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Abstract Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2. In Ceccon and
Montenegro (Math Z 258:851–873, 2008; J Diff Equ 254(6):2532–2555, 2013) showed that,
for any 1 < p ≤ 2 and 1 ≤ q < r < p∗ = np

n−p , there exists a constant B such that the sharp
Gagliardo–Nirenberg inequality

⎛
⎝

∫

M

|u|r dvg
⎞
⎠

p
rθ

≤
⎛
⎝Aopt

∫

M

|∇gu|p dvg + B
∫

M

|u|p dvg

⎞
⎠

⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

.

holds for all u ∈ C∞(M). In this work, assuming further 1 < p < 2, p < r and 1 ≤ q ≤
r

r−p , we derive existence and compactness results of extremal functions corresponding to the
saturated version of the above sharp inequality. Sobolev inequality can be seen as a limiting
case as r tends to p∗.
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1 Overview and main theorems

A lot of attention has been paid to so called sharp Gagliardo–Nirenberg inequalities. Such
inequalities play a key role in the study of qualitative properties of some evolution PDEs
(see, for example, [1,6,8,14,21,32,33]).

Let 1 < p < n and 1 ≤ q < r < p∗, where p∗ = np
n−p denotes the Sobolev critical

exponent. Denote by Dp,q(Rn) the completion of C∞
0 (Rn) under the norm

||u||Dp,q (Rn) =
⎛
⎝

∫

Rn

|∇u|p dx

⎞
⎠

1
p

+
⎛
⎝

∫

Rn

|u|q dx

⎞
⎠

1
q

.

The sharp Euclidean Gagliardo–Nirenberg inequality states that, for any function
u ∈ Dp,q(Rn),

⎛
⎝

∫

Rn

|u|r dx
⎞
⎠

p
rθ

≤ A0(p, q, r)

⎛
⎝

∫

Rn

|∇u|p dx

⎞
⎠

⎛
⎝

∫

Rn

|u|q dx

⎞
⎠

p(1−θ)
θq

, (1)

where θ = np(r−q)
r(q(p−n)+np) ∈ (0, 1) and A0(p, q, r) is the best possible constant in this inequal-

ity, which is well defined thanks to the Euclidean Sobolev inequality.
The inequality (1) was introduced independently by Gagliardo and Nirenberg in [20] and

[27]. Some particular cases are quite known. Indeed, in the limit case r = p∗, (1) yields the
well-known Euclidean Sobolev inequality introduced by Sobolev in [29]. The famous Nash
inequality, introduced by Nash in [26], corresponds to p = 2, q = 1 and θ = n/(n + 2).
At last, the Moser inequality, introduced by Moser in [25], arises when p = 2, q = 2 and
θ = n/(n + 2). According to Bakry et al. [5], non-sharp inequalities of type (1) are all
equivalent for p ≥ 1 fixed and similar versions still hold when p ≥ n, whereas the Sobolev
embedding is not valid in this case.

Over the past years, Some studies have been devoted to the search for extremal functions
of (1). Different methods have been employed in this endeavor for certain parameters p, q
and r . Namely, Aubin [3] and Talenti [30] found extremal functions for Euclidean optimal
Sobolev inequalities. Extremal functions to the sharp Nash inequality were found by Carlen
and Loss in [9]. Besides, Cordero et al. [13] and Del Pino and Dolbeault [15] independently
obtained extremal functions for the family of parameters p < q ≤ p(n−1)

n−p and r = p(q−1)
p−1 .

In this case, the extremal functions are explicitly given by

u(x) = a
(
1 + b|x | p

p−1

)− p−1
q−p

,

where a and b are positive constants. In particular, one easily sees that the set of extremals
of (1) is not C0-compact. The knowledge of extremal functions is open for several values of
p, q and r .

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 and let 1 < p < n
and 1 ≤ q < r < p∗. Denote by H1,p(M) the Riemannian–Sobolev space defined as the
completion of C∞(M) under the norm

||u||H1,p(M) :=
⎛
⎝

∫

M

|∇gu|p dvg +
∫

M

|u|p dvg

⎞
⎠

1/p

.
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Extremals for sharp GNS inequalities on compact manifolds 1395

In [10], assuming 1 < p ≤ 2 and p < r , it is proved the existence of a constant B such that
the Riemannian Gagliardo–Nirenberg inequality

⎛
⎝

∫

M

|u|r dvg
⎞
⎠

p
rθ

≤
⎛
⎝A0(p, q, r, g)

∫

M

|∇gu|p dvg + B
∫

M

|u|p dvg

⎞
⎠

×
⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

. (2)

holds for all u ∈ H1,p(M), where dvg and ∇g denote, respectively, the Riemannian volume
element and the gradient operator of g and A0(p, q, r, g) stands for the first best possible
constant in this inequality.

The case r = p∗ and p = 2 was proved to be valid for some B by Hebey and Vaugon [22]
and, independently, by Aubin and Li [4] and Druet [16] when 1 < p < 2, and generally non-
valid for any B by Druet [17] when p > 2. The optimal Nash inequality, with p = 2, q = 1
and θ = n/(n + 2), was obtained for some B by Humbert in [23] (see also [19]). Later,
Brouttelande [7] extended its validity to p = 2, 1 ≤ q < r and q ≤ 2 ≤ r < 2 + 2

n q .
Closely related inequalities has been recently investigated by Chen and Sun in [12] for
p > 2.

In a natural way, one then considers the sharp inequality

⎛
⎝

∫

M

|u|r dvg
⎞
⎠

p
rθ

≤
⎛
⎝A0(p, q, r, g)

∫

M

|∇gu|p dvg

+B0(p, q, r, g)
∫

M

|u|p dvg

⎞
⎠

⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

(3)

which is also valid for all u ∈ H1,p(M), where

B0(p, q, r, g) := min{B ∈ R : (2) is valid for all u ∈ H1,p(M)},
and also the notion of extremal function as a non-zero function in H1,p(M) which satisfies
(3) with equality.

For r = p∗, we refer the reader to the Druet and Hebey’s book [18] which is an excel-
lent survey concerning the whole program of sharp Sobolev inequalities such as validity of
saturated inequalities, existence of extremals, among others.

LetE(p, q, r, g) be the set of all extremal functions u ∈ H1,p(M) such that ||u||Lr (M) = 1.
A simple computation guarantees that each extremal function u0 ∈ E(p, q, r, g) satisfies an
equation of kind

−�p,gu0 + a|u0|p−2u0 + b|u0|q−2u0 = c|u0|r−2u0 on M

where �p,g = −divg(|∇g|p−2∇g) denotes the p-Laplace operator of g and a, b and c are
positive constants. in particular, the elliptic regularity theory applied to this equation gives
E(p, q, r, g) ⊂ C0(M). Note also that, by the strong maximum principle, extremal functions
can be assumed positive on M .

A first question is to know if E(p, q, r, g) is non-empty. Another important one concerns
with topological properties satisfied by E(p, q, r, g) as, for example, if or not it is compact in
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1396 E. Abreu et al.

theC0-topology. This work answers positively both questions. The compactness is discussed
into an uniform view point on the parameters p, q and r . Two ingredients are essential in
order this: results on continuity of A0(p, q, r, g) and local boundedness of B0(p, q, r, g)
with respect to p, q and r .

Namely, our main results are:

Theorem 1.1 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 and let
1 ≤ q < r < p∗. The set E(p, q, r, g) is non-empty whenever 1 < p < 2, p < r and
1 ≤ q ≤ r

r−p .

Theorem 1.2 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2. For fixed
parameters 1 < p1 ≤ p2 < 2 and 1 ≤ q1 ≤ q2 < r1 ≤ r2 < p∗

1 with p2 < r1, p1 < r2
and q2 ≤ r2

r2−p1
, the set {u ∈ E(p, q, r, g) : p1 ≤ p ≤ p2, q1 ≤ q ≤ q2 and r1 ≤

r ≤ r2} is compact in the C0-topology. In particular, the same conclusion holds for each set
E(p, q, r, g), where 1 < p < 2, p < r and q ≤ r

r−p .

The study of the continuity of A0(p, q, r, g) with respect to the triple (p, q, r) can be
translated in terms of the continuity of A0(p, q, r) once these two best constants are equal
whenever p ≤ r .

When p < r , it is natural to hope that A0(p, q, r) continuously depends on (p, q, r).
Indeed, according to [14],

A0(p, q, r) = q − p

p
√

π

(
pq

n(q − p)

) 1
p
(
np − q(n − p)

pq

) 1
r

×
⎛
⎝ �

(
q(p−1)
q−p

)
�( n2 + 1)

�
(

p−1
p(q−p) (np − qn + qp)

)
�

(
n(p−1)

p + 1
)

⎞
⎠

1
n

for all p < q <
p(n−1)
n−p and r = p(q−1)

p−1 .
In [2], Agueh showed that A0(p, q, r) can generally be splitted as

A0(p, q, r) = D0(p, q, r)m(p, q, r)
nq−np−rp
n(r−q) ,

where D0(p, q, r) is explicitly given in terms of Gamma functions and m(p, q, r) is defined
by

m(p, q, r) := {
Ep,q(u) : u ∈ Dp,q(Rn) and ||u||Lr (Rn) = 1

}
, (4)

where

Ep,q(u) := 1

p

∫

Rn

|∇u|p dx + 1

q

∫

Rn

|u|q dx .

Using Corollary II.3 of [24], one concludes that the constant m(p, q, r) is attained for a
positive function, which is radially symmetric, non-increasing, tends to 0 as |x | → +∞ and
satisfies the equation

− �pu + uq−1 = l(p, q, r)ur−1 in R
n, (5)

where l(p, q, r) is a Lagrange multiplier. By using decaying properties for solutions of the
above equation, we just establish the continuity of m(p, q, r) for the range 1 < p < n and
1 ≤ q < r < p∗.
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Extremals for sharp GNS inequalities on compact manifolds 1397

The proof of Theorem 2.1 and also of the local boundedness of B0(p, q, r, g) are done by
contradiction and are based on blow-up and concentration analyzes of minimizers associated
to suitable functionals. Important additional difficulties arise in the concentration part when
we seek to establish the desired contradiction. The ideas used for surrounding them are
inspired in the recent paper [11]. Furthermore, our approach greatly simplifies that one made
in the paper [10] devoted to the validity question for p < r .

The complete proof of Theorems 1.1 and 1.2will be carried out into four sections. Section 2
is dedicated to the proof of a result on continuity of A0(p, q, r)which is stated asTheorem2.1.
In Sect. 3, we prove the bound of B0(p, q, r, g) under the assumptions of Theorem 1.2 which
is stated as Theorem 3.1. Finally, the proofs of existence of extremals and of compactness
are done in Sects. 4 and 5, respectively.

2 Continuous dependence of A0( p, q, r)

In this section, it is proved the following theorem:

Theorem 2.1 For each dimension n ≥ 2, the best constant A0(p, q, r) is continuous on the
set of parameters

1 < p < n, 1 ≤ q < r < p∗. (6)

In other words, given triples (pα, qα, rα) converging to (p0, q0, r0) as α → +∞, if all these
triples satisfy (6), then A0(pα, qα, rα) converges to A0(p0, q0, r0) as α → +∞.

Let m(p, q, r) and l(p, q, r) be defined as in (4) and (5), respectively. Given δ > 0, one
easily checks that these constants are bounded on all (p, q, r) satisfying (6) with p ≤ n − δ.
Indeed, fixed a nonzero function v ∈ C∞

0 (Rn), we have

0 ≤ m(p, q, r) ≤ Ep,q

(
v

||v||Lr
)

≤ C1(n, δ) (7)

for all triple (p, q, r) satisfying (6), where C1(n, δ) is a positive constant depending only on
n and δ. In particular, the claim follows from

0 ≤ l(p, q, r) ≤ max{p, q}m(p, q, r) ≤ max

{
n,

n2

δ

}
C1(n, δ).

Let us now describe a Lr decaying property satisfied by solutions of the problem (5).

Lemma 2.1 Let p0, q0 and r0 be fixed numbers satisfying (6). Then, for any δ0 > 0 small
enough, there exist positive constants C0 and ζ0, depending only on n and δ0 such that, for
any (p, q, r) satisfying (6), p ∈ [p0 − δ0, n − δ0] and q ∈ [1, p∗

0 − δ0] and any positive
radial minimizer u ∈ Dp,q(Rn) of m(p, q, r), one has

∫

|x |>ρ

|u|r dx ≤ C0ρ
−ζ0

for allρ ≥ 1. In particular, the above decaying holds for (p, q, r) close enough to (p0, q0, r0).

Proof of Lemma 2.1 Let u ∈ Dp,q(Rn) be a positive radial minimizer ofm(p, q, r). We next
consider two distinct cases.
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1398 E. Abreu et al.

Assume first that q > p. By Hölder’s inequality, one has

u p(ρ) = −p

+∞∫

ρ

u p−1u′ds = −p

+∞∫

ρ

(us
n−1
q )p−1u′s

n−1
p s(n−1)(− p−1

q − 1
p )ds

≤ n||∇u||L p(Rn)||u||p−1
Lq (Rn)

⎛
⎝

+∞∫

ρ

s(n−1)(− p−1
q − 1

p )tds

⎞
⎠

1
t

,

where t = pq/[(q − p)(p − 1)]. By (7), we then derive

u p(ρ) ≤ C1(n, δ0)

⎛
⎝

+∞∫

ρ

s(n−1)(−t+1)ds

⎞
⎠

1
t

.

Because q ≤ p∗
0 − δ0 < (p0 − δ0)

∗ ≤ p∗, the above inequality yields

u(ρ) ≤ C2(n, δ0)ρ
− n−1

p + n
tp (8)

for all ρ > 0 and (p, q, r) as in the statement of lemma, where Ci (n, δ0), i = 1, 2, are
positive constants depending only on n and δ0.

On the other hand, by Hölder’s inequality,

∫

|x |>ρ

urdx ≤
⎛
⎜⎝

∫

|x |>ρ

uqdx

⎞
⎟⎠

p∗−r
p∗−q

⎛
⎜⎝

∫

|x |>ρ

u p∗
dx

⎞
⎟⎠

r−q
p∗−q

.

By (7), the first right-hand side integral is bounded by a constant depending on n and δ0. So,
estimating the last integral with the aid (8), one obtains

∫

|x |>ρ

urdx ≤ C∗
0ρ

−ζ ∗
0

for all ρ ≥ 1, where C∗
0 and ζ ∗

0 are positive constants depending only on n and δ0.
In the case that q ≤ p, Hölder’s inequality gives

u(ρ)p = −p

+∞∫

ρ

(us
n−1
p )p−1u′s

n−1
p s−(n−1)ds ≤ n||∇u||L p(Rn)||u||p−1

L p(Rn)ρ
−(n−1).

Applying an interpolation with respect to q and p∗ and also (7), one derives

u(ρ) ≤ C3(n, δ0)ρ
− (n−1)

p ,

where C3(n, δ0) is a positive constant depending only on n and δ0.
Proceeding exactly as in the previous case, one gets

∫

|x |>ρ

urdx ≤ C∗∗
0 ρ−ζ ∗∗

0

for all ρ ≥ 1, where C∗∗
0 and ζ ∗∗

0 are positive constants depending only on n and δ0.
Finally, letting C0 = max{C∗

0 ,C
∗∗
0 } and ζ0 = min{ζ ∗

0 , ζ ∗∗
0 }, we conclude the proof.
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Extremals for sharp GNS inequalities on compact manifolds 1399

We now are ready to prove the main result of this section.

Proof of Theorem 2.1 Let (pα, qα, rα) and (p0, q0, r0) be triples satisfying (6) and such that
(pα, qα, rα) converges to (p0, q0, r0) as α → +∞. It suffices to show that there exists a sub-
sequence, denoted also by (pα, qα, rα), such that A0(pα, qα, rα) converges to A0(p0, q0, r0)
as α → +∞.

Let uα ∈ Dp,q(Rn) be a positive radial minimizer for mα = m(pα, qα, rα) such that
||uα||Lr (Rn) = 1. Thanks to the boundedness ofmα , we can apply theMoser iterative scheme
to the Eq. (5) on concentric balls of radii R. In particular, we find a positive constant C0(R)

depending on R, so that

‖uα‖L∞(BR) ≤ C0(R)

for α > 0 large enough.
From the above estimate and elliptic regularity theory, one easily checks that (uα) con-

verges to u0 in C1
loc(R

n), modulo a subsequence. This fact and Lemma 2.1 readily yield

1 =
∫

Rn

urαα dx =
∫

B(0,ρ)

urαα dx +
∫

Rn\B(0,ρ)

urαα dx ≤
∫

B(0,ρ)

urαα dx + C0ρ
−ζ0 .

Then, letting α → +∞, one obtains

1 =
∫

Rn

urαα dx ≤
∫

B(0,ρ)

ur00 dx + C0ρ
−ζ0 ≤

∫

Rn

ur00 dx + C0ρ
−ζ0

for all ρ ≥ 1, so that
∫

Rn

ur00 dx ≥ 1.

Conversely,
∫

B(0,ρ)

ur00 dx = lim
α→+∞

∫

B(0,ρ)

urα dx ≤ 1,

so that
∫

Rn

ur00 dx = 1.

Let now ϕ be any function in C∞
0 (Rn). One knows that

⎛
⎝

∫

Rn

|ϕ|rα dx

⎞
⎠

pα
rαθα

≤ A0(pα, qα, rα)

⎛
⎝

∫

Rn

|∇ϕ|pα dx

⎞
⎠

⎛
⎝

∫

Rn

|ϕ|qα dx

⎞
⎠

pα(1−θα)
θαqα

. (9)

Letting α → +∞, it follows that

⎛
⎝

∫

Rn

|ϕ|r0 dx
⎞
⎠

p0
r0θ0

≤ lim inf
α→+∞ A0(pα, qα, rα)

⎛
⎝

∫

Rn

|∇ϕ|p0 dx
⎞
⎠

⎛
⎝

∫

Rn

|ϕ|q0 dx
⎞
⎠

p0(1−θ0)

θ0q0

,
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1400 E. Abreu et al.

so that
A0(p0, q0, r0) ≤ lim inf

α→+∞ A0(pα, qα, rα). (10)

On the other hand, as proved in Theorem 2.1 of [2], uα is an extremal function for the
inequality (9). Therefore,

⎛
⎜⎝

∫

B(0,ρ)

|∇u0|p0 dx
⎞
⎟⎠

⎛
⎜⎝

∫

B(0,ρ)

uq00 dx

⎞
⎟⎠

p0(1−θ0)

θ0q0

= lim
α→+∞

⎛
⎜⎝

∫

B(0,ρ)

|∇uα|pα dx

⎞
⎟⎠

⎛
⎜⎝

∫

B(0,ρ)

uqα
α dx

⎞
⎟⎠

pα(1−θα)
θαqα

≤ lim inf
α→+∞

⎛
⎝

∫

Rn

|∇uα|pα dx

⎞
⎠

⎛
⎝

∫

Rn

uqα
α dx

⎞
⎠

pα(1−θα)
θαqα

= lim inf
α→+∞ A0(pα, qα, rα)−1

=
(
lim sup
α→+∞

A0(pα, qα, rα)

)−1

,

so that
⎛
⎝

∫

Rn

|∇u0|p0 dx
⎞
⎠

⎛
⎝

∫

Rn

uq00 dx

⎞
⎠

p0(1−θ0)

θ0q0

≤
(
lim sup
α→+∞

A0(pα, qα, rα)

)−1

.

Since u0 ∈ Dp0,q0(Rn) and ‖u0‖Lr = 1, one has

lim sup
α→+∞

A0(pα, qα, rα) ≤ A0(p0, q0, r0). (11)

Finally, from (10) and (11), we conclude that

lim
α→+∞ A0(pα, qα, rα) = A0(p0, q0, r0).

3 Boundedness of B0( p, q, r, g)

Our goal in this section is to establish the following result on bound of B0(p, q, r, g):

Theorem 3.1 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2. For fixed
parameters 1 < p1 < p2 < 2 and 1 ≤ q1 < q2 < r1 < r2 < p∗

1 with p2 < r1, there exists
a constant K > 0 such that B0(p, q, r, g) ≤ K for all p1 ≤ p ≤ p2, q1 ≤ q ≤ q2 and
r1 ≤ r ≤ r2.

The proof of this theorem is done into several claims and, in order tomake the simpler nota-
tions, we denote α = (p, q, r), α0 = (p0, q0, r0), θ = θ(p, q, r) and θ0 = θ(p0, q0, r0).
Here we assume α converges to α0.

Fromnowon, several possibly different positive constants independent ofαwill be denoted
by c or ci , i = 1, 2, . . .

123



Extremals for sharp GNS inequalities on compact manifolds 1401

Let κ ∈ (0, 1) be a fixed number. From the definition of B0(p, q, r, g), we have

να = inf
u∈E Jα(u) < A0(p, q, r)−1, (12)

where E = {u ∈ H1,p(M) : ||u||Lr (M) = 1} and

Jα(u) =
⎛
⎝

∫

M

|∇gu|p dvg + Cα

∫

M

|u|p dvg

⎞
⎠

⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

with Cα = B0(p,q,r,g)
A0(p,q,r) κ .

Since Jα is of class C1, by using standard variational arguments, we find a minimizer
uα ∈ E of Jα , i.e.

Jα(uα) = να = inf
u∈E Jα(u). (13)

One may assume uα ≥ 0, since ∇g|uα| = ±∇guα . Each minimizer uα satisfies the Euler–
Lagrange equation

Aα�p,guα + CαAαu
p−1
α + 1 − θ

θ
να||uα||−q

Lq (M)u
q−1
α = να

θ
ur−1

α on M, (14)

where �p,g = −divg(|∇g|p−2∇g) is the p-Laplace operator of g and

Aα =
⎛
⎝

∫

M

uqα dvg

⎞
⎠

p(1−θ)
θq

.

By the elliptic regularity theory [31], it follows that uα is of class C1(M).
The proof is now carried out by contradiction. namely, assume B0(p, q, r, g) is not

bounded as α → α0.
Thanks to Theorem 2.1, up to a subsequence, we have

lim
α→α0

Cα = +∞,

where α0 = (p0, q0, r0) with p1 ≤ p0 ≤ p2, q1 ≤ q0 ≤ q2 and r1 ≤ r0 ≤ r2.
From (12) and (13), one gets

CαAα

∫

M

up
α dvg < A0(p, q, r)−1,

so that

Aα

∫

M

up
α dvg → 0. (15)

One also knows that

A0(p, q, r)−1 ≤ Aα

⎛
⎝

∫

M

|∇guα|p dvg + Cα

∫

M

up
α dvg

⎞
⎠ + κ

A0(p, q, r)
Aα

∫

M

up
αdvg.

Letting α → α0 and evoking again Theorem 2.1, one obtains

lim inf
α→α0

Jα(uα) ≥ A(p0, q0, r0)
−1.
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1402 E. Abreu et al.

So, by (12), one has

lim
α→α0

να = lim
α→α0

Jα(uα) = A(p0, q0, r0)
−1. (16)

Finally, we assert that
lim

α→α0
Aα = 0. (17)

Otherwise, if lim supα→α0
Aα > 0, up to a subsequence, we can assume limα→α0 Aα > 0.

Then, by (12) and (15) (instead of using that p ≤ r ), there exists a constant c > 0 such that

||uα||H1,p(M) ≤ c

for α close enough to α0.
Because p0 < r0 < p∗

0 and p and r tend respectively to p0 and r0, we can choose t < p0
and s so that p, r < s < t∗. So, one easily deduces that (uα) is bounded in H1,t (M) for α

close enough to α0 and, by compactness, uα → u in Ls(M). Therefore,

||uα − u||L p(M) → 0

and

||uα − u||Lr (M) → 0

as α → α0.
From the first above limit and (15),

||uα||L p(M) → ||u||L p0 (M) = 0

and from the second one,

1 = ||uα||Lr (M) → ||u||Lr0 (M)

as α → α0. This contradiction concludes the claim (17).
Let xα ∈ M be a maximum point of uα , i.e

uα(xα) = ||uα||L∞(M). (18)

Claim 1 We assert that

lim
σ→+∞ lim

α→α0

∫

B(xα,σaα)

urα dvg = 1, (19)

where

aα = A
r

np−nr+pr
α . (20)

Proof of Claim 1 By (17), it is clear that aα → 0 as α → α0.
For x ∈ B(0, σ ), set

hα(x) = g(expxα
(aαx)),

ϕα(x) = a
n
r
α uα(expxα

(aαx)).
(21)

Joining (14) and the definition of θ , one easily checks that

�p,hαϕα + Cαa
p
α ϕ p−1

α + 1 − θ

θ
να ϕq−1

α = να

θ
ϕr−1

α on B(0, σ ). (22)
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A Moser’s iterative scheme applied to (22) (see [28]) produces

anα||uα||rL∞(M) = sup
B(0, σ

2 )

ϕr
α ≤ c

∫

B(0,σ )

ϕr
α dhα = c

∫

B(xα,σaα)

urα dvg ≤ c

for α close enough to α0. This estimate together with

1 =
∫

M

urα dvg ≤ ||uα||r−q
L∞(M)

∫

M

uqαdvg =
(
||uα||L∞(M) a

n
r
α

)r−q

yield

1 ≤ ||uα||L∞(M) a
n
r
α ≤ c. (23)

In particular, there exists a constant c > 0 such that
∫

B(0,σ )

ϕr
α dhα ≥ c (24)

for α close enough to α0.

On the other hand, we have∫

B(0,σ )

ϕ p
α dx ≤ c

∫

B(0,σ )

ϕ p
α dhα = a

np
r −n

α

∫

B(xα,σaα)

u p
α dvg ≤ c(σ )a

np
r

α ||uα||pL∞(M) ≤ c(σ ),

with c(σ ) → +∞ as σ → +∞.
Moreover,∫

B(0,σ )

|∇ϕα|p dx ≤ c
∫

B(0,σ )

|∇hαϕα|p dhα = Aα

∫

B(xα,σaα)

|∇guα|p dvg ≤ A0(p, q, r)−1.

(25)
Let 1 < t < p0. For α close enough to α0, the above inequalities imply that (ϕα)

is bounded in H1,t (B(0, σ )) for each σ > 0. So, modulo a subsequence, we derive the
pointwise convergence ϕα → ϕ almost everywhere in R

n . By Fatou’s Lemma,
∫

B(0,σ )

ϕq0 dx = lim inf
α→α0

∫

B(0,σ )

ϕq
α dhα = lim inf

α→α0

∫
B(xα,σaα)

uqα dvg∫
M uqα dvg

≤ 1, (26)

∫

B(0,σ )

ϕr0 dx = lim inf
α→α0

∫

B(0,σ )

ϕr
α dhα = lim inf

α→α0

∫

B(xα,σaα)

urα dvg ≤ 1. (27)

In particular,

ϕ ∈ Lq0(Rn) ∩ Lr0(Rn).

In addition, proceeding as before, it is possible to choose t < p0 and s so that q, r < s < t∗.
Thus, for any σ > 0, we can assume

||ϕα − ϕ||Lq (B(0,σ )) → 0 (28)

and
||ϕα − ϕ||Lr (B(0,σ )) → 0 (29)

as α → α0.
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1404 E. Abreu et al.

Let η ∈ C1
0 (R) be a cutoff function such that η = 1 on [0, 1

2 ], η = 0 on [1,∞) and
0 ≤ η ≤ 1. Set now ηα,σ (x) = η((σaα)−1dg(x, xα)). Taking uαη

p
α,σ as a test function in

(14), one gets

Aα

∫

M

|∇guα|pηp
α,σ dvg+Aα

∫

M

|∇guα|p−2∇guα · ∇g(η
p
α,σ )uα dvg+CαAα

∫

M

up
αηp

α,σ dvg

+1 − θ

θ
να||uα||−q

Lq (M)

∫

M

uqαηp
α,σ dvg = να

θ

∫

M

urαηp
α,σ dvg. (30)

next we show that

lim
σ→+∞ lim

α→α0
Aα

∫

M

|∇guα|p−2∇guα · ∇g(η
p
α,σ )uα dvg = 0. (31)

Indeed, it suffices to guarantee that

lim
σ→∞ lim

α→α0
Aα

∫

M

up
α |∇gηα,σ |p dvg = 0. (32)

Thanks to the inequality |∇gηα,σ | ≤ c
σaα

and (20), one obtains

Aα

∫

M

up
α |∇gηα,σ |p dvg ≤ c

Aα

σ pa p
α

∫

B(xα,σaα)

u p
α dvg

≤ c
Aα

σ pa p
α

⎛
⎝

∫

M

urα dvg

⎞
⎠

p
r

⎛
⎜⎝

∫

B(xα,σaα)

dvg

⎞
⎟⎠

1− p
r

= cσ
nr−np−pr

r

which clearly converges to 0 as α → α0 and σ → +∞.
Replacing (31) in (30), one arrives at

θ0A(p0, q0, r0) lim
σ→+∞ lim

α→α0

⎛
⎝Aα

∫

M

|∇guα|pηp
α,σ dvg

⎞
⎠

+(1 − θ0) lim
σ→+∞ lim

α→α0

∫
M uqαη

p
α,σ dvg∫

M uqα dvg
≤ lim

σ→+∞ lim
α→α0

∫

M

urαηp
α,σ dvg, (33)

where θ0 = θ(p0, q0, r0). In order to rewrite this inequality in a more suitable format, we
first remark that
∣∣∣∣∣
∫
M uqαη

p
α,σ dvg∫

M uqα dvg
−

∫
M uqαη

q
α,σ dvg∫

M uqα dvg

∣∣∣∣∣ ≤
∫
B(xα,σaα)\B(xα,σaα/2) u

q
α dvg∫

M uqα dvg
=

∫

B(0,σ )\B(0,σ/2)

ϕq
α dhα.

So, thanks to (28) and the fact that ϕ ∈ Lq0(Rn), one has

lim
σ→+∞ lim

α→α0

∫
M uqαη

p
α,σ dvg∫

M uqα dvg
= lim

σ→+∞ lim
α→α0

∫
M uqαη

q
α,σ dvg∫

M uqα dvg
.
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Estimating
∣∣∣∣∣∣

∫

M

urαηp
α,σ dvg −

∫

M

urαηrα,σ dvg

∣∣∣∣∣∣
≤

∫

B(xα,σaα)\B(xα,(σaα)/2)

urα dvg =
∫

B(0,σ )\B(0,σ/2)

ϕr
α dhα

and arguing in a similar way, by (29), one gets

lim
σ→+∞ lim

α→α0

∫

M

urαηrα,σ dvg = lim
σ→+∞ lim

α→α0

∫

M

urαηp
α,σ dvg.

Consequently, (33) can be rewritten as

θ0A(p0, q0, r0) lim
σ→+∞ lim

α→α0

⎛
⎝Aα

∫

M

|∇guα|pηp
α,σ dvg

⎞
⎠

+(1 − θ0) lim
σ+→∞ lim

α→α0

∫
M uqαη

q
α,σ dvg∫

M uqα dvg

≤ lim
σ→+∞ lim

α→α0

∫

M

urαηrα,σ dvg. (34)

On the other hand,
⎛
⎝

∫

M

urαηrα,σ dvg

⎞
⎠

p
rθ

≤
⎛
⎝A0(p, q, r)

∫

M

|∇g(uαηα,σ )|p dvg

+B0(p, q, r, g)
∫

M

up
αηp

α,σ dvg

⎞
⎠

⎛
⎝

∫

M

uqαηqα,σ dvg

⎞
⎠

p(1−θ)
θq

and the definition of Aα lead to

⎛
⎝

∫

M

urαηrα,σ dvg

⎞
⎠

p
rθ

≤ (A0(p, q, r) + ε)

⎛
⎝

∫

M

|∇guα|pηp
α,σ dvg

⎞
⎠

⎛
⎝

∫

M

uqαηqα,σ dvg

⎞
⎠

p(1−θ)
θq

+c(ε) Aα

∫

M

up
α |∇gηα,σ |p dvg + CαAα

∫

M

up
αηp

α,σ dvg. (35)

Using then (14) and (32) and letting α → α0, σ → +∞ and ε → 0, one gets

⎛
⎝ lim

σ→+∞ lim
α→α0

⎛
⎝

∫

M

urαηrα,σ dvg

⎞
⎠

⎞
⎠

p0
r0θ0

≤ A(p0, q0, r0) lim
σ→+∞ lim

α→α0

⎛
⎝Aα

∫

M

|∇guα|pηp
α,σ dvg

⎞
⎠

× lim
σ→+∞ lim

α→α0

(∫
M uqαη

q
α,σ dvg∫

M uqα dvg

) p0(1−θ0)

θ0q0

. (36)
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Let

X = A(p0, q0, r0) lim
σ→+∞ lim

α→α0

⎛
⎝Aα

∫

M

|∇guα|pηp
α,σ dvg

⎞
⎠ ,

Y = lim
σ→+∞ lim

α→α0

∫
M uqαη

q
α,σ dvg∫

M uqαdvg
,

and

Z = lim
σ→+∞ lim

α→α0

∫

M

urαηrα,σ dvg.

It is clear that X, Y, Z ≤ 1 and (34) and (36) take the form
{

θ0X + (1 − θ0)Y ≤ Z

Z ≤ X
r0θ0
p0 Y

r0(1−θ0)

q0
(37)

By (24), we have Z > 0, so that X, Y > 0.
In order to end the proof of (19), it suffices to show that Z = 1. By Young’s inequality,

(37) immediately yields
{
X θ0Y 1−θ0 ≤ Z

Z ≤ X
r0θ0
p0 Y

r0(1−θ0)

q0

But these two inequalities give

X θ0Y 1−θ0 ≤ X
r0θ0
p0 Y

r0(1−θ0)

q0 ≤ X θ0Y
r0(1−θ0)

q0 ,

so that Y = 1. Therefore, by (20) and (23),

∫

M\B(xα,σaα)

urα dvg ≤ ||uα||r−q
L∞(M)a

n(r−q)
r

α

∫
M\B(xα,σaα)

uqα dvg∫
M uqα dvg

≤ c

∫
M\B(xα,σaα)

uqα dvg∫
M uqα dvg

,

which implies that

lim
σ→+∞ lim

α→α0

∫

M\B(xα,σaα)

urα dvg = 0.

Thus, it follows that Z = 1.
A key tool in the proof of Theorem 3.1 consists of the following uniform estimate:

Claim 2 There exists a constant c > 0, independent of p, q and r , such that

dg(x, xα)puα(x)r−p ≤ ca
np−nr+pr

r
α

for x ∈ M and α close enough to α0.

Proof of Claim 2 Suppose, by contradiction, that the above assertion is false.
Set

fα(x) = dg(x, xα)puα(x)r−pa
nr−np−pr

r
α .
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If yα ∈ M is a maximum point of fα , then fα(yα) = || fα||L∞(M) → +∞ when α → α0.
By (23), we have

fα(yα) ≤ c

(
uα(yα)

||uα||L∞(M)

)r−p

dg(xα, yα)p||uα||
pr
n
L∞(M) ≤ cdg(xα, yα)p||uα||

pr
n
L∞(M),

so that
dg(xα, yα)||uα||

r
n
L∞(M) → +∞. (38)

For any fixed σ > 0 and ε ∈ (0, 1), we next show that

B(yα, ε dg(xα, yα)) ∩ B
(
xα, σ ||uα||−

r
n

L∞(M)

)
= ∅ (39)

for α close enough to α0. Note that this claim follows readily from

dg(xα, yα) ≥ σ ||uα||−
r
n

L∞(M) + εdg(xα, yα).

On the other hand, the above inequality is equivalent to

dg(xα, yα)(1 − ε)||uα||
r
n
L∞(M) ≥ σ,

which is clearly satisfied since dg(xα, yα)||uα||
r
n
L∞(M) → +∞ and 1 − ε > 0.

We assert that exists a constant c > 0 such that

uα(x) ≤ cuα(yα) (40)

for x ∈ B(yα, εdg(xα, yα)) and α close enough to α0. In fact, for x ∈ B(yα, εdg(xα, yα)),
we have

dg(x, xα) ≥ dg(xα, yα) − dg(x, yα) ≥ (1 − ε)dg(xα, yα).

Thus,

dg(yα, xα)puα(yα)r−pa
nr−np−pr

r
α = fα(yα) ≥ fα(x) = dg(x, xα)puα(x)r−pa

nr−np−pr
r

α

≥ (1 − ε)pdg(yα, xα)puα(x)r−pa
nr−np−pr

r
α ,

so that

uα(x) ≤
(

1

1 − ε

) p
r−p

uα(yα)

for x ∈ B(yα, εdg(xα, yα)) and α close enough to α0. This proves our claim.
Since f (yα) → +∞, one has

A
1
p
α uα(yα)

p−r
p → 0.

So, we can define

hα(x) = g(expyα (A
1
p
α uα(yα)

p−r
p x))

ψα(x) = uα(yα)−1uα(expyα (A
1
p
α uα(yα)

p−r
p x))

for each x ∈ B(0, 2) and α close enough to α0.
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By (14), one easily checks that

�p,hαψα + CαAαuα(yα)p−rψ p−1
α + 1 − θ

θ
να||uα||−q

Lq (M)uα(yα)q−rψq−1
α

= να

θ
ψr−1

α on B(0, 2). (41)

In particular,
∫

B(0,2)

|∇hαψp|p−2∇hαψα · ∇hαφ dvhα ≤ c
∫

B(0,2)

ψr−1
α φ dvhα

for all positive test function φ ∈ C1
0 (B(0, 2)). So, a Moser’s iterative scheme combined with

(23) furnishes

1 = sup
B

(
0, 14

) ψr
α ≤ c

∫

B
(
0, 12

)
ψr

α dvhα

= c

(
A

θq
p(1−θ)
α uα(yα)r−q

)− n(1−θ)
θq

∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg

≤ c

( ||uα||L∞(M)

uα(yα)

) np−rn+pr
p

∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg.

For simplicity, rewrite this last inequality as

0 < c ≤ m�
α

∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg, (42)

where mα = ||uα ||L∞(M)

uα(yα)
and � = np−rn+pr

p .

By (20), (23) and (38), one has B(yα, 1
2 A

1
p
α uα(yα)

p−r
p ) ⊂ B(yα, εd(xα, yα)) for α close

enough to α0. Therefore, (19) and (39) imply
∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg → 0,

so that mα → +∞ as α → α0.
Our main goal now is to establish a contradiction to (42).
At first, by (23) and (40), one has

m�
α

∫

Dα

urα dvg ≤ m�
α||uα||rL∞(Dα)(A

1
p
α uα(yα)

p−r
p )n ≤ cm�

αuα(yα)r (A
1
p
α uα(yα)

p−r
p )n ≤ c,

(43)

where Dα = B(yα, A
1
p
α uα(yα)

p−r
p ).
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Consider the function ηα(x) = η(A
− 1

p
α dg(x, yα)uα(yα)

r−p
p ), where η ∈ C1

0 (R) is a cutoff
function satisfying η = 1 on [0, 1

2 ], η = 0 on [1,∞) and 0 ≤ η ≤ 1. Taking uαη
p
α as a test

function in (14), one has

Aα

∫

M

|∇guα|pηp
α dvg + pAα

∫

M

|∇guα|p−2uαη
p−1
p ∇guα · ∇gηα dvg + CαAα

×
∫

M

up
αηp

α dvg + 1 − θ

θ
να||uα||−q

Lq (M)

∫

M

uqαηp
α dvg = να

θ

∫

M

urαηp
α dvg.

From Hölder and Young inequalities, the above second term can be estimated as

∣∣∣∣∣∣

∫

M

|∇guα|p−2uαηp−1
α ∇guα · ∇gηα dvg

∣∣∣∣∣∣
≤ ε

∫

M

|∇guα|pηp
α dvg + cε

∫

M

|∇gηα|pu p
α dvg.

Also, by (23) and (40), we have

Aα

∫

M

|∇gηα|pu p
α dvg ≤ Aα(A

− 1
p

α uα(yα)
r−p
p )p

∫

Dα

u p
α dvg

≤ cuα(yα)r (A
1
p
α uα(yα)

p−r
p )n ≤ cm−�

α . (44)

Putting these inequalities into (43), one gets

Aα

∫

M

|∇guα|pηp
α dvg + c CαAα

∫

M

up
αηp

α dvg + cνα||uα||−q
Lq (M)

∫

M

uqαηp
α dvg ≤ cm−�

α .

(45)

On the other hand, the sharp Riemannian Gagliardo–Nirenberg inequality gives

⎛
⎜⎜⎜⎝

∫

B(yα, 12 A
1
p
α uα(yα)

p−r
p )

urα dvg

⎞
⎟⎟⎟⎠

p
rθ

≤
⎛
⎝

∫

M

(uαηp
α )r dvg

⎞
⎠

p
rθ

≤ c

⎛
⎝

∫

M

|∇guα|pηp2
α dvg

⎞
⎠

⎛
⎝

∫

M

(uαηp
α )q dvg

⎞
⎠

p(1−θ)
θq

+ c

⎛
⎝

∫

M

|∇gηα|pu p
α dvg + c Cα

∫

M

(uαηp
α )p dvg

⎞
⎠

⎛
⎝

∫

M

(uαηp
α )q dvg

⎞
⎠

p(1−θ)
θq

.

(46)
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Thanks to (44) and (45), we can estimate each term of the right-hand side of (46). Indeed,

⎛
⎝

∫

M

|∇guα|pηp2
α dvg

⎞
⎠

⎛
⎝

∫

M

(uαηp
α )q dvg

⎞
⎠

p(1−θ)
θq

≤
⎛
⎝Aα

∫

M

|∇guα|pηp
α dvg

⎞
⎠

⎛
⎝||uα||−q

Lq (M)

∫

M

uqαηp
α dvg

⎞
⎠

p(1−θ)
θq

≤ cm
−�

(
1+ p(1−θ)

θq

)

α ,
⎛
⎝

∫

M

|∇gηα|pu p
α dvg

⎞
⎠

⎛
⎝

∫

M

(uαηp
α )q dvg

⎞
⎠

p(1−θ)
θq

≤ Aα

∫

M

|∇gηα|pu p
α dvg

⎛
⎝||uα||−q

Lq (M)

∫

M

uqαηp
α dvg

⎞
⎠

p(1−θ)
θq

≤ cm
−�

(
1+ p(1−θ)

θq

)

α

and

Cα

⎛
⎝

∫

M

(uαηp
α )p dvg

⎞
⎠

⎛
⎝

∫

M

(uαηp
α )q dvg

⎞
⎠

p(1−θ)
θq

≤ CαAα

∫

M

up
αηp

α dvg

⎛
⎝||uα||−q

Lq (M)

∫

M

uqαηp
α dvg

⎞
⎠

p(1−θ)
θq

≤ cm
−�

(
1+ p(1−θ)

θq

)

α .

Replacing these three estimates in (46), one gets

⎛
⎜⎜⎜⎝

∫

B(yp,
1
2 A

1
p
α uα(yα)

p−r
p )

urα dvg

⎞
⎟⎟⎟⎠

p
rθ

≤ c m
−�

(
1+ p(1−θ)

θq

)

α ,

so that

m�
α

∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg ≤ c m

�
(
1− rθ

p − r(1−θ)
q

)

α .

Since mα → +∞ and

lim
α→α0

(
1 − rθ

p
− r(1 − θ)

q

)
< c < 0,
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Extremals for sharp GNS inequalities on compact manifolds 1411

we derive

m�
α

∫

B

(
yα, 12 A

1
p
α uα(yα)

p−r
p

)
urα dvg → 0.

But this notedly contradicts (42).

Proof of Theorem 3.1 In order to establish the desired contradiction, we will perform several
integral estimates by using the Claim 2. Assume, without loss of generality, that the radius
of injectivity of M is >1.

Let η ∈ C1
0 (R) be a cutoff function as in the above proof and define ηα,δ(x) = η(

dg(x,xα)

δ
)

for 0 < δ ≤ 1. In normal coordinates around xα , the sharp Euclidean Gagliardo–Nirenberg
inequality furnishes

⎛
⎜⎝

∫

B(0,δ)

urαηrα,δ dx

⎞
⎟⎠

p
rθ

≤ A0(p, q, r)

⎛
⎜⎝

∫

B(0,δ)

|∇(uαηα,δ)|p dx

⎞
⎟⎠

⎛
⎜⎝

∫

B(0,δ)

uqαη
q
α,δ dx

⎞
⎟⎠

p(1−θ)
θq

.

Expanding the metric g on these same coordinates, one locally gets

(1 − cdg(x, xα)2) dvg ≤ dx ≤ (1 + cdg(x, xα)2) dvg (47)

and
|∇(uαηα,δ)|p ≤ |∇g(uαηα,δ)|p(1 + cdg(x, xα)2). (48)

Thanks to these expansions, one arrives at

⎛
⎜⎝

∫

B(0,δ)

urαηrα,δ dx

⎞
⎟⎠

p
rθ

≤
⎛
⎝A0(p, q, r) Aα

∫

M

|∇g(uαηα,δ)|p dvg

+ cAα

∫

M

|∇g(uαηα,δ)|pdg(x, xα)2 dvg

⎞
⎠

×
(∫

B(0,δ) u
q
αη

q
α,δ dx∫

M uqα dvg

) p(1−θ)
θq

.

Using now the inequalities

|∇g(uαηα,δ)|p ≤ |∇guα|pηp
α,δ + c|ηα,δ∇gu p|p−1|uα∇gηα,δ| + c|uα∇gηα,δ|p

and

A0(p, q, r)

⎛
⎝Aα

∫

M

|∇guα|p dvg

⎞
⎠ ≤ 1 − A0(p, q, r)

⎛
⎝CαAα

∫

M

up
α dvg

⎞
⎠ ,
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1412 E. Abreu et al.

we then derive

⎛
⎜⎝

∫

B(0,δ)

urαηrα,δ dx

⎞
⎟⎠

p
rθ

≤
⎛
⎝1 − c1CαAα

∫

M

up
α dvg

+c2Fα + c2Gα + c3δ
−p Aα

∫

M\B(xα, δ
2 )

u p
α dvg

⎞
⎟⎟⎠

×
(∫

B(0,δ) u
q
αη

q
α,δ dx∫

M uqα dvg

) p(1−θ)
θq

, (49)

where

Fα = Aα

∫

M

|∇guα|pηp
α,δdg(x, xα)2 dvg

and

Gα = Aα

∫

M

|∇guα|p−1η
p−1
α,δ uα|∇gηα,δ| dvg.

In order to estimate Fα and Gα , let ζα,δ(x) = 1 − η( 2
δ
dg(x, xα)), where η is a cutoff

function as above. Taking uαζ
p
α,δ as a test function in (14), one gets

Aα

∫

M

|∇guα|pζ p
α,δ dvg ≤ c

∫

M

urαζ
p
α,δ dvg + cAα

∫

M

|∇guα|p−1ζ
p−1
α,δ |∇gζα,δ|uα dvg.

By Young’s inequality, one has

Aα

∫

M

|∇guα|pζ p
α,δ dvg ≤ cδ−p Aα

∫

M\B(xα, δ
2 )

u p
α dvg + c

∫

M\B
(
xα, δ

4

)
urα dvg,

so that

Gα ≤ Aα

∫

M

|∇guα|p−1ζ
p
α,δuα dvg ≤ cδ−p Aα

∫

M\B(xα, δ
2 )

u p
α dvg + c

∫

M\B
(
xα, δ

4

)
urα dvg.

(50)
Using further the fact that p < 2, one has

∫

M

|∇guα|p−1η
p
α,δuαdg(x, xα) dvg ≤ ε

∫

M

|∇guα|pηp
α,δdg(x, xα)2 dvg

+cε

∫

M

up
αdg(x, xα)2−p dvg. (51)
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Extremals for sharp GNS inequalities on compact manifolds 1413

Besides, taking uαdg(·, xα)2η
p
α,δ as a test function in (14), one gets

Aα

∫

M

|∇guα|pηp
α,δdg(x, xα)2 dvg +

∫
M uqαη

p
α,δdg(x, xα)2 dvg∫
M uqα dvg

(52)

≤ c
∫

B(xα,δ)

urαdg(x, xα)2 dvg + cAα

∫

M

|∇guα|p−1η
p
α,δuαdg(x, xα) dvg + cGα.

Joining now (50), (51) and (52), one obtains

Fα ≤ c
∫

B(xα,δ)

urαdg(x, xα)2 dvg + c
∫

M\B(xα, δ
4 )

urα dvg

+cδ−p Aα

∫

M\B(xα, δ
2 )

u p
α dvg + cδ2−p Aα

∫

M

up
α dvg .

On the other hand, the Claim 2 gives
∫

B(xα,δ)

urαdg(x, xα)2 dvg ≤ cδ2−p Aα

∫

M

up
αdvg (53)

and ∫

M\B(xα, δ
4 )

urα dvg ≤ 16
∫

M\B(xα, δ
4 )

u p
αu

r−p
α dg(x, xα)2 dvg

≤ cδ p−2Aα

∫

M\B
(
xα, δ

4

)
u p

αdvg. (54)

Consequently,

Fα ≤ cδ2−p Aα

∫

M

up
α dvg + cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

αdvg and

Gα ≤ cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

α dvg. (55)

Putting these two estimates in (49), one arrives at
⎛
⎜⎝

∫

B(xα,δ)

urαηrα,δ dx

⎞
⎟⎠

p
rθ

≤
⎛
⎝1 − (

c1 Cα + cδ2−p) Aα

∫

M

up
α dvg

+cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

α dvg

⎞
⎟⎟⎟⎠

(∫
B(xα,δ)

uqαη
q
α,δ dx∫

M uqα dvg

) p(1−θ)
θq

.

(56)

123



1414 E. Abreu et al.

However, by (48), we have

⎛
⎝

∫

M

urαηrα,δ dx

⎞
⎠

p
rθ

≥
⎛
⎝

∫

M

urαηrα,δ dvg − c
∫

M

urαηrα,δdg(x, xα)2 dvg

⎞
⎠

p
rθ

≥ 1 − c
∫

M\B(xα,δ)

urα dvg − c
∫

M

urαηrα,δdg(x, xα)2 dvg

and

(∫
B(xα,δ)

uqαη
q
α,δ dx∫

M uqα dvg

) p(1−θ)
θq

≤
(∫

M uqαη
q
α,δ dvg + c

∫
M uqαη

q
α,δdg(x, xα)2 dvg∫

M uqα dvg

) p(1−θ)
θq

≤
(∫

M uqαη
q
α,δ dvg∫

M uqα dvg

) p(1−θ)
θq

+ c

∫
M uqαη

q
α,δdg(x, xα)2 dvg∫
M uqα dvg

≤ 1 + c

∫
M uqαη

q
α,δdg(x, xα)2 dvg∫
M uqα dvg

.

Replacing these two inequalities in (56) and using the fact that p < 2, one gets

0 ≤ −CαAα

∫

M

up
α dvg +

∫
M uqαη

q
α,δdg(x, xα)2 dvg∫
M uqα dvg

+ c
∫

M

urαηrα,δdg(x, xα)2 dvg

+c
∫

M\B(xα,δ)

urα dvg + cδ2−p Aα

∫

M

up
α dvg + cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

α dvg.

By (53) and (54), we then derive

CαAα

∫

M

up
α dvg ≤ c

∫
M uqαη

p
p,q,δdg(x, xα)2 dvg∫
M uqα dvg

+ cδ2−p Aα

∫

M

up
α dvg

+cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

α dvg. (57)

Plugging (50), (51), (53) and (54) in (52), one obtains
∫
M uqαη

p
α,δdg(x, xα)2 dvg∫
M uqα dvg

≤ cδ2−p Aα

∫

M

up
α dvg + cδ−p Aα

∫

M\B
(
xα, δ

4

)
u p

α dvg.

Introducing now this inequality in (57), one gets

Cα ≤ cδ2−p + c(δ)

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
≤ cδ2−p + c(δ), (58)

where c(δ) → +∞ as δ → 0+. But this is a contradiction, since limα→α0 Cα = +∞.
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4 Proof of Theorem 1.1

In this section, we furnish the proof of the existence of an extremal function for parameters
p, q and r as in Theorem 1.1.

Given α ∈ (0, 1), consider the functional

Jα(u) =
⎛
⎝

∫

M

|∇gu|p dvg + Cα

∫

M

|u|p dvg

⎞
⎠

⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

constrained to E = {u ∈ H1,p(M) : ||u||Lr (M) = 1}, where Cα = B0(p,q,r,g)
A0(p,q,r) α.

The definition of B0(p, q, r, g) yields

να = inf
u∈E Jα(u) < A0(p, q, r)−1. (59)

In a standard way, one knows that να is attained by a nonnegative function uα ∈ E of C1

class. In particular, uα satisfies the Euler-Lagrange equation

Aα�p,guα + CαAαu
p−1
α + 1 − θ

θ
να||uα||−q

Lq (M)u
q−1
α = να

θ
ur−1

α on M (60)

where

Aα =
⎛
⎝

∫

M

uqα dvg

⎞
⎠

p(1−θ)
θq

.

We assert that

lim
α→1− Aα > 0.

If so, the conclusion of Theorem 1.1 follows. In fact, the above claim and (59) imply that the
sequence (uα) is bounded in H1,p(M). So, up to a subsequence, (uα) converges weakly to
u0 in H1,p(M) and also strongly in L p(M), Lq(M) and Lr (M), so that u0 ∈ E . Moreover,
letting α → 1− in the inequality

Jα(uα) < A0(p, q, r)−1,

one readily concludes that u0 is extremal for (3).
Instead, assume

lim
α→1− Aα = 0.

In this case, since p ≤ r ,

Aα

∫

M

up
α dvg → 0, (61)

which in turn implies that
lim

α→1− να = A0(p, q, r)−1. (62)

Because (60) is quite similar to (14), proceeding in the same spirit of the proof of Theo-
rem 3.1, we achieve the following conclusions:
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1416 E. Abreu et al.

Let xα ∈ M be a maximum point of uα . Then, for any σ > 0, the concentration property
of uα around xα holds, namely

lim
σ→∞ lim

α→1−

∫

B(xα,σaα)

urα dvg = 1, (63)

where

aα = A
r

np−nr+pr
α

with aα → 0 as α → 1−.
The above concentration leads to a uniform estimate referred as distance type lemma.

namely, there exists a constant c > 0, independent of α, such that

dg(x, xα)puα(x)r−p ≤ ca
np−nr+pr

r
α (64)

for all x ∈ M and α close enough to 1−.
As before, using (62), (63) and (64), with natural adaptations one arrives at [see (58)]

Cα ≤ cδ2−p + c(δ)

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
(65)

for δ > 0 small enough, where c(δ) → +∞ as δ → 0+.
We assert that

lim
α→1−

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
= 0

whenever p, q < r < p∗ and 1 ≤ q ≤ r
r−p .

At first, an integration of the Eq. (14) on M furnishes, for any nonnegative function
h ∈ C1(M),

Aα

∫

M

|∇guα|p−2∇guα · ∇gh dvg ≤ c
∫

M

ur−1
α h dvg.

On the other hand, the claim 2 yields, for any nonnegative function h ∈ C1(M \ B(xα, λ)),
∫

M

ur−1
α h dvg ≤ cλAα

∫

M

up−1
α h dvg

for some constant cλ > 0. Thus,
∫

M

|∇guα|p−2∇guα · ∇gh dvg ≤ c
∫

M

up−1
α h dvg

for all nonnegative function h ∈ C1(M \ B(xα, λ)). A Moser’s iteration then produces

||uα||
L∞(M\B

(
xα, δ

4

)
)
≤ c||uα||L p(M).

We now analyze two distinct cases: q ≤ p < r and p < q < r .
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Assume the first above situation. From the Claim 2 and integration of (14), we have

∫

M\B
(
xα, δ

4

)
u p

α dvg ≤ cA
p−q
r−p
α

∫

M\B
(
xα, δ

4

)
uqα dvg ≤ c||uα||L∞(M\B(xα, δ

4 )

∫

M

uq−1
α dvg

≤ c

⎛
⎝

∫

M

up
α dvg

⎞
⎠

1
p
⎛
⎝

∫

M

uqα dvg

⎞
⎠

⎛
⎝

∫

M

ur−1
α dvg

⎞
⎠ ≤ c

⎛
⎝

∫

M

up
αdvg

⎞
⎠

q+1
p

.

Therefore,

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
≤ c

⎛
⎝

∫

M

up
α dvg

⎞
⎠

q−p+1
p

→ 0

as α → 1−, since p < 2 and q ≥ 1 imply q − p + 1 > 0.
Assume now the second case. Using Hölder’s inequality and arguing in a similar manner

as above, one gets

∫

M\B
(
xα, δ

4

)
u p

α dvg ≤ c

⎛
⎜⎜⎜⎝

∫

M\B
(
xα, δ

4

)
uqα dvg

⎞
⎟⎟⎟⎠

p
q

≤ c

⎛
⎜⎝

⎛
⎝

∫

M

up
α dvg

⎞
⎠

1
p
⎛
⎝

∫

M

uqα dvg

⎞
⎠

⎛
⎝

∫

M

ur−1
α dvg

⎞
⎠

⎞
⎟⎠

p
q

.

If r − 1 < p, by Hölder’s inequality,

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
≤ c

⎛
⎝

∫

M

uqα dvg

⎞
⎠

p
q

⎛
⎝

∫

M

up
α dvg

⎞
⎠

r
q −1

→ 0

Otherwise, if r−1 ≥ p, then an interpolation argument combined the normalization ||uα||r =
1 yields

∫

M

ur−1
α dvg ≤ c

⎛
⎝

∫

M

up
αdvg

⎞
⎠

1
r−p

.

Thus,

∫

M\B
(
xα, δ

4

)
u p

α dvg ≤ c

⎛
⎜⎝

⎛
⎝

∫

M

uqα dvg

⎞
⎠

⎛
⎝

∫

M

up
α dvg

⎞
⎠

1
p + 1

r−p
⎞
⎟⎠

p
q

,
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1418 E. Abreu et al.

so that
∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
≤ c

⎛
⎝

∫

M

uqα dvg

⎞
⎠

p
q

⎛
⎝

∫

M

up
αdvg

⎞
⎠

(
1

r−p + 1−q
p

)
p
q

→ 0

as α → 1−, since the inequality q ≤ r
r−p is equivalent to 1

r−p + 1−q
p ≥ 0.

So, taking the limit in (65), one obtains

B0(p, q, r, g)

A0(p, q, r)
≤ cδ2−p

for all δ > 0 small enough.
Finally, the facts that p < 2 and

B0(p, q, r, g) ≥ vg(M)−
p
n > 0 , (66)

which can be easily checked by replacing a constant function in (3), lead to the desired
contradiction.

5 Proof of Theorem 1.2

In this last section, we present the proof of the compactness theorem.
Let α = (p, q, r). Consider a sequence (uα) formed by extremal functions

uα ∈ E(p, q, r, g) for parameters p1 ≤ p ≤ p2, q1 ≤ q ≤ q2 and r1 ≤ r ≤ r2. With-
out loss of generality, assume (α) converges to α0 = (p0, q0, r0).

It is clear that uα satisfies

1 =
⎛
⎝

∫

M

|uα|r dvg
⎞
⎠

p
θr

=
⎛
⎝A0(p, q, r)

∫

M

|∇guα|p dvg

+B0(p, q, r, g)
∫

M

|uα|p dvg

⎞
⎠

⎛
⎝

∫

M

|uα|q dvg

⎞
⎠

p(1−θ)
θq

and is a C1 solution of the equation

A0(p, q, r)Aα�p,guα + B0(p, q, r, g)Aαu
p−1
α + 1 − θ

θ
||uα||−q

Lq (M)u
q−1
α = 1

θ
ur−1

α onM,

(67)

where

Aα =
⎛
⎝

∫

M

uqα dvg

⎞
⎠

p(1−θ)
θq

.

As in the proof of Theorem 1.1, we show that

lim
α→α0

Aα > 0. (68)
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Assuming the above assertion is true, we prove that (uα) is weakly compact in a certain
sense. Precisely, consider t < p0 so that p, q, r ≤ s < t∗. This chosen guarantees, up to a
subsequence, that uα ⇀ u0 in H1,t (M) and uα → u0 in Ls(M). In particular,

||uα − u0||L p(M) → 0,

||uα − u0||Lq (M) → 0

and

||uα − u0||Lr (M) → 0

as α → α0, so that ||u0||Lr0 (M) = 1.
On the other hand, by Theorems 2.1 and 3.1,

∫

M

|∇gu0|t dvg ≤ lim inf
α→α0

∫

M

|∇guα|t dvg ≤ lim inf
α→α0

⎛
⎜⎝vg(M)

1− t
p

⎛
⎝

∫

M

|∇guα|p dvg

⎞
⎠

t
p
⎞
⎟⎠

=

⎡
⎢⎢⎣

⎛
⎜⎜⎝

⎛
⎝

∫

M

|u0|q0 dvg
⎞
⎠

− p0(1−θ0)

θ0q0

− B0

∫

M

|u0|p0 dvg

⎞
⎟⎟⎠ A(p0, q0, r0)

−1

⎤
⎥⎥⎦

t
p0

,

where B0 := limα→α0 B0(p, q, r, g). Letting t → p−
0 , by Fatou’s Lemma, one has

∫

M

|∇gu0|p0 dvg ≤

⎛
⎜⎜⎝

⎛
⎝

∫

M

|u0|q0 dvg
⎞
⎠

− p0(1−θ0)

θ0q0

− B0

∫

M

|u0|p0 dvg

⎞
⎟⎟⎠ A(p0, q0, r0)

−1.

Thus,

⎛
⎝

∫

M

|u0|r dvg
⎞
⎠

p
θr

= 1 ≥
⎛
⎝A(p0, q0, r0)

∫

M

|∇gu0|p0 dvg

+B0

∫

M

up0
0 dvg

⎞
⎠

⎛
⎝

∫

M

uq00 dvg

⎞
⎠

p0(1−θ0)

θ0q0

,

so that, by (3), one has B0 ≤ B(p0, q0, r0, g). On the other hand, for fixed u, passing the
limit in

⎛
⎝

∫

M

|u|r dvg
⎞
⎠

p
rθ

≤
⎛
⎝A0(p, q, r, g)

∫

M

|∇gu|p dvg

+B0(p, q, r, g)
∫

M

|u|p dvg

⎞
⎠

⎛
⎝

∫

M

|u|q dvg

⎞
⎠

p(1−θ)
θq

,
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one gets

⎛
⎝

∫

M

|u|r0 dvg
⎞
⎠

p0
r0θ0

≤
⎛
⎝A0(p0, q0, r0, g)

∫

M

|∇gu|p0 dvg

+B0

∫

M

|u|p0 dvg
⎞
⎠

⎛
⎝

∫

M

|u|q0 dvg
⎞
⎠

p0(1−θ0)

θ0q0

,

so that B(p0, q0, r0) ≤ B0. So, we conclude that B0 = B(p0, q0, r0) and u0 is a correspond-
ing extremal function. This end the weak compactness.

In order to attain the C0 compactness, note that (67) and (68) yield
∫

M

|∇guα|p−2∇gu · ∇gh dvg ≤ c
∫

M

ur−1
α h dvg

for all nonnegative function h ∈ C1(M). Evoking now a Moser’s iterative scheme, one
obtains

||uα||L∞(M) = sup
x∈M

uα(x) ≤ c||uα||Lr (M) ≤ c,

for some constant c > 0, which is independent of α. The conclusion follows then from the
classical elliptic theory.

Finally, it only remains to show (68). Suppose by contradiction that

lim
α→α0

Aα = 0.

Then,

Aα

∫

M

up
α dvg → 0.

The assumptions imply that p ≤ p2 < r1 ≤ r ≤ r2 < p∗ and 1 ≤ q ≤ q2 ≤ r2
r2−p1

≤
r

r−p . Thanks to these inequalities, the same strategy of proof of Theorem 3.1 yields the
Claims 1 and 2. As before, these claims produce

B0(p, q, r, g) ≤ cδ2−p + c(δ)

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
,

with c(δ) → +∞ as δ → 0+. Proceeding now in the same spirit of the proof of Theorem 1.1,
one concludes that

lim
α→α0

∫
M\B

(
xα, δ

4

) u p
α dvg

∫
M up

α dvg
= 0.

Using the facts that p ≤ p2 < 2, δ > 0 can be taken small enough and the lower estimate
(66) holds for B0(p, q, r, g), we derive a clear contradiction as α → α0.
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