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Abstract In this paper, we introduce a formula for the exact number of zeros of every partial
sum of the Riemann zeta function inside infinitely many rectangles of the critical strips where
they are situated.
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1 Introduction

The zeros of exponential polynomials are a topic which appeared in the first third of the
twentieth century in relation to the development of the theory of differential equations. At
this point, we must quote Wilder [14]. Here, it can be found one of the first formulae to
determine the number of zeros of an exponential sum inside a rectangle of the critical strip
where its zeros are located. On the line whichWilder had indicated are the works of Tamarkin
[11,12] and Langer [6]. Analogous results can be found in [13], where Turan attributes to
Pólya [10] a formula for the number of the zeros of an exponential sumwhere the coefficients
are algebraic polynomials. Also, certain ideas considered by Tamarkin, Wilder and Langer
were developed in the sixties by Dickson [3,4].

Similar formulae on the number of zeros of functions muchmore general than exponential
polynomials are provided in Levin’s book [7]. For instance, if the convex hull of the spectrum
of an almost-periodic function f (z) is a segment of the imaginary axis, the formula is, for
sufficiently large values of |y1| and |y2|,

N (x1, x2, y1, y2) = d

2π
(x2 − x1) + O(1), (1.1)
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where d is the length of the segment and N (x1, x2, y1, y2) denotes the number of zeros of
f (z) inside the rectangle x1 ≤ x ≤ x2, y1 ≤ y ≤ y2 [7, Chapter 6, Th. 9].
Recently, for the partial sums,

ζX (s) =
∑

k≤X

k−s ,

with s = σ + i t a complex variable and X a real number greater than or equal to 2, Gonek
and Ledoan prove in [5, Theorem 2] the formula

∣∣∣∣NX (T ) − T

2π
log [X ]

∣∣∣∣ <
X

2
, (1.2)

which determines the number of zeros NX (T ) of ζX (s) for the special case when these zeros
have ordinates in [0, T ]. Here, [x] is used to denote the largest integer not exceeding the real
number x . It is worth to note here that the term O(1) of formula (1.1), which essentially
depends on f (z), has been specified for the functions ζX (s).

As we have just seen, in the extensive literature on the related question with the topic of
the zeros, the formulae for the number of zeros in certain regions, mainly rectangles, have
a common thing: all them contain either the error term O(1) or a bound which expresses
the maximum error with respect to the exact number of zeros inside those regions. For the
partial sums of the Riemann zeta function, we established in [9, Theorem 6] a formula for the
number of their zeros inside certain rectangles in the critical strip. In fact, for every integer
n ≥ 2, we proved the existence of infinitely many rectangles {Rn,T } bounded by the lines
y = 0 and y = T , T > 0, such that the number of zeros, Nn(T ), of ζn(s) inside each Rn,T

satisfies

Nn(T ) =
[
T log n

2π
+ �n

]
, with |�n | < 1.

In this paper, we deal with the problem of the existence of rectangles in the critical strip of
every ζn(s) for which the error in the formula for the number of zeros can be reduced to 0. In
terms of the last paper of Gonek and Ledoan [5], the question would be expressed as follows:
are there rectangles in the critical strip given by the lines y = 0 and y = T for which the
formula (1.2) is exact? We have just proved that the answer is yes; in fact, we demonstrate
the existence of infinitely many values of T where the zeros, of every partial sum ζn(s) inside
each rectangle Rn,T , are counted by the formula

Nn(T ) =
[
T log n

2π

]
. (1.3)

It is worthwhile to remark that this result improves that of [9, Theorem 6].

2 The formula

For each integer, n ≥ 2, ζn(s) is an entire function of order 1, exponential type ln n, and it
has infinitely many zeros not all of them are situated on the imaginary axis, except for the
case n = 2 [9] whose zeros zk are explicitly given by

zk = (2k + 1)π i

ln 2
, k ∈ Z. (2.1)

Therefore, n = 2 is the trivial case, and we will assume that n > 2.
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On the other hand, since for any t , we have

lim
σ→−∞ ζn(σ + i t)nσ+i t = 1 (2.2)

and
lim

σ→∞ ζn(σ + i t) = 1, (2.3)

there exist two values of σ , σn1 < 0 < σn2 , such that
∣∣ζn(s)ns − 1

∣∣ < 1 for all s with Re s ≤ σn1

and

|ζn(s) − 1| < 1 for all s with Re s ≥ σn2 .

Therefore the functions ζn(s) have all their zeros comprised in vertical strips Sn , called critical
strips, defined by

Sn := {s = σ + i t : an ≤ σ ≤ bn} ,
where the bounds

an := inf {Re s : ζn(s) = 0}
and

bn := sup {Re s : ζn(s) = 0}
have been estimated by means of the expressions

−n log 2 + o(n)

and

1 +
(
4

π
− 1 + o(1)

)
log log n

log n

by Balazard and Velazquez-Castañon [2] and Montgomery [8], respectively.

Remark 1 We first take a rectangle, denoted by Rn,T , defined by the right-lines x = a′
n ,

x = b′
n ; y = 0 and y = T , where a′

n and b′
n are arbitrary real numbers satisfying a′

n < an ,
b′
n > bn , and T > 0 is so that ζn(s) has no zero on the line y = T . The values of T for which

formula (1.3) is valid will be specified in the proof of the next theorem.

Theorem 2 For every integer n ≥ 2, there exist infinitely many rectangles Rn,T such that
the number of zeros, Nn(T ), of the function ζn(s) inside each one of them is given by the
formula

Nn(T ) =
[
T log n

2π

]
.

Proof For n = 2, we consider a rectangle R2,T with T ∈
[
2πk
log 2 ,

π(2k+1)
log 2

)
for some integer

k ≥ 0. Then, k ≤ T log 2
2π < k + 1

2 , therefore,
[
T log 2
2π

]
= k. Noticing (2.1) the number of

zeros inside R2,T satisfies

N2(T ) = k,
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and this means that the formula (1.3) follows. Therefore, from now on we assume that n > 2.
Consider a rectangle Rn,T ; we observe that ζn(s) is never 0 on the boundary of Rn,T ; therefore,

we can apply the argument principle [1, p. 87] on it. For a given 0 < ε <
1

6
, by virtue of

(2.2) and (2.3), we determine two values a′′
n , b

′′
n , with a

′′
n < a′

n and b
′′
n > b′

n , satisfying

∣∣ζn(s)ns − 1
∣∣ <

1

6
sin ε for all s with Re s = a′′

n , (2.4)

and

|ζn(s) − 1| <
1

6
sin ε for all s with Re s = b′′

n . (2.5)

Let R′
n,T be a new rectangle defined by the right-lines x = a′′

n , x = b′′
n ; y = 0, y = T .

Noticing Re s ≤ a′
n and Re s ≥ b′

n are zero-free regions, we conclude that ζn(s) has the
same number of zeros inside both rectangles Rn,T and R′

n,T . Then, for the above ε, we claim
that there exist infinitely many values of T such that the variation of the argument of ζn(s)
on the boundary of R′

n,T , denoted by V A(ζn(s); R′
n,T ), satisfies

V A(ζn(s); R′
n,T ) = T log n + θ , with |θ | < ε. (2.6)

Indeed, by writing

ζn(s) = e−s log n (
ζn(s)n

s) ,

and according to (2.4), we infer that the variation of the argument of ζn(s) on the side of the
rectangle R′

n,T defined by the line x = a′′
n , denoted by V A(ζn(s); x = a′′

n ), is given by

V A(ζn(s); x = a′′
n ) = T log n + α, with |α| <

ε

3
. (2.7)

Now, from (2.5), we conclude that the variation of the argument of ζn(s) on the side of
the rectangle R′

n,T defined by the line x = b′′
n , denoted by V A(ζn(s); x = b′′

n), satisfies

∣∣V A(ζn(s); x = b′′
n)

∣∣ <
ε

3
. (2.8)

On the other hand, because ζn(s) > 0 for all real s, the variation of the argument of ζn(s)
on the side of the rectangle R′

n,T defined by the line y = 0, denoted by V A(ζn(s); y = 0), is

V A(ζn(s); y = 0) = 0. (2.9)

Finally, it only remains to prove that there exist infinitely many values of T such that the
variation of the argument of ζn(s) on the side of the rectangle R′

n,T defined by the line y = T ,
V A(ζn(s); y = T ), satisfies

|V A(ζn(s); y = T )| <
ε

3
. (2.10)

Indeed, let
{
p1, p2, . . . , pkn

}
be the set of all prime numbers less than or equal to n; noticing

for each integer 1 ≤ m ≤ n, there exist non-negative integers lmj such that

logm =
kn∑

j=1

lmj log p j , (2.11)

the functions Re ζn(s) and Im ζn(s) can be considered as polynomial in

eσ ln p j , cos(t log p j ), sin(t log p j ), j = 1, . . . , kn .

123



Computing the zeros of the partial sums 1503

Given the preceding ε, by continuity, there exists δ > 0 such that for any real number
σ ∈ [

a′′
n , b

′′
n

]
, one has

|Re ζn(σ + i t) − Re ζn(σ )| < ε, (2.12)

provided that ∣∣cos(t log p j ) − 1
∣∣ < δ,

∣∣sin(t log p j )
∣∣ < δ (2.13)

for all j = 1, . . . , kn . Given δ > 0, determine a positive number η < ε so that for any η j

satisfying
∣∣η j

∣∣ ≤ η, the conditions (2.13) to be fulfilled, that is
∣∣cos(η j log p j ) − 1

∣∣ < δ,
∣∣sin(η j log p j )

∣∣ < δ, for all j = 1, . . . , kn . (2.14)

Now, since for any s = σ + i t

Im ζn(s) = −e−σ log 2 sin(t log 2) − · · · − e−σ log n sin(t log n),

by using (2.11) we can write, for σ ∈ [
a′′
n , b

′′
n

]
,

Im ζn(s) =
kn∑

j=1

sin(t log p j ) f j (t, σ ), (2.15)

where f j (t, σ ) is a uniformly bounded function on R × [
a′′
n , b

′′
n

]
. Let M > 0 be such that∣∣ f j (t, σ )

∣∣ ≤ M for all j = 1, . . . , kn . Define a positive number

λ = min

{
η

log pkn
,

5
36ε

M log(p1 . . . pkn

}
(2.16)

and let us take

α j = 2π

ln p j
, β j = 0, 1 ≤ j ≤ kn , and λ.

Then, as the numbers
1

α j
are linearly independent over the rationals, by applying a lemma

of Kronecker and Bohl [11, p. 68], there exists a positive real number l such that any real
interval of the form

(pl, (p + 1)l) , p ∈ Z,

contains an interval Ip of length λ which contains at least one point of each set

A j :=
{

2πq

log p j
: q ∈ Z

}
, 1 ≤ j ≤ kn .

Let T be an arbitrary point of some Ip with p ≥ 0. For each j ∈ {1, 2, . . . , kn} determine
γ j ∈ Ip ∩ A j and define η j = T − γ j . Since pkn ≥ 3, because (2.16) we can assure that
∣∣η j

∣∣ ≤ η, and according to each γ j = 2πq

log p j
, with q integer, by substituting the values of

η j into (2.14), we get
∣∣cos(T log p j ) − 1

∣∣ < δ,
∣∣sin(T log p j )

∣∣ < δ, for all 1 ≤ j ≤ kn ,

and, consequently, (2.12) is true for t = T . Then, according to Re ζn(σ ) > 1 for all σ ∈ R,
one has
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Re ζn(σ + iT ) = Re ζn(σ ) + (Re ζn(σ + iT ) − Re ζn(σ )) ≥ 1 − ε, (2.17)

for all σ ∈ [
a′′
n , b

′′
n

]
.

About the imaginary part of ζn(s), by setting s = σ + iT with σ ∈ [
a′′
n , b

′′
n

]
in (2.15),

because of (2.16), we have

|Im ζn(σ + iT )| ≤ M
kn∑

j=1

∣∣sin(η j log p j )
∣∣ ≤ M

kn∑

j=1

∣∣η j log p j
∣∣ ≤

≤ Mλ log(p1 . . . pkn ) ≤ 5

36
ε. (2.18)

From (2.17) and (2.18), it deduces that the variation of the argument of ζn(s) on the side of
the rectangle R′

n,T defined by the line y = T , V A(ζn(s); y = T ), satisfies

V A(ζn(s); y = T ) ≤ 2 arctan

(
5
36ε

1 − ε

)
.

Now, recalling that we have chosen ε so that 0 < ε <
1

6
and taking into account that

arctan x ≤ x , for all x ∈ R, the above inequality implies that

V A(ζn(s); y = T ) ≤
5
18ε

1 − ε
<

ε

3

and then (2.10) is true, as claimed. Now, according to (2.7), (2.8), (2.9) and (2.10), it
follows (2.6) for any point T of every Ip with p ≥ 0 and, in consequence, the formula
(1.3) is true. 	
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