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Abstract In this paper, we determine all conformal minimal immersions of 2-spheres in
quaternionic projective spaces H P" with parallel second fundamental form.

Keywords Conformal minimal 2-spheres - Parallel second fundamental form -
Classification - Quaternionic projective space

Mathematics Subject Classification (2000) Primary 53C42 - 53C55

1 Introduction

In 1976, Nakagawa and Takagi studied some properties about Kédhler imbeddings of compact
Hermitian symmetric spaces in the complex projective space C P" and gave a classification
of Kihler submanifolds in C P" with parallel second fundamental form (cf. [8]). In 1984, Ros
decided the compact Einstein Kihler submanifold in C P" with parallel second fundamental
form (cf. [9]). In 1985, Tsukada classified 2n-dimensional totally complex submanifolds
in HP" with parallel second fundamental form into eight types (cf. [10,11]). Recently,
we studied conformal minimal immersions of 2-spheres in C P"* and G (k, N) with parallel
second fundamental form, and obtained some geometric properties of them (cf. [6,7]).

In this paper, our interest is to study classification of conformal minimal immersions from
52 to the quaternionic projective space H P" with parallel second fundamental form by the
theory of harmonic maps. Here, we regard H P" as a totally geodesic totally real submani-
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folds in complex Grassmann manifolds G (2, 2n + 2) and obtain the following classification
theorem:

Theorem 1.1 Let ¢ : S — H P" be alinearly full conformal minimal immersion, and let K
and B be its Gauss curvature and second fundamental form respectively. If B is parallel, then,
up to a symplectic isometry of H P", it belongs to one of the following minimal immersions.
W) ¢ = [(Vaz+V32), — 14222 27| + $* — HP', with K =
B2 =3
2 ¢=[1, 97]:8*—> cP'Cc HP', withK =2, B =0;
3) = [(1, V2z,2%) T] 182 > CP>C HP?, withK =1, |B||> = 2;

4 o= [(l—iz Jr B+ P2, 32, BT ]:S2—>HP3,wirhK_ 2 B)? =
%’.

) ¢ = [(—22, V2 -2z, 2z)T] 182 > CPPC HPY, withK =1, B=0;

© ¢ = [62, —67+6:2 Vo 4orz+ V6T, 62— 6277, 6z2)T] RN
CP*C HP* withK =L, |BI* =3

Further, no two of the above six cases are congruent, i.e., there is no symplectic isometry
which transforms one case into another.

2 Preliminaries

(A)Forany N = 1,2, ..., let(, ) denote the standard Hermitian inner product on CV defined
by (z, w) = 71w +---+zywWy, Where z = (z1, ..., z8) T, w = (wi, ..., wy)T € CV and
~ denote complex conjugation. Let H denote the division ring of quaternions. Let j be a unit
quaternion with j2> = —1. Then, we have an identification of C? with H given by making

(a,b) e C? correspond to a + bj € H; letn € {1,2,...}, and we have a corresponding
identification of C*" with H". For any a + bj € H, the left multiplication by j is given by
j(a + bj) = —b + aj; the conjugation is given by a + bj = a — bj; the positive-definite
inner product is given by (x, y)i = Re(xy) for any x, y € H.

Let J : C*" — C?" be the conjugate linear map given by left multiplication by J, i.e.,

Iz 2, o -ty 220) T = (=22, 210 oo —Z2m, Z201)
Then, J?> = —id where id denotes the identity map on C2" 1In fact, for any v € Cc2n,
Jv = J,v,

where J, = diag [((1) _(1)) R ((1) _(1))]

n
By the above, we immediately have the following lemma (cf. [1]).

Lemma 2.1 The operator J has the following properties:
(i) Jv,Jw) = (w, v) forall v, w € C¥;

(ii) (Jv,v) =0 forall v € C*;

(iii) 80,]:]703, doJ=Jo0;

(iv) JOw) = AJv forany A € C, v € C2".
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Let G(2, 2n +2) denote the Grassmann manifold of all complex 2-dimensional subspaces
of C*"*2 with its standard Kihler structure. The quaternionic projective space H P" is the
set of all one-dimensional quaternionic subspaces of H"*!. Throughout the above, we shall
regard H P" as the totally geodesic submanifold of G (2, 2n + 2) given by

HP"'={VeG2,2n+2):JV =V}.

Let Sp(n +1) = {g € GL(n + 1; H), g*g = I,41} be the symplectic isometry group of
H P", here 1,1 is the identity matrix. The explicit description is that the following diagram
commutes:

Spn+1) — s U@n+2)
ml ”Zl
HP' —2 5 G2, 21+2)
where i1, i> are inclusions and 7y, 5 are projections, and ij(g) = U,for1 <a,b <n+1
Ul = 43, VR = T,
U =Dy, Usi =4,
where A = (A}), D = (D§) € My41(C), g = A+Dj € Sp(n +1);

mi(g) =g-[1,0,...,01" € HP";

T
1,0,0,...,0
7'[2(U)=U~|:0 10 0] € G(2,2n+2);
21, 2 z z r
i) ([21 +22j,..-,Zzn+1+22n+zj]T) :[ Tl 2250 241 L2042 ]
—22, 2155 —220425 L2n+1

Here, we take the standard metric on G (2, 2n + 2) as described in section 2 of [7]; then,
the metric induced by i, is twice as much as the standard metric on H P".

Thus, a harmonic map from S2 to H P" is precisely aharmonic map from S to G (2, 2n+2)
which has image in i> (H P").

Then, for any ¢ € Sp(n + 1), the action of g on H P" induces an action of i{(g) on
C P+ where i; (g) € U(2n + 2) commutes with J. We shall retain g to also denote i1(g).
Then

Spi+ D) =(g e UQn+2), god =Jogl={g € UCn+2), ghiig” =Ju1}.

In the following, we deal with the symplectic isometry of H P" through the corresponding
symplectic isometry of C P2+,
(B) In this section, we give general expression of some geometric quantities about con-
formal minimal immersions from S2 to H P" (cf. [7]).
Let M be a simply connected domain in the unit sphere S and let (z,Z) be complex
coordinates on M. We take the metric ds,zW = dzdz on M. Denote
g - 0
8 == 3 = —.
0z 9z
We consider the complex Grassmann manifold G (2, N) as the set of Hermitian orthogonal
projections from CV onto a 2-dimensional subspace in CV . Then, amap ¥ : §*> — G(2, N)
is a Hermitian orthogonal projection onto a 2-dimensional subbundle 1 of the trivial bundle
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CN = M x C¥ given by setting the fibre of ¥ at x, ¥ - equal to ¥ (x) forallx € M. We
say that v is a harmonic subbundle if ¥ is harmonic (cf. [3]).

Let ¢ : S — HP" be a conformal minimal immersion. The map i o ¢ : §* —
G (2, 2n + 2) may be represented via the local sections of the subbundle Im (i o ¢) by the

projection map (cf. [7], (2.10)):
oy =XX"+JX)JX)",

where X € Im(iy o ¢) is a unit column vector in C?*2 and X and JX are naturally
orthogonal.

Denote i; o ¢ by ¢g (in the following, we will use this notation all the time). Suppose that
the metric induced by ¢ is ds*> = A?dzdz. Let K and B be its Gauss curvature and second
fundamental form, respectively. From section 2 and 3 of [7], we have

22 = trdgodgo,
K = —A%aglog}\z, 2.0
| B||> = 4tr P P*.

where P = 0 (AZ/AZ) with A, = 2py — I) d¢p, and [ is the identity matrix, then P* =
9 (A%/A%), Af=—As

3 The proof of main theorem

We recall that an immersion of S in H P" is conformal and minimal if and only if it is
harmonic (cf. [4], Sec 10.6). Thus, we shall consider the immersive harmonic maps from 52
to H P" with parallel second fundamental form for the reducible and irreducible cases to give
the proof of Theorem 1.1 in Sect. 1. At first, we state a conclusion about parallel minimal
immersions of 2-spheres in G (k, N) as follows:

Lemma 3.1 ([7]) Lety : S> — G(k, N) bea conformal minimal immersion with the second
fundamental form B. Then B is parallel if and only if the equation

}Lz
1—6||B||2 (8K + ||B||2) +21r[A;, PI[AL, P*] = 5tr[A;, ASI[P, P*] =0 3.1
holds.

(DLety: S2 — HP"bea linearly full reducible harmonic map, then by ([1], Proposition
3.7) we know that ¢ is a quaternionic mixed pair or a quaternionic Frenet pair. In the following,
we discuss the two cases of ¢ with parallel second fundamental form, respectively.

(Ia) If ¢ is a linearly full quaternionic Frenet pair, then

0= f(2n+l) ® f(2n+1)’ 3.2)

where L?”“), I 52”*1) . f;i’fll) §%2 — CP?*! is the harmonic sequence generated

by a linearly full totally J-isotropic map f Cntl)
Firstly, we recall ([1], §3) that a full holomorphic map f<2"+1> $2 — CcP?t! in the
following harmonic sequence satisfying f (Z”H) =Jf (()2”“) is said to be fotally J-isotropic,
AO

A Al Al
(2n+1) 2n+1) (2n+1) R (2n+1) T2n4l
f f f —f2n+1 0,
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where A’;(v) = nf(zm)L(au), Alw) = nf(zm)L(ﬁv) for v e C( fi?"“)), here
j ' j -
rrf(z,, 4L denotes orthogonal projection onto bundle f 5_2”+])L and C*(f 5,2”*1)) denotes
; S S

the vector space of smooth sections of bundle i 5_2”“), j=0,....,2n+1.

Let fO(Z"H) be a holomorphic section ofﬁ)z’”rl), ie., 5f0(2”+1) =0, and let fj(Z"H) bea
local section of f ;,2’”1) such that

2n+1 2n+1
fj(n ):”f(2n+|)i(f(n ))

Jj—1

for j =1,...,2n + 1. Then, we have some formulas as follows (cf. [2]):

afj(z,l+1) _ f_(2n+1) i 810g|f.(2”+])|2fj(2”+1), i=0,....m,

(2n+l)f(2n+l), T

5f;2n+1) _
97 log lfj(zn+1)|z _ l(2n+1) _ l('2n+l),

83 logl*"* = zﬁ"ﬁ“ 2D 2D =0, 2n

’

where [TV = | FD 2 2D 2 for j =0, 2n+ 1, and 15TV = 1D = 0.

Smce i (()2’”“1) is totally J-isotropic, in a similar fashion to ([2], Lemma 7.1) we obtain

l(2n+l) _ léﬁn—};l)' (3.3)

And set J £y = 70 3274, then

(2n+1) (2n+1) 2
ol = [ fo JFOD Z (1yigg fongr 17 FomtD
0 2n+1) 2’ J - 2n+1) o/ 2n+1-j°
| 2n+1 | | 2n+1— ]|
where j =0,...,n

Obviously, ¢ belongs to the following harmonic sequence (cf. [3])
AE)/ 2n+1) A/l/ AU (2n+1) A” At/ﬂo (2n+1) A;/1+2 2n (2n+1) A/2n+1
0<—i0 <~ - f <—£0—>£ _— . f2n+l — 0,

B (3.4)

where Afpo v) = Ty (dv), A;’)O v) = Ty (dv) forv € Coo(%), here Ty denotes orthog-

onal projection onto bundle gé and Coo(%) denotes the vector space of smooth sections of

bundle 2%

(2n+1 f(2n+l))* ﬁl(2+n1+1)(f(2n+l>

2n+1 2n+1
f(”+)|2 f;1(+nl+>

From (3.2), we have ¢y =

. Then by (2.1), (3.3) and a
series of calculations, we obtain

22— 21,(1211+1)7

l(2n+l)+lr(lZ:zZ+I)

n
K=2-"—&—
n—1
l(2n+|)+l(2n+l) 3 5
2 — .
IBI? = 27—t 3:3)

trlA,, PIIAY, P*] = —1"*D,
tr[A, AZI[P, P*] = L ®D.
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Now, we prove that if ¢ : S — HP" is a linearly full quaternionic Frenet pair with
parallel second fundamental form, then, up to Sp(n+1), it belongs to the following case: (1)

0= [(ﬁz+ V32, —1 4227 — 2%j — zsz)T] £ S2 > HP', with K =2, ||B|]> =
If ¢ is a linearly full quaternionic Frenet pair with parallel second fundamental form, then
applying Lemma 3.1 and substituting (3.5) into (3.1), we get

2
31(2n+1)l(2n+1) +4lr(l2_111-|-1)l’(12n+1) _3 (l,(lz"H) +lr(12—n2+1)) —0. (3.6)

Since the second fundamental form of the map ¢ is parallel, its Gauss curvature is a constant
(cf. [7], Theorem 4.5). We know up to U (2n + 2), f @n+1) 5 a Veronese surface by ([5],

Lemma4.1). Then from [2], we have f @n+1) v @n+1) S (2”+1) is the Veronese sequence
in CP?"*! upto U(2n + 2). So, from ([2], Section 5), we get

enenpp _ @+ Dl —onti—2i ety _ GHDC@r+1-7)
—(1 , L = , 3.7
T = P ; 1+ 227 G-

wherei =0,...,2n+1, j=0,...,2n
Substituting (3.7) into (3.6), we get

(n—1)(n+3)(5n>+10n —4) =0,
which implies n = 1, since n is a positive integer. Hence,

g, =Uv euvy, (3.38)

where Z?) is a Veronese surface in CP? C C P?"*! with the standard expression given in

(121, §5), and U € U(2n + 2) satisfies Jn+1W§)3) =AU V3(3) (A is a parameter).
Set UT J,,1U = W, then we immediately get

WV =y Wl =—w, wrw =1, (3.9)

where [ is the identity matrix.
Define a set

Gy 2 [UeU(2n+2) vwuT _JnH}.

For a given W, the following can be easily checked

(i) VgeSpn+1), U e Gw, we have that gU € Gy;
(i) YU,V eGwy,dg=UV* e Spn+1)s.t.U =gV.

Then, we discuss the type of W to get the type of the corresponding U. From ([2],
section 5), we get

v =q, fz, V324, 2,0, 0,

v = (=23, V372, =3z, 1, 0,..., 0)T. (3.10)

1+ *)*
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Then, by (3.9) and (3.10) we get the type of W as follows:

0 0o 0o 1 ]
0 0 —1 0
w=| | 0 0 0O | (3.11)
—1 0 0 0
O %k
From WU ' = U" J,41, the corresponding U = [ey, e2, ..., €2n+1. e2n+2]T satisfy

eZp:WEprls p:l,...,n+l, (312)

where ¢; are unit column vectors in C2"+2,
Without loss of generality, in this case we choose

(3.13)

e1 =(1,0,0,0,...,007,
e3=1(0,1,0,0,...,07.

By(3.11)-(3.13), we get e = We; = (0,0,0,—1,...,007 and ey = Wez =
©,0,1,0,..., O)T, obviously {eq, ez, €3, e4} are mutually orthogonal. Next, we choose a
unit column vector es = (0,0, 0,0, x)7 e C2t2, which satisfies {e], e2, €3, ea, e5} are
mutually orthogonal. Set eg = Wes, then {e], e, e3, es, eg} are mutually orthogonal. Since
(e, es) = el WTes = —tr(esel W) = 0, then {e1, e, €3, e4, es, e} are mutually orthogo-
nal.

Generally, suppose {ey, €2, ..., e2p-3,€2p-2 = WEQ,,,3} (p > 3) are mutually orthog-
onal, we choose a unit column vector e;,—1 = (0,0,0,0, *)T € C2"*2 gych that
{e1,e2,...,e2p-3,e2p2, €2p—1} are mutually orthogonal. Set ez, = WEzp_l, then

T T T
<€2p, ezpfl) = 6‘2[,71W ep-1 = —tr(62p7162p71W) =0,
and forany 2 < g < p,

(e2p, e2g-3)=e3, (Whesy 3 =—e;, Wery 3 =—e}, 1242
= —{e2p-1, €292} =0, (62177 €2q*2)

T T T
= e, W Wer3 =€, 182353 = [e2p-1, e2g-3) = 0.

Thus {ey, ez, ..., e2p-3,€2p-2, €21, €2p} are mutually orthogonal.

So, we can choose n— 1 proper unit column vectors e2,+1 = (0, 0, 0, 0, *)T € C2n+2 2<
p < n)suchthat{er, ez, ..., em+1, €n42 = WEQ,,H} are mutually orthogonal, and the type
of the corresponding U is as follows:
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1 0 0 0
0 0 0 -1
u=| , | 0 0 0O | (3.14)
0 0 1 0
O *
Thus, we have
V3
UV1(3) = m(\@f, ﬁzz, -1+ ZZE, -2z +ZZZ, 0, ey O)T,
—+/3
Juv® = —f,(—ﬁzz, V3z, 2222, —1+22Z, 0,..., 0.
14zz
Obviously, in this case ¢ is congruent to the case (1) with K = 3, [| B||2 %
(Ib) If ¢ is a linearly full quaternionic mixed pair, then
— f(m) (m)
= Lo @ JLO , (3.15)

where f{" : §% — CP™ € CP*! (n < m < 2n+ 1) is holomorphic and £ L J£m.
Obviously, ¢o belongs to the following harmonic sequence

" A”7 Al
e JAGE Jf<m> <_7 S S 0. (3.16)

As in the case (Ia), let fo(m) be a holomorphic section of f. (()”’), ie,d fo(m) = 0, and fj(’")

() pm)
(j =1, ..., m)satisfy the corresponding formulas. From (3.15), we have ¢y = %
Jo
-(m) ~(m) s
%. Then by (2.1) and a series of calculations, we obtain
0
32 = o,
"
K = - I(T),
o)
l
18I = 26
(3.17)

. . . |<f2(m)Y Jfl(m)> 2
tr[Ag, P][AZ, P*]l = _ZW,
1

2

f(mJ7 Jf(m)
triA, AZIP, PY] = ;(lf’”) B <|f|> '
1

Now, we prove that if ¢ : §2 — HP" is a linearly full quaternionic mixed pair with
parallel second fundamental form, then, up to Sp(n + 1), it belongs to one of the following
three cases:

2)¢=[01, 27]: 82> CP' Cc HP',withK =2, B =0;

(3¢ = [(1 V2z, zz)T]-S2—> CP?C HP?, withK =1, ||B|? = 2;
(4)</7—[(1—§z J, 3+ B2y, 32, 8, 3)] $2 — HP3, with K = 2, ||B|]? = 1.
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If ¢ is a linearly full quaternionic mixed pair with parallel second fundamental form, then
applying Lemma 3.1 and substituting (3.17) into (3.1), we get

WM:%W)(M_]), (3.18)

A a1\

Since the metric ds? = 2 (m)dzdi induced by ¢ is of constant curvature, and the met-
ric induced by fU") is ds? = I§"dzdZ, then it follows from ([2], Theorem 5.4) that
f(m) f(”’) . f(m) is the Veronese sequence in CP™ C CP?"*+!, up to U(2n + 2). Then
from 3. 7) and (3 18) we get

3m(m — 1)(m — 2)

i) =2

We denote by r the isotropy order of ¢ (cf. [3], §3A). If r is finite, then r = 2s (1 <
s < n+ 1) by ([1], Proposition 3.2). Otherwise, r = 0o, in which case ¢ is called strongly
isotropic (cf. [1], section 2C).

It m = 1, observing (3.17), we find K = 2, B = 0. It belongs to the case of totally
geodesic. If m = 2, since r > 2, which implies £ L Jf{? by (3.16), then we have
<f(2) Jf(2)> =0 <f(2) Jf(2)> = 0, which implies (3.19) holds. Hence, its second funda-
mental form is parallel. In fact, the above two cases are both strongly isotropic.

If m > 3, from (3.19) we find < £y f“’”) < 1m0y f(””) 0, which implies in
this case r = 2. In the following, we discuss the above three cases, respectively.

(14 z7)*"=°. (3.19)

CaseIbl, m = 1.
In this case, we have
—uvvPeJuvl, (3.20)

where K(()l) is a Veronese surface in CP! ¢ C P?"*! with the standard expression given in
T
([2], section 5),and U € U (2n+2) satisfies tr (Vl(l) Vo(l) uT Jut1 U) = 0, as this expresses

the orthogonality of Jf(l) and fl(l).
Similarly, we get the type of W = U” J,,1U € U(2n + 2) as follows:

0 0 as ayg e a1ong2
0 0 a3 ax o a22u42
_ —as —an3 0 azq v a3 op42
W= —ai4 —an —asq 0 S 42042 (32D
| —a12042 —022n42 —A32n42 —Q42p42 - 0

As in case (1a), by (3.12),(3.13), and (3.21), we get

= T
e =We; = (0,0, —ai13, —aw, ..., —ai2u42) " .

—_ T
es =Wesz = (0,0, —ax, —ax, ..., —a22012)

Since W in (3.21)is a unitary matrix, {e;, 2, e3, e4} are mutually orthogonal. Similarly, we
can choose n — 1 proper unit column vectors e2,+1 = (0,0, T e C2 2 < p <n)
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such that {ey, ey, .
corresponding U is as follows:

1
0

Thus, we have

=)

0

—ai3

—azs

0
—ar,2n+2
0

—a2,2n+2

Uvg" =1, 0,20 0.....07,

Juv{" =0,1,0, % 0,...

07

Obviously, in this case ¢ is congruent to the case (2) with K =2, B = 0.

CaseIb2, m = 2.
In this case, we have

0, =UVY @JUVY,

.., €mi1, €2n42 = Wea,, 1) are mutually orthogonal, and the type of the

(3.22)

(3.23)

where Kéz) is a Veronese surface in C P> ¢ C P?"*! with the standard expression given in

T
([2], §5), and U € U(2n + 2) satisfies tr(Vl(z) Vo(z) UTJ,L+1 U) = 0, as this expresses the

orthogonality of J f0(2) and f{?.

Similarly, we get the type of W = UT J,,1U € U(2n + 2) as follows:

0 0 0 ais ais a4
0 0 0 axy as ©a22n+42
0 0 0 as4 ass a3 om+2
W=| —a4 —ax —as4 0 ass - (42042
—ais —aps —ass —ass 0 <t a5 on+2
L —@1.2n+2 —@22n+2 —A32n+2 —A42n+2 —A52m+2 "+ O
And the type of the corresponding U is as follows:
1 0 0 0 0
0 0 0 —au —aion+2
0 1 0 0 0
U= 0 0 0 —an —a2n+2
0 0 1 0 0
0 0 0 —axn —a3on+2
0 %k
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Thus, we have

Uv? =1, 0, v2z, 0, 22,0, 0,...,0),
JUVP =0, 1,0, V22, 0, 2, 0,....0).

Obviously, in this case ¢ is congruent to the case (3) with K =1, ||B 12=2

Case Ib3, m > 3.

In this case, the trivial bundle S? x C?"*2 over S2 has a corresponding decomposition
§2 x €42 = §2 5 ot @ §2 x €L From (3.16) we set Jf" = x3 fi™ 4
X4 fy (m) X fm m) + V, where x; (i =3, ..., m) are complex coefficients and bundle
vc S2 x <C2” m+1 Then, it follows from 8J £, = 0 that

dx3 + x39 log | fA™ 2 =0,
Ox; +xi—1 +xi9log | f"PE =0, (=4,...,m), (3.26)
IV =0.

And we have <f (m) Jf('”)> %31 £™ 2. Then, from ([2], §5) and (3.19) we get

3m(m — 1)(m — 2)

PP = 5 (1 + z5)2"=6, (3.27)

By (3.26) and (3.27), we find 33 log (|x3| | f<”‘)|4) = 225, = 0, which implies m = 3,
ie.,

—uvvy eJuvy, (3.28)

where Z((?) is a Veronese surface in CP?> c CP?*! with the standard expression

T
given in ([2], §5), and U € U@n + 2) satisfies tr(Vl(S)VOG) UTJ,,HU) — 0 and

T
tr(VS(S)VOG) UTJn+1 U) # 0, as these express r = 2.
Similarly, we get the type of W = U” J,.1U € U(2n + 2) as follows:

0 0 0 a4 ais cee a1 n42 |
0 0 —ai4 0 ass e @ on42
0 ay 0 0 ass “rea3on42
W= —ai4 0 0 0 ass 4o |
—ais —ans —ass —ays 0 cee A5 on42
L —ad1,2n+2 —A22p4+2 —A32p4+2 —A42p42  —A52p42 0 _
(3.29)

where a4 # 0.

In this case, if |a14|? = 1, as in the case (Ia) we choose (3.13), then choose n — 1 proper
unit column vectors ez,1 = (0,0, 0,0, T e Ct2 2 < p < n) such that the type of the
corresponding U € U (2n + 2) is as follows:
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1312 L. He, X. Jiao

U= 0 | 0 0 O . (3.30)

Thus, we have

Uvg) =, —auz’. V3z, V3au, 0.0,....0)7,
Juvy) = @uz, 1, —V3auz? 3z, 0,0,...,007.

If |a14]? # 1, then we choose

e1 =(1,0,0,0,0,...,07,
e3=1(0,1,0,0,0,...,0)7,
1 2 — — T
= 1 - ey 9
€ 1-laial? ©,0, lai4|®, 0, @14azs, a14a2,2042)
1

Vi-laul

And we choose n — 3 proper unit column vectors 2,41 = (0,0, 0,0, 0l e Ct? 4 <
p < n) such that the type of the corresponding U € U (2n + 2) is as follows:

(3.31)

= =~ T
e7 = (0,0,0, 1 — |ay4l*, —@raais, ..., —awai mi2)’ .

1 0 0 0 0 e 0
0 0 0 —ai4 —ais e —ai1,2n+2
0 1 0 0 0 e 0
0 0 ai 0 —ass R —a2,2n+2

aisa aigsa
0 0 m 0 14425 1442 2042
U= V1—lal? V1= la)?

—ass —a3.2n+2

JT—laul T laul

—dai4a15 —da14d1 2042
0 0 0 /1_|al4|272 7’”‘2
V1= lal V1 —lail

—a4s —a4,2n+2

O *k

(3.32)

Thus, we have

UV =01, —auz’, V3z, V3auuz®, V3 = 3laul?, 0,V1 - la?2, 0, 0,...,0)7,
WV =@ 1, —V3auz, V3%, 0,73 = 3lasl2, 0, V1—laulz, 0.0
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From (3.30) and (3.32), we have( AN f<”> (UV“) JUVO(3)> — 6ay4. On the other

hand, from (3.27) we get

(7, Jf(3)>‘ =9.S0as = LeV710 (0 < 6 < 27). Hence, in
this case ¢ is congruent to the case (4) with K = %, |B|> = %
(IT) Let ¢ : S — H P" be an irreducible linearly full harmonic map. At first, we state a

conclusion about parallel minimal immersions of 2-spheres in G (k, N) as follows:

Lemma 3.2 ([7]) Let ¢ : S> — G (k, N) be a conformal minimal immersion with the second
SJundamental form B. Suppose that B is parallel, then the following equations

MK + ||BI))AX +4[[A., AF], A¥] =0,
’ 2ABE _ k)P 4 [[A., A¥], P] =0 G339
hold.
By [1], we know ¢q belongs to the following harmonic sequence
Ay, Ap, A A Ay, Ay,
0<«—- ~<—g0_2<—g01<—g00—>g0]—><p2—>- -—0, (3.34)
where [ =ijoQ, _Jgol, ¢, =J92.
We choose a unit column vector X € (2 then we have
P, =X®IJX, ¢, ZSPan{L,L}, (3.35)

where X| = 0X —(0X, X) X —(3X,JX)JX and ¥; = aJX —(dJX, X) X —(3JX,JX) JX.
Here, X and Y| are not orthogonal in general.
Let
= [X, JXT"0[X, JX]. (3.36)

Then, from (3.35), we have

X, JX] =[X,JX]E + [ X1, Y11, (3.37)
X, IX] = —[X, JIXIE* + [-IV1, I X1], '
where [ X1, Y1 1¥[X, JX] = [—JYI,JXI]*[X, JX]=0.
From (3.37) and the identity d0 = 99, we get
= . . X112 = V112, 2(Y1, Xy)
E E E,E*] = .
OE+IE" +[E. E7] [2<x1,Y1>, |Y1|2—|x1|2] (3:38)

From (3.35), we have g9 = XX* 4+ (JX)(JX)*. Then by (2.1), a straightforward calcu-
lation shows

A2 =2(1X117 + Y1),

‘ (X1 + 171 (339)

A = (IX)JXD* = XJYD* — X1 X* = V1 (JX)*".

Since ¢ is harmonic, the corresponding equivalent condition d A, + A;AY —ATA, =0(cf.
[12]) implies

<§X1,X1) <5Y1,Y1)

e = mE = 0% X), (3.40)
Dl = ax.ax). 2080 - Gyx x).

Now, we prove that if ¢ : S> — HP" is an irreducible linearly full harmonic map with
parallel second fundamental form, then, up to Sp(n+1), it belongs to one of the following two
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1314 L. He, X. Jiao

cases: (5) ¢ = [(—22, V2 — 223, 2z)T] :S2 > CP2C HP, withK = L, B =0;(6)
o = [(622, — 67+ 6272, V6 — 4627 + /6:272, 67 — 622, 6z2)T] . §2 o CPY C
HP* with K =1, |B|* =3

If ¢ : S2 — HP" is an irreducible linearly full harmonic map with parallel second

fundamental form, then applying Lemma 3.2 and substituting (3.39) into the first equation
of (3.33), we get

MP=4X1P 2K+ BIP =1, (X1,¥1) =0, [XiP=Mm (4D
From (3.38) and (3.41) we have
JE +dE* + [E, E*] = 0. (3.42)
Let X €9, be another unit column vector such that @ = X D JX X, then
[X,JX]=[X,JXIT, (3.43)

where T : S2 — SU(2) is to be determined such that X satisfies [X, JX]*d[X, JX] = 0.
Such T is a solution of the linear PDE

dT + (Edz — E*d7)T = 0. (3.44)

The integrability condition of (3.44) is just (3.42), so it has a unique solution locally on 52
for any given initial value. Let 7 be a solution of (3.44) with the initial value 7' (0) € SU(2).
From (3.44) we have d(T*T) = 0and d|T| =0,s0 T € SU(2).

Now, we choose a unit column vector X € ?o such that @ = X ® JX and

[X,JXT*d[X,JX] =0. (3.45)
It follows from (3.40) and (3.45) that
39X = —| X1 >X. (3.46)

Let f = [X] : §? — CP?t! be a smooth immersion. Similarly, by calculating the
equivalent condition of harmonic, we find f is harmonic by (3.45) and (3.46). Of course,
Jf = : §2 — C P! is also harmonic. So ¢ @ = S ®Jf, where f belongs to the
followmg harmonic sequence

A" Al A

0—s . .L;f = =f—=f >0 (3.47)

As in the case (Ia), let fj be a holomorphic section of io’ ie. dfy=0,and fp satisfy the
corresponding formulas. From (3.41), we know /,,_; = [, which implies that f » is totally

real by ([2], Theorem 7.3). ie. f = f(™ 8% — RP" C CP?" C CP*"*!, where

2 <2m <2n+1. Let f, = ,f,zm) satisfy the corresponding formulas, then in harmonic

sequence (3.34) by (3.40) and (3.45) we have

0, =L @I, 9 = O eI O, 9, = O IO, (348)
where /2™ = %™ (G =0,...,m—1)and ly orth 1
; ome1—i @ =0,..., Py Pyr @, are mutually orthogonal.
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On conformal minimal immersions 1315

2m) , 2m)\x (2m) (2m)\ %
Jor ) + A IS )" Then by (2.1)

At this time, from (3.48), we have ¢y = o Yo

and a series of calculations, we obtain

A2 = 41(2m)
(2m)
1 L
K=5- IJ,,‘,),
_ (an(f'"’)(Jﬁf,zfl))* 60 Vi M e N 7 s e
¥4 |f(2m)‘2 ‘f’frnl) |f(2m)‘2 ‘Z(ZnII)lry £ (3 49)
m) (2m) (2m) % (2m) ,(2m) 2m
1 (2m) <2m>* f D fpyn) Stz Jr [ @m) @m)\ %
P = |:\f(2m)|2 S f m ‘f(2m1)|2+2 _ |}2(2”:1'; \f(2m§|2 (Jf )(Jf )*
5 l(zml) m+ m+
[|Bl|* = l’(’zﬁl)

Then applying Lemma 3.2 and substituting (3.49) into the second equation of (3.33), we get
m =1or

<J rem, ﬁfj’?}:( om0y f(z’")> 0, 32 = 212m. (3.50)

In the latter case, since Z,ffl) = % and [P = ((']”IZIZ))'? by ([2], §5), we have m = 2

by (3.50). Hence, in the following, we discuss the above two cases of m = 1 and m = 2
respectively.

CaseIll, m = 1.
In this case, by (3.50) we have

¢, =UVP @Iy, (3.51)

where Z§2) is a Veronese surface in C P2 C C P?"*! with the standard expression given in
T
([2], Section 5) and U € U (2n+2) satisfies tr (V(z) V(z) ut Jut1 U) = 0, as this expresses

the orthogonality of J f; © and 5 @,

By calculating, we find in this case W = UT J,,,.1U € U(2n + 2) is the same type as
(3.24). Then, the type of the corresponding U € U (2n + 2) is the same as (3.25). Thus, we
have

1
v = T 2% 0 V24220, 220,007,
e

1
Juv® = 0, —22,0, vV2-+277, 0, 2z, 0,...,0)T.
! 1+ zz

In this case, it is easy to check that the corresponding map ¢ is totally geodesic. Obviously,
it is congruent to the case (5) with K = 2, =0.

Case II2, m = 2.
In this case, by (3.50) we have

9, =UVS @Juvs, (3.52)

where Z?) is a Veronese surface in C P* € C P?"*! with the standard expression given in
T

([2], Section 5) and U € U (2n+2) satisfies tr (V4(4) VO(4) UT Jy41 U) = 0, as this expresses

the orthogonality of J f;) @ and Sa @
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Similarly, we get the type of W = U” J,,1U € U(2n + 2) as follows:

aie - a1+
axe v a22n42
0 asze - a3 on42
_ ase v A4.2n42
W= ase v As52n42
—aie —aze —aze —a46 —ase 0 re d6,2n42
| —a1,2n+2 —G2204+2 —A32042 —A42n+2 —A52n+2 —a62n+2 -+ 0
And the type of the corresponding U € U (2n + 2) is as follows:
1 0 0 0 0 0 e 0
0 0 0 0 0 —die cee o —a)2n42
0 1 0 0 0 0o ... 0
0 0 0 0 0 —axe - —aA22m42
0 0 1 0 0 0o ... 0
U= . (3.53)
0 0 0 0 0 —asze - —aA3 42
0 0 0 1 0 0 e 0
0 0 0 0 0 —as - —asoms2
0 0 0 0 1 0 e 0
0 %k
Thus, we have
2
UV, = —=—(62%,0, 6 + 62%,0, V6 — 4622
(1+4+z2)
+ v62%7%,0, 62 — 62°7,0,62%,0,...,0)7,
2
JUVY = — =0, 67,0, =62 + 6277, 0, /6 — 4/627
(1+z2)

+ v67272,0,67 — 627%,0, 672, ..., 0)7.

In this case, it is easy to check that the Eq. (3.1) holds, which shows the second fundamental
form of the corresponding map ¢ is parallel. Obviously, it is congruent to the case (6) with
K =g |IBI>=3.

Itis easy to check that no two of the above six cases are congruent, i.e., we cannot transform
any one into any other by left multiplication by Sp(n + 1). To sum up, we get Theorem 1.1.
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