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Abstract In this paper, we determine all conformal minimal immersions of 2-spheres in
quaternionic projective spaces HPn with parallel second fundamental form.
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1 Introduction

In 1976, Nakagawa and Takagi studied some properties about Kähler imbeddings of compact
Hermitian symmetric spaces in the complex projective space CPn and gave a classification
of Kähler submanifolds inCPn with parallel second fundamental form (cf. [8]). In 1984, Ros
decided the compact Einstein Kähler submanifold in CPn with parallel second fundamental
form (cf. [9]). In 1985, Tsukada classified 2n-dimensional totally complex submanifolds
in HPn with parallel second fundamental form into eight types (cf. [10,11]). Recently,
we studied conformal minimal immersions of 2-spheres in CPn and G(k, N ) with parallel
second fundamental form, and obtained some geometric properties of them (cf. [6,7]).

In this paper, our interest is to study classification of conformal minimal immersions from
S2 to the quaternionic projective space HPn with parallel second fundamental form by the
theory of harmonic maps. Here, we regard HPn as a totally geodesic totally real submani-

Project supported by the NSFC (Grant No. 11331002).

L. He (B) · X. Jiao
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
e-mail: heling11b@mails.ucas.ac.cn

X. Jiao
e-mail: xxjiao@ucas.ac.cn

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-014-0420-8&domain=pdf


1302 L. He, X. Jiao

folds in complex Grassmann manifolds G(2, 2n + 2) and obtain the following classification
theorem:

Theorem 1.1 Let ϕ : S2 → HPn be a linearly full conformal minimal immersion, and let K
and B be its Gauss curvature and second fundamental form respectively. If B is parallel, then,
up to a symplectic isometry of H Pn, it belongs to one of the following minimal immersions.

(1) ϕ =
[
(
√
3z + √

3z2 j, − 1 + 2zz − 2z j − zz2 j)T
]

: S2 → HP1, with K =
2
3 , ‖B‖2 = 8

3 ;
(2) ϕ = [

(1, z)T
] : S2 → CP1 ⊂ HP1, with K = 2, B = 0;

(3) ϕ =
[
(1,

√
2z, z2)T

]
: S2 → CP2 ⊂ HP2, with K = 1, ‖B‖2 = 2;

(4) ϕ =
[
(1 − 1

2 z
3 j,

√
3z +

√
3
2 z2 j, 3

2 z
2,

√
3
2 z3)T

]
: S2 → HP3, with K = 2

3 , ‖B‖2 =
1
3 ;

(5) ϕ =
[
(−2z,

√
2 − √

2zz, 2z)T
]

: S2 → CP2 ⊂ HP2, with K = 1
2 , B = 0;

(6) ϕ =
[
(6z2, − 6z + 6zz2,

√
6 − 4

√
6zz + √

6z2z2, 6z − 6z2z, 6z2)T
]

: S2 →
CP4 ⊂ HP4, with K = 1

6 , ‖B‖2 = 2
3 .

Further, no two of the above six cases are congruent, i.e., there is no symplectic isometry
which transforms one case into another.

2 Preliminaries

(A) For any N = 1, 2, . . . , let 〈, 〉 denote the standard Hermitian inner product onCN defined
by 〈z, w〉 = z1w1+· · ·+ zNwN , where z = (z1, . . . , zN )T , w = (w1, . . . , wN )T ∈ C

N and
¯ denote complex conjugation. Let H denote the division ring of quaternions. Let j be a unit
quaternion with j2 = −1. Then, we have an identification of C2 with H given by making
(a, b) ∈ C

2 correspond to a + bj ∈ H; let n ∈ {1, 2, . . .}, and we have a corresponding
identification of C2n with H

n . For any a + bj ∈ H, the left multiplication by j is given by
j (a + bj) = −b + a j ; the conjugation is given by a + bj = a − bj ; the positive-definite
inner product is given by 〈x, y〉H = Re(x y) for any x, y ∈ H.

Let J : C2n → C
2n be the conjugate linear map given by left multiplication by j , i.e.,

J(z1, z2, . . . , z2n−1, z2n)
T = (−z̄2, z̄1, . . . ,−z̄2n, z̄2n−1)

T .

Then, J2 = −id where id denotes the identity map on C
2n . In fact, for any v ∈ C

2n ,

Jv = Jn v̄,

where Jn = diag

{(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)}

︸ ︷︷ ︸
n

.

By the above, we immediately have the following lemma (cf. [1]).

Lemma 2.1 The operator J has the following properties:

(i) 〈Jv, Jw〉 = 〈w, v〉 for all v,w ∈ C
2n;

(ii) 〈Jv, v〉 = 0 for all v ∈ C
2n;

(iii) ∂ ◦ J = J ◦ ∂ , ∂ ◦ J = J ◦ ∂;
(iv) J(λv) = λJv for any λ ∈ C, v ∈ C

2n.
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LetG(2, 2n+2) denote the Grassmannmanifold of all complex 2-dimensional subspaces
of C2n+2 with its standard Kähler structure. The quaternionic projective space HPn is the
set of all one-dimensional quaternionic subspaces of Hn+1. Throughout the above, we shall
regard HPn as the totally geodesic submanifold of G(2, 2n + 2) given by

HPn = {V ∈ G(2, 2n + 2) : JV = V } .

Let Sp(n + 1) = {g ∈ GL(n + 1;H), g∗g = In+1} be the symplectic isometry group of
HPn , here In+1 is the identity matrix. The explicit description is that the following diagram
commutes:

Sp(n + 1)
i1−−−−→ U (2n + 2)

π1

⏐⏐� π2

⏐⏐�
HPn i2−−−−→ G(2, 2n + 2)

where i1, i2 are inclusions and π1, π2 are projections, and i1(g) = U , for 1 ≤ a, b ≤ n + 1
{
U 2a−1
2b−1 = Aa

b, U 2a−1
2b = −D

a
b,

U 2a
2b−1 = Da

b , U 2a
2b = A

a
b,

where A = (Aa
b), D = (Da

b ) ∈ Mn+1(C), g = A + D j ∈ Sp(n + 1);
π1(g) = g · [1, 0, . . . , 0]T ∈ HPn;
π2(U ) = U ·

[
1, 0, 0, . . . , 0
0, 1, 0, . . . , 0

]T
∈ G(2, 2n + 2);

i2
(
[z1 + z2 j, . . . , z2n+1 + z2n+2 j]T

)
=
[

z1, z2, . . . , z2n+1, z2n+2

−z2, z1, . . . ,−z2n+2, z2n+1

]T
.

Here, we take the standard metric on G(2, 2n + 2) as described in section 2 of [7]; then,
the metric induced by i2 is twice as much as the standard metric on HPn .

Thus, a harmonicmap from S2 to HPn is precisely a harmonicmap from S2 toG(2, 2n+2)
which has image in i2(HPn).

Then, for any g ∈ Sp(n + 1), the action of g on HPn induces an action of i1(g) on
CP2n+1, where i1(g) ∈ U (2n + 2) commutes with J. We shall retain g to also denote i1(g).
Then

Sp(n + 1) = {g ∈ U (2n + 2), g ◦ J = J ◦ g} =
{
g ∈ U (2n + 2), gJn+1g

T = Jn+1

}
.

In the following, we deal with the symplectic isometry of HPn through the corresponding
symplectic isometry of CP2n+1.

(B) In this section, we give general expression of some geometric quantities about con-
formal minimal immersions from S2 to HPn (cf. [7]).

Let M be a simply connected domain in the unit sphere S2 and let (z, z) be complex
coordinates on M . We take the metric ds2M = dzdz on M . Denote

∂ = ∂

∂z
, ∂ = ∂

∂z
.

We consider the complexGrassmannmanifoldG(2, N ) as the set of Hermitian orthogonal
projections from C

N onto a 2-dimensional subspace in C
N . Then, a map ψ : S2 → G(2, N )

is a Hermitian orthogonal projection onto a 2-dimensional subbundle ψ of the trivial bundle
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1304 L. He, X. Jiao

C
N = M × C

N given by setting the fibre of ψ at x , ψ
x
, equal to ψ(x) for all x ∈ M . We

say that ψ is a harmonic subbundle if ψ is harmonic (cf. [3]).

Let ϕ : S2 → HPn be a conformal minimal immersion. The map i2 ◦ ϕ : S2 →
G(2, 2n + 2) may be represented via the local sections of the subbundle Im(i2 ◦ ϕ) by the
projection map (cf. [7], (2.10)):

i2 ◦ ϕ = XX∗ + (JX)(JX)∗,

where X ∈ Im(i2 ◦ ϕ) is a unit column vector in C
2n+2, and X and JX are naturally

orthogonal.
Denote i2 ◦ ϕ by ϕ0 (in the following, we will use this notation all the time). Suppose that

the metric induced by ϕ0 is ds2 = λ2dzdz. Let K and B be its Gauss curvature and second
fundamental form, respectively. From section 2 and 3 of [7], we have

⎧
⎪⎨
⎪⎩

λ2 = tr∂ϕ0∂ϕ0,

K = − 2
λ2

∂∂ log λ2,

‖B‖2 = 4tr P P∗.
(2.1)

where P = ∂
(
Az/λ

2
)
with Az = (2ϕ0 − I ) ∂ϕ0, and I is the identity matrix, then P∗ =

∂
(
A∗
z/λ

2
)
, A∗

z = −Az .

3 The proof of main theorem

We recall that an immersion of S2 in HPn is conformal and minimal if and only if it is
harmonic (cf. [4], Sec 10.6). Thus, we shall consider the immersive harmonic maps from S2

to HPn with parallel second fundamental form for the reducible and irreducible cases to give
the proof of Theorem 1.1 in Sect. 1. At first, we state a conclusion about parallel minimal
immersions of 2-spheres in G(k, N ) as follows:

Lemma 3.1 ([7]) Let ϕ : S2 → G(k, N ) be a conformal minimal immersion with the second
fundamental form B. Then B is parallel if and only if the equation

λ2

16
‖B‖2 (8K + ‖B‖2)+ 2tr [Az, P][A∗

z , P
∗] − 5tr [Az, A

∗
z ][P, P∗] = 0 (3.1)

holds.

(I)Let ϕ : S2 → HPn be a linearly full reducible harmonicmap, then by ([1], Proposition
3.7)we know thatϕ is a quaternionicmixed pair or a quaternionic Frenet pair. In the following,
we discuss the two cases of ϕ with parallel second fundamental form, respectively.

(Ia) If ϕ is a linearly full quaternionic Frenet pair, then

ϕ
0

= f (2n+1)
n

⊕ f (2n+1)
n+1

, (3.2)

where f (2n+1)
0

, f (2n+1)
1

, . . . , f (2n+1)
2n+1

: S2 → CP2n+1 is the harmonic sequence generated

by a linearly full totally J-isotropic map f (2n+1)
0

.

Firstly, we recall ([1], §3) that a full holomorphic map f (2n+1)
0

: S2 → CP2n+1 in the

following harmonic sequence satisfying f (2n+1)
2n+1

= J f (2n+1)
0

is said to be totally J-isotropic,

0
A′′
0←− f (2n+1)

0

A′
0−→ · · · A′

n−1−→ f (2n+1)
n

A′
n−→ f (2n+1)

n+1

A′
n+1−→ · · · A′

2n−→ f (2n+1)
2n+1

A′
2n+1−→ 0,
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On conformal minimal immersions 1305

where A′
j (v) = π

f (2n+1)
j

⊥(∂v), A′′
j (v) = π

f (2n+1)
j

⊥(∂v) for v ∈ C∞( f (2n+1)
j

), here

π
f (2n+1)
j

⊥ denotes orthogonal projection onto bundle f (2n+1)
j

⊥
and C∞( f (2n+1)

j
) denotes

the vector space of smooth sections of bundle f (2n+1)
j

, j = 0, . . . , 2n + 1.

Let f (2n+1)
0 be a holomorphic section of f (2n+1)

0
, i.e., ∂ f (2n+1)

0 = 0, and let f (2n+1)
j be a

local section of f (2n+1)
j

such that

f (2n+1)
j = π

f (2n+1)
j−1

⊥
(
∂ f (2n+1)

j−1

)

for j = 1, . . . , 2n + 1. Then, we have some formulas as follows (cf. [2]):

∂ f (2n+1)
j = f (2n+1)

j+1 + ∂ log | f (2n+1)
j |2 f (2n+1)

j , j = 0, . . . , 2n,

∂ f (2n+1)
j = −l(2n+1)

j−1 f (2n+1)
j−1 , j = 1, . . . , 2n + 1,

∂∂ log | f (2n+1)
j |2 = l(2n+1)

j − l(2n+1)
j−1 ,

∂∂ log l(2n+1)
j = l(2n+1)

j+1 − 2l(2n+1)
j + l(2n+1)

j−1 , j = 0, . . . , 2n,

where l(2n+1)
j = | f (2n+1)

j+1 |2/| f (2n+1)
j |2 for j = 0, . . . , 2n + 1, and l(2n+1)

−1 = l(2n+1)
2n+1 = 0.

Since f (2n+1)
0

is totally J-isotropic, in a similar fashion to ([2], Lemma 7.1) we obtain

l(2n+1)
j = l(2n+1)

2n− j . (3.3)

And set J f (2n+1)
0 = τ0 f

(2n+1)
2n+1 , then

|τ0|2 = | f (2n+1)
0 |2

| f (2n+1)
2n+1 |2

, J f (2n+1)
j = (−1) jτ0

| f (2n+1)
2n+1 |2

| f (2n+1)
2n+1− j |2

f (2n+1)
2n+1− j ,

where j = 0, . . . , n.
Obviously, ϕ0 belongs to the following harmonic sequence (cf. [3])

0
A′′
0←− f (2n+1)

0

A′′
1←− · · · A′′

n−1←− f (2n+1)
n−1

A′′
ϕ0←− ϕ

0

A′
ϕ0−→ f (2n+1)

n+2

A′
n+2−→ · · · A′

2n−→ f (2n+1)
2n+1

A′
2n+1−→ 0,

(3.4)
where A′

ϕ0
(v) = πϕ⊥

0
(∂v), A′′

ϕ0
(v) = πϕ⊥

0
(∂v) for v ∈ C∞(ϕ

0
), here πϕ⊥

0
denotes orthog-

onal projection onto bundle ϕ⊥
0
and C∞(ϕ

0
) denotes the vector space of smooth sections of

bundle ϕ
0
.

From (3.2), we have ϕ0 = f (2n+1)
n ( f (2n+1)

n )∗
| f (2n+1)

n |2 + f (2n+1)
n+1 ( f (2n+1)

n+1 )∗

| f (2n+1)
n+1 |2 . Then by (2.1), (3.3) and a

series of calculations, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2 = 2l(2n+1)
n−1 ,

K = 2 − l(2n+1)
n +l(2n+1)

n−2

l(2n+1)
n−1

,

‖B‖2 = 2
l(2n+1)
n +l(2n+1)

n−2

l(2n+1)
n−1

,

tr [Az, P][A∗
z , P

∗] = −l(2n+1)
n ,

tr [Az, A∗
z ][P, P∗] = 1

2 l
(2n+1)
n−2 .

(3.5)
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Now, we prove that if ϕ : S2 → HPn is a linearly full quaternionic Frenet pair with
parallel second fundamental form, then, up to Sp(n+1), it belongs to the following case: (1)

ϕ =
[
(
√
3z + √

3z2 j,−1 + 2zz − 2z j − zz2 j)T
]

: S2 → HP1, with K = 2
3 , ||B||2 = 8

3 .

If ϕ is a linearly full quaternionic Frenet pair with parallel second fundamental form, then
applying Lemma 3.1 and substituting (3.5) into (3.1), we get

3l(2n+1)
n−2 l(2n+1)

n−1 + 4l(2n+1)
n−1 l(2n+1)

n − 3
(
l(2n+1)
n + l(2n+1)

n−2

)2 = 0. (3.6)

Since the second fundamental form of the map ϕ is parallel, its Gauss curvature is a constant
(cf. [7], Theorem 4.5). We know up to U (2n + 2), f (2n+1)

0
is a Veronese surface by ([5],

Lemma 4.1). Then from [2], we have f (2n+1)
0

, f (2n+1)
1

, . . . , f (2n+1)
2n+1

is theVeronese sequence

in CP2n+1, up to U (2n + 2). So, from ([2], Section 5), we get

| f (2n+1)
i |2 = (2n + 1)!i !

(2n + 1 − i)! (1 + zz)2n+1−2i , l(2n+1)
j = ( j + 1)(2n + 1 − j)

(1 + zz)2
, (3.7)

where i = 0, . . . , 2n + 1, j = 0, . . . , 2n.
Substituting (3.7) into (3.6), we get

(n − 1)(n + 3)(5n2 + 10n − 4) = 0,

which implies n = 1, since n is a positive integer. Hence,

ϕ
0

= UV (3)
1 ⊕ JUV (3)

1 , (3.8)

where V (3)
1 is a Veronese surface in CP3 ⊂ CP2n+1 with the standard expression given in

([2], §5), and U ∈ U (2n + 2) satisfies Jn+1UV
(3)
0 = λUV (3)

3 (λ is a parameter).
Set UT Jn+1U = W , then we immediately get

WV (3)
0 = λV

(3)
3 , WT = −W, W ∗W = I, (3.9)

where I is the identity matrix.
Define a set

GW �
{
U ∈ U (2n + 2), UWUT = Jn+1

}
.

For a given W , the following can be easily checked

(i) ∀ g ∈ Sp(n + 1), U ∈ GW , we have that gU ∈ GW ;
(ii) ∀ U, V ∈ GW , ∃ g = UV ∗ ∈ Sp(n + 1) s.t. U = gV .

Then, we discuss the type of W to get the type of the corresponding U . From ([2],
section 5), we get

V (3)
0 = (1,

√
3z,

√
3z2, z3, 0, . . . , 0)T ,

V (3)
3 = 6

(1 + zz)3
(−z3,

√
3z2, −√

3z, 1, 0, . . . , 0)T . (3.10)
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On conformal minimal immersions 1307

Then, by (3.9) and (3.10) we get the type of W as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 −1 0

0 1 0 0 0
−1 0 0 0

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

From WU
T = UT Jn+1, the corresponding U = [

e1, e2, . . . , e2n+1, e2n+2
]T satisfy

e2p = We2p−1, p = 1, . . . , n + 1, (3.12)

where ei are unit column vectors in C
2n+2.

Without loss of generality, in this case we choose

{
e1 = (1, 0, 0, 0, . . . , 0)T ,

e3 = (0, 1, 0, 0, . . . , 0)T .
(3.13)

By(3.11)–(3.13), we get e2 = We1 = (0, 0, 0,−1, . . . , 0)T and e4 = We3 =
(0, 0, 1, 0, . . . , 0)T , obviously {e1, e2, e3, e4} are mutually orthogonal. Next, we choose a
unit column vector e5 = (0, 0, 0, 0, ∗)T ∈ C

2n+2, which satisfies {e1, e2, e3, e4, e5} are
mutually orthogonal. Set e6 = We5, then {e1, e2, e3, e4, e6} are mutually orthogonal. Since
〈e6, e5〉 = eT5 W

T e5 = −tr(e5eT5 W ) = 0, then {e1, e2, e3, e4, e5, e6} are mutually orthogo-
nal.

Generally, suppose {e1, e2, . . . , e2p−3, e2p−2 = We2p−3} (p ≥ 3) are mutually orthog-
onal, we choose a unit column vector e2p−1 = (0, 0, 0, 0, ∗)T ∈ C

2n+2 such that
{e1, e2, . . . , e2p−3, e2p−2, e2p−1} are mutually orthogonal. Set e2p = We2p−1, then

〈
e2p, e2p−1

〉 = eT2p−1W
T e2p−1 = −tr(e2p−1e

T
2p−1W ) = 0,

and for any 2 ≤ q ≤ p,

〈
e2p, e2q−3

〉 = eT2p−1W
T e2q−3 = −eT2p−1We2q−3 = −eT2p−1e2q−2

= − 〈e2p−1, e2q−2
〉 = 0,

〈
e2p, e2q−2

〉

= eT2p−1W
TWe2q−3 = eT2p−1e2q−3 = 〈

e2p−1, e2q−3
〉 = 0.

Thus {e1, e2, . . . , e2p−3, e2p−2, e2p−1, e2p} are mutually orthogonal.
So,we can choose n−1 proper unit column vectors e2p+1 = (0, 0, 0, 0, ∗)T ∈ C

2n+2 (2 ≤
p ≤ n) such that {e1, e2, . . . , e2n+1, e2n+2 = We2n+1} are mutually orthogonal, and the type
of the corresponding U is as follows:
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U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 −1

0 1 0 0 0
0 0 1 0

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.14)

Thus, we have

UV (3)
1 = −√

3

1 + zz
(
√
3z,

√
3z2, −1 + 2zz, −2z + z2z, 0, . . . , 0)T ,

JUV (3)
1 = −√

3

1 + zz
(−√

3z2,
√
3z, 2z − zz2, −1 + 2zz, 0, . . . , 0)T .

Obviously, in this case ϕ is congruent to the case (1) with K = 2
3 , ‖B‖2 = 8

3 .
(Ib) If ϕ is a linearly full quaternionic mixed pair, then

ϕ
0

= f (m)

0
⊕ J f (m)

0
, (3.15)

where f (m)
0

: S2 → CPm ⊆ CP2n+1 (n ≤ m ≤ 2n + 1) is holomorphic and f (m)
1

⊥ J f (m)
0

.
Obviously, ϕ0 belongs to the following harmonic sequence

0
A′′
m←− J f (m)

m

A′′
m−1←− . . .

A′′
1←− J f (m)

1

A′′
ϕ0←− ϕ

0

A′
ϕ0−→ f (m)

1

A′
1−→ . . .

A′
m−1−→ f (m)

m

A′
m−→ 0. (3.16)

As in the case (Ia), let f (m)
0 be a holomorphic section of f (m)

0
, i.e., ∂ f (m)

0 = 0, and f (m)
j

( j = 1, . . . ,m) satisfy the corresponding formulas. From (3.15), we have ϕ0 = f (m)
0 ( f (m)

0 )∗

| f (m)
0 |2 +

(J f (m)
0 )(J f (m)

0 )∗

| f (m)
0 |2 . Then by (2.1) and a series of calculations, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2 = 2l(m)
0 ,

K = 2 − l(m)
1

l(m)
0

,

‖B‖2 = 2
l(m)
1

l(m)
0

,

tr [Az, P][A∗
z , P

∗] = − 1
4

∣∣〈 f (m)
2 , J f (m)

1

〉∣∣2
| f (m)

1 |4 ,

tr [Az, A∗
z ][P, P∗] = 1

2

(
l(m)
1 −

∣∣〈 f (m)
2 , J f (m)

1

〉∣∣2
| f (m)

1 |4

)
.

(3.17)

Now, we prove that if ϕ : S2 → HPn is a linearly full quaternionic mixed pair with
parallel second fundamental form, then, up to Sp(n + 1), it belongs to one of the following
three cases:
(2) ϕ = [

(1, z)T
] : S2 → CP1 ⊂ HP1, with K = 2, B = 0;

(3) ϕ =
[
(1,

√
2z, z2)T

]
: S2 → CP2 ⊂ HP2, with K = 1, ||B||2 = 2;

(4) ϕ =
[
(1 − 1

2 z
3 j,

√
3z +

√
3
2 z2 j, 3

2 z
2,

√
3
2 z3)T

]
: S2 → HP3, with K = 2

3 , ||B||2 = 1
3 .
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On conformal minimal immersions 1309

If ϕ is a linearly full quaternionic mixed pair with parallel second fundamental form, then
applying Lemma 3.1 and substituting (3.17) into (3.1), we get

∣∣∣
〈
f (m)
2 , J f (m)

1

〉 ∣∣∣
2

| f (m)
1 |4

= 3

4
l(m)
1

(
l(m)
1

l(m)
0

− 1

)
. (3.18)

Since the metric ds2 = 2l(m)
0 dzdz induced by ϕ is of constant curvature, and the met-

ric induced by f (m)
0

is ds2 = l(m)
0 dzdz, then it follows from ([2], Theorem 5.4) that

f (m)
0

, f (m)
1

, . . . , f (m)
m

is the Veronese sequence in CPm ⊂ CP2n+1, up to U (2n + 2). Then
from (3.7) and (3.18) we get

∣∣∣
〈
f (m)
2 , J f (m)

1

〉 ∣∣∣
2 = 3m(m − 1)(m − 2)

2
(1 + zz)2m−6. (3.19)

We denote by r the isotropy order of ϕ (cf. [3], §3A). If r is finite, then r = 2s (1 ≤
s ≤ n + 1) by ([1], Proposition 3.2). Otherwise, r = ∞, in which case ϕ is called strongly
isotropic (cf. [1], section 2C).

If m = 1, observing (3.17), we find K = 2, B = 0. It belongs to the case of totally
geodesic. If m = 2, since r ≥ 2, which implies f (2)

2
⊥ J f (2)

0
by (3.16), then we have〈

f (2)
2 , J f (2)

1

〉
= ∂

〈
f (2)
2 , J f (2)

0

〉
= 0, which implies (3.19) holds. Hence, its second funda-

mental form is parallel. In fact, the above two cases are both strongly isotropic.

If m ≥ 3, from (3.19) we find
〈
f (m)
3 , J f (m)

0

〉
= −

〈
f (m)
2 , J f (m)

1

〉
�= 0, which implies in

this case r = 2. In the following, we discuss the above three cases, respectively.

Case Ib1, m = 1.
In this case, we have

ϕ
0

= UV (1)
0 ⊕ JUV (1)

0 , (3.20)

where V (1)
0 is a Veronese surface in CP1 ⊂ CP2n+1 with the standard expression given in

([2], section 5), andU ∈ U (2n+2) satisfies tr
(
V (1)
1 V (1)

0
T
UT Jn+1U

)
= 0, as this expresses

the orthogonality of J f (1)
0 and f (1)

1 .
Similarly, we get the type of W = UT Jn+1U ∈ U (2n + 2) as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a13 a14 · · · a1,2n+2

0 0 a23 a24 · · · a2,2n+2

−a13 −a23 0 a34 · · · a3,2n+2

−a14 −a24 −a34 0 · · · a4,2n+2
...

...
...

...
. . .

...

−a1,2n+2 −a2,2n+2 −a3,2n+2 −a4,2n+2 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.21)

As in case (1a), by (3.12),(3.13), and (3.21), we get
{
e2 = We1 = (

0, 0,−a13,−a14, . . . ,−a1,2n+2
)T

,

e4 = We3 = (
0, 0,−a23,−a24, . . . ,−a2,2n+2

)T
.

Since W in (3.21) is a unitary matrix, {e1, e2, e3, e4} are mutually orthogonal. Similarly, we
can choose n − 1 proper unit column vectors e2p+1 = (0, 0, ∗)T ∈ C

2n+2 (2 ≤ p ≤ n)
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1310 L. He, X. Jiao

such that {e1, e2, . . . , e2n+1, e2n+2 = We2n+1} are mutually orthogonal, and the type of the
corresponding U is as follows:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 0 −a13 · · · −a1,2n+2

0 1 0 · · · 0

0 0 −a23 · · · −a2,2n+2

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.22)

Thus, we have

UV (1)
0 = (1, 0, z, 0, 0, . . . , 0)T ,

JUV (1)
0 = (0, 1, 0, z, 0, . . . , 0)T .

Obviously, in this case ϕ is congruent to the case (2) with K = 2, B = 0.

Case Ib2, m = 2.
In this case, we have

ϕ
0

= UV (2)
0 ⊕ JUV (2)

0 , (3.23)

where V (2)
0 is a Veronese surface in CP2 ⊂ CP2n+1 with the standard expression given in

([2], §5), and U ∈ U (2n + 2) satisfies tr
(
V (2)
1 V (2)

0
T
UT Jn+1U

)
= 0, as this expresses the

orthogonality of J f (2)
0 and f (2)

1 .
Similarly, we get the type of W = UT Jn+1U ∈ U (2n + 2) as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a14 a15 · · · a1,2n+2

0 0 0 a24 a25 · · · a2,2n+2

0 0 0 a34 a35 · · · a3,2n+2

−a14 −a24 −a34 0 a45 · · · a4,2n+2

−a15 −a25 −a35 −a45 0 · · · a5,2n+2
...

...
...

...
...

. . .
...

−a1,2n+2 −a2,2n+2 −a3,2n+2 −a4,2n+2 −a5,2n+2 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.24)

And the type of the corresponding U is as follows:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

0 0 0 −a14 · · · −a1,2n+2

0 1 0 0 · · · 0

0 0 0 −a24 · · · −a2,2n+2

0 0 1 0 · · · 0

0 0 0 −a34 · · · −a3,2n+2

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.25)
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Thus, we have

UV (2)
0 = (1, 0,

√
2z, 0, z2, 0, 0, . . . , 0)T ,

JUV (2)
0 = (0, 1, 0,

√
2z, 0, z2, 0, . . . , 0)T .

Obviously, in this case ϕ is congruent to the case (3) with K = 1, ‖B‖2 = 2.

Case Ib3, m ≥ 3.
In this case, the trivial bundle S2 × C

2n+2 over S2 has a corresponding decomposition
S2 × C

2n+2 = S2 × C
m+1 ⊕ S2 × C

2n−m+1. From (3.16) we set J f (m)
0 = x3 f

(m)
3 +

x4 f
(m)
4 + · · · + xm f (m)

m + V , where xi (i = 3, . . . ,m) are complex coefficients and bundle

V ⊂ S2 × C
2n−m+1. Then, it follows from ∂J f (m)

0 = 0 that

⎧⎪⎨
⎪⎩

∂x3 + x3∂ log | f (m)
3 |2 = 0,

∂xi + xi−1 + xi∂ log | f (m)
i |2 = 0, (i = 4, . . . ,m),

∂V = 0.

(3.26)

And we have
〈
f (m)
3 , J f (m)

0

〉
= x3| f (m)

3 |2. Then, from ([2], §5) and (3.19) we get

|x3|2| f (m)
3 |4 = 3m(m − 1)(m − 2)

2
(1 + zz)2m−6. (3.27)

By (3.26) and (3.27), we find ∂∂ log
(
|x3|2| f (m)

3 |4
)

= 2m−6
(1+zz)2

= 0, which implies m = 3,

i.e.,
ϕ
0

= UV (3)
0 ⊕ JUV (3)

0 , (3.28)

where V (3)
0 is a Veronese surface in CP3 ⊂ CP2n+1 with the standard expression

given in ([2], §5), and U ∈ U (2n + 2) satisfies tr
(
V (3)
1 V (3)

0
T
UT Jn+1U

)
= 0 and

tr
(
V (3)
3 V (3)

0
T
UT Jn+1U

)
�= 0, as these express r = 2.

Similarly, we get the type of W = UT Jn+1U ∈ U (2n + 2) as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a14 a15 · · · a1,2n+2

0 0 −a14 0 a25 · · · a2,2n+2

0 a14 0 0 a35 · · · a3,2n+2

−a14 0 0 0 a45 · · · a4,2n+2

−a15 −a25 −a35 −a45 0 · · · a5,2n+2
...

...
...

...
...

. . .
...

−a1,2n+2 −a2,2n+2 −a3,2n+2 −a4,2n+2 −a5,2n+2 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.29)
where a14 �= 0.

In this case, if |a14|2 = 1, as in the case (Ia) we choose (3.13), then choose n − 1 proper
unit column vectors e2p+1 = (0, 0, 0, 0, ∗)T ∈ C

2n+2 (2 ≤ p ≤ n) such that the type of the
corresponding U ∈ U (2n + 2) is as follows:
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1312 L. He, X. Jiao

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 −a14

0 1 0 0 0
0 0 a14 0

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.30)

Thus, we have

UV (3)
0 = (1, − a14z

3,
√
3z,

√
3a14z

2, 0, 0, . . . , 0)T ,

JUV (3)
0 = (a14z

3, 1, − √
3a14z

2,
√
3z, 0, 0, . . . , 0)T .

If |a14|2 �= 1, then we choose
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e1 = (1, 0, 0, 0, 0, . . . , 0)T ,

e3 = (0, 1, 0, 0, 0, . . . , 0)T ,

e5 = 1√
1−|a14|2

(0, 0, 1 − |a14|2, 0, a14a25, . . . , a14a2,2n+2)
T ,

e7 = 1√
1−|a14|2

(0, 0, 0, 1 − |a14|2,−a14a15, . . . ,−a14a1,2n+2)
T .

(3.31)

And we choose n − 3 proper unit column vectors e2p+1 = (0, 0, 0, 0, ∗)T ∈ C
2n+2 (4 ≤

p ≤ n) such that the type of the corresponding U ∈ U (2n + 2) is as follows:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0

0 0 0 −a14 −a15 · · · −a1,2n+2

0 1 0 0 0 · · · 0

0 0 a14 0 −a25 · · · −a2,2n+2

0 0
√
1 − |a14|2 0

a14a25√
1 − |a14|2

· · · a14a2,2n+2√
1 − |a14|2

0 0 0 0
−a35√

1 − |a14|2
· · · −a3,2n+2√

1 − |a14|2

0 0 0
√
1 − |a14|2 −a14a15√

1 − |a14|2
· · · −a14a1,2n+2√

1 − |a14|2
0 0 0 0

−a45√
1 − |a14|2

· · · −a4,2n+2√
1 − |a14|2

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.32)

Thus, we have

UV (3)
0 =(1, − a14z

3,
√
3z,

√
3a14z

2,
√
3 − 3|a14|2z2, 0,

√
1 − |a14|2z3, 0, 0, . . . , 0)T ,

JUV (3)
0 =(a14z

3, 1, − √
3a14z

2,
√
3z, 0,

√
3 − 3|a14|2z2, 0,

√
1 − |a14|2z3, 0, . . . , 0)T .
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From (3.30) and (3.32), we have
〈
f (3)
3 , J f (3)

0

〉
=
〈
UV (3)

3 , JUV (3)
0

〉
= 6a14. On the other

hand, from (3.27) we get
∣∣∣
〈
f (3)
3 , J f (3)

0

〉∣∣∣
2 = 9. So a14 = 1

2e
√−1θ (0 ≤ θ ≤ 2π). Hence, in

this case ϕ is congruent to the case (4) with K = 2
3 , ‖B‖2 = 1

3 .
(II) Let ϕ : S2 → HPn be an irreducible linearly full harmonic map. At first, we state a

conclusion about parallel minimal immersions of 2-spheres in G(k, N ) as follows:

Lemma 3.2 ([7]) Let ϕ : S2 → G(k, N ) be a conformal minimal immersion with the second
fundamental form B. Suppose that B is parallel, then the following equations

{
λ2(2K + ||B||2)A∗

z + 4
[[Az, A∗

z ], A∗
z

] = 0,

λ2(
||B||2
4 − K )P + [[Az, A∗

z ], P
] = 0

(3.33)

hold.

By [1], we know ϕ0 belongs to the following harmonic sequence

0←−· · · A′′
ϕ2←− ϕ−2

A′′
ϕ1←− ϕ−1

A′′
ϕ0←− ϕ

0

A′
ϕ0−→ ϕ

1

A′
ϕ1−→ ϕ

2

A′
ϕ2−→ · · · −→0, (3.34)

where ϕ
0

= i2 ◦ ϕ, ϕ−1
= Jϕ

1
, ϕ−2

= Jϕ
2
.

We choose a unit column vector X ∈ ϕ
0
, then we have

ϕ
0

= X ⊕ JX , ϕ
1

= span
{
X1, Y 1

}
, (3.35)

where X1 = ∂X−〈∂X, X〉 X−〈∂X, JX〉 JX and Y1 = ∂JX−〈∂JX , X〉 X−〈∂JX , JX〉 JX .
Here, X1 and Y1 are not orthogonal in general.

Let
E = [X, JX ]∗∂[X, JX ]. (3.36)

Then, from (3.35), we have
{

∂[X, JX ] = [X, JX ]E + [X1, Y1],
∂[X, JX ] = −[X, JX ]E∗ + [−JY1, JX1], (3.37)

where [X1, Y1]∗[X, JX ] = [−JY1, JX1]∗[X, JX ] = 0.
From (3.37) and the identity ∂∂ = ∂∂ , we get

∂E + ∂E∗ + [E, E∗] =
[|X1|2 − |Y1|2, 2 〈Y1, X1〉
2 〈X1, Y1〉 , |Y1|2 − |X1|2

]
. (3.38)

From (3.35), we have ϕ0 = XX∗ + (JX)(JX)∗. Then by (2.1), a straightforward calcu-
lation shows {

λ2 = 2(|X1|2 + |Y1|2),
Az = (JX)(JX1)

∗ − X (JY1)∗ − X1X∗ − Y1(JX)∗.
(3.39)

Since ϕ0 is harmonic, the corresponding equivalent condition ∂Az + Az A∗
z − A∗

z Az = 0 (cf.
[12]) implies ⎧⎨

⎩

〈
∂X1,X1

〉
|X1|2 = −

〈
∂Y1,Y1

〉
|Y1|2 = 〈

∂X, X
〉
,〈

∂X1,Y1
〉

|Y1|2 = 〈
∂X, JX

〉
,

〈
∂Y1,X1

〉
|X1|2 = 〈

∂JX, X
〉
.

(3.40)

Now, we prove that if ϕ : S2 → HPn is an irreducible linearly full harmonic map with
parallel second fundamental form, then, up to Sp(n+1), it belongs to one of the following two
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1314 L. He, X. Jiao

cases: (5) ϕ =
[
(−2z,

√
2 − √

2zz, 2z)T
]

: S2 → CP2 ⊂ HP2, with K = 1
2 , B = 0; (6)

ϕ =
[
(6z2, − 6z + 6zz2,

√
6 − 4

√
6zz + √

6z2z2, 6z − 6z2z, 6z2)T
]

: S2 → CP4 ⊂
HP4, with K = 1

6 , ‖B‖2 = 2
3 .

If ϕ : S2 → HPn is an irreducible linearly full harmonic map with parallel second
fundamental form, then applying Lemma 3.2 and substituting (3.39) into the first equation
of (3.33), we get

λ2 = 4|X1|2, 2K + ||B||2 = 1, 〈X1, Y1〉 = 0, |X1|2 = |Y1|2. (3.41)

From (3.38) and (3.41) we have

∂E + ∂E∗ + [E, E∗] = 0. (3.42)

Let X̃ ∈ ϕ
0
be another unit column vector such that ϕ

0
= X̃ ⊕ JX̃ , then

[X̃ , JX̃ ] = [X, JX ]T, (3.43)

where T : S2 → SU (2) is to be determined such that X̃ satisfies [X̃ , JX̃ ]∗d[X̃ , JX̃ ] = 0.
Such T is a solution of the linear PDE

dT + (Edz − E∗dz)T = 0. (3.44)

The integrability condition of (3.44) is just (3.42), so it has a unique solution locally on S2

for any given initial value. Let T be a solution of (3.44) with the initial value T (0) ∈ SU (2).
From (3.44) we have d(T ∗T ) = 0 and d|T | = 0, so T ∈ SU (2).

Now, we choose a unit column vector X ∈ ϕ
0
such that ϕ

0
= X ⊕ JX and

[X, JX ]∗d[X, JX ] = 0. (3.45)

It follows from (3.40) and (3.45) that

∂∂X = −|X1|2X. (3.46)

Let f = [X ] : S2 → CP2n+1 be a smooth immersion. Similarly, by calculating the
equivalent condition of harmonic, we find f is harmonic by (3.45) and (3.46). Of course,

J f = [JX ] : S2 → CP2n+1 is also harmonic. So ϕ
0

= f ⊕ J f , where f belongs to the
following harmonic sequence

0−→ · · · A′′
p−1−→ f

p−1

A′′
p−→ f

p
= f

A′
p−→ f

p+1

A′
p+1−→ · · · −→0. (3.47)

As in the case (Ia), let f0 be a holomorphic section of f
0
, i.e. ∂ f0 = 0, and f p satisfy the

corresponding formulas. From (3.41), we know l p−1 = l p , which implies that f
p
is totally

real by ([2], Theorem 7.3), i.e. f
p

= f (2m)
m

: S2 → RP2m ⊂ CP2m ⊂ CP2n+1, where

2 ≤ 2m ≤ 2n + 1. Let f p = f (2m)
m satisfy the corresponding formulas, then in harmonic

sequence (3.34) by (3.40) and (3.45) we have

ϕ
0

= f (2m)

m
⊕ J f (2m)

m
, ϕ

1
= f (2m)

m+1
⊕ J f (2m)

m−1
, ϕ

2
= f (2m)

m+2
⊕ J f (2m)

m−2
, (3.48)

where l(2m)
i = l(2m)

2m−1−i (i = 0, . . . ,m − 1) and ϕ
0
, ϕ

1
, ϕ

2
are mutually orthogonal.
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At this time, from (3.48), we have ϕ0 = f (2m)
m ( f (2m)

m )∗
| f (2m)

m |2 + (J f (2m)
m )(J f (2m)

m )∗
| f (2m)

m |2 . Then by (2.1)

and a series of calculations, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2 = 4l(2m)
m ,

K = 1
2 − l(2m)

m+1

2l(2m)
m

,

Az = (J f (2m)
m )(J f (2m)

m+1 )∗

| f (2m)
m |2 + (J f (2m)

m−1 )(J f (2m)
m )∗

| f (2m)
m−1 |2 − f (2m)

m+1 f (2m)
m

∗

| f (2m)
m |2 − f (2m)

m f (2m)
m−1

∗

| f (2m)
m−1 |2 ,

P = 1
4

[
l(2m)
m−2

| f (2m)
m |2 f (2m)

m f (2m)
m−2

∗ + (J f (2m)
m )(J f (2m)

m+2 )∗

| f (2m)
m+1 |2 − f (2m)

m+2 f (2m)
m

∗

| f (2m)
m+1 |2 − l(2m)

m−2

| f (2m)
m |2 (J f (2m)

m−2 )(J f (2m)
m )∗

]
,

||B||2 = l(2m)
m+1

l(2m)
m

.

(3.49)

Then applying Lemma 3.2 and substituting (3.49) into the second equation of (3.33), we get
m = 1 or 〈

J f (2m)
m−2 , f (2m)

m−1

〉
=
〈
f (2m)
m+2 , J f (2m)

m+1

〉
= 0, 3l(2m)

m+1 = 2l(2m)
m . (3.50)

In the latter case, since l(2m)
m+1 = (m+2)(m−1)

(1+zz)2
and l(2m)

m = (m+1)m
(1+zz)2

by ([2], §5), we have m = 2
by (3.50). Hence, in the following, we discuss the above two cases of m = 1 and m = 2
respectively.

Case II1, m = 1.
In this case, by (3.50) we have

ϕ
0

= UV (2)
1 ⊕ JUV (2)

1 , (3.51)

where V (2)
1 is a Veronese surface in CP2 ⊂ CP2n+1 with the standard expression given in

([2], Section 5) andU ∈ U (2n+2) satisfies tr
(
V (2)
2 V (2)

0
T
UT Jn+1U

)
= 0, as this expresses

the orthogonality of J f (2)
0 and f (2)

2 .
By calculating, we find in this case W = UT Jn+1U ∈ U (2n + 2) is the same type as

(3.24). Then, the type of the corresponding U ∈ U (2n + 2) is the same as (3.25). Thus, we
have

UV (2)
1 = 1

1 + zz
(−2z, 0,

√
2 − √

2zz, 0, 2z, 0, 0, . . . , 0)T ,

JUV (2)
1 = 1

1 + zz
(0, − 2z, 0,

√
2 − √

2zz, 0, 2z, 0, . . . , 0)T .

In this case, it is easy to check that the corresponding map ϕ is totally geodesic. Obviously,
it is congruent to the case (5) with K = 1

2 , B = 0.

Case II2, m = 2.
In this case, by (3.50) we have

ϕ
0

= UV (4)
2 ⊕ JUV (4)

2 , (3.52)

where V (4)
2 is a Veronese surface in CP4 ⊂ CP2n+1 with the standard expression given in

([2], Section 5) andU ∈ U (2n+2) satisfies tr
(
V (4)
4 V (4)

0
T
UT Jn+1U

)
= 0, as this expresses

the orthogonality of J f (4)
0 and f (4)

4 .
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Similarly, we get the type of W = UT Jn+1U ∈ U (2n + 2) as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a16 · · · a1,2n+2

a26 · · · a2,2n+2

0 a36 · · · a3,2n+2

a46 · · · a4,2n+2

a56 · · · a5,2n+2
−a16 −a26 −a36 −a46 −a56 0 · · · a6,2n+2

...
...

...
...

...
...

. . .
...

−a1,2n+2 −a2,2n+2 −a3,2n+2 −a4,2n+2 −a5,2n+2 −a6,2n+2 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

And the type of the corresponding U ∈ U (2n + 2) is as follows:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 · · · 0

0 0 0 0 0 −a16 · · · −a1,2n+2

0 1 0 0 0 0 · · · 0

0 0 0 0 0 −a26 · · · −a2,2n+2

0 0 1 0 0 0 · · · 0

0 0 0 0 0 −a36 · · · −a3,2n+2

0 0 0 1 0 0 · · · 0

0 0 0 0 0 −a46 · · · −a4,2n+2

0 0 0 0 1 0 · · · 0

0 *

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.53)

Thus, we have

UV (4)
2 = 2

(1 + zz)2
(6z2, 0,−6z + 6zz2, 0,

√
6 − 4

√
6zz

+ √
6z2z2, 0, 6z − 6z2z, 0, 6z2, 0, . . . , 0)T ,

JUV (4)
2 = 2

(1 + zz)2
(0, 6z2, 0,−6z + 6z2z, 0,

√
6 − 4

√
6zz

+ √
6z2z2, 0, 6z − 6zz2, 0, 6z2, . . . , 0)T .

In this case, it is easy to check that the Eq. (3.1) holds, which shows the second fundamental
form of the corresponding map ϕ is parallel. Obviously, it is congruent to the case (6) with
K = 1

6 , ||B||2 = 2
3 .

It is easy to check that no two of the above six cases are congruent, i.e., we cannot transform
any one into any other by left multiplication by Sp(n + 1). To sum up, we get Theorem 1.1.
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