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Abstract In this work, we consider the asymptotic behavior of the nonlinear semigroup
defined by a semilinear parabolic problemwith homogeneous Neumann boundary conditions
posed in a region of R2 that degenerates into a line segment when a positive parameter ε

goes to zero (a thin domain). Here we also allow that its boundary presents highly oscillatory
behavior with different orders and variable profile.We take thin domains possessing the same
order ε to the thickness and amplitude of the oscillations, but assuming different order to the
period of oscillations on the top and the bottom of the boundary. Combining methods from
linear homogenization theory and the theory on nonlinear dynamics of dissipative systems,
we obtain the limit problem establishing convergence properties for the nonlinear semigroup,
as well as the upper semicontinuity of the attractors and stationary states.
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1 Introduction

In this paper, we are interested in analyzing the asymptotic behavior of the solutions of a
semilinear parabolic problem with homogeneous Neumann boundary condition in a thin
domain Rε with a highly oscillatory behavior in its boundary as illustrated in Fig. 1.
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Fig. 1 Thin domain with a
highly oscillatory boundary

Let Gε , Hε : (0, 1) �→ (0,∞) be two positive smooth functions satisfying 0 < G0 ≤
Gε(x) ≤ G1 and 0 < H0 ≤ Hε(x) ≤ H1 for all x ∈ (0, 1) and ε > 0, where G0, G1, H0

and H1 are constants independent of ε, and consider the bounded open region Rε given by

Rε = {(x, y) ∈ R
2 | x ∈ (0, 1) and − ε Gε(x) < y < ε Hε(x)}. (1.1)

Note that functions Gε and Hε define the lower and upper boundary of the 2-dimensional
thin domain Rε with order of thickness ε. We allow Gε and Hε to present different orders
and profiles of oscillations. The upper boundary established by ε Hε presents same order of
amplitude, period and thickness, but the lower boundary given by ε Gε possesses oscillation
order larger than the compression order ε of the thin domain. We express this assuming that

Gε(x) = G(x, x/εα), α > 1,

and Hε(x) = H(x, x/ε),

where the functions G, and H : [0, 1] �→ (0,∞) are smooth functions with y → G(x, y)
and y → H(x, y) periodic in variable y with constant period lg and lh , respectively.

In the thin domain Rε , we look at the semilinear parabolic evolution equation

{
wε
t − �wε + wε = f (wε), in Rε,

∂wε

∂νε = 0 on ∂Rε,
t > 0, (1.2)

where νε is the unit outward normal to ∂Rε , ∂
∂νε is the outwards normal derivative and the

function f : R �→ R is a C2-function with bounded derivatives. Since we are interested in the
behavior of solutions as t → ∞ and its dependence with respect to the small parameter ε, we
require that the solutions of (1.2) are bounded for large values of time. A natural assumption
to obtain this boundedness is given by the following dissipative condition

lim sup
|s|→∞

f (s)

s
< 0. (1.3)

From the point of view of investigating the asymptotic dynamics, assuming f with
bounded derivatives does not imply any restriction since we are interested in dissipative
nonlinearities. Indeed, it follows from [3,7] that under the usual growth assumptions, the
attractors are uniformly bounded in L∞ with respect to ε, and we may cut the nonlinearities
in a suitable way making them bounded with bounded derivatives. Recall that an attractor is
a compact invariant set which attracts all bounded sets of the phase space. It contains all the
asymptotic dynamics of the system, and all global bounded solutions lie in the attractor.
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Parabolic problems in oscillatory thin domains 1205

In order to analyze problem (1.2) and its related linear elliptic and parabolic problem, we
first perform a simple change of variables which consists in stretching in the y-direction by
a factor of 1/ε. As in [28,37–39], we use x1 = x, x2 = y/ε to transform Rε into the domain

�ε = {(x1, x2) ∈ R
2 | x1 ∈ (0, 1) and − Gε(x1) < x2 < Hε(x1)}. (1.4)

By doing so, we obtain a domain which is not thin anymore although it presents very highly
oscillatory behavior given by the fact that the upper and lower boundary are the graph of the
oscillating functions Gε and Hε . Under this change, Eq. (1.2) is transformed into{

uε
t − ∂2uε

∂x12
− 1

ε2
∂2uε

∂x22
+ uε = f (uε) in �ε

∂uε

∂x1
N ε
1 + 1

ε2
∂uε

∂x2
N ε
2 = 0 on ∂�ε

t > 0, (1.5)

where N ε = (N ε
1 , N ε

2 ) is the outward normal to the boundary of �ε .
Observe the factor 1/ε2 in front of the derivative in the x2 direction which means a very

fast diffusion in the vertical direction. In some sense, we have substituted the thin domain Rε

with a non-thin domain �ε , but with a very strong diffusion mechanism in the x2-direction.
Because of the presence of this very strong diffusion mechanism, it is expected that solutions
of (1.5) become homogeneous in the x2-direction so that the limiting solution will not have
a dependence in this direction, and therefore, the limiting problem will be one dimensional.
This fact is in agreement with the intuitive idea that an equation in a thin domain should
approach an equation in a line segment.

We get the following limit problem to (1.5) as ε goes to zero:
{
ut − 1

p(x) (q(x) ux )x + u = f (u), x ∈ (0, 1),
ux (0) = ux (1) = 0,

t > 0, (1.6)

where the smooth positive functions p and q : (0, 1) �→ (0,∞) are given by

q(x) = 1

lh

∫
Y ∗(x)

{
1 − ∂X (x)

∂y1
(y1, y2)

}
dy1dy2,

p(x) = |Y ∗(x)|
lh

+ 1

lg

lg∫
0

G(x, y) dy − G0(x),

G0(x) = min
y∈R G(x, y),

and X (x) is the unique solution of the problem
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�X (x) = 0 in Y ∗(x)
∂X (x)
∂N = 0 on B2(x)

∂X (x)
∂N = N1 on B1(x)

X (x) lh − periodic on B0(x)∫
Y ∗(x) X (x) dy1dy2 = 0

in the representative cell Y ∗(x) given by

Y ∗(x) = {(y1, y2) ∈ R
2 | 0 < y1 < lh, −G0(x) < y2 < H(x, y1)},

where B0(x), B1(x) and B2(x) are lateral, upper and lower boundary of ∂Y ∗(x) for x ∈ (0, 1).
Note that the auxiliary solution X (x) and the representative cell Y ∗(x) depend on variable x
defining a non-constant homogenized coefficient q(x) for the homogenized equation (1.6).
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1206 M. C. Pereira

If the nonlinearity f satisfies the dissipative conditions (1.3), then both equations (1.5)
and (1.6) define nonlinear semigroups that possess global attractors Aε ⊂ H1(�ε) and
A0 ⊂ H1(0, 1), respectively. Here in this work, we get the continuity of the nonlinear
semigroup, as well as, the upper semicontinuity of the family of the attractors Aε and the
equilibria set at ε = 0 obtaining convergence properties for the dynamics set up by problems
(1.5) and (1.6).

There are several works in the literature dealing with partial differential equations in thin
domains presenting oscillating boundaries. We mention [31,32] who studied the asymptotic
approximations of solutions to parabolic and elliptic problems in thin perforated domain
with rapidly varying thickness, and [14–16] who consider nonlinear monotone problems in
a multidomain with a highly oscillating boundary. In addiction, we also cite [1,12,17], in
which the asymptotic description of nonlinearly elastic thin films with fast-oscillating profile
was successfully obtained in a context of �-convergence [24].

Recently, we have studied many classes of oscillating thin domains discussing limit prob-
lems and convergence properties [6,8–10,36]. In [11], the authors deal with a linear elliptic
problem in a thin domain presenting doubly oscillatory behaviorwhich is related to the present
one, but with constant profile, that means, assuming Gε(x) = g(x/ε) and Hε(x) = h(x/ε)
for periodic functions g and h. We call this situation purely periodic case.

Our goal here is to consider a semilinear parabolic problem in Rε also presenting doubly
oscillatory behavior, but now with variable profile generally called locally periodic case.
We allow much more complicated shapes combining oscillating orders establishing the limit
problem, as well as, its dependence with respect to the thin domain geometry. Indeed, we get
an explicit relationship among the limit equation, the oscillation, the profile and thickness
of the thin domain. It is worth observing that it is not an easy task. In order to do so,
we first need to combine different techniques introduced in [9,10] and [11] to investigate
the linear elliptic problem. We use extension operators and oscillating test functions from
homogenization theory with boundary perturbation results to obtain the limit problem for
the elliptic equation. Next, we apply the theory of dissipative systems and attractors to be
able to obtain the continuity of the nonlinear semigroup and the upper semicontinuity of the
attractors and stationary states of the parabolic problem here proposed.

We refer to [13,19,22,23,27,29,35,40,44] for a general introduction to the homogeniza-
tion theory and the theory of dissipative systems and attractors, respectively. There are not
many results on the behavior of global attractors of dissipative systems under a perturbation
related to homogenization. We would like to cite [20,21,25,26].

Finally, we point out that thin structures with rough contours (thin rods, plates or shells) or
fluids filling out thin domains (lubrication) or even chemical diffusion process in the presence
of grainy narrow strips (catalytic process) are very common in engineering and applied
science. The analysis of the properties of these structures and the processes taking place on
them and understanding how the micro-geometry of the thin structure affects the macro-
properties of the material is a very relevant issue in engineering and material design. Thus,
being able to obtain the limiting equation of a prototype equation in different structures where
the micro-geometry is not necessarily smooth and being able to analyze how the different
microscales affects the limiting problem goes in this direction and will allow the study and
understanding in more complicated situations. See [16,18,30,33] for some concrete applied
problems.

This paper is organized as follows. In Sect. 2, we set up the notation and state some
technical results which will be used later in the proofs. In Sect. 3, we investigate the linear
elliptic problem on thin domains assuming also that Gε and Hε are piecewise periodic
functions, obtaining Lemma 3.1. Next, in Sect. 4, we use Lemma 3.1 and the continuous
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Parabolic problems in oscillatory thin domains 1207

dependence result on the domain given by Proposition 2.4 in order to provide a proof of the
main result with respect to the linear elliptic problem associated with (1.5), namely Theorem
4.1. In Sect. 5, we obtain the continuity of the linear semigroup defined by (1.5) fromTheorem
4.1, and in Sect. 6, we prove themain result of the paper related to the parabolic problem (1.5)
getting the upper semicontinuity of the family of attractors and stationary state by Theorem
6.1.

We also note that although we deal with Neumann boundary conditions, we may also
consider different conditions in the lateral boundaries of the thin domain Rε sincewe preserve
the Neumann type boundary condition in the upper and lower boundary. Dirichlet or even
Robin homogeneous can be set in the lateral boundaries of the problem (1.5). The limit
problem will preserve this boundary condition as a point condition.

2 Basic facts and notations

Let us consider two families of positive functionsGε , Hε : (0, 1) → (0,∞), with ε ∈ (0, ε0)
for some ε0 > 0 satisfying the following hypothesis

(H) There exist nonnegative constants G0, G1, H0 and H1 such that

0 < G0 ≤ Gε(x) ≤ G1 and 0 < H0 ≤ Hε(x) ≤ H1,

for all x ∈ (0, 1) and ε ∈ (0, ε0). Moreover, the functions Gε and Hε are of the type

Gε(x) = G(x, x/εα), for some α > 1, and Hε(x) = H(x, x/ε), (2.1)

where the functions H ,G : [0, 1]×R �→ (0,+∞) are periodic in the second variable, that is,
there exist positive constants lg and lh such that G(x, y + lg) = G(x, y) and H(x, y + lh) =
H(x, y) for all (x, y) ∈ [0, 1]×R. We also suppose G and H are piecewise C1 with respect
to the first variable, it means, there exists a finite number of points 0 = ξ0 < ξ1 < · · · <

ξN−1 < ξN = 1 such that the functions G and H restricted to the set (ξi , ξi+1) × R are C1

with G, H , Gx , Hx , Gy and Hy uniformly bounded in (ξi , ξi+1) ×R having limits when we
approach ξi and ξi+1.

In this work, we consider the highly oscillating thin domain Rε which is defined in (1.1)
as the open set bounded by the graphs of the functions εGε and εHε . Since we are taking
α > 1 to define Gε in (2.1), we are allowing the lower boundary of the thin domain Rε to
present a very high oscillatory behavior. In fact, as ε → 0 we have that the period of the
oscillations is much smaller (order ∼ εα) than the amplitude (order ∼ ε), the height of the
thin domain (order ∼ ε), and period of the oscillations of the upper boundary (order ∼ ε)
given by function Hε .

A function satisfying the above conditions is F(x, y) = a(x) +∑N
r=1 br (x)gr (y) where

a, b1, . . . , bN are piecewise C1 with g1, . . . , gN also C1 and l-periodic for some l > 0.
In order to study the dynamics defined by (1.2) in Rε , we first study the solutions of

the linear elliptic equation associated with the equivalent problem introduced by (1.5). We
consider the following elliptic problem with homogeneous Neumann boundary condition{

− ∂2uε

∂x12
− 1

ε2
∂2uε

∂x22
+ uε = f ε in �ε

∂uε

∂x1
N ε
1 + 1

ε2
∂uε

∂x2
N ε
2 = 0 on ∂�ε

(2.2)

where N ε = (N ε
1 , N ε

2 ) is the outward unit normal to ∂�ε , and �ε is the oscillating domain
(1.4). Moreover, we are taking f ε ∈ L2(�ε) satisfying the uniform condition

‖ f ε‖L2(�ε) ≤ C, ∀ε > 0, (2.3)
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for some C > 0 independent of ε. From Lax-Milgran Theorem, we have that problem (2.2)
has unique solution for each ε > 0.We first analyze the behavior of these solutions as ε → 0,
that is, as the domain gets thinner and thinner although with a high oscillating boundary.

Recall that the equivalence between the problems (1.2) and (1.5) is established by changing
the scale of the domain Rε through the map (x, y) → (x, εy), see [28] for more details. Also,
the domain �ε is not thin anymore, but presents very wild oscillations at the top and bottom
boundary, although the presence of a high diffusion coefficient in front of the derivative with
respect the second variable balance the effect of the wild oscillations.

It is known that the variational formulation of (2.2) is found uε ∈ H1(�ε) such that∫
�ε

{∂uε

∂x1

∂ϕ

∂x1
+ 1

ε2

∂uε

∂x2

∂ϕ

∂x2
+ uεϕ

}
dx1dx2 =

∫
�ε

f εϕdx1dx2, ∀ϕ ∈ H1(�ε). (2.4)

Thus, we get that the solutions uε satisfy an uniform a priori estimate on ε. Indeed, taking
ϕ = uε in expression (2.4), we obtain

∥∥∥∂uε

∂x1

∥∥∥2
L2(�ε)

+ 1

ε2

∥∥∥∂uε

∂x2

∥∥∥2
L2(�ε)

+ ‖uε‖2L2(�ε)
≤ ‖ f ε‖L2(�ε)‖uε‖L2(�ε). (2.5)

Consequently, it follows from (2.3) that

‖uε‖L2(�ε),

∥∥∥∂uε

∂x1

∥∥∥
L2(�ε)

and
1

ε

∥∥∥∂uε

∂x2

∥∥∥
L2(�ε)

≤ C, ∀ε > 0. (2.6)

Provided that we have to compare functions defined in�ε for ε > 0, we need to introduce
some extension operators Pε in a convenient way.We note that this approach is very common
in homogenization theory. For the current analysis, we extend the functions only over the
upper boundary of the domain �ε , namely, into the open set �̃ε defined by

�̃ε = {(x1, x2) ∈ R
2 | x1 ∈ (0, 1), −Gε(x1) < x2 < H1}\

∪N
i=1{(ξi , x2) | min{H0,i−1, H0,i } < x2 < H1}, (2.7)

where H0,i = miny∈R H(ξi , y), and the points 0 = ξ0 < ξ1 < · · · < ξN−1 < ξN = 1 and
the positive constant H1 are given by hypothesis (H).

Lemma 2.1 Under conditions described above, there exists an extension operator

Pε ∈ L(L p(�ε), L p(�̃ε)) ∩ L(W 1,p(�ε),W 1,p(�̃ε))

and a constant K independent of ε and p such that

‖Pεϕ‖L p(�̃ε ) ≤ K ‖ϕ‖L p(�ε)∥∥∥∂Pεϕ

∂x1

∥∥∥
L p(�̃ε )

≤ K
{∥∥∥ ∂ϕ

∂x1

∥∥∥
L p(�ε)

+ η(ε)

∥∥∥ ∂ϕ

∂x2

∥∥∥
L p(�ε)

}
(2.8)

∥∥∥∂Pεϕ

∂x2

∥∥∥
L p(�̃ε )

≤ K
∥∥∥ ∂ϕ

∂x2

∥∥∥
L p(�ε)

for all ϕ ∈ W 1,p(�ε) where 1 ≤ p ≤ ∞ and η(ε) = supx∈(0,1){|H ′
ε(x)|}, ε > 0.

Proof This result can be obtained using a reflection procedure over the upper oscillating
boundary of �ε . See [6,9] for details. ��
Remark 2.2 (i) Note that operator Pε preserves periodicity in the x1 variable. Indeed, under

this reflection procedure,we have that if the functionϕ is periodic in x1, then the extended
function Pεϕ is also periodic in x1.
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Parabolic problems in oscillatory thin domains 1209

(ii) Lemma 2.1 can also be applied to the case Gε and Hε independent of ε. In particular,
we still can apply this extension operator to the representative cell Y ∗.

Remark 2.3 (i) If for each w ∈ W 1,p(O) we denote by ||| · ||| the norm
|||w|||p

W 1,p(O)
= ‖w‖p

L p(O) +
∥∥∥ ∂w

∂x1

∥∥∥p
L p(O)

+ η(ε)

∥∥∥ ∂w

∂x2

∥∥∥p
L p(O)

,

thenwehave the extensionoperator Pε must satisfy |||Pεw|||W 1,p(�̃ε ) ≤K0|||w|||W 1,p(�ε)

for some K0 > 0 independent of ε. The norm ||| · |||W 1,p is equivalent to the usual one.
(ii) Analogously, we can set H1

ε (O) as the Sobolev space H1(O) with the equivalent norm

‖w‖2H1
ε (O)

= ‖w‖2L2(O)
+
∥∥∥ ∂w

∂x1

∥∥∥2
L2(O)

+ 1

ε2

∥∥∥ ∂w

∂x2

∥∥∥2
L2(O)

.

Now let us to discuss how the solutions of (2.2) depend on the domain �ε and more
exactly on the functions Gε and Hε . As a matter of fact, we have a continuous dependence
result in L∞ uniformly in ε. Assume Gε , Ĝε , Hε and Ĥε are piecewise continuous functions
satisfying hypothesis (H) and consider the associated oscillating domains �ε and �̂ε given
by

�ε = {(x1, x2) ∈ R
2 | x1 ∈ (0, 1), −Gε(x1) < x2 < Hε(x1)},

�̂ε = {(x1, x2) ∈ R
2 | x1 ∈ (0, 1), −Ĝε(x1) < x2 < Ĥε(x1)}.

Let uε and ûε be the solutions of the problem (2.2) in the oscillating domains �ε and �̂ε ,
respectively, with f ε ∈ L2(R2). Then we have the following result:

Proposition 2.4 There exists a positive real function ρ : [0,∞) �→ [0,∞) such that

‖uε − ûε‖2
H1

ε (�ε∩�̂ε )
+ ‖uε‖2

H1
ε (�ε\�̂ε )

+ ‖ûε‖2
H1

ε (�̂ε\�ε)
≤ ρ(δ)

with ρ(δ) → 0 as δ → 0 uniformly for all

(i) ε > 0;
(ii) piecewise C1 functions Gε , Ĝε , Hε and Ĥε with

0 ≤ G0 ≤ Gε(x), Ĝε(x) ≤ G1, 0 < H0 ≤ Hε(x), Ĥε(x) ≤ H1,

‖Gε − Ĝε‖L∞(0,1) ≤ δ and ‖Hε − Ĥε‖L∞(0,1) ≤ δ;
(iii) f ε ∈ L2(R2), ‖ f ε‖L2(R2) ≤ 1.

Proof The proof is quite analogous to that one performed in [9, Theorem 4.1] since we are
taking functions G and H satisfying (H) with constant period lg and lh , respectively. ��
Remark 2.5 The important part of this result is that the positive functionρ(δ) does not depend
on ε. It only depends on the nonnegative constants G0, G1, H0 and H1.

Finally, we mention some important estimates on the solutions of an elliptic problem
posed in rectangles of the type

Qε = {(x, y) ∈ R
2 | − εα < x < εα, 0 < y < 1}

with α > 1. For each u0 ∈ H1(−εα, εα), let us define uε(x, y) as the unique solution of⎧⎪⎨
⎪⎩

− ∂2uε

∂x2
− 1

ε2
∂2uε

∂y2
= 0 in Qε,

u(x, 0) = u0(x), on �ε,
∂u
∂ν

= 0, on ∂Qε \ �ε

(2.9)

where ν is the outward unit normal to ∂Qε and �ε = {(x, 0) ∈ R
2 | − εα < x < εα}.
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Lemma 2.6 With the notations above, if we denote by ū0 the average of u0 in �ε , that is

ū0 = 1

2εα

εα∫
−εα

u0(x) dx,

then, there exists a constant C, independent of ε and u0, such that

εα∫
−εα

|uε(x, y) − ū0|2 dx ≤ C exp

{
− 2yπ

εα−1

}
‖u0‖2L2(−εα,εα)

1∫
0

εα∫
−εα

|u(x, y) − ū0|2 dxdy ≤ Cεα−1‖u0‖2L2(−εα,εα)

and ∥∥∥∥∂u

∂x

∥∥∥∥
2

L2(Qε )

+ 1

ε2

∥∥∥∥∂u

∂y

∥∥∥∥
2

L2(Qε )

≤ Cεα−1
∥∥∥∥∂u0

∂x

∥∥∥∥
2

L2(−εα,εα)

. (2.10)

Proof The proof follows from the known fact that the solution of the problem (2.9) can be
found explicitly and admits a Fourier decomposition of the form

uε(x, y) = 1

2εα

εα∫
−εα

u0(τ )dτ +
∞∑
k=1

(u0, ϕ
ε
k )ϕ

ε
k (x)

cosh( kπ(1−y)
εα−1 )

cosh( kπ
εα−1 )

where ϕε
k (x) = ε−α/2 cos( kπx

εα ), k = 1, 2, . . . , and (u0, ϕε
k ) = (u0, ϕε

k )L2(−εα,εα). ��

3 The piecewise periodic case

In this section, we establish the limit of sequence {uε}ε>0 given by the elliptic problem (2.2)
as ε goes to zero for the case where the oscillating boundary of �ε is defined, assuming that
Gε and Hε are piecewise periodic functions.

More precisely, we suppose the functions G and H satisfy hypothesis (H), assuming also
they are independent functions of the first variable in each of the open sets (ξi−1, ξi ) × R.
Thus, if 0 = ξ0 < ξ1 < · · · < ξN−1 < ξN = 1 so that functions G and H satisfy

G(x, y) = Gi (y) and H(x, y) = Hi (y), for x ∈ (ξi−1, ξi ), (3.1)

with Gi (y + lg) = Gi (y) and Hi (y + lh) = Hi (y) for all y ∈ R. The functions Gi and
Hi are C1-functions satisfying 0 < G0 ≤ Gi (·) ≤ G1 and 0 < H0 ≤ Hi (·) ≤ H1 for all
i = 1, . . . , N , and then, the oscillating domain �ε is now

�ε = {(x, y) | ξi−1 < x < ξi ,−Gi (x/ε) < y < Hi (x/ε), i = 1, . . . , N } ∪
∪N−1
i=1 {(ξi , y) | − min{Gi (ξi/ε),Gi+1(ξi/ε)} < y < min{Hi (ξi/ε), Hi+1(ξi/ε)}} ,

as illustrated by Figure 2. Also region �̃ε , previously introduced in (2.7), is given by

�̃ε = {(x, y) | ξi−1 < x < ξi ,−Gi (x/ε) < y < H1, i = 1, . . . , N } ∪
∪N−1
i=1

{
(ξi , y) | − min{Gi (ξi/ε),Gi+1(ξi/ε)} < y < min{H0,i , H0,i+1}

}
,

with H0,i = miny∈R Hi (y), i = 1, . . . , N .
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Parabolic problems in oscillatory thin domains 1211

Fig. 2 A piecewise periodic
domain �ε

We also denote by �0 the convenient open set without oscillating boundaries given by

�0 = {
(x, y) | ξi−1 < x < ξi ,−G0,i < y < H1, i = 1, . . . , N

} ∪
∪N−1
i=1

{
(ξi , y) | − min{G0,i ,G0,i+1} < y < min{H0,i , H0,i+1}

}
, (3.2)

where the positive constantG0,i ,with i = 1, . . . , N , is set byG0,i = miny∈R Gi (y)whenever
x ∈ (ξi−1, ξi ). Here, we are establishing the following step function

G0(x) = G0,i = min
y∈R Gi (y), if x ∈ (ξi−1, ξi ). (3.3)

Notice �0 ⊂ �̃ε for all ε > 0.
It is also important to observe that we still have the extension operator Pε constructed in

Lemma 2.1 for the open regions �ε into �̃ε .
Now we can prove the following result

Lemma 3.1 Assume that f ε ∈ L2(�ε) satisfies (2.3) so that function

f̂ ε(x) =
Hε (x)∫

−Gε (x)

f (x, s) ds, x ∈ (0, 1), (3.4)

satisfies f̂ ε ⇀ f̂ , w-L2(0, 1).
Then, there exists û ∈ H1(0, 1) such that, if Pε is the extension operator given by Lemma

2.1, then

‖Pεu
ε − û‖L2(�̃ε ) → 0, as ε → 0,

where û is the unique weak solution of the Neumann problem

1∫
0

{
q(x) ux (x) ϕx (x) + p(x) u(x) ϕ(x)

}
dx =

1∫
0

f̂ (x) ϕ(x) dx (3.5)

for all ϕ ∈ H1(0, 1), where p(x) and q(x) are piecewise constant functions defined a.e.
(0, 1) as follows: if 0 = ξ0 < ξ1 < . . . < ξN = 1, p(x) = pi for all x ∈ (ξi−1, ξi ) where

pi = |Y ∗
i |
lh

+ 1
lg

lg∫
0
Gi (s) ds − G0,i ,

G0,i = miny∈R Gi (y),

i = 1, . . . , N , (3.6)
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1212 M. C. Pereira

Y ∗
i is the basic cell for x ∈ (ξi−1, ξi ), that is,

Y ∗
i = {(y1, y2) ∈ R

2 | 0 < y1 < lh, −G0,i < y2 < Hi (y1)},
and q(x) = qi for all x ∈ (ξi−1, ξi ) where

qi = 1

lh

∫
Y ∗
i

{
1 − ∂Xi

∂y1
(y1, y2)

}
dy1dy2

and the function Xi is the unique solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�Xi = 0 in Y ∗
i

∂Xi
∂N = 0 on Bi

2
∂Xi
∂N = N1 on Bi

1
Xi lh − periodic on Bi

0∫
Y ∗
i

Xi dy1dy2 = 0

(3.7)

where Bi
0, B

i
1 and Bi

2 are the lateral, upper and lower boundary of ∂Y
∗
i , respectively.

Remark 3.2 Note that if we call f0(x) = f̂ (x)/p(x), then problem (3.5) is equivalent to

−ri uxx (x) + u(x) = f0(x) x ∈ (ξi−1, ξi )

for i = 1, . . . , N , where ri = qi/pi , satisfying the following boundary conditions{
ux (ξ0) = ux (ξN ) = 0
ri ux (ξi−) − ri+1 ux (ξi+) = 0 i = 1, . . . , N − 1.

Here, ux (ξi±) denote the right(left)-hand side limits of ux at ξi .

Proof In order to prove Lemma 3.1, we have to pass to the limit in the variational formulation
of problem (2.2) given by (2.4). For this, we first divide the domain �̃ε in two open sets
using an appropriated step function Gε

0, depending on ε, that converges uniformly to the step
function G0 defined in (3.3) and independent of parameter ε.

Let us denote bymε the largest integer such thatmεlgεα ≤ 1. Now, for each i = 1, . . . , N
and m = 1, . . . ,mε , we take the following point

γ i
ε,m ∈ [(m − 1)lgε

α,mlgε
α] ∩ (ξi−1, ξi ), (3.8)

theminimum point of the piecewise periodic functionGε restricted to [(m−1)lgεα,mlgεα]∩
(ξi−1, ξi ), that can be empty depending on the values of i and m. As a consequence of this
construction, it is easy to see that

Gi (γ
i
ε,m/εα) = min

y∈R Gi (y) = G0,i . (3.9)

Since the interval (ξi−1, ξi ) is finite and Gε |(ξi−1,ξi ) is continuous, then there exist just a
finite number of points γ i

ε,m ∈ (ξi−1, ξi ). We can rename them such that

{γ i
ε,0, γ

i
ε,1, . . . , γ

i
ε,mi

ε+1} (3.10)

defines a partition for the sub interval [ξi−1, ξi ] for some mi
ε ∈ N, mi

ε ≤ mε , where γ i
ε,0 =

ξi−1 and γ i
ε,mi

ε+1
= ξi . Note that γ i

ε,m does not need to be uniquely defined.
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Parabolic problems in oscillatory thin domains 1213

Consequently, we can take the union of all partitions (3.10) setting a partition for the unit
interval [0, 1]

{γε,0, γε,1, . . . , γε,m̂ε+1},
with γε,0 = 0 and γε,m̂ε+1 = 1 for some m̂ε ∈ N that we still denote by mε . Also, we have

{(γm,ε , x2) | − G1 < x2 < −G0,i } ∩ �ε = ∅,

for all m = 1, 2, . . . ,mε .
Next, we take ε small enough, and then we consider the convenient step function

Gε
0(x)=

⎧⎨
⎩
G0,1, x ∈ [0, γε,1]
max{G(γε,m,

γε,m
εα ),G(γε,m+1, γε,m+1

εα )}, x ∈ (γε,m, γε,m+1],m=1, 2 . . . ,mε −1
G(1, 1/εα), x ∈ (γε,mε−1, 1]

.

Due to (3.9), we have G(γε,m,
γε,m
εα ) = Gi (γε,m/εα) = miny∈R Gi (y) = G0,i , whenever

γε,m ∈ (ξi−1, ξi ) for some i = 1, . . . , N , and so, Gε(x) ≥ Gε
0(x) ≥ G0(x) in (0, 1) where

G0 is the step function given by (3.3). Consequently, we have constructed a suitable step
function Gε

0 that converges uniformly to G0. More precisely, we have obtained

‖G0 − Gε
0‖L∞(0,1) → 0, as ε → 0. (3.11)

Using the step function Gε
0, we can introduce now the following open sets

�̃ε+ = {(x1, x2) ∈ R
2 | x1 ∈ (0, 1), −Gε

0(x1) < x2 < H1} and
�̃ε− = {(x1, x2) ∈ R

2 | x1 ∈ (0, 1), −Gε(x1) < x2 < −Gε
0(x1)}.

(3.12)

Notice that

�̃ε = Int
(
�̃ε+ ∪ �̃ε−

)
.

Hence, if we denote by ·̃ the standard extension by zero and by χε the characteristic
function of �ε , we can rewrite (2.4) as

∫

�̃ε−

{
∂̃uε

∂x1

∂ϕ

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕ

∂x2

}
dx1dx2 +

∫

�̃ε+

{
∂̃uε

∂x1

∂ϕ

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕ

∂x2

}
dx1dx2

+
∫

�̃ε

χε Pεu
ε ϕ dx1dx2 =

∫

�̃ε

χε f εϕdx1dx2, ∀ϕ ∈ H1(�ε), (3.13)

where Pε is the extension operator constructed in Lemma 2.1.
Now, let us to pass to the limit in the different functions that form the integrands of (3.13)

to get the homogenized problem. It is worth to observe that we will combine here techniques
from [9–11,44] establishing suitable oscillating test functions to accomplish our goal.

(a). Limit of Pεuε in L2(�ε).
First we observe that, due to (2.6) and Lemma 2.1, there exists K > 0 independent of ε

such that Pεuε satisfies

‖Pεu
ε‖L2(�̃ε ),

∥∥∥∂Pεuε

∂x1

∥∥∥
L2(�̃ε )

and
1

ε

∥∥∥∂Pεuε

∂x2

∥∥∥
L2(�̃ε )

≤ K , ∀ε > 0. (3.14)
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1214 M. C. Pereira

Hence, if �0 is the open set given by (3.2), independent of ε, Pεuε |�0 ∈ H1(�0), and we
can extract a subsequence, still denoted by Pεuε , such that

Pεuε ⇀ u0 w − H1(�0)

Pεuε → u0 s − Hβ(�0) for all β ∈ [0, 1) and
∂Pεuε

∂x2
→ 0 s − L2(�0)

(3.15)

as ε → 0, for some u0 ∈ H1(�0). Note that u0(x1, x2) does not depend on the variable x2,
that is, ∂u0

∂x2
(x1, x2) = 0 a.e. �0. Indeed, for all ϕ ∈ C∞

0 (�0), we have from (3.15) that
∫
�0

u0
∂ϕ

∂x2
dx1dx2 = lim

ε→0

∫
�0

Pεu
ε ∂ϕ

∂x2
dx1dx2 = − lim

ε→0

∫
�0

∂Pεuε

∂x2
ϕ dx1dx2 = 0, (3.16)

and then, u0(x1, x2) = u0(x1) for all (x1, x2) ∈ �0 implying u0 ∈ H1(0, 1).
From (3.15), we also have that the restriction of Pεuε to coordinate axis x1 converges to

u0, in that, if � = {(x1, 0) ∈ R
2 | x1 ∈ (0, 1)}, then

Pεu
ε |� → u0 s − Hβ(�), ∀s ∈ [0, 1/2). (3.17)

Thus, using (3.17) with β = 0, we can obtain the L2-convergence of Pεuε to u0 in �̃ε . In
fact, due to (3.17), we have that

‖Pεu
ε |� − u0‖2L2(�̃ε )

=
1∫

0

H1∫
−Gε (x1)

|Pεu
ε(x1, 0) − u0(x1)|2 dx2dx1

≤ C(G, H) ‖Pεu
ε |� − u0‖2L2(�)

→ 0, as ε → 0,

where C(G, H) = G1 + H1. Also,

|Pεu
ε(x1, x2) − Pεu

ε(x1, 0)|2 =
∣∣∣∣∣∣
x2∫
0

∂Pεuε

∂x2
(x1, s) ds

∣∣∣∣∣∣
2

≤
⎛
⎝

x2∫
0

∣∣∣∣∂Pεuε

∂x2
(x1, s)

∣∣∣∣
2

ds

⎞
⎠ |x2|.

Consequently, integrating in �̃ε and using (3.14), we get

‖Pεu
ε − Pεu

ε |�‖2
L2(�̃ε )

≤
1∫

0

H1∫
−Gε (x1)

⎛
⎝

x2∫
0

∣∣∣∣∂Pεuε

∂x2
(x1, s)

∣∣∣∣
2

ds

⎞
⎠ |x2| dx2dx1

≤ C(G, H)

∥∥∥∥∂Pεuε

∂x2

∥∥∥∥
2

L2(�̃ε )

→ 0 as ε → 0.

Finally, since

‖Pεu
ε − u0‖L2(�̃ε ) ≤ ‖Pεu

ε − Pεu
ε |�‖L2(�̃ε ) + ‖Pεu

ε |� − u0‖L2(�̃ε ),

we conclude that
‖Pεu

ε − u0‖L2(�̃ε ) → 0, as ε → 0. (3.18)

(b). Limit of χε .
Let us consider the family of representative cell Y ∗

i , i = 1, 2 . . . , N , defined by

Y ∗
i = {(y1, y2) ∈ R

2 | 0 < y1 < lh and − G0,i < y2 < Hi (y1)}
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and letχi be their characteristic function extended periodically on the variable y1 ∈ R for each
i = 1, . . . , N . Eventually, we will consider the family of representative cells Y ∗(x) = Y ∗

i
whenever x ∈ (ξi−1, ξi ).

If we denote by χε
i the characteristic function of the set

�ε
i,+ = {(x1, x2) | ξi−1 < x1 < ξi , −G0,i < x2 < Hi (x1/ε)},

we easily see that

χε(x1, x2) = χε
i (x1, x2) and χε

i (x1, x2) = χi

( x1
ε

, x2
)

(3.19)

whenever (x1, x2) ∈ �ε
i,+. Thus, due to (3.19) and Average Theorem [22, Theorem 2.6], we

have for each i = 1, . . . , N , and x2 ∈ (−G0,i , H1) that

χε
i (·, x2) ε→0

⇀ θi (x2) := 1

lh

lh∫
0

χi (s, x2) ds, w∗ − L∞(ξi−1, ξi ). (3.20)

Note that the limit function θi does not dependent on the variable x1 ∈ (ξi−1, ξi ), although
it depends on each i = 1, . . . , N , and it is related to the area of the open set Y ∗

i by formula

lh

H1∫
−G0,i

θi (x2)dx2 = |Y ∗
i |. (3.21)

Moreover, using Lebesgue’s Dominated Convergence Theorem and (3.20), we can get
that

χε ε→0
⇀ θ, w∗ − L∞(�0), (3.22)

where θ(x1, x2) = θi (x2) if x1 ∈ (ξi−1, ξi ), i = 1, 2, . . . , N . Indeed, from (3.20) we have

Fε
i (x2) =

ξi∫
ξi−1

ϕ(x1, x2)
{
χε
i (x1, x2) − θi (x2)

}
dx1 → 0, as ε → 0, (3.23)

a.e. x2 ∈ (−G0,i , H1) and for all ϕ ∈ L1(�0). Thus, (3.22) is a consequence of (3.23) and

∫
�i

ϕ(x1, x2)
{
χε
i (x1, x2) − θi (x2)

}
dx1dx2 =

H1∫
−G0,i

Fε
i (x2)dx2,

since |Fε
i (x2)| ≤

ξi∫
ξI−1

|ϕ(x1, x2)|dx1.
Notice that (3.21) implies the family of representative cells Y ∗(x) satisfies

Y ∗(x) = lh

H1∫
−G0(x)

θ(x2) dx2, x ∈ (0, 1).
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(c) Limit in the tilde functions.
Since ‖ f ε‖L2(�ε) is uniformly bounded, we get from (2.5) that there exists a constant

K > 0 independent of ε such that

‖ũε‖L2(�0)
,

∥∥∥ ∂̃uε

∂x1

∥∥∥
L2(�0)

and
1

ε

∥∥∥ ∂̃uε

∂x2

∥∥∥
L2(�0)

≤ K for all ε > 0.

Then, we can extract a subsequence, still denoted by ũε , ∂̃uε

∂x1
and ∂̃uε

∂x2
, such that

ũε ⇀ u∗ w − L2(�0)
∂̃uε

∂x1
⇀ ξ∗ w − L2(�0) and
∂̃uε

∂x2
→ 0 s − L2(�0)

(3.24)

as ε → 0, for some u∗ and ξ∗ ∈ L2(�0).

(d) Test functions.
Here we introduce the first class of test functions needed to pass to the limit in the

variational formulation (3.13). For each φ ∈ H1(0, 1) and ε > 0, we define the following
test function in H1(�̃ε)

ϕε(x1, x2) =
{

φ(x1), (x1, x2) ∈ �̃ε+
Z ε
m(x1, x2), (x1, x2) ∈ �̃ε− ∩ Qε

m, m = 0, 1, 2, . . .
(3.25)

where Qε
m is the rectangle defined from the step function Gε

0,

Qε
m = {(x1, x2) ∈ R

2 | γm,ε < x1 < γm+1,ε , −G1 < x2 < −Gε
0(x1)}, (3.26)

and the function Z ε
m is the solution of the problem⎧⎪⎨

⎪⎩
− ∂2Z ε

∂x21
− 1

ε2
∂2Z ε

∂x22
= 0, in Qε

m
∂Z ε

∂N ε = 0, on ∂Qε
m\�ε

m
Z ε = φ, on �ε

m

(3.27)

where �ε
m is the top of the rectangle Qε

m given by

�ε
m = {(x1,−Gε

0(x1)) | γm,ε < x1 < γm+1,ε}.
It is a direct consequence of (3.8) and estimate (2.10) that functions Z ε

m satisfies
∥∥∥∥∂Z ε

m

∂x1

∥∥∥∥
2

L2(Qε
m )

+ 1

ε2

∥∥∥∥∂Z ε
m

∂x2

∥∥∥∥
2

L2(Qε
m )

≤ Cεα−1‖φ′‖2L2(γm,ε ,γm+1,ε )
. (3.28)

Hence, if we denote by Qε = ∪mε

i=1Q
ε
i , we have �̃ε− = Qε ∩ �̃ε , and then,

∥∥∥∥∂ϕε

∂x1

∥∥∥∥
2

L2(�̃ε−)

+ 1

ε2

∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(�̃ε−)

=
mε∑
i=0

(∥∥∥∥∂ϕε

∂x1

∥∥∥∥
2

L2(Qε
m )

+ 1

ε2

∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(Qε
m )

)

≤
mε∑
i=0

C εα−1
∥∥φ′∥∥2

L2(γi,ε ,γi+1,ε )
≤ C εα−1

∥∥φ′∥∥2
L2(0,1) . (3.29)

Eventually,wewill use Z ε to denote Z ε(x1, x2) = Z ε
m(x1, x2)whenever (x1, x2) ∈ �̃ε−∩Qε

m .
Consequently, we can argue as in (3.18) to show

‖ϕε − φ‖L2(�̃ε ) → 0, as ε → 0. (3.30)
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Indeed, since

ϕε(x1, x2) − φ(x1) = ϕε(x1, x2) − ϕε(x1, 0) =
x2∫
0

∂ϕε

∂x2
(x1, s) ds,

we have from (3.25) and (3.29) that

‖ϕε − φ‖2
L2(�̃ε )

≤ C(G, H)

∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(�̃ε )

≤ C C(G, H) ε1+α
∥∥φ′∥∥2

L2(0,1) → 0, as ε → 0.

(e). Passing to the limit in the weak formulation.
Now let us to perform our first evaluation of the variational formulation (3.13) of elliptic

problem (2.2) using the test functions ϕε defined in (3.25). For this, we analyze the different
functions that form the integrands in (3.13) using the computations previously established.

• First integrand: we obtain

∫

�̃ε−

{ ∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 → 0, as ε → 0. (3.31)

Indeed, from (3.28), α > 1 and (2.6), we have that there exists C > 0 independent of ε

such that
∣∣∣∣∣∣∣
∫

�̃ε−

{
∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2

∣∣∣∣∣∣∣

≤
⎛
⎝∫

�ε

{(
∂uε

∂x1

)2

+ 1

ε2

(
∂uε

∂x2

)2
}
dx1dx2

⎞
⎠

1/2

⎛
⎜⎝
∫

�̃ε−

{(
∂Z ε

∂x1

)2

+ 1

ε2

(
∂Z ε

∂x2

)2
}
dx1dx2

⎞
⎟⎠

1/2

≤ C ε(α−1)/2 ‖φ′‖L2(0,1) → 0, as ε → 0.

• Second integrand: we have

∫

�̃ε+

{
∂uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 →

∫
�0

ξ∗ φ′(x1) dx1dx2, as ε → 0. (3.32)

For see this, we first observe that (3.25) implies

∂ϕε

∂x1

∣∣∣
�̃ε+

= ∂φ

∂x1
= φ′ and

∂ϕε

∂x2

∣∣∣
�̃ε+

= ∂φ

∂x2
= 0.
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Then, since Gε
0 ≥ G0 in (0, 1), we have �0 ⊂ �̃ε+ and

∫

�̃ε+

{
∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 =

∫

�̃ε+

∂̃uε

∂x1
(x1, x2) φ′(x1) dx1dx2

=
∫
�0

∂̃uε

∂x1
(x1, x2) φ′(x1) dx1dx2 +

∫

�̃ε+\�0

∂uε

∂x1
(x1, x2) φ′(x1) dx1dx2. (3.33)

Thus, from (3.24), we pass to the limit as ε → 0 in the first integral of (3.33) to get∫
�0

∂uε

∂x1
(x1, x2) φ′(x1) dx1dx2 →

∫
�0

ξ∗ φ′(x1) dx1dx2. (3.34)

Hence, we will prove (3.32) if we show that the remaining integral of (3.33) goes to zero as
ε → 0. Let us evaluate it. From (2.6), (3.2), (3.11) and (3.12), we have∣∣∣∣∣∣∣

∫

�̃ε+\�0

∂̃uε

∂x1
(x1, x2) φ′(x1) dx1dx2

∣∣∣∣∣∣∣
≤
∥∥∥∥∂uε

∂x1

∥∥∥∥
L2(�ε)

‖φ′‖L2(�ε+\�0)

≤ C ‖φ′‖L2(0,1) ‖Gε
0 − G0‖1/2L∞(0,1) → 0, (3.35)

as ε → 0. Therefore, (3.32) follows from (3.33), (3.34) and (3.35).

• Third integrand: if p(x) is that one in (3.6), then

∫

�̃ε

χε Pεu
ε ϕε dx1dx2 →

1∫
0

p(x) u0(x) φ(x) dx, as ε → 0. (3.36)

We start observing that Pεuε |�ε = uε , and so∫

�̃ε

χε Pεu
ε ϕε dx1dx2 =

∫
�ε

(
uε − u0

)
ϕε dx1dx2 +

∫
�ε

u0
(
ϕε − φ

)
dx1dx2

+
∫
�ε

u0 φ dx1dx2.

Moreover, due to (3.18) and (3.30), we have∫
�ε

(
uε − u0

)
ϕε dx1dx2 → 0 and

∫
�ε

u0
(
ϕε − φ

)
dx1dx2 → 0,

as ε → 0, since �ε ⊂ �̃ε , and so

‖uε − u0‖L2(�ε) ≤ ‖Pεu
ε − u0‖L2(�̃ε ) and ‖ϕε − φ‖L2(�ε) ≤ ‖ϕε − φ‖L2(�̃ε ).

Thus, we need only to pass to the limit in

∫
�ε

u0(x1) φ(x1) dx1dx2 =
1∫

0

u0(x) φ(x) (Hε(x) + Gε(x)) dx, (3.37)
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and then obtain (3.36). For this, we use the Average Theorem from [10, Lemma 4.2], as well
as, condition (3.1). Indeed,

Hε(x) + Gε(x) = H(x, x/ε) + G(x, x/εα)

⇀
1

lh

lh∫
0

H(x, y) dy + 1

lg

lg∫
0

G(x, y) dy, w∗ − L∞(0, 1),

as ε → 0. Hence, since |Y ∗(x)|
lh

− G0(x) = 1
lh

lh∫
0
H(x, y) dy, we have

Hε(x) + Gε(x) ⇀ p(x), w∗ − L∞(0, 1).

• Fourth integrand: we claim that

∫

�̃ε

χε f ε ϕε dx1dx2 →
1∫

0

f̂ (x) φ(x) dx, as ε → 0. (3.38)

Since ∫

�̃ε

χε f ε ϕε dx1dx2 =
∫

�̃ε

χε f ε
(
ϕε − φ

)
dx1dx2 +

∫

�̃ε

χε f ε φ dx1dx2

and

∫

�̃ε

χε f ε φ dx1dx2 =
1∫

0

⎛
⎜⎝

Hε (x1)∫
−Gε (x1)

f ε(x1, x2) dx2

⎞
⎟⎠φ(x1) dx1 =

1∫
0

f̂ ε(x) φ(x) dx,

we obtain (3.38) from (3.4) and (3.30).
Consequently, we can use (3.31), (3.32), (3.36) and (3.38) to pass to the limit in (3.13) to

obtain the following limit variational formulation

∫
�0

ξ∗ φ′(x1) dx1dx2 +
1∫

0

p(x) u0(x) φ(x) dx =
1∫

0

f̂ (x) φ(x) dx, (3.39)

for all φ ∈ H1(0, 1).
Next, we need to evaluate the relationship between functions ξ∗ and u0 to complete our

proof obtaining the limit problem (3.5).

(f) Relationship between ξ∗ and u0.
First let us to denote by� the rectangle� = (0, 1)×(−G1, H1), and recall the oscillating

regions �ε
i,+ given by

�ε
i,+ = {

(x1, x2) | ξi−1 < x1 < ξi , −G0,i < x2 < Hi (x1/ε)
}
, i = 1, . . . , N .

Here we are taking the positive constantsG1 and H1 from hypothesis (H), andG0,i is defined
in (3.3). We also consider the families of isomorphisms T ε

k : Aε
k �→ Y given by

T ε
k (x1, x2) =

(
x1 − εklh

ε
, x2

)
(3.40)
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1220 M. C. Pereira

where

Aε
k = {(x1, x2) ∈ R

2 | εklh ≤ x1 < εlh(k + 1) and − G1 < x2 < H1}
Y = (0, lh) × (−G1, H1)

with k ∈ N. Let us recall the auxiliary problem in the representative cell Y ∗
i

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−�Xi = 0 in Y ∗
i

∂Xi
∂N = 0 on Bi

2
∂Xi
∂N = − H ′

i (y1)√
1+H ′

i (y1)
2

on Bi
1

Xi lh − periodic on Bi
0∫

Y ∗
i

Xi dy1dy2 = 0

(3.41)

where Bi
0, B

i
1 and Bi

2 are the lateral, upper and lower boundary of ∂Y ∗
i , respectively.

Applying the same reflection procedure used in Lemma 2.1, we can define the extension
operators

Pi ∈ L(H1(Y ∗
i ), H1(Y )) ∩ L(L2(Y ∗

i ), L2(Y )), (3.42)

which are obtained by reflection in the negative direction along the line x2 = −Gi,0, and in
the positive direction along the graph of function Hi , as indicated in Remark 2.2.

Thus, taking the isomorphism (3.40) and extension operator (3.42), we can set the function

ωε(x1, x2) = x1 − ε
(
Pi Xi ◦ T ε

k (x1, x2)
)

= x1 − ε
(
Pi Xi

(
x1 − εlhk

ε
, x2

))
, for (x1, x2) ∈ �i ∩ Aε

k, i = 1, . . . , N ,

where

�i = (ξi−1, ξi ) × (−G1, H1).

Clearly, function ωε is well defined in ∪N
i=1�i . If (x1, x2) ∈ �i for some i = 1, . . . , N , then

there exists a unique k ∈ N such that (x1, x2) ∈ Aε
k . Furthermore, we have

ωε ∈ H1(∪N
i=1�i ).

We introduce now the vector ηε = (ηε
1, η

ε
2) defined by

ηε
r (x1, x2) = ∂ωε

∂xr
(x1, x2), (x1, x2) ∈ ∪N

i=1�i , r = 1, 2. (3.43)

Since ∂
∂x1

= 1
ε

∂
∂y1

and ∂
∂x2

= ∂
∂y2

, we have that

ηε
1(x1, x2) = 1 − ∂Xi

∂y1

(
x1 − εkL

ε
, x2

)
= 1 − ∂Xi

∂y1

( x1
ε

, x2
)

:= η1(y1, y2),

ηε
2(x1, x2) = −ε

∂Xi

∂y2

(
x1 − εkL

ε
, x2

)
= −ε

∂Xi

∂y2

( x1
ε

, x2
)

:= η2(y1, y2), (3.44)

for (y1, y2) = ( x1−εkL
ε

, x2) ∈ Y ∗
i , (x1, x2) ∈ �ε

i,+, i = 1, . . . , N .
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Then, performing standard computations, we get from (3.41) that ηε
1 and ηε

2 satisfy

∂ηε
1

∂x1
+ 1

ε2

∂ηε
2

∂x2
= 0 in �ε

i,+,

ηε
1N

ε
1 + 1

ε2
ηε
2N

ε
2 = 0 on

(
x1, Hi

( x1
ε

))
, (3.45)

ηε
1N

ε
1 + 1

ε2
ηε
2N

ε
2 = 0 on (x1,−G0,i ),

for each i = 1, . . . , N , where

N ε = (N ε
1 , N ε

2 ) =
(

− H ′
i (

x1
ε

)

(ε2 + H ′
i (

x1
ε

)
2
)
1
2

,
ε

(ε2 + H ′
i (

x1
ε

)
2
)
1
2

)
on

(
x1, Hi

( x1
ε

))
,

N ε = (0,−1) on (x1,−G0,i ).

Therefore, multiplying first equation of (3.45) by a test function ψ ∈ H1(�) with ψ = 0
in a neighborhood of set ∪N

i=0{(ξi , x2) | − G1 ≤ x2 ≤ H1} and integrating by parts, we
obtain

0 =
∫

�ε+

ψ

(
∂ηε

1

∂x1
+ 1

ε2

∂ηε
2

∂x2

)
dx1dx2

=
∫

∂�ε+

ψ

(
ηε
1N

ε
1 + 1

ε2
ηε
2N

ε
2

)
dS −

∫
�ε+

(
∂ψ

∂x1
ηε
1 + 1

ε2

∂ψ

∂x2
ηε
2

)
dx1dx2

= 0 −
∫

�ε+

(
∂ψ

∂x1
ηε
1 + 1

ε2

∂ψ

∂x2
ηε
2

)
dx1dx2,

where

�ε+ = Int
(
∪N
i=1 �ε

i,+
)

.

Then, for allψ ∈ H1(�)withψ = 0 in a neighborhood of∪N
i=0{(ξi , x2) | −G1 ≤ x2 ≤ H1},∫

�ε+

(
ηε
1
∂ψ

∂x1
+ ηε

2
1

ε2

∂ψ

∂x2

)
dx1dx2 = 0. (3.46)

Consequently, we can rewrite the variational formulation (2.4) using identity (3.46) in
∫

�̃ε

{
∂̃uε

∂x1

∂ϕ

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕ

∂x2
+ χε Pεu

ε ϕ

}
dx1dx2 −

∫
�ε+

(
ηε
1
∂ψ

∂x1
+ ηε

2
1

ε2

∂ψ

∂x2

)
dx1dx2

=
∫

�̃ε

χε f εϕdx1dx2, ∀ϕ ∈ H1(�ε). (3.47)

Now, in order to accomplish our goal, we will pass to the limit in (3.47). For this, we
introduce a second class of suitable test functionswhichwill allow us to get our limit problem.

Let φ = φ(x) ∈ C∞
0 (∪N

i=1(ξi−1, ξi )) and consider the following test function

ϕε(x1, x2) =
{

φ(x1) ωε(x1, x2), (x1, x2) ∈ �̃ε+
Z ε
m(x1, x2), (x1, x2) ∈ �̃ε− ∩ Qε

m, m = 0, 1, 2, . . .
(3.48)
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where Qε
m is the rectangle defined by the step function Gε

0 previously introduced in (3.26),
with �̃ε+ and �̃ε− given in (3.12). The function Z ε

m here is the solution of the problem
⎧⎪⎨
⎪⎩

− ∂2Z ε

∂x21
− 1

ε2
∂2Z ε

∂x22
= 0, in Qε

m
∂Z ε

∂N ε = 0, on ∂Qε
m\�ε

m
Z ε = φ ωε, on �ε

m

(3.49)

where�ε
m is the topof rectangleQε

m .Hereafter,wemayuse notation Z ε(x1, x2) = Z ε
m(x1, x2)

whenever (x1, x2) ∈ �̃ε−∩Qε
m . Moreover, we observe that φ ωε |�ε

m
∈ H1(�ε

m), and auxiliary
problems (3.27) and (3.49) just differ by the condition on the top border �ε

m .
Now, let us to pass to the limit in functions ωε and ηε

1. Due to definition of ωε , we have
for each i = 1, . . . , N ,∫
Aε
k∩�i

|ωε − x1|2dx1dx2 =
∫
Y

ε3|(Pi Xi )(y1, y2)|2dy1dy2 ≤
∫
Y ∗
i

Cε3|Xi (y1, y2)|2dy1dy2

and so,

∫
�i

|ωε − x1|2dx1dx2 ≈
C
εlh∑
k=1

∫
Y ∗
i

Cε3|Xi (y1, y2)|2dy1dy2

≈ ε2
∫
Y ∗
i

C |Xi (y1, y2)|2dy1dy2 → 0 as ε → 0.

Analogously,
∫

Aε
k∩�i

∣∣∣ ∂

∂x1

(
ωε − x1

) ∣∣∣2dx1dx2 =
∫
Y

∣∣∣∂(Pi Xi )

∂y1
(y1, y2)

∣∣∣2 ε dy1dy2

≤ ε

∫
Y ∗
i

C
∣∣∣∂Xi

∂y1
(y1, y2)

∣∣∣2dy1dy2

and ∫
Aε
k∩�i

∣∣∣ ∂

∂x2

(
ωε − x1

) ∣∣∣2dx1dx2 =
∫
Y

ε3
∣∣∣∂(Pi Xi )

∂y2
(y1, y2)

∣∣∣2 dy1dy2

≤ ε3
∫
Y ∗
i

C
∣∣∣∂Xi

∂y2
(y1, y2)

∣∣∣2dy1dy2.

Therefore,

∫
�i

∣∣∣ ∂

∂x1

(
ωε − x1

) ∣∣∣2dx1dx2 ≈
C
εlh∑
k=1

ε

∫
Y ∗
i

C
∣∣∣∂Xi

∂y1
(y1, y2)

∣∣∣2dy1dy2

≈
∫
Y ∗
i

C̃
∣∣∣∂Xi

∂y1
(y1, y2)

∣∣∣2dy1dy2
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for all ε > 0 and∫
�i

∣∣∣ ∂

∂x2

(
ωε − x1

) ∣∣∣2dx1dx2 ≤ ε2
∫
Y ∗
i

C̃
∣∣∣∂Xi

∂y2
(y1, y2)

∣∣∣2dy1dy2 → 0 as ε → 0.

Consequently, we can conclude for ε → 0

ωε → x1 s − L2(�) and w − H1(�i ), i = 1, . . . , N , (3.50)

and
∂ωε

∂x2
→ 0 s − L2(�). (3.51)

In particular, ωε is uniformly bounded in H1(∪N
i=1�i ) for all ε > 0.

Next let η̃ε = ηεχ0 be the extension by zero of vector ηε to the region �0 independent
of ε. Since Xi is lh-periodic at variable y1, we can apply the Average Theorem to (3.44)
obtaining

η̃ε
1(x1, x2) ⇀

1

lh

lh∫
0

(
1 − ∂Xi

∂y1
(s, x2)

)
χi (s, x2)ds := q̂i (x2), w∗ − L∞(ξi−1, ξi ),

where χi is the characteristic function of Y ∗
i . Hence, we can argue as (3.22) to get

η̃ε
1 ⇀ q̂, w∗ − L∞(�0), (3.52)

where q̂(x1, x2) ≡ q̂i (x2), if (x1, x2) ∈ �i , for i = 1, . . . , N .
Now we evaluate the test functions ϕε as ε → 0. It follows from estimate (2.10) that

∥∥∥∥∂Z ε
m

∂x1

∥∥∥∥
2

L2(Qε
m )

+ 1

ε2

∥∥∥∥∂Z ε
m

∂x2

∥∥∥∥
2

L2(Qε
m )

≤ Cεα−1
∥∥∥∥∂(φ ωε)

∂x1

∥∥∥∥
2

L2(�ε
m )

. (3.53)

Denoting Qε = ∪Nε

i=1Q
ε
m , we have �ε+ = Qε ∩ �ε , and so, due to (3.48), (3.50) and (3.53),

∥∥∥∥∂ϕε

∂x1

∥∥∥∥
2

L2(�ε−)

+ 1

ε2

∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(�ε−)

=
mε∑
m=0

(∥∥∥∥∂ϕε

∂x1

∥∥∥∥
2

L2(Qε
m )

+ 1

ε2

∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(Qε
m )

)

≤ C εα−1 max
{
‖φ‖2∞ ,

∥∥φ′∥∥2∞
} ∥∥ωε

∥∥2
H1(∪N

i=1�i )

≤ C̃ εα−1, (3.54)

for some C̃ > 0 independent of ε. Consequently, we can argue as in (3.18) to show

‖ϕε − x1 φ‖L2(�̃ε ) → 0 as ε → 0. (3.55)

Indeed, for (x1, x2) ∈ {(x1, x2) | γm,ε < x1 < γm+1,ε , −Gε(x1) < x2 < H1},

ϕε(x1, x2) − φ(x1) ωε(x1,−wε
m) = ϕε(x1, x2) − ϕε(x1,−wε

m) =
x2∫

−wε
m

∂ϕε

∂x2
(x1, s) ds,

where wε
m is the constant given by the step function Gε

0 in (γm,ε , γm+1,ε), that is,

wε
m = Gε

0(x), for x ∈ (γm,ε , γm+1,ε).
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Hence, if �ε ⊂ R
2 is the graph of −Gε

0, we have ϕε |�ε = ϕε(x1,−wε
m) =

φ(x1) ωε(x1,−wε
m) for x1 ∈ (γm,ε , γm+1,ε), and so

∫

�̃ε

|ϕε − ϕε |�ε |2dx1dx2 ≤
mε∑
m=0

γm+1,ε∫
γm,ε

H1∫
−Gε (x1)

|x2 + wε
m |

x2∫
−wε

m

∣∣∣∣∂ϕε

∂x2
(x1, s)

∣∣∣∣
2

dsdx2dx1

≤ |H1 + G1|2
1∫

0

H1∫
−Gε (x1)

∣∣∣∣∂ϕε

∂x2
(x1, s)

∣∣∣∣
2

dsdx1

≤ |H1 + G1|2
∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(�̃ε )

. (3.56)

On the other hand,∫

�̃ε

|φ ωε − ϕε |�ε |2dx1dx2 ≤
∫

�̃ε

|φ (ωε − ωε |�ε

) |2dx1dx2

≤ |H1 + G1|2‖φ‖∞
∥∥∥∥∂ωε

∂x2

∥∥∥∥
2

L2(�)

. (3.57)

Then, it follows from (3.56) and (3.57) that there exist C > 0 independent of ε such that

‖ϕε − x1 φ‖2
L2(�̃ε )

≤ ‖ϕε − ϕε |�ε ‖2
L2(�̃ε )

+ ‖ϕε |�ε − φωε‖2
L2(�̃ε )

+ ‖φωε − x1φ‖L2(�̃ε )

≤ C

{∥∥∥∥∂ϕε

∂x2

∥∥∥∥
2

L2(�̃ε )

+
∥∥∥∥∂ωε

∂x2

∥∥∥∥
2

L2(�)

+ ‖ωε − x1‖L2(�)

}
. (3.58)

Hence, we can conclude (3.55) from (3.48), (3.50), (3.51), (3.54) and (3.58).
Now, we are in condition to pass to the limit in (3.47). Taking as test functions ϕ = ϕε

and ψ = φ uε in (3.47), we get∫

�̃ε

χε f εϕε dx1dx2

=
∫

�̃ε

{ ∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2
+ χεPεu

εϕε
}
dx1dx2

−
∫

�ε+

{
ηε
1
∂(φuε)

∂x1
+ 1

ε2
ηε
2
∂(φuε)

∂x2

}
dx1dx2

=
∫

�̃ε+

{ ∂̃uε

∂x1
φ′ωε + φ

∂̃uε

∂x1

∂ωε

∂x1
+ 1

ε2
φ

∂̃uε

∂x2

∂ωε

∂x2

}
dx1dx2

+
∫

�̃ε−

{ ∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 +

∫

�̃ε

χεPεu
εϕε dx1dx2

−
∫

�ε+

{
ηε
1φ

′uε + ηε
1φ

∂uε

∂x1
+ 1

ε2
ηε
2φ

∂uε

∂x2

}
dx1dx2. (3.59)
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Consequently, due to (3.59), (3.43) and �ε+ ⊂ �̃ε+, we can rewrite (3.47) as
∫

�̃ε+

∂̃uε

∂x1
ωε φ′ dx1dx2 +

∫

�̃ε−

{
∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 +

∫

�̃ε

χε Pεu
ε ϕε dx1dx2

−
∫

�ε+

ηε
1φ

′ uε dx1dx2 =
∫

�̃ε

χε f εϕεdx1dx2, ∀φ ∈ C∞
0 (∪N

i=1(ξi−1, ξi )). (3.60)

Let us now to evaluate (3.60) when ε goes to zero.

• First integrand: we claim

∫

�̃ε+

∂̃uε

∂x1
ωε φ′ dx1dx2 →

∫
�0

ξ∗x1φ′ dx1dx2, as ε → 0. (3.61)

Notice �0 ⊂ �̃ε+, and so,
∫

�̃ε+

∂̃uε

∂x1
ωε φ′ dx1dx2 =

∫
�0

∂̃uε

∂x1
ωε φ′ dx1dx2 +

∫

�̃ε+\�0

∂̃uε

∂x1
ωε φ′ dx1dx2.

Due to (3.24) and (3.50), it is easy to see
∫
�0

∂̃uε

∂x1
ωε φ′ dx1dx2 → ∫

�0
ξ∗x1φ′dx1dx2. On

the other hand, it follows from (2.6), (3.2), (3.11), (3.12) and (3.50) that

∫

�̃ε+\�0

∣∣∣∣ ∂̃u
ε

∂x1
ωε φ′

∣∣∣∣ dx1dx2 ≤
∥∥∥∥∂uε

∂x1

∥∥∥∥
L2(�ε)

‖φ′ωε‖L2(�̃ε+\�0)

≤ ‖uε‖H1(�ε)‖ωε‖H1(∪i �̃
ε
i )

‖φ′‖2∞
∣∣�̃ε+ \ �0

∣∣1/2
→ 0, as ε → 0,

proving (3.61).
• Second integrand: we have

∫

�̃ε−

{ ∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 → 0, as ε → 0. (3.62)

Indeed, it follows from estimates (3.54) and (2.6) that there exists C > 0 such that

∣∣∣∣∣∣∣
∫

�̃ε−

{
∂̃uε

∂x1

∂ϕε

∂x1
+ 1

ε2

∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2

∣∣∣∣∣∣∣

≤
⎛
⎝∫

�ε

{(
∂uε

∂x1

)2

+ 1

ε2

(
∂uε

∂x2

)2
}
dx1dx2

⎞
⎠

1/2
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⎛
⎜⎝
∫

�̃ε−

{(
∂ϕε

∂x1

)2

+ 1

ε2

(
∂ϕε

∂x2

)2
}
dx1dx2

⎞
⎟⎠

1/2

≤ C ε(α−1)/2 → 0, as ε → 0,

since α > 1.
• Third integrand: if p(x) is that one defined in (3.6), then

∫

�̃ε

χε Pεu
ε ϕε dx1dx2 →

1∫
0

p(x) u0(x) xφ(x) dx, as ε → 0. (3.63)

In fact, we can proceed as in (3.36), since we have (3.18), (3.55), Pεuε |�ε = uε , and

∫

�̃ε

χε Pεu
ε ϕε dx1dx2 =

∫
�ε

(
uε − u0

)
ϕε dx1dx2 +

∫
�ε

u0
(
ϕε − x1φ

)
dx1dx2

+
∫
�ε

u0 x1φ dx1dx2.

• Fourth integrand: Due to (3.18) and (3.52), we can easily obtain

∫
�ε+

ηε
1 φ′ uε dx1dx2 →

∫
�0

q̂ φ′ u0 dx, as ε → 0, (3.64)

since �ε+ ⊂ �0, and

∫
�ε+

ηε
1 φ′ uε dx1dx2 =

∫
�0

η̃ε
1 φ′ Pεu

ε dx1dx2.

• Fifth integrand: we have

∫

�̃ε

χε f ε ϕε dx1dx2 →
1∫

0

f̂ (x) xφ(x) dx, as ε → 0, (3.65)

which is derived from (3.4) and (3.55) in the same way that (3.38).

Therefore, due to convergences obtained in (3.61), (3.62), (3.63), (3.64) and (3.65), we
can pass to the limit in (3.60) getting the following relation

∫
�0

ξ∗ x1φ′ dx1dx2 +
1∫

0

p u0 xφ dx −
∫
�0

q̂ φ′ u0 dx1dx2 =
1∫

0

f̂ xφ dx, (3.66)
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for all φ ∈ C∞
0 (∪N

i=1(ξi−1, ξi ))where the step functions p and q̂ are given in (3.6) and (3.52),
respectively, by

p(x) = pi = |Y ∗
i |
lh

+ 1

lg

lg∫
0

Gi (s) ds − G0,i ,

G0,i = min
y∈R Gi (y), x ∈ (ξi−1, ξi ), (3.67)

q̂(x, y) = q̂i (y) = 1

lh

lh∫
0

(
1 − ∂Xi

∂y1
(s, y)

)
χi (s, y) ds,

for i = 1, . . . , N . Thus, if we take x1φ(x1) as a test function in (3.39), we obtain

∫
�0

ξ∗ ∂

∂x1
(x1φ(x1)) dx1dx2 +

1∫
0

p u0 xφ dx =
1∫

0

f̂ xφ dx . (3.68)

Combining (3.66) and (3.68), we get

∫
�0

{
q̂ φ′ u0 + φ ξ∗} dx1dx2 = 0, ∀φ ∈ C∞

0 (∪N
i=1(ξi−1, ξi )). (3.69)

Hence, integrating by parts, we have
∫
�0

q̂ φ′ u0 dx1dx2 = − ∫
�0

q̂ ∂u0
∂x1

φ dx1dx2, and so, we
obtain via iterated integration and (3.69) that

N∑
i=1

ξi∫
ξi−1

H1∫
−G0,i

{
q̂i (x2)

∂u0
∂x1

(x1) − ξ∗(x1, x2)
}

φ(x1) dx1dx2 = 0, (3.70)

for all φ ∈ C∞
0 (∪N

i=1(ξi−1, ξi )).
Then, if we consider the step function q : (0, 1) �→ R, q(x) = qi if x ∈ (ξi−1, ξi ) with

qi = 1

lh

∫
Y ∗
i

(
1 − ∂Xi

∂y1
(y1, y2)

)
dy1dy2,

it follows from (3.70) and (3.67) that

1∫
0

⎧⎪⎨
⎪⎩q(x1)

∂u0
∂x1

(x1)−
⎛
⎜⎝

H1∫
−G0(x1)

ξ∗(x1, x2) dx2

⎞
⎟⎠
⎫⎪⎬
⎪⎭φ(x1) dx1=0, ∀φ ∈ C∞

0 (∪N
i=1(ξi−1, ξi )),

where G0(x) = G0,i if x ∈ (ξi−1, ξi ). Therefore,

H1∫
−G0(x1)

ξ∗(x1, x2) dx2 = q(x1)
∂u0(x1)

∂x1
, a.e. x1 ∈ (0, 1). (3.71)
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Finally, since
∫
�0

ξ∗(x1, x2) φ′(x1) dx1dx2 = ∫ 1
0

(∫ H1
−G0(x1)

ξ∗(x1, x2) dx2
)

φ′(x1) dx1,
we can plug this last equality (3.71) in (3.39) getting our limit problem (3.5) write here as

N∑
i=1

ξi∫
ξi−1

{
qi

∂u0
∂x1

∂φ

∂x1
+ pi u0 φ

}
dx1 =

1∫
0

f̂ φ dx1, ∀φ ∈ H1(0, 1).

��

4 The general homogenized limit

Now we are in condition to get our main result concerned to the elliptic Eq. (2.2) under
hypothesis (H). Using approximation arguments on functions Gε and Hε , the boundary
perturbation result given by Proposition 2.4, and Lemma 3.1, we are able to accomplish our
goal using techniques previously discussed in [9–11].

Theorem 4.1 Let uε be the solution of (2.2) with f ε ∈ L2(�ε) satisfying condition (2.3),
and assume that the function

f̂ ε(x) =
Hε (x)∫

−Gε (x)

f ε(x, s) ds, x ∈ (0, 1), (4.1)

satisfies that f̂ ε ⇀ f̂ , w-L2(0, 1), as ε → 0.
Then, there exists û ∈ H1(0, 1), such that, if Pε is the extension operator introduced in

Lemma 2.1, then
‖Pεu

ε − û‖L2(�̃ε ) → 0, as ε → 0, (4.2)

where û is the unique solution of the Neumann problem

1∫
0

{
q(x) ux (x) ϕx (x) + p(x) u(x) ϕ(x)

}
dx =

1∫
0

f̂ (x) ϕ(x) dx (4.3)

for all ϕ ∈ H1(0, 1), where

q(x) = 1

lh

∫
Y ∗(x)

{
1 − ∂X (x)

∂y1
(y1, y2)

}
dy1dy2,

p(x) = |Y ∗(x)|
lh

+ 1

lg

lg∫
0

G(x, y) dy − G0(x), (4.4)

G0(x) = min
y∈R G(x, y),

and X (x) is the unique solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�X (x) = 0 in Y ∗(x)
∂X (x)
∂N = 0 on B2(x)

∂X (x)
∂N = N1 on B1(x)

X (x) lh − periodic on B0(x)∫
Y ∗(x) X (x) dy1dy2 = 0

(4.5)
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in the representative cell Y ∗(x) given by

Y ∗(x) = {(y1, y2) ∈ R
2 | 0 < y1 < lh, −G0(x) < y2 < H(x, y1)},

B0(x) is the lateral boundary, B1(x) is the upper boundary and B2(x) is the lower boundary
of ∂Y ∗(x) for each x ∈ (0, 1).

Remark 4.2 (i) If the function q(x) is continuous, we have that the integral formulation
(4.3) is the weak formulation of problem{ 1

p(x) (q(x) ux (x))x + u(x) = f (x), x ∈ (0, 1),
ux (0) = ux (1) = 0,

with f (x) = f̂ (x)/p(x).
(ii) Also, if we initially assume that f ε does not depend on the vertical variable y, that is,

f ε(x, y) = f0(x), then it is not difficult to see that

f̂ ε(x) = (Hε(x) + Gε(x)) f0(x)

and so, due to the Average Theorem discussed for example in [10, Lemma 4.2],

Hε(x) + Gε(x) ⇀
1

lh

lh∫
0

H(x, y) dy + 1

lg

lg∫
0

G(x, y) dy, w∗ − L∞(0, 1),

as ε → 0. Thus, Hε(x) + Gε(x) ⇀ p(x), w∗ − L∞(0, 1), and f̂ (x) = p(x) f0(x) as
discussed in (3.37).

(iii) Moreover, if we combine the uniform estimate (2.6) in H1(�ε) and Lemma 2.1, we
obtain Pεuε uniformly bounded in H1(�̃ε). Hence, from the convergence result (4.2) in
L2(�̃ε), we can obtain by interpolation [29, Section 1.4] that

‖Pεu
ε − û‖Hβ (�̃ε ) → 0, as ε → 0,

for all 0 ≤ β < 1.

Remark 4.3 As a matter of fact, we have that the problem (4.3) is well posed in the sense
that the diffusion coefficient q is uniformly positive and smooth in (0, 1). For see this, we
use the variational formulation of the auxiliary problem (4.5) given by the bilinear form

aY ∗(ϕ, φ) =
∫

Y ∗(x)

∇ϕ · ∇φ dy1dy2, ∀ϕ, φ ∈ V,

defined in the Hilbert space V given by V = VY ∗/R,

VY ∗ = {ϕ ∈ H1(Y ∗) | ϕ is lh - periodic in variable y1},
with norm

‖ϕ‖V =
⎛
⎝∫
Y ∗

|∇ϕ|2 dy1dy2

⎞
⎠

1/2

.

Due to hypothesis (H), we have that the representative cell Y ∗ = Y ∗(x) is defined for all
x ∈ [0, 1]. Hence, for all φ ∈ V and x ∈ [0, 1], we have

aY ∗(X, φ) =
∫
B1

N1φ dS,
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where B1(x) is the upper boundary of the basic cell Y ∗. Consequently, y1 − X (x) satisfies

aY ∗(y1 − X, φ) =
∫
B1

N1φ dS −
∫
Y ∗

φ dy1dy2 −
∫
B1

N1 φ dS = 0, ∀φ ∈ V, (4.6)

since φ is lh-periodic in the y1 variable. Also, we have that

q lh =
∫
Y ∗

∂

∂y1
(y1 − X (y1, y2))

∂y1
∂y1

dy1dy2 =
∫
Y ∗

∇(y1 − X (y1, y2)) · ∇ y1 dy1dy2

= aY ∗(y1 − X, y1). (4.7)

Hence, due to relation (4.6) with φ = −X , and identity (4.7), we get for all x ∈ [0, 1]
q lh = aY ∗(y1 − X, y1) + aY ∗(y1 − X,−X)

= aY ∗(y1 − X, y1 − X) = ‖y1 − X‖V > 0.

Thus, since ‖y1 − X‖V is a continuous function in [0, 1] (see [10, Proposition A.1]) and
|Y ∗| > 0, we have that the homogenization coefficient q is uniformly positive and continuous
in [0, 1] implying that, for example, the problem (4.3) iswell posedbeing û its unique solution.

We provide now a proof of the Theorem 4.1.

Proof From estimate (2.6) and Lemma 2.1, we have uε |�̂0
∈ H1(�̂0) satisfying

‖Pεu
ε‖L2(�̂0)

,

∥∥∥∂Pεuε

∂x1

∥∥∥
L2(�̂0)

and
1

ε

∥∥∥∂Pεuε

∂x2

∥∥∥
L2(�̂0)

≤ M for all ε > 0,

with M > 0 independent of ε, where �̂0 ⊂ �̃ε is given here by �̂0 = (0, 1) × (−G0, H1).

Then, there exists u0 ∈ H1(�̂0) and a subsequence, still denoted by Pεuε , satisfying

Pεu
ε ⇀ u0 w − H1(�̂0), and

∂Pεuε

∂x2
→ 0 s − L2(�̂0). (4.8)

Thus, arguing as in (3.16), we get u0(x1, x2) = u0(x1) on �̂0, and so, u0 ∈ H1(0, 1).
We will show that u0 satisfies the Neumann problem (4.3) using a discretization argument

on the oscillating boundary of the domain.
For this, let us fix a small δ > 0 and consider piecewise periodic functions Gδ(x, y) and

H δ(x, y) as described at the beginning of Sect. 3 satisfying hypothesis (H) and condition

0 ≤ Gδ(x, y) − G(x, y) ≤ δ,

0 ≤ H δ(x, y) − H(x, y) ≤ δ,
∀(x, y) ∈ [0, 1] × R.

In order to construct these functions, we may proceed as follows. The functions G and H
are uniformly C1 in each interval (ξi−1, ξi ) × (0, 1) being periodic in the second variable.
In particular, for δ > 0 small enough and for a fixed z ∈ (ξi−1, ξi ), we have that there exists
a small interval (z − η, z + η) with η depending only on δ such that |G(x, y) − G(z, y)| +
|∂yG(x, y) − ∂yG(z, y)| < δ/2 and |H(x, y) − H(z, y)| + |∂y H(x, y) − ∂y H(z, y)| < δ/2
for all x ∈ (z − η, z + η) ∩ (ξi−1, ξi ) and for all y ∈ R. This allows us to select a finite
number of points: ξi−1 = ξ1i−1 < ξ2i−1 < . . . < ξ ri−1 = ξi such that ξ ri−1 − ξ r−1

i−1 < η, and
therefore, defining Gδ(x, y) = G(ξ ri−1, y) + δ/2 and H δ(x, y) = H(ξ ri−1, y) + δ/2 for all

x ∈ (ξ ri−1, ξ
r+1
i−1 ) andgetting 0 ≤ Gδ(x, y)−G(x, y) ≤ δ, |∂yGδ(x, y)−∂yG(x, y)| ≤ δ, 0 ≤

H δ(x, y) − H(x, y) ≤ δ and |∂y H δ(x, y) − ∂y H(x, y)| ≤ δ for all (x, y) ∈ (ξi−1, ξi ) × R.
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Note that this construction can be done for all i = 1, . . . , N . In particular, if we rename
all the points ξ ki constructed above by 0 = z0 < z1 < . . . < zm = 1 observing that
m = m(δ), then the functions Gδ and H δ satisfy Gδ(x, y) = Gδ

i (y) and H δ(x, y) = H δ
i (y)

in (x, y) ∈ (zi−1, zi ) × R, i = 1, . . . ,m, where Gδ
i and H δ

i are C1-functions, lg and lh-
periodic, respectively. At each point zi , we can set Gδ and H δ as the minimum value of the
lateral limit in zi .

Let us now to denote Gδ
ε(x) = Gδ(x, x/εα), α > 1, and H δ

ε (x) = H δ(x, x/ε), aiming to
introduce the following oscillating domains

�ε,δ = {(x, y) ∈ R
2 | x ∈ (0, 1), −Gδ

ε(x) < y < H δ
ε (x)},

�̃ε,δ = {(x, y) ∈ R
2 | x ∈ (0, 1), −Gδ

ε(x) < y < H1}.
Since H δ

ε satisfies the hyphotheses of Lemma 2.1, there exists an extension operator

Pε,δ ∈ L(L p(�ε,δ), L p(�̃δ)) ∩ L(W 1,p(�ε,δ),W 1,p(�̃δ))

satisfying the uniform estimate (2.8) with η(ε) ∼ 1/ε.
Taking f ε ∈ L2(�ε) satisfying ‖ f ε‖L2(�ε) ≤ C , and extend it by 0 outside �ε , and still

denoting the extended function again by f ε , and using that Gδ ≥ G and Hδ ≥ H , we have

that f̂ ε
δ (x) = ∫ H δ

ε (x)
−Gδ

ε (x)
f ε(x, y)dy = ∫ Hε (x)

−Gε (x)
f ε(x, y)dy = f̂ ε(x) and by hypothesis, we

have that f̂ ε
δ ≡ f̂ ε ⇀ f̂ w-L2(0, 1).

Therefore, it follows fromTheorem 3.1 that for each δ > 0 fixed, there exist uδ ∈ H1(0, 1)
such that the solutions uε,δ of (2.2) in �ε,δ satisfy

‖Pε,δu
ε,δ − uδ‖L2(�̃ε,δ) → 0, as ε → 0, (4.9)

where uδ ∈ H1(0, 1) is the unique solution of the Neumann problem

1∫
0

{
qδ(x) uδ

x (x) ϕx (x) + pδ(x) uδ(x) ϕ(x)
}
dx =

1∫
0

f̂ (x) ϕ(x) dx, ∀ϕ ∈ H1(0, 1),

(4.10)
where qδ and, pδ : (0, 1) �→ R are strictly positive functions, locally constant, given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qδ(x) = 1
lh

∫
Y ∗
i

{
1 − ∂Xi

∂y1
(y1, y2)

}
dy1dy2,

pδ(x) = |Y ∗
i |
lh

+ 1
lg

lg∫
0
Gδ

i (s) ds − Gδ
0,i ,

Gδ
0,i = miny∈R Gδ

i (y),

x ∈ (zi−1, zi ),

where the function Xi is the unique solution of (3.7) in the representative cell Y ∗
i given by

Y ∗
i = {(y1, y2) ∈ R

2 | 0 < y1 < lh, −Gδ
0,i < y2 < H δ

i (y1)}, i = 1, . . . ,m.

Now, let us pass to the limit in (4.10) as δ → 0. To do this, we consider the functions
qδ and pδ defined in x ∈ (0, 1) and the functions q and p defined in (4.4). We have that
qδ and pδ converge to q and p uniformly in (0, 1). The uniform convergence of qδ to q in
(0, 1) follows from [9, Proposition A.1]. The uniform convergence of pδ to p follows from
the uniform convergence of Gδ and H δ to G and H , respectively, as δ → 0.
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Therefore,weobtain from [13, p. 8] or [23, p. 1] the following limit variational formulation:
to find u ∈ H1(0, 1) such that

1∫
0

{
q(x) ux (x) ϕx (x) + p(x) u(x) ϕ(x)

}
dx =

1∫
0

f̂ (x) ϕ dx (4.11)

for all ϕ ∈ H1(0, 1). Hence, there exists u∗ ∈ H1(0, 1) such that

uδ → u∗ in H1(0, 1) (4.12)

where u∗ is the unique solution of the Neumann problem (4.11).
We will complete the proof showing that u∗ = u0 in (0, 1), where u0 is the function

obtained in (4.8). In order to do so, we observe that ‖u∗ − u0‖2L2(0,1)
= {H1 + G0}−1 ‖u∗ −

u0‖2L2(�̂0)
, and therefore, to show that u∗ = u0, it is enough to show that ‖u∗−u0‖2L2(�̂0)

= 0.
Adding and subtracting appropriate functions, we have for all ε and δ > 0 that

‖u∗ − u0‖L2(�̂0)
≤ ‖u∗ − uδ‖L2(�̂0)

+ ‖uδ − uε,δ‖L2(�̂0)

+‖uε,δ − uε‖L2(�̂0)
+ ‖uε − u0‖L2(�̂0)

. (4.13)

Let η be now a positive small number. From (4.12) and Theorem 2.4, we can choose a
δ > 0 fixed and small such that ‖u∗−uδ‖L2(�0)

≤ η and ‖uε,δ −uε‖L2(�0)
≤ η uniformly for

all ε > 0. For this particular value of δ, we can choose, by (4.9), ε1 > 0 small enough such that
‖uδ −uε,δ‖L2(�0)

≤ η for 0 < ε < ε1. Moreover, from (4.8), we have that there exists ε2 > 0
such that ‖uε − u0‖L2(�0)

≤ η for all 0 < ε < ε2. Hence, with ε = min{ε1, ε2} applied to
(4.13), we get ‖u∗−u0‖L2(�0)

≤ 4η. Since η is arbitrarily small, we get ‖u∗−u0‖2L2(�̂0)
= 0.

��

5 Convergence of linear semigroups

In order to accomplish our goal, we consider here the linear parabolic problems associated
with the perturbed Eq. (1.5) and its limit problem (1.6) in the abstract framework given by
[27,29] to show that, under an appropriated notion of convergence, the linear semigroup
given by (1.5) converges to the one established by (1.6) as ε → 0. The convergence concept
that we adopt here was first introduced in the works [41–43,45,46] and then successfully
applied in [2–5,19] to concrete perturbation problems given by parabolic equations.

To do so, let us first consider a family of Hilbert spaces {Zε}ε>0 defined by Zε = L2(�ε)

under the canonical inner product

(u, v)ε =
∫
�ε

u(x1, x2) v(x1, x2) dx1dx2

and let Z0 = L2(0, 1) be the limiting Hilbert space with the inner product (·, ·)0 given by

(u, v)0 =
1∫

0

p(x) u(x) v(x) dx
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where

p(x) = |Y ∗|
lh

+ 1

lg

lg∫
0

G(x, y) dy − G0(x)

is the positive function previously defined in (4.4).
Wewrite the elliptic problem (2.4) as an abstract equation Lεu = f ε where Lε : D(Lε) ⊂

L2(�ε) �→ L2(�ε) is the self-adjoint, positive linear operator with compact resolvent

D(Lε) =
{
u ∈ H2(�ε) | ∂u

∂x1
N ε
1 + 1

ε2

∂u

∂x2
N ε
2 = 0 on ∂�ε

}

Lεu = − ∂2u

∂x12
− 1

ε2

∂2u

∂x22
+ u, u ∈ D(Lε). (5.1)

Analogously, we associate the limit elliptic problem (4.3) to the limit linear operator
L0 : D(L0) ⊂ Z0 �→ Z0 defined by

D(L0) = {
u ∈ H2(0, 1) | u′(0) = u′(1) = 0

}
L0u = − 1

p(x)
(q(x)ux )x + u, u ∈ D(L0) (5.2)

where p and q are the homogenized coefficients established in (4.4). Due to Remark 4.3, it
is clear that L0 is a positive self-adjoint operator with compact resolvent.

In order to simplify the notation, we denote by Zα
ε the fractional power scale associated

with operators Lε with 0 � α � 1 and 0 � ε � 1. We also write Zε := Z0
ε for all 0 � ε � 1.

Notice that Z1/2
ε is the Sobolev Space H1(�ε) with norm

‖u‖2
Z1/2

ε

=
∥∥∥∥ ∂u

∂x1

∥∥∥∥
2

Zε

+ 1

ε2

∥∥∥∥ ∂u

∂x2

∥∥∥∥
2

Zε

+ ‖u‖2Zε
.

Remark 5.1 It follows fromRemark2.3 that the extensionoperators Pε ∈ L(Z1/2
ε , H1(�̃ε))∩

L(Zε, L2(�̃ε)) given by Lemma 2.1 are uniformly bounded in ε. Therefore, we obtain by
interpolation that

sup
0�ε�1

‖Pε‖L(Zα
ε ,H2α(�̃ε )) < ∞, 0 � α �

1

2
.

So far, we have passed to limit in the variational problem (2.4) as ε → 0 getting the
limit Eq. (4.3). Here, we apply the concept of compact convergence to obtain convergence
properties of the linear semigroups generated by the operators Lε and L0.

For this, let us consider the family of linear continuous operators Eε : Z0 �→ Zε given by

(Eεu)(x1, x2) = u(x1) on �ε

for each u ∈ Z0. Since

‖Eεu‖2Zε
=
∫
�ε

u2(x1) dx1dx2 =
1∫

0

{Hε(x1) + Gε(x1)} u2(x1) dx1,

we have that ‖Eεu‖Zε → ‖u‖Z0 as ε → 0. Observe that Eε is a kind of inclusion operator
from Z0 into Zε . Similarly, we can consider Eε : L1

0 → L1
ε , and so, taking in L1

0 the
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equivalent norm ‖u‖Z1
0

= ‖ − uxx + u‖Z0 , we obtain

‖Eεu‖L1
ε

→ ‖u‖L1
0
.

Consequently, since

sup
0�ε�1

{‖Eε‖L(Z0,Zε ), ‖Eε‖L(L1
0,L

1
ε )

} < ∞,

we get by interpolation that

C = sup
ε>0

‖Eε‖L(Zα
0 ,Zα

ε ) < ∞ for 0 � α � 1.

Now we are in condition to set the following concepts of convergence, compactness and
compact convergence of operators associated with the family of operators {Eε}ε>0.

Definition 5.2 We say that a sequence of elements {uε}ε>0 with uε ∈ Zε is E-convergent to

u ∈ Z0, if ‖uε − Eεu‖Zε → 0 as ε → 0. We write uε E→ u.

Definition 5.3 A sequence {un}n∈N with un ∈ Zεn is said to be E-precompact if for any

subsequence {un′ } there exist a subsequence {un′′ } and u ∈ Z0 such that un′′
E→ u as

n′′ → ∞. A family {uε}ε>0 is called pre-compact if each sequence {uεn }, with εn → 0, is
pre-compact.

Definition 5.4 We say that a family of operators {Bε ∈ L(Zε) | ε > 0} E-converges to

B ∈ L(Z0) as ε → 0, if Bε f ε E→ B f whenever f ε E→ f ∈ Z0. We write Bε
EE→ B.

Definition 5.5 We say that a family of compact operators {Bε ∈ L(Zε) | ε > 0} converges
compactly to a compact operator B ∈ L(Z0), if for any family { f ε}ε>0 with ‖ f ε‖Zε ≤ 1,

we have that the family {Bε f ε} is E-precompact and Bε
EE→ B. We write Bε

CC→ B.

We finally note this notion of convergence can also be extended to sets following [5,19].

Definition 5.6 Let Oε ⊂ Zα
ε , ε ∈ [0, 1], and O0 ⊂ Zα

0 , α ∈ [0, 1). We say that the family
of sets {Oε}ε∈[0,1] is E-upper semicontinuous or just upper semicontinuous at ε = 0 if

sup
wε∈Oε

[
inf

w∈O0

{‖wε − Eεw‖Zα
ε

} ] → 0, as ε → 0.

Let us also recall an useful characterization of upper semicontinuity of sets: If any sequence
{uε} ⊂ Oε has a E-convergent subsequence with limit belonging toO, then {Oε} is E-upper
semicontinuous at zero.

The following result is basically Theorem 4.1 written according to previous framework.

Corollary 5.7 The family of compact operators {L−1
ε ∈ L(Zε)}ε>0 converges compactly to

the compact operator L−1
0 ∈ L(Z0) as ε → 0.

Proof Let us take { f ε}ε>0 ⊂ Zε with ‖ f ε‖Zε ≤ 1 and define uε = L−1
ε f ε . Then, Lεuε =

f ε and uε satisfies the problem (2.4). Consequently,we get fromTheorem4.1 andRemark 4.2
that there exist f0 ∈ Z0 and u0 ∈ H1(0, 1) such that L0u0 = f0, ‖Pεuε −u0‖L2(�̃ε ) → 0, as
ε → 0, where u0(x1, x2) = u0(x1). Recall that Pε is the extension operator given by Lemma
2.1. Hence, we can conclude from the inequality

‖uε − Eεu0‖Zε = ‖ (Pεu
ε − u0

) |�ε ‖Zε ≤ ‖Pεu
ε − u0‖L2(�̃ε )

that uε E→ u0 proving that the family {L−1
ε f ε}ε>0 is E-precompact.

123



Parabolic problems in oscillatory thin domains 1235

Finally, we have to show that L−1
ε

EE→ L−1
0 . For this, let us suppose

f ε E→ f0. (5.3)

Due to (4.1) and (5.3), we have for any ϕ ∈ L2(0, 1) that

∫
�ε

{
f ε(x1, x2)− f0(x1)

}
ϕ(x1) dx1dx2=

1∫
0

{
f̂ ε(x)−(Hε(x)+Gε(x)) f0(x)

}
ϕ(x) dx→0,

as ε → 0. Hence, since (Hε + Gε) f0 ⇀ p f0, w∗ − L∞(0, 1), see Remark 4.2, we can
conclude f̂ ε ⇀ p f0, w∗ − L∞(0, 1). Thus, it follows from Theorem 4.1 and Remark 4.2

that L−1
ε f ε → L−1

0 f0, and then L−1
ε

EE→ L−1
0 as ε → 0. ��

Now, let us take the positive coefficient p(x) from (4.4) and consider the operator Mε :
Lr (�ε) �→ Lr (0, 1), 1 ≤ r ≤ ∞, given by

(Mε f
ε)(x) = 1

p(x)

Hε (x)∫
−Gε (x)

f ε(x, s) ds x ∈ (0, 1).

It is easy to see that Mε is a well-defined bounded linear operator with

‖Mε f
ε‖L p(0,1) ≤ C‖ f ε‖L p(�ε) (5.4)

for someC > 0 depending only on r , G0, H0, G1 and H1. A similar operator was considered
in [3,4]. We still note that Mε is a multiple of operator f̂ defined by expression (4.1).

Under this setting, we still can point out to Theorem 4.1 showing the following result:

Lemma 5.8 Let { f ε} ⊂ Zε be a sequence and suppose that ‖ f ε‖Zε � C, for some C
independent of ε. Then, there exists a subsequence such that

‖L−1
ε f ε − EεL

−1
0 Mε f

ε‖Zε → 0 as ε → 0.

Proof Since f ε is uniformly bounded in L2(�ε), and Mε is a bounded operator, we can
extract a subsequence such that Mε f ε ⇀ f0, w-L2(0, 1), for some f0 ∈ L2(0, 1). Then,
from Theorem 4.1 and Remark 4.2, we have ‖L−1

ε f ε − L−1
0 f0‖L2(�ε) → 0, as ε → 0.

Finally, the continuity of operator L−1
0 implies the desired result.

As a consequence of Lemma 5.8, we get the main result of this section, namely, the
convergence of the resolvent operators of Lε and L0.

Corollary 5.9 There exist ε0 > 0, and a function ϑ : (0, ε0) �→ (0,∞), with ϑ(ε) → 0 as
ε → 0, such that

‖L−1
ε − EεL

−1
0 Mε‖L(Zε ) ≤ ϑ(ε), ∀ε ∈ (0, ε0).

Proof Let us show it by contradiction. To do so, suppose there exist a δ > 0 and sequences
{εn}n∈N ⊂ (0,∞), εn → 0 as n → ∞, and { f n}n∈N ⊂ Zεn with ‖ f n‖Zεn

= 1, such that

‖L−1
εn

f n − Eεn L
−1
0 Mεn f

n‖Zεn
� δ, for all n ∈ N.

On the other hand, from Lemma 5.8, we can extract a subsequence satisfying

‖L−1
εni

f ni − Eεni
L−1
0 Mεni

f ni ‖Zεni

i→∞−→ 0

which give us a contradiction completing the proof. ��
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Remark 5.10 Note that Corollary 5.7 implies that Lε satisfies the following condition
(C) Lε is a closed operator, has compact resolvent, the number zero belongs to its resolvent

set ρ(Lε) for all ε ∈ [0, 1], and L−1
ε

CC→ L−1
0 .

It is known that the spectrum of Lε or L0, denoted by σ(Lε) or σ(L0), consists only of
isolated eigenvalues. Hence, if we consider an isolated point λ0 ∈ σ(L0) and its generalized
eigenspace W (λ0, L0) = Q(λ0, L0)Z0, where

Q(λ0, L0) = 1

2π i

∫
Sδ

(ξ I − L0)
−1dξ,

Sδ = {ξ ∈ C | |ξ − λ0| = δ} and δ is chosen small enough such that there is no other point
of σ(L0) in the disc {ξ ∈ C | |ξ − λ0| ≤ δ}, then, by condition (C) and [3, Lemma 4.9], we
have that there exists ε0 > 0 such that ρ(Lε) ⊃ Sδ for all ε ∈ (0, ε0). Thus, we can denote
by W (λ0, Lε) = Q(λ0, Lε)Zε where

Q(λ0, Lε) = 1

2π i

∫
Sδ

(ξ I − Lε)
−1dξ.

Remark 5.11 Moreover, it follows from condition (C) and [3, Lemma 4.10] the following
statements about spectrum convergence of operators Lε :

(i) For any λ0 ∈ σ(L0), there is a sequence λε ∈ σ(Lε), such that λε → λ0 as ε → 0.
(ii) If λε → λ0, with λε ∈ σ(Lε), then λ0 ∈ σ(L0).
(iii) There is ε0 > 0 such that dimW (λ0, Lε) = dimW (λ0, L0) for all 0 < ε � ε0.

(iv) For any u ∈ W (λ0, L0), there is a sequence uε ∈ W (λ0, Lε), such that uε E−→ u.
(v) If uε ∈ W (λ0, Lε) satisfies ‖uε‖Zε

= 1, then {uε} has an E-convergent subsequence
and any limit point of this sequence belongs to W (λ0, L0).

Finally, we note that the first eigenvalue of Lε and L0 is 1, and its associated normalized
eigenfunction is the constant |�ε |−1/2 → (

∫ 1
0 p(x) dx)−1/2 as ε → 0 by Remark 4.2.

Now we are in condition to discuss the convergence properties of the linear semigroups
generated by the operators Lε and L0 considered in (5.1) and (5.2), respectively. We proceed
here as the authors in [5,6]. Using standard arguments discussed for example in [34], it is
easy to see that there exists ε0 > 0 such that the numerical range of the operators −Lε are
contained in (−∞,−1] ⊂ C for all ε ∈ (0, ε0). Thus, we get from [34, Theorem 3.9] that
there exists M > 0 and π

2 < φ < π , independent of ε, such that

‖ (μ + Lε)
−1 ‖L(Zε ) �

M

|μ + 1| , ∀μ ∈ �−1,φ, (5.5)

where �−1,φ = {μ ∈ C | 0 < |arg(μ + 1)| � φ}. We are setting here Zε by Z0 as ε = 0.
Hence, the operators Lε are sectorial operators for all ε ∈ [0, ε0], with uniform estimates in
ε for the resolvent operators (μ − Lε)

−1 on the sector C\�1,π−φ .
We also get from Remark 5.10 that, if λ ∈ ρ(L0), there exists ε0 > 0 such that λ ∈ ρ(Lε)

for all 0 � ε < ε0, and so, we can use the resolvent identity given by [5, Lemma 3.5] to
obtain

(λ − Lε)
−1 − Eε(λ − L0)

−1Mε = [I − λ(λ − Lε)
−1]

[EεL
−1
0 Mε − L−1

ε ][I − λEε(λ − L0)
−1Mε].
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Consequently, since (5.5) implies

‖I − λ(λ − Lε)
−1‖L(Zε ) ≤ 1 + M,

|I − λEε(λ − L0)
−1Mε‖L(Zε ) ≤ 1 + ‖Eε‖ ‖Mε‖ M,

we have by Corollary 5.9 that there exists ϑ : (0, ε0) → R+, ϑ(ε) → 0 as ε → 0, such that

‖(λ − Lε)
−1 − Eε(λ − L0)

−1Mε‖L(Zε ) � ϑ(ε). (5.6)

Moreover, if {e−Lε t | t � 0} denote the exponentially decaying analytic semigroup in Zε

generated by the sectorial operator Lε , then we obtain from [29, Theorem 1.4.3] that for any
0 < ω < 1, there exists a constant C = C(ω), independent of ε, such that

‖e−Lε t‖L(Zε ,Zα
ε ) � C t−α e−ωt for all t > 0, 0 � α � 1 and 0 � ε � ε0. (5.7)

Finally, the continuity of resolvent operators allow us to obtain the continuity of linear
semigroups associated with the family of sectorial operators {Lε}ε≥0 in appropriated spaces.

Theorem 5.12 Suppose 0 � α < 1
2 . Then there exists a function ϑα : (0, ε0] �→ (0,∞),

ϑα(ε) → 0, as ε → 0, such that

‖e−Lε t − Eεe
−L0t Mε‖L(Zε ,Zα

ε ) � ϑα(ε)e−ωt tα−1, for all t > 0.

Consequently, there exists a constant K > 0, independent of ε, such that

‖Pεe
−Lε t − e−L0t Mε‖L(L2(�ε),H2α(�̃ε)) ≤ Kϑα(ε)e−ωt tα−1 for all t > 0.

Proof For any sectorial operators as Lε , it is known that for any 0 < ω̄ < 1

e(−Lε+ω̄I )t = 1

2π i

∫

�̃

e(μ+ω̄)t (μ + ω̄ + Lε − ω̄)−1dμ,

where �̃ is the oriented border of the sector �−1,φ = {μ ∈ C : |arg(μ + 1)| ≤ φ},
π
2 < φ < π , such that the imaginary part of μ increases when μ describes the curve �̃. We
perform a changing of variable μ + ω̄ �→ μ and call Bε := Lε − ω̄ in order to evaluate

2π‖e−Bε t uε −Eεe
−B0t Mεu

ε‖Zα
ε
=

∥∥∥∥∥∥∥
∫
�0

eμt [(μ + Bε)
−1uε −Eε(μ + B0)

−1Mεu
ε]dμ

∥∥∥∥∥∥∥
Zα

ε

(5.8)

where �0 is the border of �0,φ . For this, let us first collect some estimates involving Bε .
Due to (5.5), we get for all μ ∈ �0 and ε ∈ [0, ε0] that ‖(μ + Bε)

−1‖L(Zε ) ≤ C
|μ| , and

then,

‖(μ + Bε)
−1uε − Eε(μ + B0)

−1Mεu
ε‖Zε ≤ C + ‖Eε‖ ‖Mε‖

|μ| ‖u‖Zε

≤ C1

|μ| ‖u‖Zε . (5.9)

We also have that

‖Bε(μ + Bε)
−1uε‖Zε = ‖(I − μ(μ + Bε)

−1)uε‖Zε

≤ ‖uε‖Zε + |μ|‖(μ + Bε)
−1uε‖Zε

≤ (1 + C)‖uε‖Zε .
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Now, using Moment’s Inequality from [29, Section 1.4], we get

‖B1/2
ε (μ + Bε)

−1uε‖Zε ≤ ‖(μ + Bε)
−1uε‖1/2Zε

‖(μ + Bε)
−1uε‖1/2

Z1
ε

≤ C1/2

|μ|1/2 (1 + C)1/2‖uε‖Zε .

Consequently, since for each uε ∈ Zε , (μ + B0)
−1Mεuε ∈ D(L0) ⊂ H2(0, 1), we also

obtain,

‖B1/2
ε Eε(μ + B0)

−1Mεu
ε‖Zε ≤ (H1 + G1)

1/2‖B1/2
0 (μ + B0)

−1Mεu
ε‖Z0

≤ (H1 + G1)
1/2 C1/2

|μ|1/2 (1 + C)1/2‖Mε‖ ‖uε‖Zε .

Thus, we can conclude that

‖(μ + Bε)
−1uε − Eε(μ + B0)

−1Mεu
ε‖

Z1/2
ε

≤ C2

|μ|1/2 ‖uε‖Zε . (5.10)

Next let us denote x = (μ + Bε)
−1uε − Eε(μ + B0)

−1Mεuε . Again using Moment’s
Inequality

‖x‖Zα
ε

≤ C3‖x‖2α
Z1/2

ε

‖x‖1−2α
Zε

.

Therefore, due to estimates (5.6), (5.9) and (5.10), we get for 0 ≤ α ≤ 1/2 that

‖(μ + Bε)
−1 − Eε(μ + B0)

−1Mε‖L(Zε ,Zα
ε ) �

C3 ϑ(ε)(1−2α)

|μ|α . (5.11)

Now performing the change of variable β = μt in the integral given by (5.8), we get
∥∥∥∥∥∥∥
∫
�0

eβ
[(

βt−1 + Bε

)−1
Eεu − Eε

(
βt−1 + B0

)−1
u
] dβ

t

∥∥∥∥∥∥∥
Zα

ε

.

Hence, it follows from (5.11) that

∥∥∥t−1
∫
�0

eβ
[ (

βt−1 + Bε

)−1 − Eε

(
βt−1 + B0

)−1
Mε

]
dβ
∥∥∥L(Zε ,Zα

ε )

≤ C3 t
α−1ϑ(ε)(1−2α)

∫
�0

|eβ |
|β|α d|β|,

and then,

‖e−Bε t − Eεe
−B0t Mε‖L(Zε ,Zα

ε ) ≤ C4t
α−1ϑ(ε)(1−2α), t > 0.

Consequently, for all α ∈ [0, 1/2) and ω ∈ (0, 1), there exists a function ϑα : (0, ε0] →
R

+ with ϑα(ε)
ε→0−→ 0 such that

‖e−Lε t − Eεe
−L0t Mε‖L(Zε ,Zα

ε ) ≤ ϑα(ε)e−ωt tα−1 for all t > 0.
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Finally, we conclude the proof noting Remark 5.1 implies the existence of K such that

‖Pεe
−Lε t − e−L0t Mε‖L(Zε ,H2α(�̃ε )) = ‖Pεe

−Lε t − PεEεe
−L0t Mε‖L(Zε ,H2α(�̃ε ))

� ‖Pε‖L(Zα
ε ,H2α(�̃ε))‖e−Lε t − Eεe

−L0t Mε‖L(Zε ,Zα
ε )

� K‖e−Lε t − Eεe
−L0t Mε‖L(Zε ,Zα

ε ). (5.12)

��

Corollary 5.13 Suppose 0 � α < 1/2 and uε E−→ u. Then there is a function ϑ : (0, ε0] �→
(0,∞), ϑ(ε) → 0, as ε → 0, such that∥∥∥e−Lε t uε − Eεe

−L0t u
∥∥∥
Zα

ε

≤ ϑ(ε)e−ωt tα−1, for all t > 0. (5.13)

Proof It is a direct consequence of Theorem 5.12, and estimatives (5.7) and (5.4), since

‖e−Lε t uε − Eεe
−L0t u‖Zα

ε
� ‖e−Lε t uε − Eεe

−L0t Mεu
ε‖Zα

ε
+ ‖Eεe

−L0t
(
Mεu

ε − u
) ‖Zα

ε
,

and Mεuε − u = Mε (uε − Eεu). ��

6 Upper semicontinuity of attractors and the set of equilibria

Let f : R �→ R be a bounded C2-function with bounded derivatives up to second order
also satisfying the dissipative condition (1.3). Let us also consider the perturbed domain �ε

defined in (1.4) by the functions Gε and Hε introduced in Sect. 2.
In the previous sections, we have studied the behavior of the linear parts of problem

(1.5) as ε tends to zero, and we have proved results on the continuity of the linear semigroups
associatedwith (1.5) and (1.6). It is known that under these growth and dissipative conditions,
the solutions of problems (1.5) and (1.6) are globally defined, and so, we can associate with
them the nonlinear semigroups {Tε(t) | t ≥ 0} and {T0(t) | t ≥ 0}, well defined in H2α(�ε)

and H2α(0, 1), respectively, for all 0 ≤ α ≤ 1/2 and t > 0. These dynamical systems are
gradient and possess a family of compact global attractors {Aε | ε ∈ [0, ε0]}, Aε ⊂ Zε and
A0 ⊂ Z0 which lie in more regular spaces, namely L∞(�ε) and L∞(0, 1). Also, we can
rewrite (1.5) and (1.6) in the abstract form{

u̇ε + Lεuε = f̂ε(uε)

uε(0) = uε
0 ∈ Zα

ε

and

{
u̇ + L0u = f̂0(u)

u(0) = u0 ∈ Zα
0

where f̂ε : Zα
ε �→ Zε : uε → f (uε) is the Nemitskı̆i operator defined by f (see [7,28]).

In this section, we are in condition to relate the continuity of the linear semigroups with
the continuity of the nonlinear semigroups using the variation of constants formula estab-
lishing at the end the upper semicontinuity of the family of attractors, as well as, the upper
semicontinuity of the set of stationary states at ε = 0.

Theorem 6.1 Suppose 0 � α < 1/2, and let uε ∈ Zε satisfying

‖uε‖Zε ≤ C (6.1)

for some positive constant C independent of ε.
Then, for each τ > 0, there exists a function ϑ̄α : (0, ε0] → (0,∞), ϑ̄α(ε) → 0, as

ε → 0, such that
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‖Tε(t)u
ε − EεT0(t)Mεu

ε‖Zα
ε

≤ ϑ̄α(ε)tα−1 (6.2)

for all t ∈ (0, τ ).
Moreover, we have the family of attractors {Aε | ε ∈ [0, ε0]} of problems (1.5), and (1.6)

is upper semicontinuous at ε = 0 in Zα
ε , in the sense that

sup
ϕε∈Aε

[
inf

ϕ∈A0

{‖ϕε − Eεϕ‖Zα
ε

} ] → 0, as ε → 0. (6.3)

Also, if we call Eε the set of stationary states of problems (1.5), for ε ∈ (0, ε0], and (1.6), for
ε = 0, then the family of sets {Eε | ε ∈ [0, ε0]} is upper semicontinuous at ε = 0, that is,

sup
ϕε∈Eε

[
inf

ϕ∈E0
{‖ϕε − Eεϕ‖Zα

ε

} ] → 0, as ε → 0. (6.4)

Consequently, there exists a constant K independent of ε such that

‖PεTε(t)u
ε − T0(t)Mεu

ε‖H2α(�̃ε) ≤ K ϑ̄α(ε)t2α−1 (6.5)

for all t ∈ (0, τ ) and all 0 � α < 1/2. Furthermore,

sup
ϕε∈Aε

[
inf

ϕ∈A0

{‖Pεϕ
ε − ϕ‖H2α(�̃ε)

} ] → 0, as ε → 0, (6.6)

and
sup

ϕε∈Eε

[
inf

ϕ∈E0
{‖Pεϕ

ε − ϕ‖H2α(�̃ε)

} ] → 0, as ε → 0. (6.7)

Proof First, we observe that (6.5), (6.6) and (6.7) follow from (6.2), (6.3) and (6.4) arguing
as in (5.12). Next, let us show (6.2). Using the variation of constants formula

Tε(t)u
ε = e−Lε t uε +

t∫
0

e−Lε (t−s) f̂ε(Tε(s)u
ε) ds, for ε ∈ [0, 1],

we obtain

‖Tε(t)uε − EεT0(t)Mεu
ε‖Zα

ε
� ‖e−Lε t uε − Eεe

−L0t Mεu
ε‖Zα

ε

+
t∫

0

‖e−Lε (t−s) f̂ε(Tε(s)u
ε) − Eεe

−L0(t−s) f̂0(T0(s)Mεu
ε)‖Zα

ε
ds.

It follows from (5.13) that there exist ε0 > 0 and ϑ : (0, ε0] �→ (0,∞), ϑ
ε→0→ 0, such

that

‖e−Lε t − Eεe
−L0t Mε‖L(Zε ,Zα

ε ) ≤ ϑ(ε)e−ωt tα−1, for t > 0.
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Furthermore, we have

t∫
0

‖e−Lε (t−s) f̂ε(Tε(s)u
ε) − Eεe

−L0(t−s) f̂0(T0(s)Mεu
ε)‖Zα

ε
ds

�
t∫

0

‖
(
e−Lε (t−s) − Eεe

−L0(t−s)Mε

)
f̂ε(Tε(s)u

ε)‖Zα
ε
ds

+
t∫

0

‖Eεe
−L0(t−s)

(
Mε f̂ε(Tε(s)u

ε) − f̂0(T0(s)Mεu
ε)
)
‖Zα

ε
ds.

Since uε satisfies (6.1) for all ε > 0, Tε is global defined, and f is bounded function,
we have that { f̂ε(Tε(s)uε) ∈ Zε | s ∈ [0, t]} is uniformly bounded. Hence, we obtain by
Theorem 5.12 that there exists a constant Ĉ1 = Ĉ1(τ,C) such that

t∫
0

‖
(
e−Lε (t−s) − Eεe

−L0(t−s)Mε

)
f̂ε(Tε(s)u

ε)‖Zα
ε
ds

�
t∫

0

ϑα(ε)e−ω(t−s)(t − s)α−1‖ f̂ε(Tε(s)u
ε)‖Zεds � Ĉ1ϑα(ε)tα−1 for all t ∈ (0, τ ).

If K is the uniform Lipschitz constant of the Nemitskı̆i operator f̂ε , independent of ε, we
can use Eε f̂0 = f̂εEε and MεEε = I to get

t∫
0

‖Eεe
−Lε (t−s)

(
Mε f̂ε(Tε(s)u

ε) − f̂0(T0(s)Mεu
ε)
)
‖Zα

ε
ds

=
t∫

0

‖Eεe
−Lε (t−s)Mε

(
f̂ε(Tε(s)u

ε) − f̂ε(EεT0(s)Mεu
ε)
)
‖Zα

ε
ds

≤
t∫

0

Ĉ2 ‖Eε‖ ‖Mε‖ K e−w(t−s)(t − s)−α‖Tε(s)u
ε − EεT0(s)Mεu

ε‖Zα
ε
,

for some constant Ĉ2 = Ĉ2(w). Hence,

ϕ(t) � (1 + Ĉ1)ϑα(ε)tα−1 + Ĉ2 ‖Eε‖ ‖Mε‖ K

t∫
0

(t − s)−αϕ(s) ds on (0, τ ),

where ϕ(t) := eωt ‖Tε(t)uε − EεT0(t)Mεuε‖Zα
ε
. Thus, due to Gronwall’s Inequality from

[29, Section 7.1], we get

ϕ(t) � Ĉ3ϑθ (ε)t
α−1

where Ĉ3 = Ĉ3(Ĉ1, Ĉ2, K , τ, ‖Eε‖, ‖Mε‖) is a constant, and so, (6.2) follows.
In order to show the upper semicontinuity of the attractorsAε , we first note that by uniform

L∞(�ε) bounds of the attractors given by [7, Theorem 2.6] and Remark 5.11, we also obtain
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due to (5.4) that
⋃

0≤ε≤ε0
MεAε is a bounded set in L∞(0, 1). Then, using the attractivity

property of A0 in Z0, we have that for any η > 0 there exists τ > 0 such that

inf
ϕ∈A0

‖T0(τ )Mεϕ
ε − ϕ‖Zα

0
≤ (H1 + G1)

−1/2η/2, ∀ϕε ∈ Aε and 0 ≤ ε ≤ ε0.

Thus,

inf
ϕ∈A0

‖EεT0(τ )Mεϕ
ε − Eεϕ‖Zα

ε
≤ η/2, ∀ϕε ∈ Aε and 0 ≤ ε ≤ ε0.

Now, due to the convergence of the nonlinear semigroups (6.2) with t = τ , we have that
there exists ε1 > 0 such that for all 0 ≤ ε ≤ ε1

‖Tε(τ )ϕε − EεT0(τ )Mεϕ
ε‖Zα

ε
≤ η/2, ∀ϕε ∈ Aε .

Consequently, since Aε is an invariant set by the flow, Tε(τ )ϕε = ϕε , and so, we get

inf
ϕ∈A0

‖ϕε − Eεϕ‖Zα
ε

≤ η, ∀ϕε ∈ Aε and 0 ≤ ε ≤ ε1.

Finally, we show the upper semicontinuity of the set of stationary states Eε . Let us use
here the characterization discussed in (5.6). First, note uε ∈ Eε if only if satisfies

∫
�ε

{∂uε

∂x1

∂ϕ

∂x1
+ 1

ε2

∂uε

∂x2

∂ϕ

∂x2
+ uεϕ

}
dx1dx2 =

∫
�ε

f (uε)ϕ dx1dx2, ∀ϕ ∈ H1(�ε). (6.8)

Hence, substituting ϕ = uε in (6.8), we get

∥∥∥∂uε

∂x1

∥∥∥2
L2(�ε)

+ 1

ε2

∥∥∥∂uε

∂x2

∥∥∥2
L2(�ε)

+ ‖uε‖2L2(�ε)
≤ ‖ f (uε)‖L2(�ε)‖uε‖L2(�ε),

Thus, since f ∈ C2(R,R), there exists C = C( f ) > 0, independent of ε > 0, such that

‖uε‖
Z1/2

ε
≤ C.

Therefore, we obtain from 6.2 that there exists u0 ∈ E0, as well as a subsequence uε ∈ Eε

with ‖uε − Eεu0‖Zα
ε

→ 0, as ε → 0, for all 0 ≤ α < 1/2.
Indeed, since Tε(t)uε = uε for each t > 0, we have

‖uε − EεT0(t)Mεu
ε‖Zα

ε
→ 0, as ε → 0, (6.9)

and then, T0(t)Mεuε = Mεuε for each t > 0 implying that the uniformly bounded sequence
{Mεuε}ε>0 ⊂ Z0 is E-convergent satisfying (6.9).

Notice that we can take u0 ∈ Z0 as a limit from {Mεuε}ε>0 ⊂ Z0.
Let us show now that u0 ∈ E0. Using once more Tε(t)uε = uε for any t > 0, we have

‖uε − EεT0(t)u0‖Zα
ε

= ‖Tε(t)u
ε − EεT0(t)u0‖Zα

ε
→ 0, as ε → 0,

for any t > 0. Thus, T0(t)u0 = u0 for all t > 0 and u0 ∈ E0 completing the proof. ��
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