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Abstract Starting from g-natural pseudo-Riemannian metrics of suitable signature on the
unit tangent sphere bundle T1M of a Riemannian manifold (M, 〈, 〉), we construct a family
of paracontact metric structures. We prove that this class of paracontact metric structures
is invariant under D-homothetic deformations, and classify paraSasakian and paracontact
(κ, μ)-spaces inside this class. We also present a way to build paracontact (κ, μ)-spaces
from corresponding contact metric structures on T1M .
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Mathematics Subject Classification (2010) 53D10 · 53C50 · 53C15 · 53C25

1 Introduction

In Riemannian settings, contact structures are a natural odd-dimensional analogue to complex
structures. In the same way, paracontact metric structures, introduced in [17], are the odd-
dimensional counterpart to paraHermitian structures.

The study of paracontact metric manifolds focused mainly on the special case of
paraSasakian manifolds, until a systematic study of paracontact metric manifolds was
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undertaken in recent years. The starting point was the work by Zamkovoy [24], where the
Levi-Civita connection and curvature of a paracontact metric manifold were described. Para-
contact (κ, μ)-spaces were studied in [14]. Conformal paracontact curvature was investigated
in [16]. The first author [8] classified three-dimensional homogeneous paracontact metric
manifolds, and paracontact metric manifolds whose characteristic vector field is harmonic
were studied in [12].

A canonical example of contact metric manifold is given by the unit tangent sphere bundle
T1M , equipped with a suitable contact metric structure, having as associated metric a Rie-
mannian metric homothetic to the Sasaki metric on T1M , and the geodesic flow vector field
as the Reeb vector field [5]. This fact makes it natural to look at the unit tangent sphere bundle
to build examples of paracontact metric structures. First results in this direction have been
obtained in [13], only for the class of paracontact (κ, μ)-spaces, considering two suitable
deformations of the standard contact metric structure on the unit tangent sphere bundle over
a Riemannian manifold of constant sectional curvature.

Because of the rigidity of the Sasakimetric, g-naturalmetrics have been intensively studied
in recent years, providing interesting geometric behaviours under several different points of
view. These metrics were introduced first by Kowalski and Sekizawa [19], who classified
second order natural transformations of Riemannian metrics on manifolds to metrics on
tangent bundles. The metrics induced on the unit tangent sphere bundle by the corresponding
g-natural metrics on the tangent bundle T M are called g-natural metrics on T1M . The Sasaki
metric is only one possible choice inside this very large family of metrics.

In this paper, wewill introduce and study g-natural paracontact metric structures on T1M ,
proving that the unit tangent sphere bundle T1M on a Riemannian manifold (M, 〈, 〉) carries
a three-parameter family of paracontact metric structures, having a pseudo-Riemannian g-
natural metric as associatedmetric.Wewill then investigate several aspects of the paracontact
metric geometry of these structures.

The paper is organised in the following way. Some basic information on g-natural metrics
on the tangent and the unit tangent sphere bundle are provided in Sect. 2, paying particular
attention to non-degeneracy and signature of these metrics. In Sect. 3, after reporting the
needed definitions and properties about paracontact metric geometry, we will describe g-
natural paracontact metric structures, prove their invariance by D-homothetic deformations
and classify paraSasakian structures and those whose tensor ˜h satisfies ˜h2 = 0 �= ˜h. The
latter case does not have any contact Riemannian analogue, due to the diagonalisability of˜h
in the Riemannian case.

Sections 4 and 5 will be devoted to paracontact (κ, μ)-structures. In particular, in Sect. 4,
we will characterise g-natural paracontact (κ, μ)-spaces by means of properties on the base
manifold. In Sect. 5, we will show that applying the deformations introduced in [13] to g-
natural contact (κ, μ)-spaces gives us paracontact (κ, μ)-spaces which are again g-natural.
We end this paper with Sect. 6, where we consider homogeneity and harmonicity properties
of g-natural paracontact metric structures.

2 Preliminaries

In this section, we will include some needed information on g-natural metrics on the tangent
bundle and unit tangent sphere bundle. Special attention will be paid to the signature of these
metrics.
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Paracontact metric structures on T1M 1361

2.1 g-natural metrics on the tangent bundle

Let (M, 〈, 〉) be an (n + 1)-dimensional Riemannian manifold (with n ≥ 1) and denote by
∇ its Levi-Civita connection. Then, the tangent space (T M)(x,u) of the tangent bundle T M
at a point (x, u) splits as

(T M)(x,u) = H(x,u) ⊕ V(x,u),

where H and V are the horizontal and vertical spaces with respect to ∇.
Indeed, given a vector X ∈ Mx , there exists a unique vector Xh ∈ H(x,u) (the horizontal

lift of X to (x, u) ∈ T M), such that π∗Xh = X , where π : T M → M is the natural
projection. The vertical lift of a vector X ∈ Mx to (x, u) ∈ T M is a vector Xv ∈ V(x,u)

such that Xv(d f ) = X f , for all functions f on M . Here, we consider 1-forms d f on M as
functions on T M (i.e. (d f )(x, u) = u f ).

Themap X → Xh is an isomorphism between the vector spacesMx andH(x,u). Similarly,
the map X → Xv is an isomorphism between Mx and V(x,u). Each tangent vector Z ∈
(T M)(x,u) can be written in the form Z = Xh + Y v , where X, Y ∈ Mx are uniquely
determined vectors. With respect to local coordinates {∂/∂xi } on M , the geodesic flow vector
field on T M is uniquely determined by uh(x,u) = ∑

i u
i (∂/∂xi )h(x,u), for any point x ∈ M

and u ∈ T Mx .
We refer to the paper [4] for a description of the class of g-natural metrics on the tangent

bundle of a Riemannian manifold (M, 〈, 〉). In particular, we report the following character-
isation.

Proposition 1 ([4]) Let (M, 〈, 〉) be a Riemannian manifold and G be a g-natural metric on
T M. Then, there are six smooth functions αi , βi : R+ → R, i = 1, 2, 3, such that for every
u, X, Y ∈ Mx, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

G(x,u)(Xh, Y h) = (α1 + α3)(r2)〈X, Y 〉 + (β1 + β3)(r2)〈X1, u〉〈X2, u〉,
G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h) = α2(r2)〈X, Y 〉 + β2(r2)〈X, u〉〈Y, u〉,
G(x,u)(Xv, Y v) = α1(r2)〈X, Y 〉 + β1(r2)〈X, u〉〈Y, u〉,

(2.1)

where r2 = 〈u, u〉.
Remark 1 Throughout the paper, we will use the following notation:

φi (t) = αi (t) + tβi (t),

α(t) = α1(t)(α1 + α3)(t) − α2
2(t), φ(t) = φ1(t)(φ1 + φ3)(t) − φ2

2(t),

for all t ∈ R
+. Unless otherwise stated, all real functions αi , βi , φi , α and φ and their

derivatives are evaluated at r2 := 〈u, u〉.
In the literature, there are some well-known examples of Riemannian metrics on the

tangent bundle which are special cases of Riemannian g-natural metrics. In particular, the
Sasaki metric gS is obtained for

α1(t) = 1, α2(t) = α3(t) = β1(t) = β2(t) = β3(t) = 0

and we get the Cheeger-Gromoll metric gGC for

α2(t) = β2(t) = 0, α1(t) = β1(t) = −β3(t) = 1

1 + t
, α3(t) = t

1 + t
.
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Since α2 = β2 = 0, it follows from (2.1) that both the Sasaki and the Cheeger-Gromoll
metrics are examples of Riemannian g-natural metrics on T M for which the horizontal and
vertical distributions are mutually orthogonal.

We will now investigate the signature of a g-natural metric G on T M . In particular, we
will give the necessary and sufficient conditions for G to be Riemannian.

Let {e0 = 1
〈u,u〉u, e1, . . . , en} be an orthonormal basis at x ∈ M for (M, 〈, 〉). If we

define Xi = ehi , Yi = ev
i , for i = 0, . . . , n, then we have that G(Xi , X j ) = G(Xi , Y j ) =

G(Yi , Y j ) = 0, when i �= j . Therefore, the matrix of G with respect to the basis
{X0, Y0, . . . , Xn, Yn} at a point (x, u) is block diagonal:

G =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φ1 + φ3 φ2 0 0 . . . 0 0
φ2 φ1 0 0 . . . 0 0
0 0 α1 + α3 α2

0 0 α2 α1
...

...
...

...
. . . 0 0

0 0 . . . . . . α1 + α3 α2

0 0 . . . . . . α2 α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Consequently, it is easily seen that the determinant of G is given by φ ·αn and its eigenvalues

are φ1 + φ3 ±
√

φ2
3 + 4φ2

2 (each of them once) and 2α1 + α3 ±
√

α2
3 + 4α2

2 (each of them
n times).

Thus, G is non-degenerate if and only if αφ �= 0. Moreover, G is Riemannian if and only

if αφ �= 0 and φ1 + φ3 ±
√

φ2
3 + 4φ2

2 , α1 + α3 ±
√

α2
3 + 4α2

2 > 0. Taking into account the
notation introduced above, this is equivalent to

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0, (2.2)

for all t ∈ R
+.

2.2 g-natural metrics on T1M

The tangent sphere bundle of radius r>0 over a Riemannian manifold (M, 〈, 〉) is the hyper-
surface Tr M = {(x, u) ∈ T M | 〈u, u〉 = r2}. The tangent space at a point (x, u) ∈ Tr M is
given by

(Tr M)(x,u) = {Xh + Y v / X ∈ Mx , Y ∈ {u}⊥ ⊂ Mx }.
When r = 1, T1M is called the unit tangent (sphere) bundle.

By a g-natural metric on Tr M , we mean any metric ˜G, induced on Tr M by a g-natural
metric G on T M . It follows from (2.1) that ˜G is completely determined by the values of four
real constants, namely,

a := α1
(

r2
)

, b := α2
(

r2
)

, c := α3
(

r2
)

, d := (

β1 + β3
)(

r2
)

.

At any point (x, u) ∈ Tr M , the metric ˜G on Tr M is completely described by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

˜G(x,u)

(

Xh
1 , X

h
2

) = (a + c)〈X1, X2〉 + d〈X1, u〉〈X2, u〉,
˜G(x,u)

(

Xh
1 , Y

v
1

) = ˜G(x,u)

(

Y v
1 , Xh

1

) = b〈X1, Y1〉,
˜G(x,u)

(

Y v
1 , Y v

2

) = a〈Y1, Y2〉,
(2.3)
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Paracontact metric structures on T1M 1363

for all Xi , Yi ∈ Mx , i = 1, 2, with Yi orthogonal to u.
We will now study the signature of a g-natural metric ˜G on Tr M . Proceeding as for the

metricG on the tangent bundle T M , we start from an orthonormal basis {e0 = u, e1, . . . , en}
for (M, 〈, 〉) on x ∈ M . Defining X0 = eh0 = uh and Xi = ehi , Yi = ev

i , for i = 1, . . . , n, we
have that ˜G(Xi , X j ) = ˜G(Xi , Y j ) = ˜G(Yi , Y j ) = 0, when i �= j . Therefore, the matrix of
˜G with respect to the basis {X0, X1, Y1, . . . , Xn, Yn} at a point (x, u) is block diagonal:

˜G =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a + c + dr2 0 0 . . . 0 0
0 a + c b 0 0
0 b a 0 0
...

. . .
...

...

0 . . . . . . a + c b
0 . . . . . . b a

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

the determinant of ˜G is (a + c + dr2)αn , and its eigenvalues a + c + r2d (only once) and
2a + c ± √

c2 + 4b2 (each of them n times).
Hence, ˜G is Riemannian if and only if a + c + dr2 > 0 and 2a + c ± √

c2 + 4b2 > 0,
which is easily seen to be equivalent to

a > 0, a + c + dr2 > 0, α = a(a + c) − b2 > 0. (2.4)

Remark 2 A g-natural metric ˜G on T1M is Riemannian if and only if (2.4) holds, but this
does not mean that the metric ˜G is necessarily induced by a Riemannian g-natural metric G
on T M . In fact,G is Riemannian only under the extra condition φ = a(a+c+r2d)−b2 > 0,
which is not necessary for ˜G (see also [3]). More precisely, a Riemannian g-natural metric
˜G on Tr M is induced by:

– a Riemannian g-natural metric on T M if and only if a(a + c + dr2) > b2;
– a degenerate g-natural metric of signature (2n + 1, 0, 1) on T M if and only if a(a + c +

dr2) = b2;
– a pseudo-Riemannian g-natural metric of signature (2n + 1, 1, 0) on T M if and only if

a(a + c + dr2) < b2.

Clearly, other signatures are also allowed for g-natural metrics on Tr M . In particular, if
we require the space {u}⊥ to be of neutral signature (n, n) with respect to a (non-degenerate)
metric ˜G, then we must have (a + c + dr2)αn �= 0, 2a + c + √

c2 + 4b2 > 0 and 2a + c −√
c2 + 4b2 < 0, and these conditions are equivalent to

a + c + dr2 �= 0, α = a(a + c) − b2 < 0, (2.5)

where the sign of a + c + dr2 will depend on the casual character of uh .
In order to construct a paracontact metric structure with an associated g-natural metric on

the unit tangent sphere bundle T1M , we will require the vector uh to be spacelike and the
space {u}⊥ to be of neutral signature, that is, by (2.5),

a + c + d > 0 and α < 0.

Notice that, contrarily to the Riemannian case described by conditions (2.4), the above con-
ditions do not give any restriction on the value of a. Indeed, even the case a = 0 is possible,
simply requiring that α = −b2 < 0, that is, b �= 0.

Moreover, analogously to Remark 2, the above conditions do not yield any restriction over
φ. On the other hand, when we can reduce to the case φ > 0 (see Remark 4 below), we can
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1364 G. Calvaruso, V. Martín-Molina

make use of the formulas for the Levi-Civita connection and curvature of ˜G already obtained
in [1,2], while in the case φ < 0 some signs would necessarily change, and the case φ = 0
would need a completely different treatment, as it corresponds to a degenerate metric G on
T M .

Whenever φ �= 0, the vector field on T M defined by

NG
(x,u) = 1√|(a + c + d)φ|

[

−buh + (a + c + d)uv
]

,

for all (x, u) ∈ T M , is unit normal to T1M (either spacelike or timelike, depending on the
sign of φ), at any point of T1M .

With respect to G, the “tangential lift” XtG of a vector field X ∈ Mx to (x, u) ∈ T1M is
the tangential projection of the vertical lift of X to (x, u) with respect to NG :

XtG = Xv − φ

|φ|G(x,u)

(

Xv, NG
(x,u)

)

NG
(x,u) = Xv −

√

|φ|
|a + c + d| 〈X, u〉 NG

(x,u).

If X ∈ Mx is orthogonal to u, then XtG = Xv . Note that if b = 0, then XtG coincides with
the classical tangential lift Xt defined for the case of the Sasaki metric. In the general case,

XtG = Xt + b

a + c + d
〈X, u〉uh .

The tangential lift to (x, u) ∈ T1M of the vector u is given by utG = b
a+c+d uh , so utG is

a horizontal vector. Hence, we can write the tangent space to T1M at a point (x, u) as

(T1M)(x,u) =
{

Xh + Y tG /X ∈ Mx , Y ∈ {u}⊥ ⊂ Mx

}

. (2.6)

For this reason, the operation of tangential lift from Mx to a point (x, u) ∈ T1M will be
always applied only to vectors of Mx which are orthogonal to u.

Hence, an arbitrary g-natural metric ˜G on T1M , induced by a g-natural metric G on T M
with φ �= 0, is completely determined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

˜G(x,u)(Xh
1 , X

h
2 ) = (a + c)〈X1, X2〉 + d〈X1, u〉〈X2, u〉,

˜G(x,u)(Xh
1 , Y

tG
1 ) = ˜G(x,u)(Y

tG
1 , Xh

1 ) = b〈X1, Y1〉,
˜G(x,u)(Y

tG
1 , Y tG

2 ) = a〈Y1, Y2〉,
(2.7)

for all Xi , Yi ∈ Mx , i = 1, 2, with Yi orthogonal to u.
Notice that the horizontal and tangential distributions are ˜G-orthogonal to one another

if and only if b = 0. Metrics on T1M belonging to this special subclass have
been called of Kaluza-Klein type [10] and have been recently used to investigate sev-
eral interesting geometric behaviours [9–11]. Up to our knowledge, pseudo-Riemannian
g-natural metrics were only considered in [11] in the context of metrics of Kaluza–Klein
type, and the above discussion is the first attempt to start a systematic investigation of pseudo-
Riemannian g-natural metrics.

The Levi-Civita connection˜∇ and curvature tensor ˜R of (T1M, ˜G) can be computed using
the fact that (T1M, ˜G) is a hypersurface of (T M,G). Throughout the paper, the curvature
tensor R is taken with the sign convention R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ]. When φ > 0, the
formulas for ˜∇ and ˜R obtained in [1] and [2], respectively, for the Riemannian case (using
implicitly the assumption φ > 0) remain the same.
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Paracontact metric structures on T1M 1365

3 Paracontact g-natural metric structures

An almost paracontact structure (ϕ, ξ, η) (as defined in [17] and later investigated in [24])
on a (2n + 1)-dimensional smooth manifold is given by a (1, 1)-tensor field ϕ, a vector field
ξ and a 1-form η, satisfying

(i) η(ξ) = 1, ϕ2 = I − η ⊗ ξ , and
(ii) the eigendistributions D+ and D− of ϕ, corresponding to the eigenvalues 1 and −1

respectively, have equal dimension n.

A pseudo-Riemannian metric g is said to be compatible with the paracontact structure if

g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ), (3.1)

for all X, Y vector fields on M .
It follows from the definition that ϕξ = 0, η ◦ ϕ = 0 and ϕ has rank 2n. Moreover, a

compatible metric g is necessarily of signature (n + 1, n), with ξ unit and spacelike and the
distribution {ξ}⊥ of neutral signature (n, n). Finally, Eq. (3.1) also yields that η = g(·, ξ)

and g(·, ϕ·) = −g(ϕ·, ·).
The fundamental 2-form of the almost paracontact metric manifold is defined by

�(X, Y ) = g(X, ϕY ). If dη = �, then η is a contact form, g is said to be an associated
metric and (M, ϕ, ξ, η, g) is called a paracontact metric manifold.

A paracontact metric structure (ϕ, ξ, η, g) is said to be K-paracontact if ξ is a Killing
vector field. This is equivalent to requiring that h = 0, where h = 1

2Lξ ϕ and L is the
usual Lie derivative. On a paracontact metric manifold [24], one has that h is self-adjoint,
h(ξ) = tr(h) = 0 and

∇ξ = −ϕ + ϕh, hϕ = −ϕh, η ◦ h = 0. (3.2)

Like in contact metric geometry, the tensor h is essential in describing the geometric
properties of a paracontact metric structure.

A paracontact metric manifold (M, ϕ, ξ, η, g) is called paraSasakian when it is normal,
that is, satisfies the integrability condition

Nϕ := [ϕ, ϕ] − 2dη ⊗ ξ = 0.

This is equivalent to
(∇Zϕ)W = −g(Z ,W )ξ + η(W )Z , (3.3)

for all vector fields Z ,W tangent to M . Every paraSasakian manifold is K-paracontact. The
converse holds in dimension 3 but in general fails in higher dimension. For these and further
results on paracontact metric structures, we refer to [24].

We will now see how to define a paracontact structure on T1M , having g-natural metrics
˜G (of suitable signature) as associated metrics.

Theorem 1 Let ˜G denote a pseudo-Riemannian g-natural metric on the unit tangent sphere
bundle T1M, described as in (2.7). Consider the paracontact structure (ϕ̃,˜ξ, η̃), where we
put

˜ξ = ρuh, (3.4)

for some real constant ρ > 0,

η̃(Xh) = 1

ρ
〈X, u〉, η̃(Y tG ) = bρ〈Y, u〉, (3.5)
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1366 G. Calvaruso, V. Martín-Molina

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ̃(Xh) = 1

2ρα

(

−bXh + (a + c)XtG + bd

a + c + d
〈X, u〉uh

)

,

ϕ̃(Y tG ) = 1

2ρα

(

−aY h + bY tG + φ

a + c + d
〈Y, u〉uh

)

,

(3.6)

for all X, Y ∈ Mx.
Then, ˜G is an associated metric for (ϕ̃,˜ξ, η̃) if and only if

a + c + d = −4α = 1

ρ2 . (3.7)

Proof We start by introducing ˜ξ := ρuh , where ρ is a positive constant. Then, Eq. (2.6)
yields that the tangent space of T1M at (x, u) can be written as

(T1M)(x,u) = span(˜ξ) ⊕ {Xh / X ⊥ u} ⊕ {Y tG / Y ⊥ u}. (3.8)

As we already remarked in the previous section, requiring that˜ξ (collinear to uh) is spacelike
and that the restriction of ˜G on ξ⊥ is of neutral signature, by (2.5) we find that the constants
a, b, c, d must satisfy a + c+ d > 0 and α = a(a + c) − b2 < 0. Moreover, it follows from
(2.7) that˜ξ is unit if and only if ρ2(a + c + d) = 1.

We now define η̃ as the 1-form dual to ˜ξ with respect to ˜G, and ϕ̃ by the condition
˜G(·, ϕ̃·) = (dη̃)(·, ·). Formulas (3.5) and (3.6) then follow directly from (2.7).

Next, we impose that the condition ϕ̃2 = I − η̃ ⊗ ˜ξ holds for all Xh and Y tG , with
X, Y ∈ Mx and Y orthogonal to u, and we obtain

Xh − 〈X, u〉uh = − 1

4ρ2α

(

Xh − 〈X, u〉uh
)

, Y tG = − 1

4ρ2α
Y tG .

Hence,−4ρ2α = 1,which completes the proof ofEq. (3.7). Taking into account this equation,
it is now easy to check that condition (3.1) is satisfied.

We now prove that dimD+ = dimD− = n, where D± are the eigendistributions ϕ̃

corresponding to the eigenvalues ±1.
An arbitrary Z ∈ Ker η̃ (that is, orthogonal to˜ξ ) can be written as Z = Xh + Y tG , with

X, Y ∈ Mx orthogonal to u. Therefore, by Eq. (3.6), we find that Z1 = X1 + Y1 ∈ Dϕ̃ (1) if
and only if

Xh
1 + Y tG

1 =
{

− 1

2ρα
(bX1 + aY1)

}h

+
{

− 1

2ρα
((a + c)X1 + bY1)

}tG
.

Since the horizontal and tangential parts of a vector field are uniquely determined, the above
condition yields

{

(b + 2ρα)X1 + aY1 = 0,

(a + c)X1 + (b − 2ρα)Y1 = 0.
(3.9)

Notice that the two equations in (3.9) are linearly dependent because of condition 4ρ2α = −1.
In the same way, Z2 = X2 + Y2 ∈ Dϕ̃ (−1) if and only if

{

(b − 2ρα)X2 + aY2 = 0,

(a + c)X2 + (b + 2ρα)Y2 = 0,
(3.10)

and the two equations are again linearly dependent since 4ρ2α = −1. We will now consider
two different cases, according on whether a = 0 or a �= 0.
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Paracontact metric structures on T1M 1367

If a �= 0, then (3.9) and (3.10) yield that

Dϕ̃ (1) =
{

Xh
1 − b + 2ρα

a
XtG
1 / X1 ⊥ u

}

,

Dϕ̃ (−1) =
{

Xh
2 − b − 2ρα

a
XtG
2 / X2 ⊥ u

}

.

So, considering an orthonormal basis {e0 = u, e1, . . . , en} on TxM , we can construct a
basis on T(x,u)(T1M) as {eh0 = uh, eh1 , e

tG
1 , . . . , ehn , e

tG
n }. Hence,

Dϕ̃ (±1) = span

(

ehi − b ± 2ρα

a
etGi / i = 1, . . . , n

)

,

and both eigendistributions have dimension n.
If a = 0, then α = −b2 < 0 and so, b �= 0. Systems (3.9) and (3.10) then, respectively,

become
{

(1 − 2ρb)X1 = 0,

cX1 + b(1 + 2ρb)Y1 = 0,
and

{

(1 + 2ρb)X2 = 0,

cX2 + b(1 − 2ρb)Y2 = 0.
(3.11)

Equation (3.7) now yields that 1
4ρ2 = −α = b2. If b = 1

2ρ > 0, then the equations in (3.11)
reduce to cX1 + 2bY1 = 0 and X2 = 0. So,

Dϕ̃ (1) =
{

Xh
1 − c

2b
XtG
1 / X1 ⊥ u

}

, Dϕ̃ (−1) =
{

Y tG
2 / Y2 ⊥ u

}

.

By a similar argument, if b = − 1
2ρ < 0, then we get X1 = 0 and cX2 + 2bY2 = 0, so that

Dϕ̃ (1) =
{

Y tG
1 / Y1 ⊥ u

}

, Dϕ̃ (−1) =
{

Xh
2 − c

2b
XtG
2 / X2 ⊥ u

}

.

Using the basis {eh0 = uh, eh1 , e
tG
1 , . . . , ehn , e

tG
n } on T(x,u)(T1M), we obtain

{

Y tG
2 / Y2 ⊥ u

}

=
{

Y tG
1 / Y1 ⊥ u

}

= span
(

etGi / i = 1, . . . , n
)

,

{

Xh
1 − c

2b
XtG
1 / X1 ⊥ u

}

=
{

Xh
2 − c

2b
XtG
2 / X2 ⊥ u

}

= span
(

ehi − c

2b
etGi / i = 1, . . . , n

)

,

so dimDϕ̃ (1) = dimDϕ̃ (−1) = n in both of the above cases.

Remark 3 (1) Since the paracontact distribution ker̃η is given by

kerη̃ =˜ξ⊥ =
{

Xh + Y tG / X, Y ⊥ u
}

,

it would suffice to write (3.5) and (3.6) for vectors orthogonal to u. However, we need
the description of the extra terms involving 〈X, u〉, 〈Y, u〉, because 〈Y, u〉 = 0 at x ∈ M
does not mean that 〈Y, u〉 = 0 everywhere on M . So, ˜∇Z (〈Y, u〉) �= 0 in general, and
this term must be taken into account when calculating covariant derivatives.

(2) Equation (3.7) allows us to write d in terms of a, b, c. In fact, we find

d = (a + c + d) − (a + c) = −4α − (a + c) = −(a + c)(4a + 1) + 4b2.

Thus, the paracontact metric structures described in the above Theorem 1 depend on
three parameters a,b,c, satisfying conditions (3.7).
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1368 G. Calvaruso, V. Martín-Molina

Definition 1 A g-natural paracontact metric structure on T1M is any paracontact metric
structure (ϕ̃,˜ξ, η̃, ˜G) described by Eqs. (2.7) and (3.4)–(3.6).

We will now consider D-homothetic deformations of a g-natural paracontact metric
structure. Given a paracontact metric structure (ϕ, ξ, η, g) and a real constant t �= 0,
the Dt -homothetic deformation of (ϕ, ξ, η, g) [24] is the new paracontact metric structure
(ϕt , ξt , ηt , gt ), described by

gt = tg + t (t − 1)η ⊗ η, ηt = tη, ϕt = ϕ, ξt = 1

t
ξ. (3.12)

Consider now an arbitrary g-natural paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G). If we apply
a D-homothetic deformation to (ϕ̃,˜ξ, η̃, ˜G), we obtain the paracontact metric structure
(ϕ̃t ,˜ξt , η̃t , ˜Gt ), which is again g-natural.

In fact, it is easy to check that Eqs. (2.7) and (3.4)–(3.7) hold for (ϕ̃t ,˜ξt , η̃t , ˜Gt ), taking
ρt = ρ

t , at = ta, bt = tb, ct = tc and dt = t (d + t−1
ρ2 ). Therefore, we proved the following

result.

Theorem 2 The class of g-natural paracontact metric structures
{

(ϕ̃,˜ξ, η̃, ˜G)
}

is invariant
under D-homothetic deformations.

Remark 4 Consider the Dt -homothetic deformation (ϕ̃t ,˜ξt , η̃t , ˜Gt ) of a g-natural paracon-
tactmetric structure (ϕ̃,˜ξ, η̃, ˜G). Since t �= 0 and at = ta, bt = tb, ct = tc, the vanishing (or
not vanishing) of these coefficients are properties invariant for D-homothetic deformations.
Moreover, we have

φt = t2φ + at2(t − 1)/ρ2.

Therefore, different behaviours occur, according on whether a = 0 or a �= 0. In fact:

(i) If a = 0, then φ = −b2 < 0 and φt = t2φ < 0 for any t �= 0. Hence, φ < 0 remains
invariant for D-homothetic deformations involving a (pseudo-Riemannian) g-natural
metric ˜G with a = 0.

(ii) If a �= 0, then whatever the value of φ, there exists a D-homothetic deformation of the
paracontact metric structure, for which φt > 0. In fact, if a > 0 (respectively, a < 0),
then φt goes to +∞ as t goes to +∞ (respectively, to −∞).

We will now investigate the geometry of g-natural paracontact metric structures on T1M .
We start from the classification of the paraSasakian structures, proving the following result.

Theorem 3 For any g-natural paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G) on T1M, con-
structed from a g-natural metric ˜G with a �= 0, the following properties are equivalent:

(i) (ϕ̃,˜ξ, η̃, ˜G) is paraSasakian;
(ii) (ϕ̃,˜ξ, η̃, ˜G) is K -paracontact;
(iii) b = 0 and the base manifold (M, 〈, 〉) has constant sectional curvature c̄ = a+c

a < 0.

Proof “(i)⇒(ii)”: It holds in general. “(ii)⇒(iii)”: Consider a g-natural paracontact metric
manifold (T1M, ϕ̃,˜ξ, η̃, ˜G). Because of Remark 4 and recalling that the property of being
paraSasakian is invariant under D-homothetic deformations [24], without loss of generality
we can assume that φ > 0. Then, using the description of the Levi-Civita connection of a
g-natural metric ˜G given in [1, Proposition 5], we easily find

⎧

⎪

⎨

⎪

⎩

˜∇Xh˜ξ = ρ

2α
{bdX − abRu X}h + ρ

2α

{−(a + c)dX + (b2 − α)Ru X
}tG

,

˜∇Y tG
˜ξ = ρ

2α

{

(ad + 2α)X − a2Ru X
}h + ρ

2α
{−bdX + adRu X}tG ,

(3.13)
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Paracontact metric structures on T1M 1369

for all vector fields X, Y ∈ Mx orthogonal to u, where Ru X = R(X, u)u is the Jacobi
operator associated to u. If Xh = ˜ξ , then ˜∇

˜ξ
˜ξ = 0 (as in any paracontact metric manifold

[24]).
Applying ϕ̃ to the first equation in (3.2), we obtain ϕ̃(˜∇˜ξ) = −ϕ̃2+ϕ̃2

˜h = −I+η̃⊗˜ξ +˜h,
and so

˜h = ϕ̃(˜∇˜ξ) + I − η̃ ⊗˜ξ .

Thus, (3.13) yields
⎧

⎪

⎨

⎪

⎩

˜h(Xh) = 1

4α

{

−(a + c)Xh + a(Ru X)h − 2b(Ru X)tG
}

,

˜h(Y tG ) = 1

4α

{

−2bY h + (a + c)Y tG − a(RuY )tG
}

,

for all X, Y ∈ Mx orthogonal to u.
If X is arbitrary, then X − η(X)ξ is orthogonal to u. Taking into account h(uh) = 0 and

Ru(X − η(X)u) = Ru X , we then conclude that˜h is completely determined by
⎧

⎪

⎨

⎪

⎩

˜h(Xh) = 1

4α

{

−(a + c)(X − 〈X, u〉u)h + a(Ru X)h − 2b(Ru X)tG
}

,

˜h(Y tG ) = 1

4α

{

−2bY h + (a + c)Y tG − a(RuY )tG
}

(3.14)

for all X, Y ∈ Mx , with Y orthogonal to u.
The paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G) is K -contact when˜h = 0, that is, by (3.14),

if and only if
{− (a + c)Xh + a(Ru X)h − 2b(Ru X)tG = 0,

− 2bY h + (a + c)Y tG − a(RuY )tG = 0,

for all X, Y ∈ Mx orthogonal to u. Since the horizontal and vertical lifts are uniquely
determined, the above system holds only when both horizontal and tangential parts are zero,
whence b = 0 and −(a + c)X + a(Ru X) = 0, for all X ∈ Mx orthogonal to u.

Since b = 0, Eq. (3.7) yieldsα = a(a+c) < 0. Hence, Ru X = a+c
a X for all X orthogonal

to u, where a+c
a < 0. Therefore, the Jacobi operator Ru has just one constant eigenvalue

a+c
a < 0 (besides 0) and it is well known that this is equivalent to the fact that (M, 〈, 〉) has

negative constant sectional curvature c̄ = a+c
a .

“(iii)⇒(i)”: We will now assume that (M, 〈, 〉) has constant sectional curvature c̄ and
consider a g-natural paracontact metric structure (T1M, ϕ̃,˜ξ, η̃, ˜G), with ˜G satisfying b =
0 �= a and c = (c̄ − 1)a. Since both these conditions are invariant under D-homothetic
deformations, we can again use Remark 4 to restrict to the case when φ > 0 without loss of
generality.

We first notice that by (3.14) we now have at once ˜h = 0, that is, (T1M, ϕ̃,˜ξ, η̃, ˜G) is
K -paracontact. Next, we check that Eq. (3.3) holds for all vector fields Z ,W tangent T1M .

If Z = W =˜ξ , it follows from (3.2) that

(˜∇ξ ϕ̃)˜ξ = 0 = −˜G(˜ξ,˜ξ)˜ξ + η̃(˜ξ)˜ξ .

If Z = Xh or Z = XtG , where X is orthogonal to u, and W = ˜ξ , then applying again
(3.2) (and taking into account˜h = 0), we find

(˜∇Z ϕ̃)˜ξ = ϕ̃2Z = Z = ˜G(Z ,˜ξ)˜ξ + η̃(˜ξ)Z .
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1370 G. Calvaruso, V. Martín-Molina

Finally, a direct calculation shows that (3.3) also holds when taking Z ,W = Xh, Y tG ,
with X, Y orthogonal to u, which ends the proof.

The second equation in (3.2) (together with the paracontact metric condition � = dη)
implies that the tensor h of any paracontact metric structure (ϕ, ξ, η, g) is self-adjoint with
respect to g, just like in the contact metric case. However, since now g is pseudo-Riemannian,
the fact that h is self-adjoint does not imply that h admits an orthonormal basis of eigenvectors.
Indeed, it may happen that h2 = 0 although h �= 0.

We explicitly remark that if (ϕt , ξt , ηt , gt ) is the Dt -homothetic deformation of
(ϕ, ξ, η, g), then we have

ht = 1

2
Lξt ϕt = 1

2t
Lξ ϕ = 1

t
h,

from which it follows at once that the conditions h2 = 0 �= h are invariant under D-
homothetic deformations. We will now classify g-natural paracontact metric structures with
˜h2 = 0 �= ˜h, which do not have any contact metric counterpart, since in the contact metric
case h2 = 0 is equivalent to h = 0, due to the diagonalisability of h. Since the existence
of these structures is related to the base manifold being Ossermann, we briefly report some
information on Osserman manifolds and rank-one symmetric spaces.

Rank-one symmetric spaces are RPn , Sn , CPn ,HP
n , CayP2 and their non-compact duals.

In the cases of constant sectional curvature, there exists just one eigenvalue for the Jacobi
operator, and two eigenvalues λ1 and λ2 = 4λ1 in the remaining cases (see for example [7]).
In all cases, the eigenvalues of Ru have the same sign: positive in the compact cases, and
negative for the non-compact ones.

A Riemannian manifold (M, 〈, 〉) is called globally Osserman if the eigenvalues of Ru are
independent of both the unit tangent vector u ∈ Mx and the point x ∈ M . The well-known
Osserman conjecture states that any globally Osserman manifold is locally isometric to a
two-point homogeneous space, that is, either a flat space or a rank-one symmetric space.

The Osserman conjecture has been proved in any dimension n �= 16 [15,21,22]. More-
over, also in dimension 16, if Ru admits at most two distinct constant eigenvalues (besides
0), then the Riemannian manifold (M, 〈, 〉) is locally isometric to a two-point homogeneous
space [23].

We are now ready to prove the following result.

Theorem 4 A g-natural paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G), constructed from a
g-natural metric ˜G with a �= 0, satisfies ˜h2 = 0 �= ˜h if and only if (M, 〈, 〉) is locally
isometric to a non-compact rank-one symmetric space of non-constant sectional curvature
and either α = −b2/9, or α = −9b2.

Proof Since the condition h2 = 0 �= h is invariant under D-homothetic deformations, by
Remark 4 it is enough to consider the case when ˜G satisfies φ > 0. So, using the description
of˜h given in Eq. (3.14), we have

⎧

⎪

⎨

⎪

⎩

˜h2(Xh) = 1

16α2

{

a2Ru(Ru X) − 2(a(a + c) − 2b2)Ru X + (a + c)2X
}h

,

˜h2(Y tG ) = 1

16α2

{

a2Ru(RuY ) − 2(a(a + c) − 2b2)RuY + (a + c)2Y
}tG

,

for all X, Y ∈ Mx orthogonal to u. Therefore,˜h2 = 0 if and only if

a2Ru(Ru X) − 2
(

a(a + c) − 2b2
)

Ru X + (a + c)2X = 0,

for all X ∈ Mx orthogonal to u.
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Paracontact metric structures on T1M 1371

We now consider an eigenvector X �= 0 of the Jacobi operator Ru , associated to the
eigenvalue λ. Then, the above equation yields

a2λ2 − 2
(

a(a + c) − 2b2
)

λ + (a + c)2 = 0

and so, Ru has at most two constant eigenvalues, explicitly given by

λ = α − b2 ± √−4αb2

a2
, (3.15)

where we took into account the definition of α.
Since α < 0, Eq. (3.15) admits one or two real solutions, depending on whether b = 0 or

b �= 0.
If b = 0, then the only eigenvalue is λ = a+c

a , so (M, 〈, 〉) has constant sectional curvature
a+c
a < 0. Thus, by Theorem 3, we have that˜h = 0 and (T1M, ϕ̃,˜ξ, η̃, ˜G) is paraSasakian.
On the other hand, if b �= 0, then there exist two distinct solutions, which can be written

as

λ = α − b2 ± √−4αb2

a2
= α − b2 ± 2|b|√−α

a2
= − (

√−α ± |b|)2
a2

< 0.

Therefore, (M, 〈, 〉) does not have constant sectional curvature. Since the Jacobi operator
Ru has two distinct eigenvalues, the same ones for any unit vector u and at each point, the
base manifold is locally isometric to a rank-one symmetric space (non-compact, as λi < 0).
Requiring that one of these eigenvalues is four times the other, we get

4 · α − b2 + √−4αb2

a2
= α − b2 − √−4αb2

a2
,

that is, 9α2+82b2α+9b4 = 0, whose solutions are either α = − 1
9b

2 < 0, or α = −9b2 < 0
and this ends the proof. Notice that, since α = a(a+c)−b2, we, respectively, get a+c+d =
−4α = 4

9b
2 > 0 or 36b2 > 0, compatibly with condition (3.7).

We end this section with the following consequence of Theorems 3 and 4.

Corollary 1 (1) For every manifold (M, 〈, 〉) of constant sectional curvature c̄ < 0, there
exists a one-parameter family of g-natural paraSasakian structures (ϕ̃,˜ξ, η̃, ˜G) on T1M:
the ones described by (3.4)–(3.7), constructed from any g-natural metric given by (2.7),
with

a �= 0, b = 0, c = (c̄ − 1)a, d = −c̄a(4a + 1).

(2) For every non-compact rank-one symmetric space (M, 〈, 〉) of non-constant sectional
curvature, there exist two two-parameter families of g-natural paracontact metric struc-
tures (ϕ̃,˜ξ, η̃, ˜G) on T1M, satisfying ˜h2 = 0 �= ˜h: the ones described by (3.4)–(3.7),
constructed from any g-natural metric given by (2.7), with

a �= 0, b �= 0, d = −4α − (a + c), α = a(a + c) − b2 = −1

9
b2 or − 9b2.

4 Paracontact g-natural (κ, μ)-spaces

We will now consider the remarkable class of paracontact metric (κ, μ)-spaces, which are
paracontact metric manifolds (M, ϕ, ξ, η, g) satisfying the condition

R(Z ,W )ξ = κ(η(W )Z − η(Z)W ) + μ(η(W )hZ − η(Z)hW ), (4.1)
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1372 G. Calvaruso, V. Martín-Molina

for all vector fields Z ,W on M , where κ and μ are real constants. These manifolds are a
natural generalisation of both the paracontact metric manifolds satisfying R(X, Y )ξ = 0 and
of the paraSasakian ones.

Their analogue in contact metric geometry (namely, contact metric (κ, μ)-spaces) where
first introduced and studied in [6]. Much more recently, paracontact metric (κ, μ)-spaces
have been studied in [14]. In particular, we report the following result.

Lemma 1 ([14]) If (M, ϕ, ξ, η, g) is a paracontact metric (κ, μ)-space, then

h2 = (1 + κ)ϕ2. (4.2)

Moreover, when κ �= −1 the following identity holds:

(∇Zϕ)W = −g(Z − hZ ,W )ξ + η(W )(Z − hZ), (4.3)

for all vector fields Z ,W on M.

Equation (4.2) means that κ = −1 if and only if h2 = 0 (which, as already remarked in
the previous section, does not imply h = 0).

As already proved in [14], if (ϕt , ξt , ηt , gt ) is the Dt -homothetic deformation of a paracon-
tact metric (ϕ, ξ, η, g), then (ϕt , ξt , ηt , gt ) is a (κ, μ)-space if and only if so is if (ϕ, ξ, η, g).
In particular, one has [14]

κt = k + 1 − t2

t2
, μt = μ + 2t − 2

t
,

so that κt = −1 if and only if k = −1. We are now ready to prove the following result.

Theorem 5 Consider any g-natural paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G) on T1M, con-
structed from a g-natural metric ˜G with a �= 0. Then:

(a) If (T1M, ϕ̃,˜ξ, η̃, ˜G) is a (κ, μ)-spacewith κ �= −1, then (M, 〈, 〉) is of constant sectional
curvature c̄.

(b) If (M, 〈, 〉) is of constant sectional curvature c̄, then (T1M, ϕ̃,˜ξ, η̃, ˜G) is a paracontact
(κ, μ)-space. Moreover, if it is not paraSasakian, then

κ = 1

16α2 (a2c̄2 − 2(α − b2)c̄ − d(2(a + c) + d)) �= −1, μ = 1

2α
(ac̄ − d). (4.4)

Proof As conditions κ �= −1 and a �= 0 are invariant under D-homothetic deforma-
tions, without loss of generality we can assume φ > 0 (Remark 4). Let us suppose that
(T1M, ϕ̃,˜ξ, η̃, ˜G) is a paracontact (κ, μ)-space with κ �= −1. Then Eq. (4.3) holds for all
vector fields Z ,W on T1M . Taking Z = Y tG

1 and W = Y tG
2 , with Y1, Y2 orthogonal to u, the

formulas from Theorem 1 and the formulas for˜h in (3.14) give us that

− ˜G
(

Y tG
1 −˜hY tG

1 , Y tG
2

)

˜ξ + η̃
(

Y tG
2

) (

Y tG
1 −˜hY tG

1

)

= −˜G
(

Y tG
1 −˜hY tG

1 , Y tG
2

)

˜ξ

= −˜G
(

Y tG
1 , Y tG

2

)

˜ξ + 1

4α
˜G
(

−2bY h
1 + (a + c) Y tG

1 − a (RuY1)
tG , Y2

)

˜ξ .

Using (2.7) and the definition of α, we then obtain

−˜G(Y tG
1 −˜hY tG

1 , Y tG
2 )˜ξ + η̃(Y tG

2 )(Y tG
1 −˜hY tG

1 )

=
((

−a + α − b2

4α

)

〈Y1, Y2〉 − a2

4α
〈RuY1, Y2〉

)

ρuh . (4.5)
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On the other hand, it follows from (3.6) and [1, Proposition 5] that

(˜∇
Y
tG
1

ϕ̃)Y tG
2 = ˜∇

Y
tG
1

(ϕ̃Y tG
2 ) − ϕ̃(˜∇

Y
tG
1
Y tG
2 ) = ˜∇

Y
tG
1

(ϕ̃Y tG
2 )

= 1

2ρα

(

−a˜∇
Y
tG
1
Y h
2 + φ

a + c + d
˜∇
Y
tG
1

(〈Y2, u〉)uh
)

= a3

4ρα2 (R(Y1, u)Y2)
h − a2b

4ρα2 (R(Y1, u)Y2 − 〈R(Y1, u)Y2, u〉u)tG

+
(

2α + ad

4α
〈Y1, Y2〉 − a2(ad + b2)

4α2 〈R(Y1, u)Y2, u〉
)

ρuh,

(4.6)

where we have used the fact that

˜∇
Y
tG
1

(〈Y2, u〉) = 1

ρ(a + c + d)
˜∇
Y
tG
1

(˜G(Y h
2 ,˜ξ)) = 〈Y1, Y2〉.

Comparing Eqs. (4.5) and (4.6), we get

a3{〈R(Y1, u)Y2, u〉u − R(Y1, u)Y2}h − a2b{〈R(Y1, u)Y2, u〉u − R(Y1, u)Y2}tG = 0.

Since a �= 0, the above equation yields R(X, u)Y = 〈R(X, u)Y, u〉u, for all vector fields
X, Y on M orthogonal to u. Therefore, (M, 〈, 〉) is of constant sectional curvature [5].

Conversely, we now suppose that (M, 〈, 〉) is of constant sectional curvature c̄ and we
want to check that formula (4.1) is satisfied for some values of κ and μ. Indeed, using the
description of the curvature tensor ˜R given in [2, Proposition 3], we obtain that

˜R
(

Xh
1 , X

h
2

)

˜ξ = ˜R
(

Xh
1 , Y

tG
1

)

˜ξ = ˜R
(

Y tG
1 , Y tG

2

)

˜ξ = 0,

for all Xi , Yi orthogonal to u. By the symmetries of the curvature tensor ˜R, it is then enough
to check that (4.1) holds for Z = Xh (or Y tG ) and W = ˜ξ , with X, Y orthogonal to u.
Applying again [2, Proposition 3], we find that

˜R
(

Xh,˜ξ
)

˜ξ = ρ2

4α

(−3a2c̄2 + (4α + 2ad) c̄ + d2
)

Xh + ρ2

α
XtG , (4.7)

˜R
(

Y tG ,˜ξ
)

˜ξ = ρ2

α
(abc̄ − bd) Y h + ρ2

4α

(

a2c̄2 + 2
(

ad + 2b2
)

c̄ + d (4 (a + c) + d)
)

Y tG .

(4.8)

On other hand, we have from (4.1) that

κ(̃η(˜ξ)Xh − η̃(Xh)˜ξ) + μ(̃η(˜ξ)˜hXh − η̃(Xh)˜h˜ξ)

=
(

κ + ac̄ − (a + c)

4α

)

Xh − bμc̄

2α
XtG (4.9)

κ(̃η(˜ξ)Y tG − η̃(Y tG )˜ξ) + μ(̃η(˜ξ)˜hY tG − η̃(Y tG )˜h˜ξ)

= −bμ

2α
Y h +

(

κ − ac̄ − (a + c)

4α
μ

)

Y tG (4.10)

Therefore, formula (4.1) is satisfied if and only if (4.7) and (4.9) coincide, as well as
(4.8) and (4.10). Since the horizontal and tangential parts are uniquely determined, this is
equivalent to the following system of equations:
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3a2c̄2 − (4α + 2ad)c̄ − d2 = 16α2κ + 4α(ac̄ − (a + c))μ,

abc̄2 − bdc̄ = 2αbμc̄,

abc̄ − bd = 2αbμ,

− a2c̄2 + 2(ad + 2b2)c̄ − d(4(a + c) + d) = 16α2κ − 4α(ac̄ − (a + c))μ,

(4.11)

where we took into account (3.7). Summing the first and last equations of (4.11), we obtain

a2c̄2 − 2(α − b2)c̄ − d2 − 2(a + c)d = 16α2κ,

which determines κ as in (4.4).
The second equation of (4.11) follows form the third one and we have that either b = 0

or μ = 1
2α (ac̄ − d), as in (4.4). Thus, we are left with the case b = 0.

If b = 0 and c̄ = a+c
a , then T1M is paraSasakian (see Theorem 3) and in particular a

(κ, μ)-space. If b = 0 and c̄ �= a+c
a (that is, T1M is not paraSasakian) then substituting the

value obtained for κ in the first equation of (4.11), we find

a2c̄2 − a(a + c + d)c̄ + (a + c)d = 2α(ac̄ − (a + c))μ.

Therefore,

μ = 1

2α

a2c̄2 − a(a + c + d)c̄ + (a + c)d

ac̄ − a(a + c)
= 1

2α

(ac̄ − d)(ac̄ − (a + c))

ac̄ − a(a + c)
= 1

2α
(ac̄ − d),

obtaining again (4.4).
We will now show that κ �= −1 when the g-natural paracontact metric structure is not

paraSasakian. We will prove this by contradiction. Let us suppose that κ = −1 but the
g-natural paracontact metric structure is not paraSasakian. Then, (4.4) implies that

1 + κ = 1

16α2 (a2c̄2 − 2(α − b2)c̄ + (a + c)2),

where we have used the definition of α, (3.7) and the fact that d = −(a + c)(4a + 1) + 4b2.
Hence, κ = −1 if and only if a2c̄2 − 2(α − b2)c̄ + (a + c)2 = 0, whose solutions are

c̄ = −
(√−α±|b|

a

)2
.

If b = 0, then c̄ = −
(√−α

a

)2 = α
a2

= a+c
a . So, the g-natural paracontact metric structure

is paraSasakian (Theorem 3), which contradicts our assumption.
If b �= 0, then ˜h �= 0 (Theorem 3) and ˜h2 = 0 [formula (4.2)]. But then, as proved in

Theorem 4, M cannot be of constant sectional curvature. So, this case cannot occur, either.

Remark 5 We showed in the proof of the above Theorem that if the base manifold (M, 〈, 〉) is
of constant sectional curvature c̄ and T1M is a non-paraSasakian (κ, μ)-space, then κ �= −1.
However, this does not exclude the existence of non-paraSasakian g-natural paracontact
metric manifolds (T1M, ϕ̃,˜ξ, η̃, ˜G) that are (κ, μ)-spaces with κ = −1, it only ensures that
their base manifold cannot have constant sectional curvature.

We now characterise paracontact (κ, μ)-spaces of constant ϕ-sectional curvature. Koufo-
giorgos [18] proved that a (2n + 1)-dimensional (n > 1), non-Sasakian (κ, μ)-contact Rie-
mannianmanifold (M, ϕ, ξ, η, g) has constant ϕ-sectional curvature if and only ifμ = 1+κ .

As a consequence (see again [18]), ifM is an n-dimensional Riemannianmanifold, n > 2,
of constant sectional curvature c, then the tangent sphere bundle T1M has constantϕ-sectional
curvature (c2) if and only if c = 2±√

5. On the other hand, if n = 2 then the tangent sphere
bundle T1M always has constant ϕ-sectional curvature c2 for any c �= 1.
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A three-dimensional paracontact metric (κ, μ)-space has always constant ϕ-sectional cur-
vature. The paracontact analogue of Koufogiorgos’ result is given by the following.

Theorem 6 Let (M, ϕ, ξ, η, g)beaparacontactmetric (κ, μ)-spaceof dimension2n+1 ≥ 5
with κ �= −1. Then it has constant ϕ-sectional curvature if and only if μ = 1 − κ .

Proof The curvature tensor of a paracontact (κ, μ)-space with κ �= −1 was completely
described in [14]. In particular, for any non-lightlike vector field X orthogonal to ξ , we can
compute the corresponding ϕ-sectional curvature as

K (X, ϕX) = 2μ − 1 − κ − 1 + μ

κ + 1
· g(hX, X)2 − g(ϕhX, X)2

g(X, X)2
. (4.12)

If μ = 1 − κ , this means that K (X, ϕX) = 2μ − 1, which is constant.
Conversely, if K (X, ϕX) is constant, then either κ − 1 + μ = 0 (and so, μ = 1 − κ), or

g(hX,X)2−g(ϕhX,X)2

g(X,X)2
does not depend on the vector field X . We will see that the latter case is

not possible.
Indeed, we know from [14] that if κ > −1 there exists a ϕ-basis {ξ, e1, . . . , en,

ϕe1, . . . , ϕen} such that hei = λei and hϕei = −λϕei , where λ = √
1 + κ and

g(ei , ei ) = −g(ϕei , ϕei ) = ±1 (how many of each sign will depend on the index of
the eigendistributions of h). If κ < −1, we can take a ϕ-basis of eigenvectors of ϕh with
eigenvalues ±λ = ±√−(1 + κ).

If we take X = e1, then X is orthogonal to ξ and g(X, X) = g(e1, e1) = ±1 �= 0, so

g(hX, X)2 − g(ϕhX, X)2

g(X, X)2
=

{

λ2 = 1 + κ, if κ > −1,

−λ2 = 1 + κ, if κ < −1.

On the other hand, if we take X = e1 + 2ϕe2, then it is also orthogonal to ξ and

g(X, X) = g(e1, e1) + 4g(ϕe2, ϕe2) = g(e1, e1) − 4g(e2, e2) �= 0,

so we can compute again:

g(hX, X)2 − g(ϕhX, X)2

g(X, X)2

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ2
(

g(e1, e1) + 4g(e2, e2)

g(e1, e1) − 4g(e2, e2)

)2

�= λ2 = 1 + κ, if κ > −1,

− λ2
(

g(e1, e1) + 4g(e2, e2)

g(e1, e1) − 4g(e2, e2)

)2

�= −λ2 = 1 + κ, if κ < −1.

Since the above values do not coincide, the ϕ-sectional curvature cannot be constant. So, this
case cannot occur.

As a consequence of Theorems 5 and 6, we have the following result.

Corollary 2 If (M, 〈, 〉) is a n-dimensional (n ≥ 2) Riemannian manifold with constant
sectional curvature c̄, then the g-natural paracontact metric manifold (T1M,˜φ,˜ξ, η̃, ˜G)

defined as in Theorem 1 is a (κ, μ)-space of constant ϕ̃-sectional curvature if and only if c̄
and the parameters a �= 0, b, c, d determining ˜G satisfy

a2c̄2 + 2((4a − 1)α + b2)c̄ − (a + c)(a + c + 2d) = 0. (4.13)
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In particular, if (M, 〈, 〉) is flat, then
– either b = ±

√

(a + c)(a + 1
8 ) and d = − a+c

2 < 0,

– or a + c = 0, b �= 0 and d = 4b2 > 0.

Remark 6 It is easily seen that Eq. (4.13) is incompatible with conditions b = 0, c̄ = a+c
a

characterising g-natural structures (Theorem3).Hence, the examples described inCorollary 2
are (κ, μ)-spaces, not paraSasakian, of constant ϕ-sectional curvature. ParaSasakian space
forms (that is, paraSasakian manifolds with constant ϕ-sectional curvature) were classified
in [25].

5 Paracontact g-natural (κ, μ)-spaces from the contact ones

We will now investigate the relationship between g-natural contact metrics on T1M , as
introduced and first studied in [1], and g-natural paracontact metric structures, considering
the deformations of a contact (κ, μ)-space into a paracontact one introduced in [13].

We recall that a g-natural contact metric structure on T1M , which we will denote here
by (ϕ′, ξ ′, η′,G ′), is a contact metric structure with G ′ a Riemannian metric induced by
a g-natural metric G on T M (see [1]). The Riemannian metric G ′ is explicitly described
by (2.7), for some real parameters a′, b′, c′, d ′, satisfying conditions (2.4), that is a′ >

0, a′ +c′ +d ′ > 0 and α′ = a′(a′ +c′)− (b′)2 > 0. Notice that α′ has the opposite sign with
respect to its analogue for g-natural paracontact metric structures. The Reeb vector field is
given by ξ ′ = ρ′uh , and the tensor ϕ′ and the 1-form η′, defined as in the formulas (3.6)–(3.8)
of [1], formally coincide with (3.4)–(3.6) of the g-natural paracontact metric structures. The
compatibility condition corresponding to (3.7) is given by

a′ + c′ + d ′ = 1

(ρ′)2
= 4α′.

Following [13], for any contact metric (κ, μ)-space (ϕ′, ξ ′, η′, g′) which is not Sasakian
(that is, satisfies κ < 1), we can define two canonical paracontact metric structures, by taking

ϕ1 = 1√
1 − κ

ϕ′h′, g1 = 1√
1 − κ

dη′(·, ϕ′h′·) + η′ ⊗ η′ = − 1√
1 − κ

g′(·, h′·) + η′ ⊗ η′,

(5.1)

ϕ2 = 1√
1 − κ

h′, g2 = 1√
1 − κ

dη′(·, h′·) + η′ ⊗ η′ = 1√
1 − κ

g(·, ϕ′h′·) + η′ ⊗ η′.

(5.2)

Moreover, the deformed structures (ϕ1, ξ
′, η′, g1) and (ϕ2, ξ

′, η′, g2) are paracontact metric
(κi , μi )-spaces, with

κ1 =
(

1 − μ

2

)2 − 1, μ1 = 2(1 − √
1 − κ),

κ2 = κ − 2 +
(

1 − μ

2

)2
, μ2 = 2.

As proved in [2], if (T1M, ϕ′, ξ ′, η′,G ′) is a g-natural non-Sasakian (κ, μ)-space, then
(M, 〈, 〉) is of constant sectional curvature c̄, and
κ = 1

16(α′)2
(−(a′)2c̄2 + 2(α′ − (b′)2)c̄ + d ′(2(a′ + c′) + d ′)

)

, μ = 1

2α′ (d
′ − a′c̄).
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Therefore,

1 − κ = 1

16(α′)2
(

(a′)2c̄2 − 2(α′ − (b′)2)c̄ + (a′ + c′)2
)

. (5.3)

If we nowdeform these structures as in (5.1) and (5.2), we obtain two newparacontactmet-
ric (κ, μ)-structures on T1M , which we will denote by (ϕ̃1, ξ

′, η′, ˜G1) and (ϕ̃2, ξ
′, η′, ˜G2).

We will now prove that these new structures are indeed g-natural paracontact metric struc-
tures, by checking that they satisfy the conditions (3.4)–(3.7) given in Theorem 1.

Indeed, let us suppose that (ϕ̃1, ξ
′, η′, ˜G1) is a g-natural paracontact metric structure for

some real constants a1, b1, c1, d1. Then, formulas (2.7) and (5.1), respectively, give

˜G1(u
h, uh) = a1 + c1 + d1, ˜G1(u

h, uh) = 1√
1 − κ

˜G(uh,˜huh) + η̃(uh )̃η(uh) = 1

ρ2 .

Hence,

a1 + c1 + d1 = 1

ρ2 = 1

(ρ′)2
= a′ + c′ + d ′. (5.4)

Formula (2.7), applied on the pairs (uh, Xh) and (uh, Y tG ), with X, Y orthogonal to u,
does not give any extra conditions. We will now consider ˜G1(Xh

1 , X
h
2 ), with with X1 and X2

orthogonal to u. Then, from (2.7) and (5.1) we, respectively, find

˜G1(X
h
1 , X

h
2 ) = (a1 + c1)〈X1, X2〉,

˜G1(X
h
1 , X

h
2 ) = − 1

4α′√1 − κ

(

α′ − (b′)2
) (

c̄ − (a′ + c′)2
) 〈X1, X2〉.

So,

a1 + c1 = − 1

4α′√1 − κ

(

(α′ − (b′)2)c̄ − (a′ + c′)2
)

and (5.4) yields

d1 = a′ + c′ + d ′ − (a1 + c1) = (a′ + c′ + d ′) + 1

4α′√1 − κ

(

(α′ − (b′)2)c̄ − (a′ + c′)2
)

.

(5.5)
By a similar argument, we obtain

˜G1(X
h, Y tG ) = b1〈X, Y 〉 = b′

4α′√1 − κ
(a′c̄ + a′ + c′)〈X, Y 〉,

˜G1(Y
tG
1 , Y tG

2 ) = a1〈Y1, Y2〉 = 1

4α′√1 − κ

(

(a′)2c̄ − α′ + (b′)2
)〈Y1, Y2〉,

for X, Y, Y1, Y2 orthogonal to u. Thus, we get

a1 = 1

4α′√1 − κ

(

(a′)2c̄ − α′ + (b′)2
)

, b1 = 1

4α′√1 − κ
(a′c̄ + a′ + c′) (5.6)

and

c1 = (a1 + c1)−a1 = 1

4α′√1 − κ
[(−(a′)2 −α′ + (b′)2)c̄+α′ − (b′)2 + (a′ + c′)2]. (5.7)
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Substituting the values of a1, b1, c1 from (5.6), (5.7) and (5.5) in the definition of α1 and
using (5.3), we find

α1 = a1(a1 + c1) − b21 = − 1

16α′(1 − κ)

(

(a′)2c̄2 − 2(α′ − (b′)2)c̄ + (a′ + c′)2
)

= −α′ < 0.

In particular, this implies

−4α1 = 4α′ = 1

ρ2 = a′ + c′ + d ′ = a1 + c1 + d1,

so (3.7) holds. Finally, it is easy to check that ϕ̃1 satisfies (3.6). Therefore, (ϕ̃1, ξ
′, η′, ˜G1) is

a g-natural paracontact metric structure.
The proof of (ϕ̃2, ξ

′, η′, ˜G2) being a g-natural paracontact metric structure for constants
a2, b2, c2 and d2 is similar to the previous case. Explicitly, we obtain

a2 = − ρ√
1 − κ

b′, b2 = − ρ

2
√
1 − κ

(a′c̄ − (a′ + c′)),

c2 = − ρ√
1 − κ

(1 + c̄)b′, d2 = 1

ρ2 − ρ√
1 − κ

b′c̄.

Thus, taking into account (5.3), we find α2 = −α′ < 0 and

1

ρ2 = a2 + c2 + d2 = −4α2.

So, all the conditions of Theorem 1 are satisfied. In this way, we proved the following.

Theorem 7 Let (M, 〈, 〉) denote a manifold of constant sectional curvature. Then, given a
non-Sasakian g-natural contact metric structure (ϕ′, ξ ′, η′,G ′) on T1M (which is indeed a
contact (κ, μ)-space), the canonical paracontact metric structures (ϕ̃i , ξ

′, η′, ˜Gi ) described
by (5.1), (5.2) are g-natural paracontact metric (κ, μ)-spaces.

We explicitly remark that for the canonical paracontact metric structures (ϕ̃i , ξ
′, η′, ˜Gi ),

constructed from a non-Sasakian g-natural (κ, μ)-space (ϕ′, ξ ′, η′,G ′) on T1M , all cases are
possible with regard to the values of ai (consequently, of φi ). In particular:

– a1 = 0 if and only if c̄ = a′(a′+c′)−2(b′)2
(a′)2 ;

– a2 = 0 if and only if b′ = 0.

6 Homogeneity and harmonicity properties

A paracontact metric manifold (M̄, η̄, ḡ) is said to be (locally) homogeneous paracontact if
it admits a transitive (pseudo-)group of (local) isometries leaving invariant its contact form
η̄ (and hence, the whole paracontact metric structure) [8].

As proved in [20], the tangent sphere bundle Tr M of any radius r > 0 of a two-point
homogeneous space, equipped with any Riemannian g-natural metric, is homogeneous. This
result was proved in [20] for Riemannian g-natural metrics, but the argument used does not
need the metric to be positive definite. So, the same result is true for pseudo-Riemannian
g-natural metrics as well. We will now prove the following result.
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Theorem 8 Let (M, 〈, 〉) be (locally isometric to) a two-point homogeneous space. Then,
any g-natural paracontact metric structure (ϕ̃,˜ξ, η̃, ˜G) on T1M is (locally) homogeneous
paracontact.

Proof Since (M, 〈, 〉) is a two-point homogeneous space, (T1M, ˜G) is homogeneous [20].
More precisely, following the argument used in [20], any (local) isometry ψ of (M, 〈, 〉) can
be lifted to a (local) isometry � of (T1M, ˜G), defined by

�(z) = �(x, u) = (ψ(x), ψ∗u),

for any unit tangent vector z = (x, u) ∈ T1M .
Let γ denote the unique geodesic of (M, 〈, 〉), such that γ (0) = x and γ̇ (0) = u. Then,

we have˜ξz = ρuh = ρ ˙̃γ (0), where we put γ̃ (t) := (γ (t), γ̇ (t)). Hence,

�∗z˜ξz = ρ�∗z ˙̃γ (0) = ρ
˙︷ ︸︸ ︷

� ◦ γ̃ (0). (6.1)

Since γ and ψ are, respectively, a geodesic and a local isometry of (M, 〈, 〉), the curve
α(t) := ψ(γ (t)) is again a geodesic of (M, 〈, 〉) and, by (6.1), the curve

α̃(t) := (� ◦ γ̃ )(t) = (ψ(γ (t)), ψ∗γ̇ (t))

satisfies

α̃(0) = �(z), ˙̃α(0) = 1

ρ
�∗z˜ξz .

Hence,

˜ξψ(z) = �∗z˜ξz,

that is,˜ξ is invariant under the isometries of the form�, which acts transitively on (T1M, ˜G).
Because of the definitions of tensors η, ϕ and the paracontact metric condition � = dη, the
invariance of both ˜G and˜ξ implies at once that � also leaves invariant η̃ and ϕ̃. Therefore,
(ϕ̃,˜ξ, η̃, ˜G) is a homogeneous paracontact metric structure.

Taking into account the results of Sects. 3 and 4, we then have the following.

Corollary 3 g-natural paraSasakian structures, g-natural paracontact metric structures
satisfying˜h2 = 0 �= ˜h and g-natural paracontact (κ, μ)-spaces, as classified in Theorems 1,
4, 5, provide examples of (locally) homogeneous paracontact metric manifolds of arbitrary
odd dimension.

As recently proved by the first author and D. Perrone [12], a paracontact metric manifold
(M, ϕ, ξ, η, g) is H-paracontact (that is, its characteristic vector field ξ is harmonic) if and
only if ξ is a Ricci eigenvector. In particular, K -paracontact and paracontact (κ, μ)-spaces are
H -paracontact. Therefore, the g-natural paracontactmetric structures studied in Theorems 3,
5 give some large classes of examples of H-paracontact metric manifolds. We will come back
in a forthcoming paper to the study of the harmonicity properties of g-natural paracontact
metric structures.
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