

j,n(τn, (φ1, . . . , φn−1), (ϑ1, . . . , ϑn−1))

for j = 1, . . . , n and n in N. The O∗
j,ns are SO(3)-valued functions obtained by putting

O∗
1,1 ≡ Id3×3 and, for n ≥ 2,

O∗
j,n(tn,ϕ, θ)

:=
{
Ml(ϕn−1, θn−1)O∗

j,nl
(tln,ϕ

l , θ l) for j = 1, . . . , nl
Mr (ϕn−1, θn−1)O∗

j−nl ,nr
(trn,ϕ

r , θr ) for j = nl + 1, . . . , n

for every tn in T(n), ϕ in [0, π ]n−1 and θ in (0, 2π)n−1. Here, θ l := (θ1, . . . , θnl−1) and
θr := (θnl , . . . , θn−2), and finally,

Ml(ϕ, θ) :=
⎛

⎝
− cos θ cosϕ sin θ cos θ sin ϕ

− sin θ cosϕ − cos θ sin θ sin ϕ

sin ϕ 0 cosϕ

⎞

⎠

Mr (ϕ, θ) :=
⎛

⎝
sin θ cos θ sin ϕ − cos θ cosϕ

− cos θ sin θ sin ϕ − sin θ cosϕ

0 cosϕ sin ϕ

⎞

⎠ .

As a final step, choose a non-random measurable function B from S2 onto SO(3) such that
B(u)e3 = u for every u in S2, and define the random functions ψ j,n : S2 → S2 through the
relation ψ j,n(u) := B(u)O j,ne3 for j = 1, . . . , n and n in N, with e3 := (0, 0, 1)t , to get

S(u) :=
ν∑

j=1

π j,νψ j,ν(u) · V j . (19)

2.2 Justification for the weak form (6)

Starting from (5), fix v �= w and rewrite the integral
∫

S2

[ψ(v∗) + ψ(w∗) − ψ(v) − ψ(w)]b
(

w − v
|w − v| · ω

)

uS2(dω) (20)

by the (formal) change in variable ω ↔ (θ, ϕ) given by

ω(θ, ϕ,u) := cos θ sin ϕa(u) + sin θ sin ϕb(u) + cosϕu,

where (θ, ϕ) ∈ (0, 2π) × [0, π ],u := w−v
|w−v| and {a(u),b(u),u} is an orthonormal basis of

R
3. The identities in (2) become

v∗ = v + |w − v| cosϕω(θ, ϕ,u) w∗ = w − |w − v| cosϕω(θ, ϕ,u)

and so, putting x = cosϕ, Taylor’s formula with integral remainder yields
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1716 E. Dolera

ψ(v∗(x)) = ψ(v) + x

(

∇ψ(v) · dv∗
dx

(0)

)

+ x2
1∫

0

(1 − s)
d2ψ(v∗)
dx2

(sx)ds

ψ(w∗(x)) = ψ(w) + x

(

∇ψ(w) · dw∗
dx

(0)

)

+ x2
1∫

0

(1 − s)
d2ψ(w∗)

dx2
(sx)ds.

Then, define the expression (20) as iterated integral by first integrating w.r.t. to θ and then
w.r.t. ϕ. At this stage, observe that

2π∫

0

(

∇ψ(v) · dv∗
dx

(0)

)

dθ =
2π∫

0

(

∇ψ(w) · dw∗
dx

(0)

)

dθ = 0

holds, since dv∗
dx (0) and dw∗

dx (0) are given, up to a factor ±|w− v|, by cos θa(u) + sin θb(u).
Whence, the first-order terms in the above Taylor expansion will not contribute to the refor-
mulation of the RHS of (5). As for the second-order terms, suffice it to observe that the chain
rule for the second derivative gives

d2ψ(v∗)
dx2

(x) = ∇ψ(v∗(x)) · d
2v∗
dx2

(x) +
(
dv∗
dx

(x)

)t

Hess[ψ](v∗(x))
(
dv∗
dx

(x)

)

d2ψ(w∗)
dx2

(x) = ∇ψ(w∗(x)) · d
2w∗
dx2

(x) +
(
dw∗
dx

(x)

)t

Hess[ψ](w∗(x))
(
dw∗
dx

(x)

)

for all x ∈ (−1, 1). Hence, for a given ψ ∈ C2
b(R

3;C), the RHS of (5) turns into the RHS of
(6), which is now well defined in view of the following

Lemma 6 Let b satisfy (3), and let χ belong to P2(R
3). Then,

∫

R3

∫

R3

1∫

−1

2π∫

0

1∫

0

[∣
∣
∣
dv∗
dx

(sξ)

∣
∣
∣
2 +

∣
∣
∣
dw∗
dx

(sξ)

∣
∣
∣
2 +

∣
∣
∣
d2v∗
dx2

(sξ)

∣
∣
∣ +

∣
∣
∣
d2w∗
dx2

(sξ)

∣
∣
∣

]

× 1l{v �= w}(1 − s)ξ2b(ξ)dsdθdξχ(dv)χ(dw) < +∞.

proof of this lemma is deferred to Sect. 3.5.

3 Proofs

This section gathers the proofs of the various statements, which are scattered through the rest
of the paper. Precisely, Sect. 3.1 provides the proof of Lemma 4. Sections3.2–3.4 are aimed
at proving Theorem 3 under the additional hypothesis (4). Section3.5 contains the proof of
Lemma 6. Finally, the real proof of Theorem 3 is developed in Sect. 3.6.

3.1 Proof of Lemma 4

The following are basic facts in the theory of the Boltzmann equation. First, the map Tω :
(v,w) 	→ (v∗,w∗) is a linear diffeomorphism of R

6 with Tω ◦ Tω = IdR6 , for every
ω ∈ S2. Second, (w − v) · ω = −(w∗ − v∗) · ω and |w − v| = |w∗ − v∗| hold for every
(v,w,ω) ∈ R

6 × S2. Under assumption (4), the combination of these basic relations with
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Fubini and Tonelli’s theorems entails that Q[p, q](v) is itself a probability density function,
if p and q are both so, and that

∫

R3

ψ(v)Q[p, q](v)dv =
∫

R3

∫

R3

∫

S2

ψ(v∗)b
(

w − v
|w − v| · ω

)

p(v)q(w)uS2(dω)dvdw

holds for every ψ ∈ Cb(R
3;C). This equation can be taken as the core of the proof, after

showing that

Hψ : (v,w) 	→
{∫

S2ψ(v∗)b
(

w−v
|w−v| · ω

)
uS2(dω) if v �= w

ψ(v) if v = w

is bounded and continuous. Indeed, the continuity at some (v0, v0) is obvious and can be
checked directly. Then, to prove this continuity claim also at some (v0,w0) with v0 �= w0,
change the coordinate in the spherical integral as in Sect. 2.2 to obtain

Hψ(v0,w0) = 1

4π

2π∫

0

π∫

0

ψ
(
v0 + |w0 − v0| cosϕ

[
cos θ sin ϕa0 + sin θ sin ϕb0

+ cosϕu0
])

b(cosϕ) sin ϕdϕdθ

where u0 := w0−v0|w0−v0| and {a0,b0,u0} is an orthonormal basis of R
3. Since it is always

possible to define two measurable functions a,b : S2 → S2 which are continuous
in a neighborhood of u0, satisfy a(u0) = a0 and b(u0) = b0, and are such that
{a(u),b(u),u} is an orthonormal basis of R

3 for every u ∈ S2, the continuity claim
about Hψ follows by a dominated convergence argument. Now, the limit of the sequence
an := ∫

R3 ψ(v)Q[pn, qn](v)dv, as n goes to infinity, exists for every ψ ∈ Cb(R
3;C), by

virtue of the identity an = ∫
R3

∫
R3 Hψ(v,w)ζn(dv)ηn(dw), and the fact that these inte-

grals are converging to
∫
R3

∫
R3 Hψ(v,w)ζ(dv)η(dw). To conclude that the limit is of the

form
∫
R3 ψ(v)λ(dv), for some specific λ ∈ P(R3), which will be henceforth denoted

by Q[ζ, η], one can choose ψ as ψξ (v) := eiξ ·v and invoke Lévy’s continuity theorem
(cf. Theorem 5.22 in [20]). The only point that deserves some care in this application is
the continuity of limn→+∞

∫
R3 eiξ ·vQ[pn, qn](v)dv w.r.t. ξ , which is tantamount to saying

that ξ 	→ ∫
R3

∫
R3 Hψξ

(v,w)ζ(dv)η(dw) is continuous. Since the check of this fact boils
down to an obvious application of the dominated convergence theorem, the existence of the
limit in (11) is guaranteed along with its independence of the approximating sequences, for∫
R3 ψ(v)Q[ζ, η](dv) has been shown to depend on (ζ, η) only.
As for (13), the weak continuity of Q w.r.t. (ζ, η) reduces the problem to check the

validity of Q[pS, qS](v) = Q[p, q](Sv) for every orthogonal matrix S ∈ O(3), where pS
(qS , respectively) denotes the density function p(Sv) (q(Sv), respectively). Then, the change
in variable ω ↔ Sω in the spherical integral entails that Q[pS, qS](v) is equal to

∫

R3

∫

S2

p(Sv + [(Sw − Sv) · ω] ω)

× q(Sw − [(Sw − Sv) · ω] ω)b

(
Sw − Sv

|Sw − Sv| · ω

)

uS2(dω)dw

and, to conclude, it is enough to change again the coordinates in the integral onR3 according
to z = Sw.
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1718 E. Dolera

Finally, to prove (14), consider again Hψξ
with ξ �= 0. An application of the change in

variable ω ↔ Rω, where R ∈ O(3) is such that Rt w−v
|w−v| = ξ

|ξ | shows that Hψξ
(v,w) =

eiξ ·v ∫
S2 e

i(ξ ·ω)[(w−v)·ω]b
(

ξ
|ξ | · ω

)
.

3.2 Existence and uniqueness in the cutoff case

This subsection provides, at the same time, the proof of Proposition 5 and the proof of exis-
tence and uniqueness in Theorem 3, under the assumption (4). Of course, the term “solution”
is here intended according to Definition 1.

As to the existence, observe that the validity of
∑+∞

n=1 e
−t (1 − e−t )n−1 = 1 for every

t ∈ [0,+∞) entails that the series in (16) is a mixture, which defines a family {μ(·, t)}t≥0

of Borel p.m.’s on R
3 such that μ(·, t) = μ0(·). Then, consider Fψ(t) := ∫

R3 ψ(v)μ(dv, t)
with ψ ∈ Cb(R

3;C) not identically zero, and put an := ∫
R3 ψ(v)Qn[μ0](dv) and ||ψ ||∞:=

supv∈R3 |ψ(v)|. Since the radius of convergence of the power series
∑+∞

n=0 an+1zn is at
least 1, in view of lim supn→∞ n

√|an+1| ≤ lim supn→∞ n
√||ψ ||∞ = 1, it follows that the

convergence of the series is uniform when t ∈ [− log(1 + M),− log(1 − M)], for every
M ∈ (0, 1), and Fψ is analytic in (− log 2,+∞). This proves point (ii) of Definition 1 while,
as far as point (iii) is concerned, the analyticity allows the exchange of the time derivative
with the series. Whence,

d

dt
Fψ(t) = −Fψ(t) +

+∞∑

n=1

ne−2t (1 − e−t )n−1
∫

R3

ψ(v)Qn+1[μ0](dv)

= −Fψ(t) +
+∞∑

n=1

n∑

k=1

e−2t (1 − e−t )n−1
∫

R3

ψ(v)Q [Qk[μ0],Qn+1−k[μ0]
]
(dv).

Moreover, −Fψ(t) coincides, by definition, with

+∞∑

n=1

+∞∑

m=1

e−2t (1 − e−t )n+m−1 1

2

∫

R3

∫

R3

∫

S2

[−ψ(v) − ψ(w)]1l{v �= w}

× b

(
w − v
|w − v| · ω

)

uS2(dω)Qn[μ0](dv)Qm[μ0](dw)

while the other summand in the expression giving d
dt Fψ is equal to

+∞∑

n=1

n∑

k=1

e−2t (1 − e−t )n−1
∫

R3

∫

R3

∫

S2

ψ(v∗)1l{v �= w}

× b

(
w − v
|w − v| · ω

)

uS2(dω)Qk[μ0](dv)Qn+1−k[μ0](dw)

=
+∞∑

n=1

+∞∑

m=1

e−2t (1 − e−t )n+m−1 1

2

∫

R3

∫

R3

∫

S2

[ψ(v∗) + ψ(w∗)]1l{v �= w}

× b

(
w − v
|w − v| · ω

)

uS2(dω)Qn[μ0](dv)Qm[μ0](dw)

by virtue of (12). This completes the proof of the existence.
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The proof of uniqueness relies on the fact that any solution μ(·, t) with initial datum μ0

must coincide with that solution given by the Wild sum, denoted by μ(·, t), with the same
initial datum. To this aim, it is useful to pass to the following reformulation [equivalent to
(5)]

∫

R3

ψ(v)μ(dv, t) = e−t
∫

R3

ψ(v)μ0(dv) +
t∫

0

∫

R3

∫

R3

∫

S2

e−(t−s)ψ(v∗)1l{v �= w}

× b

(
w − v
|w − v| · ω

)

uS2(dω)μ(dv, s)μ(dw, s)ds (∀ t ≥ 0,∀ ψ ∈ Cb(R
3;C)) (21)

which can be obtained by integrating the two sides of (5) in time. From this identity, one gets
the key relation

∫

R3

ψ(v)μ(dv, t) ≥
2N∑

n=1

e−t (1 − e−t )n−1
∫

R3

ψ(v)Qn[μ0](dv) (22)

for every N ∈ N0 and fixed t ≥ 0 and ψ ∈ Cb(R
3; [0,+∞)). The proof of (22) is by

induction. Indeed, it holds for N = 0 as a direct consequence of (15) and (21). Then, if
(22) is valid for a certain N ∈ N0, one can consider the RHS of (21) and conclude that it

is not less than the same expression with
∑2N

n=1 e
−s(1 − e−s)n−1Qn[μ0] in place of μ(·, s).

This is true by virtue of the inductive hypothesis and the fact that (v,w) 	→ Hψ(v,w) is
bounded and continuous, as proved in the previous subsection. Now, the RHS of (21) with
∑2N

n=1 e
−s(1 − e−s)n−1Qn[μ0] in place of μ(·, s) turns out to be

e−t
∫

R3

ψ(v)μ0(dv) +
2N∑

n=1

2N∑

m=1

t∫

0

e−(t−s)e−2s(1 − e−s)n+m−2ds

×
∫

R3

∫

R3

∫

S2

ψ(v∗)1l{v �= w}b
(

w − v
|w − v| · ω

)

uS2(dω)Qn[μ0](dv)Qm[μ0](dw)

which coincides with
∑2N+1

n=2 e−t (1−e−t )n−1
∫
R3 ψ(v)Qn[μ0](dv), thanks to (12), the iden-

tity
∫ t
0 e

−(t−s)e−2s(1− e−s)n+m−2ds = 1
n+m−1 e

−t (1− e−t )n+m−1 and (15). Therefore, the
validity of (22) for every N ∈ N0 follows and then, taking the limit as N goes to infinity, one
gets

∫
R3 ψ(v)μ(dv, t) ≥ ∫

R3 ψ(v)μ(dv, t) for every t ≥ 0 and ψ ∈ Cb(R
3; [0,+∞)). But

this last inequality is tantamount to asserting that μ(·, t) = μ(·, t) for every t ≥ 0.
Finally, the check that {μ(·, t) ◦ f −1

R }t≥0 coincides with the solution of (1) with μ0 ◦ f −1
R

as initial datum is an obvious consequence of (12) and (15)–(16).

3.3 Some preparatory results

This subsection contains two technical lemmata, which will come in useful later on. The first
statement consists in a refinement of a classical result about uniform integrability, whose
original form is contained, e.g., in Section 7.VI of [13] or in Section 2.II of [24]. The inspi-
ration for the following refined version has come from the contents of Section 3 of [16] and
from Lemma 2 of [33].

Lemma 7 Let γ be a Borel p.m. on [0,+∞) such that
∫ +∞
0 xγ (dx) < +∞. Then, there

exists a function G : [0,+∞) → [0,+∞), depending on γ , with the following properties:
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(i)
∫ +∞
0 G(x)γ (dx) < +∞;

(ii) G is strictly increasing and continuous, with G(0) = 0;
(iii) limx→+∞ G(x)/x = +∞;
(iv) there exists a discrete set Δ ⊂ (0,+∞) such that G ∈ C1((0,+∞)\Δ);
(v) there exists a constant λ1 > 1 such that G(x) ≤ xG

′
(x) ≤ λ1G(x) for all

x ∈ (0,+∞)\Δ;
(vi) there exists a constant λ2 > 1 such that G

′
(2x) ≤ λ2G

′
(x) for all x ∈ (0,+∞)\Δ.

Proof Put g(x) := 1l[0,1)(x)+∑∞
n=0 An1l[2n ,2n+1)(x) for every x ∈ [0,+∞), where {An}n≥0

is a suitable sequence of real numbers, to be determined from the knowledge of γ . General
properties of this sequence must be the following:

(a) 1 ≤ An ≤ An+1 for all n ∈ N0;
(b) limn→+∞ An = +∞;
(c) supn∈N0

An+1/An < +∞.

Define alsoG(x) := ∫ x
0 g(y)dy for every x ∈ [0,+∞) and� := {2n | n ∈ N0}. At this stage,

note that the above setting is enough to guarantee, independently of the specific determination
of {An}n≥0, the validity of the points from (ii) to (iv), as well as the inequalityG(x) ≤ xG

′
(x)

for all x ∈ (0,+∞)\�. Point (vi) holds true after puttingλ2 := max{A0, supn∈N0
An+1/An}.

As to the remaining inequality at point (v), one shows that it is in force for all x ∈ (0,+∞)\�
with λ1 := 2λ2. Indeed, when x ∈ (0, 1) suffice it to know that λ1 > 1. When x ∈ (1, 2),
the fact that λ1 ≥ A0 yields λ1G(x) − xg(x) ≥ A0(A0 − 1)(x − 1) ≥ 0. When x ∈
[2m, 2m+1) for some integer m ∈ N observe that the thesis is equivalent to the validity of

λ1

[
2m Am − 1 − ∑m−1

n=0 2n An

]
≤ Am(λ1 − 1)x . Since the RHS is minimum when x = 2m ,

it is enough to test this inequality in correspondence with this minimum point, reducing the
problem to checking that supm≥1(2

m Am)/(1 + ∑m−1
n=0 2n An) ≤ λ1, which follows in view

of

2m Am

1 + ∑m−1
n=0 2n An

≤ 2mλ2Am−1

2m−1Am−1
= 2λ2.

After showing that the validity of (a)–(c) entails that (ii)–(vi) are in force, the conclusion
of the proof focuses on the specific determination of {An}n≥0 in conformity with (a)–(c)
and (i). Accordingly, consider the distribution function �(x) := γ ([0, x]), for every x ∈
[0,+∞), and define �∗(x) := 1− �(x). Next, integrate by parts to obtain

∫ z
0 G(x)γ (dx) =

−�∗(z)G(z) + ∫ z
0 �∗(x)g(x)dx for all z ∈ [0,+∞). As for the latter integral, write

z∫

0

�∗(x)g(x)dx ≤
1∫

0

�∗(x)dx +
∞∑

n=0

An

2n+1∫

2n

�∗(x)dx

≤ 1 +
∞∑

n=0

An

( 2n+1−1∑

k=2n
αk

)
= 1 +

∞∑

k=1

An(k)αk (23)

where αk := �∗(k) and n(k) is the only integer such that 2n(k) ≤ k < 2n(k)+1. Then,
choose a sequence of positive integers {rn}n≥1 such that rn ≤ rn+1 and

∫ +∞
rn

xγ (dx) ≤
2−n for every n ∈ N, which is possible by virtue of the hypothesis

∫ +∞
0 xγ (dx) < +∞.

Whence, 2−n ≥ ∫ +∞
rn

xγ (dx) ≥ ∑+∞
k=rn k(αk − αk+1) ≥ ∑+∞

k=rn αk , proving that the series
∑∞

n=1
∑+∞

k=rn αk is convergent. By inverting the summation order, put the last series in the
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form
∑+∞

n=1 Bnαn with Bn := ∑+∞
j=1 1l{r j ≤ n}, which shows that Bn ≤ Bn+1 is in force

for every n ∈ N, and limn→+∞ Bn = +∞. Next, introduce a new sequence {B∗
n }n≥1 by

setting B∗
1 := B1 and B∗

n := min{Bm | Bm > Bn}, which satisfies limn→+∞ B∗
n = +∞ and

n − 1 ≤ B∗
n < B∗

n+1 for all n ∈ N. With a view to the determination of {An}n≥0, consider
the function h : [0,+∞) → [0,+∞) defined by h(0) = 0, h(n) = B∗

n + 1 for all n ∈ N

and by a linear interpolation in correspondence with the remaining values of x . This function
turns out to be continuous and strictly increasing, and meets h(x) ≥ x for all x ∈ [0,+∞).
Its inverse h−1 is again strictly increasing, diverges at infinity, and meets h−1(x) ≤ x for all
x ∈ [0,+∞), so that one can finally put A0 = A1 and An := h−1(Bn + 1) + 1, for every
n ∈ N. At this stage, points (a)–(b) are automatically satisfied while, as to point (c), note that

sup
n∈N0

An+1

An
= sup

n∈N0

h−1(B∗
n+1 + 1) + 1

h−1(B∗
n + 1) + 1

= sup
n∈N0

n + 2

n + 1
= 2.

The validity of point (i) follows from

∞∑

k=1

An(k)αk ≤
∞∑

k=1

Akαk ≤
∞∑

k=1

Bkαk + 2
∞∑

k=1

αk < +∞

which shows, via (23), that
∫ +∞
0 �∗(x)g(x)dx < +∞. The conclusion ensues from the

above-mentioned integration by parts, which gives
∫ +∞
0 G(x)γ (dx) ≤ ∫ +∞

0 �∗(x)g(x)dx .
��

As a straightforward corollary of points (ii)–(vi) of this lemma, one can show the following
additional properties, they are as follows:

(i’) G(2x) ≤ λ3G(x) for all x ∈ [0,+∞), with λ3 := 2λ2;
(ii’) G(x) = xG(x), where G : [0,+∞) → [0,+∞) is non-decreasing;
(iii’) G(x) ≤ G(1)xλ1 for all x ∈ [1,+∞);
(iv’) G(

∑2m
i=1 xi ) ≤ λm3

∑2m
i=1 G(xi ) for all m ∈ N and x1, . . . , x2m ∈ [0,+∞).

Indeed, (i’) follows from

G(2x) =
2x∫

0

G
′
(y)dy = 2

x∫

0

G
′
(2y)dy ≤ 2λ2

x∫

0

G
′
(y)dy = λ3G(x).

The next point (ii’) is an obvious consequence of G(x) ≤ xG
′
(x). Then, (iii’) emanates

by virtue of xG
′
(x) ≤ λ1G(x) and (iv’) can be deduced, by means of an easy induction

argument, from

G(x1 + x2) ≤ G(2max{x1, x2}) ≤ λ3G(max{x1, x2}) ≤ λ3[G(x1) + G(x2)].
Now, a close link between Lemma 7 and the sum S(u) appearing in (19) is established by
means of the following

Lemma 8 Let the initial datum μ0 satisfy m2 := ∫
R3 |v|2μ0(dv) < +∞. Then, there exists

a positive constant C1(μ0), depending only on μ0, such that

Et [G∗(S(u))] ≤ C1(μ0) (24)

is valid for every t ≥ 0 and u ∈ S2, where G∗(x) := G(x2) and G is the same function
provided by Lemma 7 when γ (A) := ∫

R3 1l{|v|2 ∈ A}μ0(dv).
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1722 E. Dolera

Proof Since
∫ +∞
0 xγ (dx) = m2, the hypothesis in Lemma 7 is fulfilled and G is given

accordingly. Then, introduce the σ -algebra H := σ
(
ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1

)
and

invoke the structure of the probabilistic representation set forth in Sect. 2.1 to have, for all
m ∈ N,u ∈ S2 and j = 1, . . . , ν,

Et [G∗(2mπ j,νψ j,ν(u) · V j ) | H ] = Et [G(22mπ2
j,ν(ψ j,ν(u) · V j )

2) | H ]
≤ λ2m3 Et [G(π2

j,ν(ψ j,ν(u) · V j )
2) | H ]

= λ2m3 π2
j,νEt [(ψ j,ν(u) · V j )

2G(π2
j,ν(ψ j,ν(u) · V j )

2) | H ]
≤ λ2m3 π2

j,νEt [|V j |2G(|V j |2)] = λ2m3 π2
j,νEt [G∗(|V j |)]

since |ψ j,ν(u) · V j | ≤ |V j |. Thus, (18) entails

ν∑

j=1

Et [G∗(2mπ j,νψ j,ν(u) · V j ) | H ] ≤ λ2m3

+∞∫

0

G(x)γ (dx) (25)

for all m ∈ N and u ∈ S2. After defining G∗,l(x) := min{G∗(x), l} for l ∈ N and checking
that Et [G∗,l(S(u)) | H ] ≤ l, apply Lemma 2.4 in [29] to obtain

Et [G∗,l(S(u)) | H ] =
+∞∫

0

Pt [|S(u)| ≥ x | H ]dG∗,l(x). (26)

Now, the conclusion hinges on the remark that A 	→ Pt [S(u) ∈ A | H ] is a (random) p.m.
having the structure of probability law of a sum of independent random variables, which
establishes a link with the subject of Chapter 2 of [29] and allows the use of formula (2.33)
therein, with y = x2−m , to get

Pt [|S(u)| ≥ x | H ] ≤
ν∑

j=1

Pt [|π j,νψ j,ν(u) · V j | ≥ x2−m | H ]

+ 2e2
m

(

1 + x2

2m
∑ν

j=1 π2
j,νEt [(ψ j,ν(u) · V j )2 | H ]

)−2m

.

The combination of this last inequality with (26) leads to the analysis of two terms, the former
of which can be bounded as

ν∑

j=1

+∞∫

0

Pt [|π j,νψ j,ν(u) · V j | ≥ x2−m | H ]dG∗,l(x)

≤
ν∑

j=1

Et [G∗(2mπ j,νψ j,ν(u) · V j ) | H ]

for every m, l ∈ N, which produces a finite upper bound thanks to (25). As to the latter
term, observe in advance that

∑ν
j=1 π2

j,νEt [(ψ j,ν(u) · V j )
2 | H ] ≤ m2 holds in view of

the combination of (18) and the inequality |ψ j,ν(u) · V j | ≤ |V j |. Thus, property (iii’) of G
entails
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+∞∫

0

(

1 + x2

2m
∑ν

j=1 π2
j,νEt [(ψ j,ν(u) · V j )2 | H ]

)−2m

dG∗,l(x)

≤
+∞∫

0

(

1 + x2

2mm2

)−2m

dG∗(x) ≤ G(1)

⎡

⎣1 + 2λ1(2
mm2)

2m
+∞∫

1

x−2m+1+2λ1+1dx

⎤

⎦

which produces again a finite upper bound for every l ∈ N, provided that m is chosen in
such a way that −2m+1 + 2λ1 + 1 < −1. After putting C1(μ0) := λ2m3

∫ +∞
0 G(x)γ (dx) +

2e2
m
G(1)

[
1+ λ1(2mm2)

2m

2m−λ1−1

]
with a suitable choice of m (e.g., m = [log2(λ1 + 1)]+ 1, where

[x] denotes the integral part of x), one finally has Et [G∗,l(S(u)) | H ] ≤ C1(μ0) for every
l ∈ N, which entails (24). ��
3.4 Evolution of the moments in the cutoff case

Consider the sum S(u) in (19) and combine Lyapunov and Cauchy-Schwartz’s inequalities
with (18) to obtain

Et [(S(u))2] ≤ Et

⎡

⎣ν

ν∑

j=1

π2
j,ν(ψ j,ν(u) · V j )

2

⎤

⎦ ≤ Et

⎡

⎣ν

ν∑

j=1

π2
j,ν |V j |2

⎤

⎦

= Et

⎡

⎣Et

⎡

⎣ν

ν∑

j=1

π2
j,ν |V j |2

∣
∣ G

⎤

⎦

⎤

⎦ = Et [ν]m2

for every u ∈ S2, where G := σ
(
ν, {τn}n≥1, {φn}n≥1

)
. Thus, the finiteness of the first two

moments of S(u) follows from Et [ν] = et . To prove the former identity in (7), note that (17)
entails Et [S(u)] = u · ∫

R3 vμ(dv, t) for every t ≥ 0 and u ∈ S2. Moreover,

Et [S(u)] = Et

⎡

⎣Et

⎡

⎣
ν∑

j=1

π j,νψ j,ν(u) · V j
∣
∣ H

⎤

⎦

⎤

⎦ = Et

⎡

⎣
ν∑

j=1

π j,νψ j,ν(u)

⎤

⎦ · V

= Et

⎡

⎣Et

⎡

⎣
ν∑

j=1

π j,νψ j,ν(u)
∣
∣ G

⎤

⎦

⎤

⎦ · V = Et

⎡

⎣
ν∑

j=1

π j,νEt
[
ψ j,ν(u)

∣
∣ G

]
⎤

⎦ · V

holds with V := ∫
R3 vμ0(dv) and H := σ

(
ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1

)
. To conclude,

combine the identityEt

[
ψ j,ν(u)

∣
∣ G

]
= π j,νu, which emanates from (111) in [12], with (18)

to getEt

[∑ν
j=1 π j,νEt

[
ψ j,ν(u)

∣
∣G

]]
= u.Whence,u·∫

R3 vμ(dv, t) = u·V for every t ≥ 0

and u ∈ S2, which amounts to the desired result. To proceed, note that
∑ν

j=1 π j,νψ j,ν(u) ·
V = u · V is valid for every u ∈ S2, since δV is a stationary solution of (1). Whence,

Et [(S(u))2] = Et

⎡

⎢
⎣

⎛

⎝
ν∑

j=1

π j,νψ j,ν(u) · (V j − V) + u · V
⎞

⎠

2
⎤

⎥
⎦
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1724 E. Dolera

= Et

⎡

⎢
⎣

⎛

⎝
ν∑

j=1

π j,νψ j,ν(u) · (V j − V)

⎞

⎠

2
⎤

⎥
⎦ + (u · V)2

= Et

⎡

⎣
ν∑

j=1

π2
j,ν[ψ j,ν(u) · (V j − V)]2

⎤

⎦ + (u · V)2. (27)

At this stage, an application of (187) in [12] with k = 2 shows that

Et

⎡

⎣
ν∑

j=1

π2
j,ν[ψ j,ν(u) · (V j − V)]2

⎤

⎦ = 1

3

∫

R3

|v − V|2μ0(dv)

+Et

⎡

⎣
ν∑

j=1

π2
j,νζ j,ν

⎤

⎦ ·
⎡

⎢
⎣

∫

R3

{(u · (v − V))2 − 1

3
|v − V|2}μ0(dv)

⎤

⎥
⎦ (28)

holds, where the ζ j,n’s are given by ζ j,n := ζ ∗
j,n(τn, (φ1, . . . , φn−1)) and the ζ ∗

j,n’s are defined

on T(n) × [0, π]n−1 by putting ζ ∗
1,1 ≡ 1 and, for n ≥ 2,

ζ ∗
j,n(tn,ϕ) :=

{
ζ ∗
j,nl

(tln,ϕ
l) · ( 32 cos2 ϕn−1 − 1

2

)
for j = 1, . . . , nl

ζ ∗
j−nl ,nr

(trn,ϕ
r ) · ( 32 sin2 ϕn−1 − 1

2

)
for j = nl + 1, . . . , n

for every ϕ in [0, π]n−1. The same techniques contained in Appendix A.1 of [12], used

to get (106) therein, show that Et

[∑ν
j=1 π2

j,νζ j,ν

]
= e−(1− f1(b))t for every t ≥ 0, with

f1(b) := 3
2

∫ π

0 (sin4 ϕ + cos4 ϕ)β(dϕ) − 1
2 . At this stage, the proof of the latter identity in

(7) follows from (27)–(28), which give

∫

R3

|v|2μ(dv, t) =
3∑

i=1

Et [(S(ei ))2] =
∫

R3

|v − V|2μ0(dv) +
3∑

i=1

(ei · V)2 = m2

for every t ≥ 0, {e1, e2, e3} being the canonical basis ofR3. The proof of (8) in the case i = j
is even simpler, since it follows directly from the combination of (27)–(28) with u = ei .
When i �= j , start from the remark that

∫
R3 viv jμ(dv, t) can be written as

∫
R3

(√
2
2 vi +√

2
2 v j

)2
μ(dv, t) − 1

2

∫
R3(v

2
i + v2j )μ(dv, t). Then, define ui j :=

√
2
2 ei +

√
2
2 e j and invoke

again (27)–(28) to obtain
∫

R3

viv jμ(dv, t) = Et [(S(ui j ))2] − 1

2

{
Et [(S(ei ))2] + Et [(S(e j ))2]

} = εi j (t) + V i V j

for every t ≥ 0, where εi j (t) := e−(1− f1(b))t
∫
R3(vi − V i )(v j − V j )μ0(dv). This completes

the proof of (8).
To prove (9), consider Lemma 8 with the same γ , G and G∗ and define

q(x) :=
{ 1

x3
∫ x
0 G∗(y)dy if x > 0

1
3 if x = 0

and F∗(x) := x2q(x). This q meets the requirements of the theorem since limx→+∞ q(x) =
+∞ holds after a straightforward application of l’Hôpital’s rule, while property (ii’) of G
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shows that q is non-decreasing. Then, after noting that F∗(x) ≤ G∗(x) for all x ∈ [0,+∞)

thanks to the fact that G∗ is non-decreasing, the combination of Lemma 8 with property iv’)
of G gives

∫

R3

F∗(|v|)μ(dv, t) ≤
∫

R3

G(|v|2)μ(dv, t) = Et [G(S(e1)2 + S(e2)2 + S(e3)2)]

≤ 3λ23 sup
u∈S2

Et [G∗(S(u))] ≤ 3λ23C1(μ0) := C(μ0)

which is the desired conclusion. Finally, since (9) is in force, then
∫

|v|≥R

|v|2μ(dv, t) ≤ 1

q(R)

∫

R3

|v|2q(|v|)μ(dv, t) ≤ C(μ0)

q(R)

holds for every t ≥ 0, and the validity of (10) follows.

3.5 Proof of Lemma 6

Observing that

v∗(x) = v + |w − v|x
[√

1 − x2(cos θa(u) + sin θb(u)) + xu
]

w∗(x) = w − |w − v|x
[√

1 − x2(cos θa(u) + sin θb(u)) + xu
]

hold for every v �= w and x ∈ (−1, 1), one gets

dv∗
dx

= −dw∗
dx

= |w − v|
[

1 − 2x2

(1 − x2)1/2
(cos θa(u) + sin θb(u)) + 2xu

]

d2v∗
dx2

= −d2w∗
dx2

= |w − v|
[−3x + 2x3

(1 − x2)3/2
(cos θa(u) + sin θb(u)) + 2u

]

.

Whence,

∣
∣
∣
dv∗
dx

∣
∣
∣
2 =

∣
∣
∣
dw∗
dx

∣
∣
∣
2 = |w − v|2

[
(1 − 2x2)2

1 − x2
+ 4x2

]

∣
∣
∣
d2v∗
dx2

∣
∣
∣ =

∣
∣
∣
d2w∗
dx2

∣
∣
∣ = |w − v|

[
(−3x + 2x3)2

(1 − x2)3
+ 4

]1/2
.

At this stage, for the first derivatives, one has

∫

R3

∫

R3

1∫

−1

2π∫

0

1∫

0

[∣
∣
∣
dv∗
dx

(sξ)

∣
∣
∣
2 +

∣
∣
∣
dw∗
dx

(sξ)

∣
∣
∣
2
]

1l{v �= w}(1 − s)ξ2b(ξ)

× dsdθdξχ(dv)χ(dw) ≤ 2π
∫

R3

∫

R3

|w − v|2χ(dv)χ(dw)

1∫

−1

ξ2b(ξ)dξ

×
1∫

0

(1 − s) sup
ξ∈[0,1]

(
(1 − 2s2ξ2)2

1 − s2ξ2
+ 4s2ξ2

)

ds
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1726 E. Dolera

the RHS being finite in view of (3), the condition
∫
R3 |v|2χ(dv) < +∞ and the fact that, for

every s in (0, 1),

(1 − s) sup
ξ∈[0,1]

(
(1 − 2s2ξ2)2

1 − s2ξ2
+ 4s2ξ2

)

≤ 14.

Analogously, for the second derivatives, one has

∫

R3

∫

R3

1∫

−1

2π∫

0

1∫

0

[∣
∣
∣
d2v∗
dx2

(sξ)

∣
∣
∣ +

∣
∣
∣
d2w∗
dx2

(sξ)

∣
∣
∣

]

1l{v �= w}(1 − s)ξ2b(ξ)

× dsdθdξχ(dv)χ(dw) ≤ 2π
∫

R3

∫

R3

|w − v|χ(dv)χ(dw)

1∫

−1

ξ2b(ξ)dξ

×
1∫

0

(1 − s) sup
ξ∈[0,1]

(
(−3sξ + 2s3ξ3)2

(1 − s2ξ2)3
+ 4

)1/2

ds

and again the RHS is finite in view of (3), the condition
∫
R3 |v|2χ(dv) < +∞ and the fact

that, for every s in (0, 1),

(1 − s) sup
ξ∈[0,1]

(
(−3sξ + 2s3ξ3)2

(1 − s2ξ2)3
+ 4

)1/2

≤ 2
√
13√

1 − s
+ 2.

3.6 Proof of Theorem 3

Before getting to the heart of the matter, it is worth explaining the structure of this conclud-
ing subsection that contains the proof of the existence of a solution, following the Arkeryd
approach. To make this strategy working, two forms of uniform continuity—encapsulated
in (30) and (32), respectively—are deduced by exploiting the properties of the approximat-
ing solutions established in Sects. 3.2 and 3.4. Moreover, after showing the existence of a
converging subsequence via the Ascoli–Arzelà theorem, the uniform integrability conditions
(9)–(10) will play a key role in proving that the limit is indeed a solution, according to the
Definition 2, and satisfies (7)–(10).

To start with the real proof, note that [b(x) ∧ n]/Bn meets (4) for all n ≥ n0 := min{n ∈
N | Bn > 0}. Therefore, the Cauchy problem relative to (1), with [b(x) ∧ n]/Bn and μ0 as
collision kernel and initial datum, respectively, admits a unique solution {μn(·, t)}t≥0, which
possesses all the properties established in Sects. 3.2 and 3.4. In particular, (7) yields

∫

R3

vμn(dv, t) = V and
∫

R3

|v|2μn(dv, t) = m2 (29)

for all t ≥ 0 and n ≥ n0, with V := ∫
R3 vμ0(dv) and m2 := ∫

R3 |v|2μ0(dv). Then, (29)
leads to the former important inequality, namely

|μ̂n(ξ2, t) − μ̂n(ξ1, t)| ≤ |ξ2 − ξ1| sup
ξ∈R3

∣
∣∇ξ μ̂n(ξ , t)

∣
∣ ≤ |ξ2 − ξ1|

∫

R3

|v|μn(dv, t)

≤ |ξ2 − ξ1|
⎛

⎜
⎝

∫

R3

|v|2μn(dv, t)

⎞

⎟
⎠

1/2

= m
1/2
2 |ξ2 − ξ1| (30)
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valid for all ξ1, ξ2 ∈ R
3, with t and n as above. The latter key inequality easily follows from

a result borrowed from [28] (precisely, Lemma 2.2), restated here in a slightly different form.

Lemma 9 Let χ belong to P2(R
3) and b satisfy (4). Then,

∣
∣
∣

∫

S2

[χ̂ (ξ+)χ̂(ξ−) − χ̂(ξ)]b
(

ξ

|ξ | · ω

)

uS2(dω)

∣
∣
∣ ≤ 3

2
B |ξ |2

∫

R3

|v|2χ(dv) (31)

holds for all ξ �= 0, with ξ+ := ξ − (ξ · ω)ω, ξ− := (ξ · ω)ω and B := ∫ 1
0 x2b(x)dx.

It is worth noting that the original formulation in [28] deals with collision kernels satisfying
(3), but, in that case, (31) turns out to be false if

∫
S2 is intended as a standardLebesgue integral.

Indeed, it is enough to chooseχ as aGaussian probability lawwith zeromeans and covariance
matrix V = (vi, j )1≤i, j≤3, with v2,2 = v3,3 = 1, v2,3 = v3,2 = 1/2, vi, j = 0 otherwise, and

b(x) = |x |−5/2, to verify that
∫
S2 |χ̂(ξ+)χ̂(ξ−) − χ̂ (ξ)|b

(
ξ
|ξ | · ω

)
uS2(dω) = +∞. This

counterexample can be easily reformulated also in the different parametrization used in [28].
Therefore, due to its relevance, the original proof of this lemma is shortly reproduced below.

Proof of Lemma 9 Define ζ :=
(
ξ+ · ξ

|ξ |
)

ξ
|ξ | and ξ̃+ := 2ζ − ξ+ to write

∫

S2

[χ̂ (ξ+)χ̂(ξ−) − χ̂(ξ)]b
(

ξ

|ξ | · ω

)

uS2(dω) = 1

2

∫

S2

[χ̂ (ξ+) + χ̂(ξ̃+) − 2χ̂ (ζ )]

× b

(
ξ

|ξ | · ω

)

uS2(dω) +
∫

S2
[χ̂(ζ ) − χ̂ (ξ)]b

(
ξ

|ξ | · ω

)

uS2(dω)

+
∫

S2

χ̂ (ξ+)[χ̂ (ξ−) − 1]b
(

ξ

|ξ | · ω

)

uS2(dω)

for all ξ �= 0. Upon assuming that
∫
R3 vχ(dv) = 0—which does not affect the generality,

for the replacement of χ̂ (ξ) with χ̂(ξ) exp{−iξ · ∫
R3 vχ(dv)} does not change the LHS of

(31)—invoke the elementary inequality |χ̂(ξ) − 1| ≤ 1
2 |ξ |2 ∫

R3 |v|2χ(dv) to obtain

1

2
|χ̂(ξ+) + χ̂ (ξ̃+) − 2χ̂(ζ )| ≤ 1

2
|ξ+ − ζ |2

∫

R3

|v|2χ(dv)

|χ̂(ζ ) − χ̂ (ξ)| ≤ 1

2
|ζ − ξ |2

∫

R3

|v|2χ(dv)

|χ̂ (ξ−) − 1| ≤ 1

2
(ξ · ω)2

∫

R3

|v|2χ(dv),

so that the conclusion is reached by noting that |ξ+ − ζ | ≤ |ξ · ω|, |ζ − ξ | ≤ |ξ · ω| and
∫
S2

(
ξ
|ξ | · ω

)2
b
(

ξ
|ξ | · ω

)
uS2(dω) = B. ��

At this stage, by the Bobylev identity (14), one has

∂

∂t
μ̂n(ξ , t) =

∫

S2

[μ̂n(ξ+, t)μ̂n(ξ−, t) − μ̂n(ξ , t)]b(ξ/|ξ | · ω) ∧ n

Bn
uS2(dω)
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1728 E. Dolera

for ξ �= 0, t > 0 and n ≥ n0, which, combined with Lemma 9 and (29), gives

|μ̂n(ξ , Bnt2) − μ̂n(ξ , Bnt1)| =
∣
∣
∣

Bnt2∫

Bnt1

[
∂

∂s
μ̂n(ξ , s)

]

ds
∣
∣
∣ ≤ 3

2
B m2|ξ |2|t2 − t1| (32)

for all ξ ∈ R
3, t1, t2 ≥ 0 and n ≥ n0, corresponding to the latter key inequality.

After selecting a sequence T := {tk}k≥1 dense in [0,+∞), one can and note that
{μ̂n(ξ , Bntk)}n≥n0,k∈N is a uniformly bounded and equicontinuous family of complex-valued
functions. The former property follows from |μ̂n(ξ , Bntk)| ≤ 1, while the latter is a conse-
quence of (30). Hence, the combination of the Ascoli–Arzelà theorem with the Lévy conti-
nuity theorem and the Cantor diagonal argument entails the existence of two sequences: the
former, {μ(·, tk)}k≥1, is composed ofBorel p.m.’s onR3 and the latter, {nl}l≥1, is an increasing
sequence of positive integers such that, for all tk ∈ T , μnl (·, Bnl tk) ⇒ μ(·, tk) as l → +∞.
Then, for any other t ∈ [0,+∞)\T , take any subsequence {tkr }r≥1 ⊂ T converging to t ,
and consider w-limr→+∞μ(·, tkr ). This limit exists and is independent of the choice of the
approximating sequence {tkr }r≥1, for (32) yields |μ̂(ξ , t

′′
) − μ̂(ξ , t

′
)| ≤ 3

2 B m2|ξ |2|t ′′ − t
′ |

for all ξ ∈ R
3 and t

′
, t

′′ ∈ T . Thus, {μ̂(ξ , tkr )}r≥1 is a Cauchy sequence in C, which
converges to some gt (ξ) for any fixed ξ ∈ R

3, and ξ 	→ gt (ξ) is continuous by
|gt (ξ2) − gt (ξ1)| ≤ m

1/2
2 |ξ2 − ξ1|, which obviously emanates from the combination of

(30) with (32). A further application of the Lévy continuity theorem shows that, for all
t ∈ [0,+∞)\T , there exists μ(·, t) ∈ P(R3) such that gt (ξ) = μ̂(ξ , t) for all ξ ∈ R

3 and
that μ(·, tkr ) ⇒ μ(·, t), as r → +∞. In conclusion, μ(·, t) satisfies
(A) μnl (·, Bnl t) ⇒ μ(·, t) as l → +∞, for all t ≥ 0;
(B) |μ̂(ξ , t

′′
) − μ̂(ξ , t

′
)| ≤ 3

2 B m2|ξ |2|t ′′ − t
′ | for all ξ ∈ R

3 and t
′
, t

′′ ∈ [0,+∞).

{μ(·, t)}t≥0 is the obvious candidate as solution of (1). Indeed, μ(·, 0) = μ0(·) by (A), while∫
R3 |v|2μ(dv, t) < +∞ and (7) are in force for all t ≥ 0 as a consequence of Lemma 1 in
[33], whose hypotheses are met in view of (A) and

sup
l∈N
t≥0

∫

|v|≥R

|v|2μnl (dv, Bnl t) ≤ 1

q(R)
sup
l∈N
t≥0

∫

R3

|v|2q(|v|)μnl (dv, Bnl t) ≤ C(μ0)

q(R)
, (33)

which emanates from (9). After fixing ψ ∈ C2
b(R

3;C), Definition 2 entails
∫

R3

ψ(v)μnl (dv, Bnl t) =
∫

R3

ψ(v)μ0(dv)

+
t∫

0

∫

R3

∫

R3

1∫

−1

Aψ(v,w, ξ)μnl (dv, Bnl τ)μnl (dw, Bnl τ)ξ2[b(ξ) ∧ nl ]dξdτ (34)

for all t ≥ 0 and l ∈ N, where

Aψ(v,w, ξ) := 1

8π

2π∫

0

1∫

0

1l{v �= w}(1 − s)

[

∇ψ(v∗(sξ)) · d
2v∗
dx2

(sξ)

+∇ψ(w∗(sξ)) · d
2w∗
dx2

(sξ)+
(
dv∗
dx

(sξ)

)t

Hess[ψ](v∗(sξ))

(
dv∗
dx

(sξ)

)
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+
(
dw∗
dx

(sξ)

)t

Hess[ψ](w∗(sξ))

(
dw∗
dx

(sξ)

)]

dsdθ.

The bounds provided in Sect. 3.5 give

|Aψ(v,w, ξ)| ≤ Kψ(1 + |v − w|2) (35)

for all (v,w, ξ) ∈ R
6×[−1, 1]with a suitable positive constant Kψ , while the same argument

contained in Sect. 3.1 shows that (v,w) 	→ ∫ 1
−1 Aψ(v,w, ξ)ξ2b(ξ)dξ is continuous on R

6.
The key point consists now in exploiting (A) to take the limit of both sides of (34) as
nl → +∞, with particular attention to the multiple integral on the RHS, which will be
proved to converge to

t∫

0

∫

R3

∫

R3

1∫

−1

Aψ(v,w, ξ)μ(dv, τ )μ(dw, τ )ξ2b(ξ)dξdτ.

Indeed, thanks to the dominated convergence theorem, combined with (3), (29), and (35), it
is enough to show that both the quantities

∣
∣
∣

∫

R3

∫

R3

1∫

−1

Aψ(v,w, ξ)μnl (dv, Bnl τ)μnl (dw, Bnl τ)ξ2[b(ξ) − (b(ξ) ∧ nl)]dξ
∣
∣
∣

and

∣
∣
∣

∫

R3

∫

R3

( 1∫

−1

Aψ(v,w, ξ)ξ2b(ξ)dξ
)
[μnl (dv, Bnl τ)μnl (dw, Bnl τ) − μ(dv, τ )μ(dw, τ )]

∣
∣
∣

go to zero for all τ ≥ 0, as nl → +∞. Apropos of the former, use (29) and (35) to bound it
from above by Kψ(1 + 4m2)

∫ 1
−1 ξ2[b(ξ) − (b(ξ) ∧ nl)]dξ , which goes to zero by (3). As

to the latter, note in advance that μnl (·, Bnl τ) ⊗ μnl (·, Bnl τ) ⇒ μ(·, τ ) ⊗ μ(·, τ ) thanks to
Theorem 4.29 in [20], and that

lim
R→+∞ sup

l∈N

∫

|v|2+|w|2≥R

(|v|2 + |w|2)μnl (dv, Bnl τ)μnl (dw, Bnl τ) = 0

in view of Lemma 1 in [33]. Thus, an application of Theorem 7.12 in [37] leads to the desired
conclusion. Whence,

∫

R3

ψ(v)μ(dv, t) =
∫

R3

ψ(v)μ0(dv)

+
t∫

0

∫

R3

∫

R3

1∫

−1

Aψ(v,w, ξ)μ(dv, τ )μ(dw, τ )ξ2b(ξ)dξdτ (36)

holds for all t ≥ 0, by which t 	→ ∫
R3 ψ(v)μ(dv, t) turns out to be continuous on [0,+∞).

Lastly, take a sequence {τk}k≥1 ⊂ [0,+∞) converging to some given τ ∈ [0,+∞), and
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mimic the above argument to get μ(·, τk) ⊗ μ(·, τk) ⇒ μ(·, τ ) ⊗ μ(·, τ ) and

lim
k→+∞

∫

R3

∫

R3

( 1∫

−1

Aψ(v,w, ξ)ξ2b(ξ)dξ
)
μ(dv, τk)μ(dw, τk)

=
∫

R3

∫

R3

( 1∫

−1

Aψ(v,w, ξ)ξ2b(ξ)dξ
)
μ(dv, τ )μ(dw, τ ).

This continuity and (36) entails that t 	→ ∫
R3 ψ(v)μ(dv, t) is continuously differentiable on

(0,+∞) and that (5)–(6) are in force for any fixed ψ ∈ C2
b(R

3;C).
Then, consider the additional properties of μ(·, t). First, the identities proved in Sect. 3.4

give

∫

R3

v2i μnl (dv, Bnl t) − V
2
i = enl (t)

⎡

⎢
⎣

∫

R3

{

(vi − Vi )
2 − 1

3
|v − V|2

}

μ0(dv)

⎤

⎥
⎦

+ 1

3

∫

R3

|v − V|2μ0(dv) (37)

∫

R3

viv jμnl (dv, Bnl t) − V i V j = enl (t)
∫

R3

(vi − V i )(v j − V j )μ0(dv) (38)

where

enl (t) = exp

⎧
⎨

⎩
−3

2

⎡

⎣2

1∫

0

x2(1 − x2)
b(x) ∧ nl

Bnl
dx

⎤

⎦ Bnl t

⎫
⎬

⎭
.

The uniform integrability of the second absolute moments of the μnl ’s, encapsulated in
(33), yields liml→+∞

∫
R3 viv jμnl (dv, Bnl t) = ∫

R3 viv jμ(dv, t) for all i, j ∈ {1, 2, 3} and
t ≥ 0, while an obvious application of the monotone convergence theorem shows that
liml→+∞ enl (t) = exp{− 3

2 [2
∫ 1
0 x2(1 − x2)b(x)dx]t} for all t ≥ 0. Hence, (37)–(38) pass

to the limit as l → +∞, and (8) follows. Apropos of the extension of (9), write
∫

R3

min{|v|2q(|v|),m}μ(dv, t) = lim
l→+∞

∫

R3

min{|v|2q(|v|),m}μnl (dv, Bnl t)

≤ sup
l∈N
t≥0

∫

R3

|v|2q(|v|)μnl (dv, Bnl t) ≤ C(μ0)

for all m ∈ N. Thus, the monotone convergence theorem shows that (9) is still valid with
the same q and C(μ0) as in Sect. 3.4, and (10) follows as before. In addition, take R and fR
as in the statement of the theorem and remember from Sect. 3.2 that {μnl (·, Bnl t) ◦ f −1

R }t≥0

solves (1) with b∧nl
Bnl

and μ0 ◦ f −1
R as collision kernel and initial datum, respectively. Since

the continuous mapping theorem (cf. Theorem 4.27 in [20]) yields μnl (·, Bnl t) ◦ f −1
R ⇒

μ(·, t) ◦ f −1
R for all t ≥ 0, as l → +∞, then μ(·, t) ◦ f −1

R is a solution of (1) with b and
μ0 ◦ f −1

R as collision kernel and initial datum, respectively.
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