On conformal minimal immersions of $S^{\mathbf{2}}$ in $H P^{n}$ with parallel second fundamental form

Ling He • Xiaoxiang Jiao

Received: 8 December 2013 / Accepted: 3 April 2014 / Published online: 16 April 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

In this paper, we determine all conformal minimal immersions of 2-spheres in quaternionic projective spaces $H P^{n}$ with parallel second fundamental form.

Keywords Conformal minimal 2-spheres • Parallel second fundamental form • Classification • Quaternionic projective space

Mathematics Subject Classification (2000) Primary 53C42 • 53C55

1 Introduction

In 1976, Nakagawa and Takagi studied some properties about Kähler imbeddings of compact Hermitian symmetric spaces in the complex projective space $C P^{n}$ and gave a classification of Kähler submanifolds in $C P^{n}$ with parallel second fundamental form (cf. [8]). In 1984, Ros decided the compact Einstein Kähler submanifold in $C P^{n}$ with parallel second fundamental form (cf. [9]). In 1985, Tsukada classified $2 n$-dimensional totally complex submanifolds in $H P^{n}$ with parallel second fundamental form into eight types (cf. [10,11]). Recently, we studied conformal minimal immersions of 2-spheres in $C P^{n}$ and $G(k, N)$ with parallel second fundamental form, and obtained some geometric properties of them (cf. [6,7]).

In this paper, our interest is to study classification of conformal minimal immersions from S^{2} to the quaternionic projective space $H P^{n}$ with parallel second fundamental form by the theory of harmonic maps. Here, we regard $H P^{n}$ as a totally geodesic totally real submani-

[^0]folds in complex Grassmann manifolds $G(2,2 n+2)$ and obtain the following classification theorem:

Theorem 1.1 Let $\varphi: S^{2} \rightarrow H P^{n}$ be a linearly full conformal minimal immersion, and let K and B be its Gauss curvature and second fundamental form respectively. If B is parallel, then, up to a symplectic isometry of $H P^{n}$, it belongs to one of the following minimal immersions.
(1) $\varphi=\left[\left(\sqrt{3} \bar{z}+\sqrt{3} \bar{z}^{2} j,-1+2 z \bar{z}-2 \bar{z} j-z \bar{z}^{2} j\right)^{T}\right]: S^{2} \rightarrow H P^{1}$, with $K=$ $\frac{2}{3},\|B\|^{2}=\frac{8}{3}$;
(2) $\varphi=\left[(1, z)^{T}\right]: S^{2} \rightarrow C P^{1} \subset H P^{1}$, with $K=2, B=0$;
(3) $\varphi=\left[\left(1, \sqrt{2} z, z^{2}\right)^{T}\right]: S^{2} \rightarrow C P^{2} \subset H P^{2}$, with $K=1,\|B\|^{2}=2$;
(4) $\varphi=\left[\left(1-\frac{1}{2} \bar{z}^{3} j, \sqrt{3} z+\frac{\sqrt{3}}{2} \bar{z}^{2} j, \frac{3}{2} z^{2}, \frac{\sqrt{3}}{2} z^{3}\right)^{T}\right]: S^{2} \rightarrow H P^{3}$, with $K=\frac{2}{3},\|B\|^{2}=$ $\frac{1}{3}$;
(5) $\varphi=\left[(-2 \bar{z}, \sqrt{2}-\sqrt{2} z \bar{z}, 2 z)^{T}\right]: S^{2} \rightarrow C P^{2} \subset H P^{2}$, with $K=\frac{1}{2}, B=0$;
(6) $\varphi=\left[\left(6 \bar{z}^{2},-6 \bar{z}+6 z \bar{z}^{2}, \sqrt{6}-4 \sqrt{6} z \bar{z}+\sqrt{6} z^{2} \bar{z}^{2}, 6 z-6 z^{2} \bar{z}, 6 z^{2}\right)^{T}\right]: S^{2} \rightarrow$ $C P^{4} \subset H P^{4}$, with $K=\frac{1}{6},\|B\|^{2}=\frac{2}{3}$.
Further, no two of the above six cases are congruent, i.e., there is no symplectic isometry which transforms one case into another.

2 Preliminaries

(A) For any $N=1,2, \ldots$, let \langle,$\rangle denote the standard Hermitian inner product on \mathbb{C}^{N}$ defined by $\langle z, w\rangle=z_{1} \bar{w}_{1}+\cdots+z_{N} \bar{w}_{N}$, where $z=\left(z_{1}, \ldots, z_{N}\right)^{T}$, $w=\left(w_{1}, \ldots, w_{N}\right)^{T} \in \mathbb{C}^{N}$ and - denote complex conjugation. Let \mathbb{H} denote the division ring of quaternions. Let j be a unit quaternion with $j^{2}=-1$. Then, we have an identification of \mathbb{C}^{2} with \mathbb{H} given by making $(a, b) \in \mathbb{C}^{2}$ correspond to $a+b j \in \mathbb{H} ;$ let $n \in\{1,2, \ldots\}$, and we have a corresponding identification of $\mathbb{C}^{2 n}$ with \mathbb{H}^{n}. For any $a+b j \in \mathbb{H}$, the left multiplication by j is given by $j(a+b j)=-\bar{b}+\bar{a} j$; the conjugation is given by $\overline{a+b j}=\bar{a}-b j$; the positive-definite inner product is given by $\langle x, y\rangle_{\mathbb{H}}=\operatorname{Re}(x \bar{y})$ for any $x, y \in \mathbb{H}$.

Let $\mathbf{J}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ be the conjugate linear map given by left multiplication by j, i.e.,

$$
\mathbf{J}\left(z_{1}, z_{2}, \ldots, z_{2 n-1}, z_{2 n}\right)^{T}=\left(-\bar{z}_{2}, \bar{z}_{1}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)^{T} .
$$

Then, $\mathbf{J}^{2}=-i d$ where $i d$ denotes the identity map on $\mathbb{C}^{2 n}$. In fact, for any $v \in \mathbb{C}^{2 n}$,

$$
\mathbf{J} v=J_{n} \bar{v}
$$

where $J_{n}=\operatorname{diag} \underbrace{\left\{\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), \ldots,\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right\}}_{n}$.
By the above, we immediately have the following lemma (cf. [1]).
Lemma 2.1 The operator \mathbf{J} has the following properties:
(i) $\langle\mathbf{J} v, \mathbf{J} w\rangle=\langle w, v\rangle$ for all $v, w \in \mathbb{C}^{2 n}$;
(ii) $\langle\mathbf{J} v, v\rangle=0$ for all $v \in \mathbb{C}^{2 n}$;
(iii) $\partial \circ \mathbf{J}=\mathbf{J} \circ \bar{\partial}, \bar{\partial} \circ \mathbf{J}=\mathbf{J} \circ \partial$;
(iv) $\mathbf{J}(\lambda v)=\bar{\lambda} \mathbf{J} v$ for any $\lambda \in \mathbb{C}, v \in \mathbb{C}^{2 n}$.

Let $G(2,2 n+2)$ denote the Grassmann manifold of all complex 2-dimensional subspaces of $\mathbb{C}^{2 n+2}$ with its standard Kähler structure. The quaternionic projective space $H P^{n}$ is the set of all one-dimensional quaternionic subspaces of \mathbb{H}^{n+1}. Throughout the above, we shall regard $H P^{n}$ as the totally geodesic submanifold of $G(2,2 n+2)$ given by

$$
H P^{n}=\{V \in G(2,2 n+2): \mathbf{J} V=V\} .
$$

Let $S p(n+1)=\left\{g \in G L(n+1 ; \mathbb{H}), g^{*} g=I_{n+1}\right\}$ be the symplectic isometry group of $H P^{n}$, here I_{n+1} is the identity matrix. The explicit description is that the following diagram commutes:

where i_{1}, i_{2} are inclusions and π_{1}, π_{2} are projections, and $i_{1}(g)=U$, for $1 \leq a, b \leq n+1$

$$
\begin{cases}U_{2 b-1}^{2 a-1}=A_{b}^{a}, & U_{2 b}^{2 a-1}=-\bar{D}_{b}^{a}, \\ U_{2 b-1}^{2 a}=D_{b}^{a}, & U_{2 b}^{2 a}=\bar{A}_{b}^{a},\end{cases}
$$

where $A=\left(A_{b}^{a}\right), D=\left(D_{b}^{a}\right) \in M_{n+1}(\mathbb{C}), g=A+\bar{D} j \in \operatorname{Sp}(n+1)$;

$$
\begin{aligned}
& \pi_{1}(g)=g \cdot[1,0, \ldots, 0]^{T} \in H P^{n} \\
& \pi_{2}(U)=U \cdot\left[\begin{array}{l}
1,0,0, \ldots, 0 \\
0,1,0, \ldots, 0
\end{array}\right]^{T} \in G(2,2 n+2) ; \\
& i_{2}\left(\left[z_{1}+\bar{z}_{2} j, \ldots, z_{2 n+1}+\bar{z}_{2 n+2} j\right]^{T}\right)=\left[\begin{array}{r}
z_{1}, z_{2}, \ldots, z_{2 n+1}, z_{2 n+2} \\
-\bar{z}_{2}, \\
\bar{z}_{1}, \ldots,-\bar{z}_{2 n+2}, \bar{z}_{2 n+1}
\end{array}\right]^{T} .
\end{aligned}
$$

Here, we take the standard metric on $G(2,2 n+2)$ as described in section 2 of [7]; then, the metric induced by i_{2} is twice as much as the standard metric on $H P^{n}$.

Thus, a harmonic map from S^{2} to $H P^{n}$ is precisely a harmonic map from S^{2} to $G(2,2 n+2)$ which has image in $i_{2}\left(H P^{n}\right)$.

Then, for any $g \in S p(n+1)$, the action of g on $H P^{n}$ induces an action of $i_{1}(g)$ on $C P^{2 n+1}$, where $i_{1}(g) \in U(2 n+2)$ commutes with \mathbf{J}. We shall retain g to also denote $i_{1}(g)$. Then

$$
S p(n+1)=\{g \in U(2 n+2), g \circ \mathbf{J}=\mathbf{J} \circ g\}=\left\{g \in U(2 n+2), g J_{n+1} g^{T}=J_{n+1}\right\} .
$$

In the following, we deal with the symplectic isometry of $H P^{n}$ through the corresponding symplectic isometry of $C P^{2 n+1}$.
(B) In this section, we give general expression of some geometric quantities about conformal minimal immersions from S^{2} to $H P^{n}$ (cf. [7]).

Let M be a simply connected domain in the unit sphere S^{2} and let (z, \bar{z}) be complex coordinates on M. We take the metric $d s_{M}^{2}=d z d \bar{z}$ on M. Denote

$$
\partial=\frac{\partial}{\partial z}, \quad \bar{\partial}=\frac{\partial}{\partial \bar{z}} .
$$

We consider the complex Grassmann manifold $G(2, N)$ as the set of Hermitian orthogonal projections from \mathbb{C}^{N} onto a 2-dimensional subspace in \mathbb{C}^{N}. Then, a map $\psi: S^{2} \rightarrow G(2, N)$ is a Hermitian orthogonal projection onto a 2-dimensional subbundle $\underline{\psi}$ of the trivial bundle
$\mathbb{\mathbb { C }}^{N}=M \times \mathbb{C}^{N}$ given by setting the fibre of $\underline{\psi}$ at $x, \underline{\psi}$, , equal to $\psi(x)$ for all $x \in M$. We say that ψ is a harmonic subbundle if ψ is harmonic (cf. [3]).

Let $\bar{\varphi}: S^{2} \rightarrow H P^{n}$ be a conformal minimal immersion. The map $i_{2} \circ \varphi: S^{2} \rightarrow$ $G(2,2 n+2)$ may be represented via the local sections of the subbundle $\underline{\operatorname{Im}}\left(i_{2} \circ \varphi\right)$ by the projection map (cf. [7], (2.10)):

$$
i_{2} \circ \varphi=X X^{*}+(\mathbf{J} X)(\mathbf{J} X)^{*},
$$

where $X \in \underline{\operatorname{Im}}\left(i_{2} \circ \varphi\right)$ is a unit column vector in $\mathbb{C}^{2 n+2}$, and X and $\mathbf{J} X$ are naturally orthogonal.

Denote $i_{2} \circ \varphi$ by φ_{0} (in the following, we will use this notation all the time). Suppose that the metric induced by φ_{0} is $d s^{2}=\lambda^{2} d z d \bar{z}$. Let K and B be its Gauss curvature and second fundamental form, respectively. From section 2 and 3 of [7], we have

$$
\left\{\begin{array}{l}
\lambda^{2}=\operatorname{tr} \partial \varphi_{0} \bar{\partial} \varphi_{0}, \tag{2.1}\\
K=-\frac{2}{\lambda^{2}} \partial \bar{\partial} \log \lambda^{2} \\
\|B\|^{2}=4 \operatorname{tr} P P^{*}
\end{array}\right.
$$

where $P=\partial\left(A_{z} / \lambda^{2}\right)$ with $A_{z}=\left(2 \varphi_{0}-I\right) \partial \varphi_{0}$, and I is the identity matrix, then $P^{*}=$ $\bar{\partial}\left(A_{z}^{*} / \lambda^{2}\right), A_{z}^{*}=-A_{z}$.

3 The proof of main theorem

We recall that an immersion of S^{2} in $H P^{n}$ is conformal and minimal if and only if it is harmonic (cf. [4], Sec 10.6). Thus, we shall consider the immersive harmonic maps from S^{2} to $H P^{n}$ with parallel second fundamental form for the reducible and irreducible cases to give the proof of Theorem 1.1 in Sect. 1. At first, we state a conclusion about parallel minimal immersions of 2-spheres in $G(k, N)$ as follows:

Lemma 3.1 ([7]) Let $\varphi: S^{2} \rightarrow G(k, N)$ be a conformal minimal immersion with the second fundamental form B. Then B is parallel if and only if the equation

$$
\begin{equation*}
\frac{\lambda^{2}}{16}\|B\|^{2}\left(8 K+\|B\|^{2}\right)+2 \operatorname{tr}\left[A_{z}, P\right]\left[A_{z}^{*}, P^{*}\right]-5 \operatorname{tr}\left[A_{z}, A_{z}^{*}\right]\left[P, P^{*}\right]=0 \tag{3.1}
\end{equation*}
$$

holds.
(I) Let $\varphi: S^{2} \rightarrow H P^{n}$ be a linearly full reducible harmonic map, then by ([1], Proposition 3.7) we know that φ is a quaternionic mixed pair or a quaternionic Frenet pair. In the following, we discuss the two cases of φ with parallel second fundamental form, respectively.
(Ia) If φ is a linearly full quaternionic Frenet pair, then

$$
\begin{equation*}
\underline{\varphi}_{0}=\underline{f}_{n}^{(2 n+1)} \oplus \underline{f}_{n+1}^{(2 n+1)}, \tag{3.2}
\end{equation*}
$$

where $\underline{f}_{0}^{(2 n+1)}, \underline{f}_{1}^{(2 n+1)}, \ldots, \underline{f}_{2 n+1}^{(2 n+1)}: S^{2} \rightarrow C P^{2 n+1}$ is the harmonic sequence generated by a linearly full totally \mathbf{J}-isotropic map $\underline{f}_{0}^{(2 n+1)}$.

Firstly, we recall ([1], §3) that a full holomorphic map $\underline{f}_{0}^{(2 n+1)}: S^{2} \rightarrow C P^{2 n+1}$ in the following harmonic sequence satisfying $\underline{f}_{2 n+1}^{(2 n+1)}=\mathbf{J} \underline{f}_{0}^{(2 n+1)}$ is said to be totally \mathbf{J}-isotropic,

$$
0 \stackrel{A_{0}^{\prime \prime}}{\longleftrightarrow} \underline{f}_{0}^{(2 n+1)} \xrightarrow{A_{0}^{\prime}} \cdots \xrightarrow{A_{n-1}^{\prime}} \underline{f}_{n}^{(2 n+1)} \xrightarrow{A_{n}^{\prime}} \underline{f}_{n+1}^{(2 n+1)} \xrightarrow{A_{n+1}^{\prime}} \cdots \xrightarrow{A_{2 n}^{\prime}} \underline{f}_{2 n+1}^{(2 n+1)} \xrightarrow{A_{2 n+1}^{\prime}} 0,
$$

where $A_{j}^{\prime}(v)=\pi_{f_{j}^{(2 n+1)}}(\partial v), \quad A_{j}^{\prime \prime}(v)=\pi_{f_{j}^{(2 n+1)}}(\bar{\partial} v)$ for $v \in C^{\infty}\left(\underline{f}_{j}^{(2 n+1)}\right)$, here
 the vector space of smooth sections of bundle $\underline{f}_{j}^{(2 n+1)}, j=0, \ldots, 2 n+1$.

Let $f_{0}^{(2 n+1)}$ be a holomorphic section of $\underline{f}_{0}^{(2 n+1)}$, i.e., $\bar{\partial} f_{0}^{(2 n+1)}=0$, and let $f_{j}^{(2 n+1)}$ be a local section of $\underline{f}_{j}^{(2 n+1)}$ such that

$$
f_{j}^{(2 n+1)}=\pi_{f_{j-1}^{(2 n+1)} \perp}\left(\partial f_{j-1}^{(2 n+1)}\right)
$$

for $j=1, \ldots, 2 n+1$. Then, we have some formulas as follows (cf. [2]):

$$
\begin{aligned}
\partial f_{j}^{(2 n+1)} & =f_{j+1}^{(2 n+1)}+\partial \log \left|f_{j}^{(2 n+1)}\right|^{2} f_{j}^{(2 n+1)}, j=0, \ldots, 2 n, \\
\bar{\partial} f_{j}^{(2 n+1)} & =-l_{j-1}^{(2 n+1)} f_{j-1}^{(2 n+1)}, j=1, \ldots, 2 n+1,
\end{aligned}
$$

$$
\partial \bar{\partial} \log \left|f_{j}^{(2 n+1)}\right|^{2}=l_{j}^{(2 n+1)}-l_{j-1}^{(2 n+1)}
$$

$$
\partial \bar{\partial} \log l_{j}^{(2 n+1)}=l_{j+1}^{(2 n+1)}-2 l_{j}^{(2 n+1)}+l_{j-1}^{(2 n+1)}, j=0, \ldots, 2 n,
$$

where $l_{j}^{(2 n+1)}=\left|f_{j+1}^{(2 n+1)}\right|^{2} /\left|f_{j}^{(2 n+1)}\right|^{2}$ for $j=0, \ldots, 2 n+1$, and $l_{-1}^{(2 n+1)}=l_{2 n+1}^{(2 n+1)}=0$.
Since $\underline{f}_{0}^{(2 n+1)}$ is totally \mathbf{J}-isotropic, in a similar fashion to ([2], Lemma 7.1) we obtain

$$
\begin{equation*}
l_{j}^{(2 n+1)}=l_{2 n-j}^{(2 n+1)} . \tag{3.3}
\end{equation*}
$$

And set $\mathbf{J} f_{0}^{(2 n+1)}=\tau_{0} f_{2 n+1}^{(2 n+1)}$, then

$$
\left|\tau_{0}\right|^{2}=\frac{\left|f_{0}^{(2 n+1)}\right|^{2}}{\left|f_{2 n+1}^{(2 n+1)}\right|^{2}}, \quad \mathbf{J} f_{j}^{(2 n+1)}=(-1)^{j} \tau_{0} \frac{\left|f_{2 n+1}^{(2 n+1)}\right|^{2}}{\left|f_{2 n+1-j}^{(2 n+1)}\right|^{2}} f_{2 n+1-j}^{(2 n+1)},
$$

where $j=0, \ldots, n$.
Obviously, φ_{0} belongs to the following harmonic sequence (cf. [3])

$$
\begin{equation*}
0 \stackrel{A_{0}^{\prime \prime}}{\longleftrightarrow} \underline{f}_{0}^{(2 n+1)} \stackrel{A_{1}^{\prime \prime}}{\longleftrightarrow} \cdots \stackrel{A_{n-1}^{\prime \prime}}{\longleftrightarrow} \underline{f}_{n-1}^{(2 n+1)} \stackrel{A_{\varphi_{0}}^{\prime \prime}}{\longleftrightarrow} \underline{\varphi}_{0} \xrightarrow{A_{\varphi_{0}}^{\prime}} \underline{f}_{n+2}^{(2 n+1)} \xrightarrow{A_{n+2}^{\prime}} \cdots \xrightarrow{A_{2 n+1}^{\prime}} f_{2 n+1}^{(2 n+1)} \xrightarrow{A_{2 n+1}^{\prime}} 0, \tag{3.4}
\end{equation*}
$$

where $A_{\varphi_{0}}^{\prime}(v)=\pi_{\varphi_{0}^{\perp}}(\partial v), \quad A_{\varphi_{0}}^{\prime \prime}(v)=\pi_{\varphi_{0}^{\perp}}(\bar{\partial} v)$ for $v \in C^{\infty}\left(\underline{\varphi}_{0}\right)$, here $\pi_{\varphi_{0}^{\perp}}$ denotes orthogonal projection onto bundle $\underline{\varphi}_{0}^{\perp}$ and $C^{\infty}\left(\underline{\varphi}_{0}\right)$ denotes the vector space of smooth sections of bundle $\underline{\varphi}_{0}$.

From (3.2), we have $\varphi_{0}=\frac{f_{n}^{(2 n+1)}\left(f_{n}^{(2 n+1)}\right)^{*}}{\left|f_{n}^{(2 n+1)}\right|^{2}}+\frac{f_{n+1}^{(2 n+1)}\left(f_{n+1}^{(2 n+1)}\right)^{*}}{\left|f_{n+1}^{(2 n+1)}\right|^{2}}$. Then by (2.1), (3.3) and a series of calculations, we obtain

$$
\left\{\begin{array}{l}
\lambda^{2}=2 l_{n-1}^{(2 n+1)}, \tag{3.5}\\
K=2-\frac{l_{n}^{(2 n+1)}+l_{n-2}^{(2 n+1)}}{l_{n-1}^{(2 n+1)}}, \\
\|B\|^{2}=2 \frac{l_{n}^{(2 n+1)}}{l_{n-1}^{(2 n+1)}} l_{n-2}^{(2 n+1)} \\
\operatorname{tr}\left[A_{z}, P\right]\left[A_{z}^{*}, P^{*}\right]=-l_{n}^{(2 n+1)}, \\
\operatorname{tr}\left[A_{z}, A_{z}^{*}\right]\left[P, P^{*}\right]=\frac{1}{2} l_{n-2}^{(2 n+1)} .
\end{array}\right.
$$

Now, we prove that if $\varphi: S^{2} \rightarrow H P^{n}$ is a linearly full quaternionic Frenet pair with parallel second fundamental form, then, up to $S p(n+1)$, it belongs to the following case: (1) $\varphi=\left[\left(\sqrt{3} \bar{z}+\sqrt{3} \bar{z}^{2} j,-1+2 z \bar{z}-2 \bar{z} j-z \bar{z}^{2} j\right)^{T}\right]: S^{2} \rightarrow H P^{1}$, with $K=\frac{2}{3},\|B\|^{2}=\frac{8}{3}$.

If φ is a linearly full quaternionic Frenet pair with parallel second fundamental form, then applying Lemma 3.1 and substituting (3.5) into (3.1), we get

$$
\begin{equation*}
3 l_{n-2}^{(2 n+1)} l_{n-1}^{(2 n+1)}+4 l_{n-1}^{(2 n+1)} l_{n}^{(2 n+1)}-3\left(l_{n}^{(2 n+1)}+l_{n-2}^{(2 n+1)}\right)^{2}=0 \tag{3.6}
\end{equation*}
$$

Since the second fundamental form of the map φ is parallel, its Gauss curvature is a constant (cf. [7], Theorem 4.5). We know up to $U(2 n+2), f_{0}^{(2 n+1)}$ is a Veronese surface by ([5], Lemma 4.1). Then from [2], we have $\underline{f}_{0}^{(2 n+1)}, \underline{f}_{1}^{(2 n+1)}, \ldots, \underline{f}_{2 n+1}^{(2 n+1)}$ is the Veronese sequence in $C P^{2 n+1}$, up to $U(2 n+2)$. So, from ([2], Section 5), we get

$$
\begin{equation*}
\left|f_{i}^{(2 n+1)}\right|^{2}=\frac{(2 n+1)!i!}{(2 n+1-i)!}(1+z \bar{z})^{2 n+1-2 i}, l_{j}^{(2 n+1)}=\frac{(j+1)(2 n+1-j)}{(1+z \bar{z})^{2}} \tag{3.7}
\end{equation*}
$$

where $i=0, \ldots, 2 n+1, j=0, \ldots, 2 n$.
Substituting (3.7) into (3.6), we get

$$
(n-1)(n+3)\left(5 n^{2}+10 n-4\right)=0
$$

which implies $n=1$, since n is a positive integer. Hence,

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{1}^{(3)} \oplus \mathbf{J} U \underline{V}_{1}^{(3)} \tag{3.8}
\end{equation*}
$$

where $\underline{V}_{1}^{(3)}$ is a Veronese surface in $C P^{3} \subset C P^{2 n+1}$ with the standard expression given in ([2], §5), and $U \in U(2 n+2)$ satisfies $J_{n+1} \bar{U} V_{0}^{(3)}=\lambda U V_{3}^{(3)}$ (λ is a parameter).

Set $U^{T} J_{n+1} U=\bar{W}$, then we immediately get

$$
\begin{equation*}
\bar{W} V_{0}^{(3)}=\bar{\lambda} \bar{V}_{3}^{(3)}, W^{T}=-W, W^{*} W=I \tag{3.9}
\end{equation*}
$$

where I is the identity matrix.
Define a set

$$
G_{W} \triangleq\left\{U \in U(2 n+2), U W U^{T}=J_{n+1}\right\}
$$

For a given W, the following can be easily checked
(i) $\forall g \in S p(n+1), U \in G_{W}$, we have that $g U \in G_{W}$;
(ii) $\forall U, V \in G_{W}, \exists g=U V^{*} \in S p(n+1)$ s.t. $U=g V$.

Then, we discuss the type of W to get the type of the corresponding U. From ([2], section 5), we get

$$
\begin{align*}
V_{0}^{(3)} & =\left(1, \sqrt{3} z, \sqrt{3} z^{2}, z^{3}, 0, \ldots, 0\right)^{T} \\
V_{3}^{(3)} & =\frac{6}{(1+z \bar{z})^{3}}\left(-\bar{z}^{3}, \sqrt{3} \bar{z}^{2},-\sqrt{3} \bar{z}, 1,0, \ldots, 0\right)^{T} \tag{3.10}
\end{align*}
$$

Then, by (3.9) and (3.10) we get the type of \bar{W} as follows:

$$
\bar{W}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & \tag{3.11}\\
0 & 0 & -1 & 0 & \\
0 & 1 & 0 & 0 & \mathbf{0} \\
-1 & 0 & 0 & 0 & \\
& & \mathbf{0} & & *
\end{array}\right]
$$

From $\overline{W U}^{T}=U^{T} J_{n+1}$, the corresponding $U=\left[e_{1}, e_{2}, \ldots, e_{2 n+1}, e_{2 n+2}\right]^{T}$ satisfy

$$
\begin{equation*}
e_{2 p}=\bar{W} \bar{e}_{2 p-1}, \quad p=1, \ldots, n+1 \tag{3.12}
\end{equation*}
$$

where e_{i} are unit column vectors in $\mathbb{C}^{2 n+2}$.
Without loss of generality, in this case we choose

$$
\left\{\begin{array}{l}
e_{1}=(1,0,0,0, \ldots, 0)^{T}, \tag{3.13}\\
e_{3}=(0,1,0,0, \ldots, 0)^{T}
\end{array}\right.
$$

$\operatorname{By}(3.11)-(3.13)$, we get $e_{2}=\bar{W} \bar{e}_{1}=(0,0,0,-1, \ldots, 0)^{T}$ and $e_{4}=\bar{W} \bar{e}_{3}=$ $(0,0,1,0, \ldots, 0)^{T}$, obviously $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ are mutually orthogonal. Next, we choose a unit column vector $e_{5}=(0,0,0,0, *)^{T} \in \mathbb{C}^{2 n+2}$, which satisfies $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ are mutually orthogonal. Set $e_{6}=\bar{W} \bar{e}_{5}$, then $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{6}\right\}$ are mutually orthogonal. Since $\left\langle e_{6}, e_{5}\right\rangle=e_{5}^{T} W^{T} e_{5}=-\operatorname{tr}\left(e_{5} e_{5}^{T} W\right)=0$, then $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ are mutually orthogonal.

Generally, suppose $\left\{e_{1}, e_{2}, \ldots, e_{2 p-3}, e_{2 p-2}=\bar{W} \bar{e}_{2 p-3}\right\}(p \geq 3)$ are mutually orthogonal, we choose a unit column vector $e_{2 p-1}=(0,0,0,0, *)^{T} \in \mathbb{C}^{2 n+2}$ such that $\left\{e_{1}, e_{2}, \ldots, e_{2 p-3}, e_{2 p-2}, e_{2 p-1}\right\}$ are mutually orthogonal. Set $e_{2 p}=\bar{W} \bar{e}_{2 p-1}$, then

$$
\left\langle e_{2 p}, e_{2 p-1}\right\rangle=e_{2 p-1}^{T} W^{T} e_{2 p-1}=-\operatorname{tr}\left(e_{2 p-1} e_{2 p-1}^{T} W\right)=0,
$$

and for any $2 \leq q \leq p$,

$$
\begin{aligned}
& \left\langle e_{2 p}, e_{2 q-3}\right\rangle=e_{2 p-1}^{T} W^{T} e_{2 q-3}=-e_{2 p-1}^{T} W e_{2 q-3}=-e_{2 p-1}^{T} \bar{e}_{2 q-2} \\
& \quad=-\left\langle e_{2 p-1}, e_{2 q-2}\right\rangle=0,\left\langle e_{2 p}, e_{2 q-2}\right\rangle \\
& \quad=e_{2 p-1}^{T} W^{T} \bar{W}_{2 q-3}=e_{2 p-1}^{T} \bar{e}_{2 q-3}=\left\langle e_{2 p-1}, e_{2 q-3}\right\rangle=0 .
\end{aligned}
$$

Thus $\left\{e_{1}, e_{2}, \ldots, e_{2 p-3}, e_{2 p-2}, e_{2 p-1}, e_{2 p}\right\}$ are mutually orthogonal.
So, we can choose $n-1$ proper unit column vectors $e_{2 p+1}=(0,0,0,0, *)^{T} \in \mathbb{C}^{2 n+2}(2 \leq$ $p \leq n)$ such that $\left\{e_{1}, e_{2}, \ldots, e_{2 n+1}, e_{2 n+2}=\bar{W} \bar{e}_{2 n+1}\right\}$ are mutually orthogonal, and the type of the corresponding U is as follows:

$$
U=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \tag{3.14}\\
0 & 0 & 0 & -1 & \\
0 & 1 & 0 & 0 & \mathbf{0} \\
0 & 0 & 1 & 0 & \\
& & \mathbf{0} & & *
\end{array}\right]
$$

Thus, we have

$$
\begin{aligned}
& U V_{1}^{(3)}=\frac{-\sqrt{3}}{1+z \bar{z}}\left(\sqrt{3} \bar{z}, \sqrt{3} z^{2},-1+2 z \bar{z},-2 z+z^{2} \bar{z}, 0, \ldots, 0\right)^{T} \\
& \mathbf{J} U V_{1}^{(3)}=\frac{-\sqrt{3}}{1+z \bar{z}}\left(-\sqrt{3} \bar{z}^{2}, \sqrt{3} z, 2 \bar{z}-z \bar{z}^{2},-1+2 z \bar{z}, 0, \ldots, 0\right)^{T} .
\end{aligned}
$$

Obviously, in this case φ is congruent to the case (1) with $K=\frac{2}{3},\|B\|^{2}=\frac{8}{3}$.
(Ib) If φ is a linearly full quaternionic mixed pair, then

$$
\begin{equation*}
\underline{\varphi}_{0}=\underline{f}_{0}^{(m)} \oplus \mathbf{J} \underline{f}_{0}^{(m)}, \tag{3.15}
\end{equation*}
$$

where $\underline{f}_{0}^{(m)}: S^{2} \rightarrow C P^{m} \subseteq C P^{2 n+1}(n \leq m \leq 2 n+1)$ is holomorphic and $\underline{f}_{1}^{(m)} \perp \mathbf{J} \underline{f}_{0}^{(m)}$. Obviously, φ_{0} belongs to the following harmonic sequence

$$
\begin{equation*}
0 \stackrel{A_{m}^{\prime \prime}}{\longleftrightarrow} \mathbf{J} \underline{f}(m) \stackrel{A_{m-1}^{\prime \prime}}{\leftrightarrows} \ldots \stackrel{A_{1}^{\prime \prime}}{\longleftrightarrow} \mathbf{J} \underline{f}_{1}^{(m)} \stackrel{A_{\varphi_{0}}^{\prime \prime}}{\longleftrightarrow} \underline{\varphi}_{0} \xrightarrow{A_{\varphi_{0}}^{\prime}} \underline{f}_{1}^{(m)} \xrightarrow{A_{1}^{\prime}} \ldots \xrightarrow{A_{m-1}^{\prime}} \underline{f}_{m}^{(m)} \xrightarrow{A_{m}^{\prime}} 0 \tag{3.16}
\end{equation*}
$$

As in the case (Ia), let $f_{0}^{(m)}$ be a holomorphic section of $\underline{f}_{0}^{(m)}$, i.e., $\bar{\partial} f_{0}^{(m)}=0$, and $f_{j}^{(m)}$ $(j=1, \ldots, m)$ satisfy the corresponding formulas. From (3.15), we have $\varphi_{0}=\frac{f_{0}^{(m)}\left(f_{0}^{(m)}\right)^{*}}{\left|f_{0}^{(m)}\right|^{2}}+$ $\frac{\left(\mathbf{J} f_{0}^{(m)}\right)\left(\mathbf{J} f_{0}^{(m)}\right)^{*}}{\left|f_{0}^{(m)}\right|^{2}}$. Then by (2.1) and a series of calculations, we obtain

$$
\left\{\begin{array}{l}
\lambda^{2}=2 l_{0}^{(m)}, \tag{3.17}\\
K=2-\frac{l_{1}^{(m)}}{l_{0}^{(m)}}, \\
\|B\|^{2}=2 \frac{l_{1}^{(m)}}{l_{0}^{(m)}}, \\
\operatorname{tr}\left[A_{z}, P\right]\left[A_{z}^{*}, P^{*}\right]=-\frac{1}{4} \frac{\left|\left\langle f_{2}^{(m)}, \mathbf{J} f_{1}^{(m)}\right\rangle\right|^{2}}{\left|f_{1}^{(m)}\right|^{4}}, \\
\operatorname{tr}\left[A_{z}, A_{z}^{*}\right]\left[P, P^{*}\right]=\frac{1}{2}\left(l_{1}^{(m)}-\frac{\left|\left\langle f_{2}^{(m)}, \mathbf{J} f_{1}^{(m)}\right\rangle\right|^{2}}{\left|f_{1}^{(m)}\right|^{4}}\right)
\end{array}\right.
$$

Now, we prove that if $\varphi: S^{2} \rightarrow H P^{n}$ is a linearly full quaternionic mixed pair with parallel second fundamental form, then, up to $S p(n+1)$, it belongs to one of the following three cases:
(2) $\varphi=\left[(1, z)^{T}\right]: S^{2} \rightarrow C P^{1} \subset H P^{1}$, with $K=2, B=0$;
(3) $\varphi=\left[\left(1, \sqrt{2} z, z^{2}\right)^{T}\right]: S^{2} \rightarrow C P^{2} \subset H P^{2}$, with $K=1,\|B\|^{2}=2$;
(4) $\varphi=\left[\left(1-\frac{1}{2} \bar{z}^{3} j, \sqrt{3} z+\frac{\sqrt{3}}{2} \bar{z}^{2} j, \frac{3}{2} z^{2}, \frac{\sqrt{3}}{2} z^{3}\right)^{T}\right]: S^{2} \rightarrow H P^{3}$, with $K=\frac{2}{3},\|B\|^{2}=\frac{1}{3}$.

If φ is a linearly full quaternionic mixed pair with parallel second fundamental form, then applying Lemma 3.1 and substituting (3.17) into (3.1), we get

$$
\begin{equation*}
\frac{\left|\left\langle f_{2}^{(m)}, \mathbf{J} f_{1}^{(m)}\right\rangle\right|^{2}}{\left|f_{1}^{(m)}\right|^{4}}=\frac{3}{4} l_{1}^{(m)}\left(\frac{l_{1}^{(m)}}{l_{0}^{(m)}}-1\right) \tag{3.18}
\end{equation*}
$$

Since the metric $d s^{2}=2 l_{0}^{(m)} d z d \bar{z}$ induced by φ is of constant curvature, and the metric induced by $\underline{f}_{0}^{(m)}$ is $d s^{2}=l_{0}^{(m)} d z d \bar{z}$, then it follows from ([2], Theorem 5.4) that $\underline{f}_{0}^{(m)}, \underline{f}_{1}^{(m)}, \ldots, \underline{f}_{m}^{(m)}$ is the Veronese sequence in $C P^{m} \subset C P^{2 n+1}$, up to $U(2 n+2)$. Then from (3.7) and (3.18) we get

$$
\begin{equation*}
\left|\left\langle f_{2}^{(m)}, \mathbf{J} f_{1}^{(m)}\right\rangle\right|^{2}=\frac{3 m(m-1)(m-2)}{2}(1+z \bar{z})^{2 m-6} \tag{3.19}
\end{equation*}
$$

We denote by r the isotropy order of φ (cf. [3], §3A). If r is finite, then $r=2 s(1 \leq$ $s \leq n+1$) by ([1], Proposition 3.2). Otherwise, $r=\infty$, in which case φ is called strongly isotropic (cf. [1], section 2C).

If $m=1$, observing (3.17), we find $K=2, B=0$. It belongs to the case of totally geodesic. If $m=2$, since $r \geq 2$, which implies $\underline{f}_{2}^{(2)} \perp \mathbf{J} \underline{f}_{0}^{(2)}$ by (3.16), then we have $\left\langle f_{2}^{(2)}, \mathbf{J} f_{1}^{(2)}\right\rangle=\partial\left\langle f_{2}^{(2)}, \mathbf{J} f_{0}^{(2)}\right\rangle=0$, which implies (3.19) holds. Hence, its second fundamental form is parallel. In fact, the above two cases are both strongly isotropic.

If $m \geq 3$, from (3.19) we find $\left\langle f_{3}^{(m)}, \mathbf{J} f_{0}^{(m)}\right\rangle=-\left\langle f_{2}^{(m)}, \mathbf{J} f_{1}^{(m)}\right\rangle \neq 0$, which implies in this case $r=2$. In the following, we discuss the above three cases, respectively.

Case Ib1, $m=1$.
In this case, we have

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{0}^{(1)} \oplus \mathbf{J} U \underline{V}_{0}^{(1)} \tag{3.20}
\end{equation*}
$$

where $\underline{V}_{0}^{(1)}$ is a Veronese surface in $C P^{1} \subset C P^{2 n+1}$ with the standard expression given in ([2], section 5), and $U \in U(2 n+2)$ satisfies $\operatorname{tr}\left(V_{1}^{(1)} V_{0}^{(1)^{T}} U^{T} J_{n+1} U\right)=0$, as this expresses the orthogonality of $J f_{0}^{(1)}$ and $f_{1}^{(1)}$.

Similarly, we get the type of $\bar{W}=U^{T} J_{n+1} U \in U(2 n+2)$ as follows:

$$
\bar{W}=\left[\begin{array}{cccccc}
0 & 0 & a_{13} & a_{14} & \cdots & a_{1,2 n+2} \tag{3.21}\\
0 & 0 & a_{23} & a_{24} & \cdots & a_{2,2 n+2} \\
-a_{13} & -a_{23} & 0 & a_{34} & \cdots & a_{3,2 n+2} \\
-a_{14} & -a_{24} & -a_{34} & 0 & \cdots & a_{4,2 n+2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{1,2 n+2} & -a_{2,2 n+2} & -a_{3,2 n+2} & -a_{4,2 n+2} & \cdots & 0
\end{array}\right] .
$$

As in case (1a), by (3.12),(3.13), and (3.21), we get

$$
\left\{\begin{array}{l}
e_{2}=\bar{W} \bar{e}_{1}=\left(0,0,-a_{13},-a_{14}, \ldots,-a_{1,2 n+2}\right)^{T}, \\
e_{4}=\bar{W} \bar{e}_{3}=\left(0,0,-a_{23},-a_{24}, \ldots,-a_{2,2 n+2}\right)^{T} .
\end{array}\right.
$$

Since \bar{W} in (3.21) is a unitary matrix, $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ are mutually orthogonal. Similarly, we can choose $n-1$ proper unit column vectors $e_{2 p+1}=(0,0, *)^{T} \in \mathbb{C}^{2 n+2}(2 \leq p \leq n)$
such that $\left\{e_{1}, e_{2}, \ldots, e_{2 n+1}, e_{2 n+2}=\bar{W} \bar{e}_{2 n+1}\right\}$ are mutually orthogonal, and the type of the corresponding U is as follows:

$$
U=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \tag{3.22}\\
0 & 0 & -a_{13} & \cdots & -a_{1,2 n+2} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & -a_{23} & \cdots & -a_{2,2 n+2} \\
& 0 & & * &
\end{array}\right]
$$

Thus, we have

$$
\begin{aligned}
& U V_{0}^{(1)}=(1,0, z, 0,0, \ldots, 0)^{T} \\
& \mathbf{J} U V_{0}^{(1)}=(0,1,0, \bar{z}, 0, \ldots, 0)^{T}
\end{aligned}
$$

Obviously, in this case φ is congruent to the case (2) with $K=2, B=0$.
Case Ib2, $m=2$.
In this case, we have

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{0}^{(2)} \oplus \mathbf{J} U \underline{V}_{0}^{(2)} \tag{3.23}
\end{equation*}
$$

where $\underline{V}_{0}^{(2)}$ is a Veronese surface in $C P^{2} \subset C P^{2 n+1}$ with the standard expression given in ([2], §5), and $U \in U(2 n+2)$ satisfies $\operatorname{tr}\left(V_{1}^{(2)} V_{0}^{(2) T} U^{T} J_{n+1} U\right)=0$, as this expresses the orthogonality of $J f_{0}^{(2)}$ and $f_{1}^{(2)}$.

Similarly, we get the type of $\bar{W}=U^{T} J_{n+1} U \in U(2 n+2)$ as follows:

$$
\bar{W}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & a_{14} & a_{15} & \cdots & a_{1,2 n+2} \tag{3.24}\\
0 & 0 & 0 & a_{24} & a_{25} & \cdots & a_{2,2 n+2} \\
0 & 0 & 0 & a_{34} & a_{35} & \cdots & a_{3,2 n+2} \\
-a_{14} & -a_{24} & -a_{34} & 0 & a_{45} & \cdots & a_{4,2 n+2} \\
-a_{15} & -a_{25} & -a_{35} & -a_{45} & 0 & \cdots & a_{5,2 n+2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{1,2 n+2} & -a_{2,2 n+2} & -a_{3,2 n+2} & -a_{4,2 n+2} & -a_{5,2 n+2} & \cdots & 0
\end{array}\right] .
$$

And the type of the corresponding U is as follows:

$$
U=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \tag{3.25}\\
0 & 0 & 0 & -a_{14} & \cdots & -a_{1,2 n+2} \\
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & -a_{24} & \cdots & -a_{2,2 n+2} \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & -a_{34} & \cdots & -a_{3,2 n+2} \\
& 0 & & & * &
\end{array}\right] .
$$

Thus, we have

$$
\begin{gathered}
U V_{0}^{(2)}=\left(1,0, \sqrt{2} z, 0, z^{2}, 0,0, \ldots, 0\right)^{T} \\
\mathbf{J} U V_{0}^{(2)}=\left(0,1,0, \sqrt{2} \bar{z}, 0, \bar{z}^{2}, 0, \ldots, 0\right)^{T} .
\end{gathered}
$$

Obviously, in this case φ is congruent to the case (3) with $K=1,\|B\|^{2}=2$.
Case Ib3, $m \geq 3$.
In this case, the trivial bundle $S^{2} \times \mathbb{C}^{2 n+2}$ over S^{2} has a corresponding decomposition $S^{2} \times \mathbb{C}^{2 n+2}=S^{2} \times \mathbb{C}^{m+1} \oplus S^{2} \times \mathbb{C}^{2 n-m+1}$. From (3.16) we set $\mathbf{J} f_{0}^{(m)}=x_{3} f_{3}^{(m)}+$ $x_{4} f_{4}^{(m)}+\cdots+x_{m} f_{m}^{(m)}+V$, where $x_{i}(i=3, \ldots, m)$ are complex coefficients and bundle $\underline{V} \subset S^{2} \times \mathbb{C}^{2 n-m+1}$. Then, it follows from $\partial \mathbf{J} f_{0}^{(m)}=0$ that

$$
\left\{\begin{array}{l}
\partial x_{3}+x_{3} \partial \log \left|f_{3}^{(m)}\right|^{2}=0, \tag{3.26}\\
\partial x_{i}+x_{i-1}+x_{i} \partial \log \left|f_{i}^{(m)}\right|^{2}=0,(i=4, \ldots, m) \\
\partial V=0
\end{array}\right.
$$

And we have $\left\langle f_{3}^{(m)}, \mathbf{J} f_{0}^{(m)}\right\rangle=\bar{x}_{3}\left|f_{3}^{(m)}\right|^{2}$. Then, from ([2], §5) and (3.19) we get

$$
\begin{equation*}
\left|x_{3}\right|^{2}\left|f_{3}^{(m)}\right|^{4}=\frac{3 m(m-1)(m-2)}{2}(1+z \bar{z})^{2 m-6} \tag{3.27}
\end{equation*}
$$

By (3.26) and (3.27), we find $\partial \bar{\partial} \log \left(\left|x_{3}\right|^{2}\left|f_{3}^{(m)}\right|^{4}\right)=\frac{2 m-6}{(1+z \bar{z})^{2}}=0$, which implies $m=3$, i.e.,

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{0}^{(3)} \oplus \mathbf{J} U \underline{V}_{0}^{(3)} \tag{3.28}
\end{equation*}
$$

where $\underline{V}_{0}^{(3)}$ is a Veronese surface in $C P^{3} \subset C P^{2 n+1}$ with the standard expression given in ([2], §5), and $U \in U(2 n+2)$ satisfies $\operatorname{tr}\left(V_{1}^{(3)} V_{0}^{(3)^{T}} U^{T} J_{n+1} U\right)=0$ and $\operatorname{tr}\left(V_{3}^{(3)} V_{0}^{(3)^{T}} U^{T} J_{n+1} U\right) \neq 0$, as these express $r=2$.

Similarly, we get the type of $\bar{W}=U^{T} J_{n+1} U \in U(2 n+2)$ as follows:

$$
\bar{W}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & a_{14} & a_{15} & \cdots & a_{1,2 n+2} \tag{3.29}\\
0 & 0 & -a_{14} & 0 & a_{25} & \cdots & a_{2,2 n+2} \\
0 & a_{14} & 0 & 0 & a_{35} & \cdots & a_{3,2 n+2} \\
-a_{14} & 0 & 0 & 0 & a_{45} & \cdots & a_{4,2 n+2} \\
-a_{15} & -a_{25} & -a_{35} & -a_{45} & 0 & \cdots & a_{5,2 n+2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{1,2 n+2} & -a_{2,2 n+2} & -a_{3,2 n+2} & -a_{4,2 n+2} & -a_{5,2 n+2} & \cdots & 0
\end{array}\right],
$$

where $a_{14} \neq 0$.
In this case, if $\left|a_{14}\right|^{2}=1$, as in the case (Ia) we choose (3.13), then choose $n-1$ proper unit column vectors $e_{2 p+1}=(0,0,0,0, *)^{T} \in \mathbb{C}^{2 n+2}(2 \leq p \leq n)$ such that the type of the corresponding $U \in U(2 n+2)$ is as follows:

$$
U=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \tag{3.30}\\
0 & 0 & 0 & -a_{14} & \\
0 & 1 & 0 & 0 & \mathbf{0} \\
0 & 0 & a_{14} & 0 & \\
& & \mathbf{0} & & *
\end{array}\right]
$$

Thus, we have

$$
\begin{aligned}
& U V_{0}^{(3)}=\left(1,-a_{14} z^{3}, \sqrt{3} z, \sqrt{3} a_{14} z^{2}, 0,0, \ldots, 0\right)^{T} \\
& \mathbf{J} U V_{0}^{(3)}=\left(\bar{a}_{14} \bar{z}^{3}, 1,-\sqrt{3} \bar{a}_{14} \bar{z}^{2}, \sqrt{3} \bar{z}, 0,0, \ldots, 0\right)^{T}
\end{aligned}
$$

If $\left|a_{14}\right|^{2} \neq 1$, then we choose

$$
\left\{\begin{array}{l}
e_{1}=(1,0,0,0,0, \ldots, 0)^{T}, \tag{3.31}\\
e_{3}=(0,1,0,0,0, \ldots, 0)^{T}, \\
e_{5}=\frac{1}{\sqrt{1-\left|a_{14}\right|^{2}}}\left(0,0,1-\left|a_{14}\right|^{2}, 0, \bar{a}_{14} a_{25}, \ldots, \bar{a}_{14} a_{2,2 n+2}\right)^{T}, \\
e_{7}=\frac{1}{\sqrt{1-\left|a_{14}\right|^{2}}}\left(0,0,0,1-\left|a_{14}\right|^{2},-\bar{a}_{14} a_{15}, \ldots,-\bar{a}_{14} a_{1,2 n+2}\right)^{T} .
\end{array}\right.
$$

And we choose $n-3$ proper unit column vectors $e_{2 p+1}=(0,0,0,0, *)^{T} \in \mathbb{C}^{2 n+2}(4 \leq$ $p \leq n)$ such that the type of the corresponding $U \in U(2 n+2)$ is as follows:

$$
U=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \tag{3.32}\\
0 & 0 & 0 & -a_{14} & -a_{15} & \cdots & -a_{1,2 n+2} \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & a_{14} & 0 & -a_{25} & \cdots & -a_{2,2 n+2} \\
0 & 0 & \sqrt{1-\left|a_{14}\right|^{2}} & 0 & \frac{\bar{a}_{14} a_{25}}{\sqrt{1-\left|a_{14}\right|^{2}}} & \cdots & \frac{\bar{a}_{14} a_{2,2 n+2}}{\sqrt{1-\left|a_{14}\right|^{2}}} \\
0 & 0 & 0 & 0 & \frac{-a_{35}}{\sqrt{1-\left|a_{14}\right|^{2}}} & \cdots & \frac{-a_{3,2 n+2}}{\sqrt{1-\left|a_{14}\right|^{2}}} \\
0 & 0 & 0 & \sqrt{1-\left|a_{14}\right|^{2}} & \frac{-\bar{a}_{14} a_{15}}{\sqrt{1-\left|a_{14}\right|^{2}}} & \cdots & \frac{-\bar{a}_{14 a_{1,2 n+2}}^{\sqrt{1-\left|a_{14}\right|^{2}}}}{0} \\
0 & 0 & 0 & \frac{-a_{45}}{\sqrt{1-\left|a_{14}\right|^{2}}} & \cdots & \frac{-a_{4,2 n+2}^{\sqrt{1-\left|a_{14}\right|^{2}}}}{}
\end{array}\right] .
$$

Thus, we have

$$
\begin{gathered}
U V_{0}^{(3)}=\left(1,-a_{14} z^{3}, \sqrt{3} z, \sqrt{3} a_{14} z^{2}, \sqrt{3-3\left|a_{14}\right|^{2}} z^{2}, 0, \sqrt{1-\left|a_{14}\right|^{2}} z^{3}, 0,0, \ldots, 0\right)^{T}, \\
\mathbf{J} U V_{0}^{(3)}=\left(\bar{a}_{14} \bar{z}^{3}, 1,-\sqrt{3} \bar{a}_{14} \bar{z}^{2}, \sqrt{3} \bar{z}, 0, \sqrt{3-3\left|a_{14}\right|^{2}} \bar{z}^{2}, 0, \sqrt{1-\left|a_{14}\right|^{2}} \bar{z}^{3}, 0, \ldots, 0\right)^{T} .
\end{gathered}
$$

From (3.30) and (3.32), we have $\left\langle f_{3}^{(3)}, \mathbf{J} f_{0}^{(3)}\right\rangle=\left\langle U V_{3}^{(3)}, \mathbf{J} U V_{0}^{(3)}\right\rangle=6 a_{14}$. On the other hand, from (3.27) we get $\left|\left\langle f_{3}^{(3)}, \mathbf{J} f_{0}^{(3)}\right\rangle\right|^{2}=9$. So $a_{14}=\frac{1}{2} e^{\sqrt{-1} \theta}(0 \leq \theta \leq 2 \pi)$. Hence, in this case φ is congruent to the case (4) with $K=\frac{2}{3},\|B\|^{2}=\frac{1}{3}$.
(II) Let $\varphi: S^{2} \rightarrow H P^{n}$ be an irreducible linearly full harmonic map. At first, we state a conclusion about parallel minimal immersions of 2-spheres in $G(k, N)$ as follows:

Lemma 3.2 ([7]) Let $\varphi: S^{2} \rightarrow G(k, N)$ be a conformal minimal immersion with the second fundamental form B. Suppose that B is parallel, then the following equations

$$
\left\{\begin{array}{l}
\lambda^{2}\left(2 K+\|B\|^{2}\right) A_{z}^{*}+4\left[\left[A_{z}, A_{z}^{*}\right], A_{z}^{*}\right]=0, \tag{3.33}\\
\lambda^{2}\left(\frac{\|B\|^{2}}{4}-K\right) P+\left[\left[A_{z}, A_{z}^{*}\right], P\right]=0
\end{array}\right.
$$

hold.
By [1], we know φ_{0} belongs to the following harmonic sequence

$$
\begin{equation*}
0 \longleftarrow \cdots \stackrel{A_{\varphi_{2}}^{\prime \prime}}{\leftarrow} \underline{\varphi}_{-2} \stackrel{A_{\varphi_{1}}^{\prime \prime}}{\leftrightarrows} \underline{\varphi}_{-1} \stackrel{A_{\varphi_{0}}^{\prime \prime}}{\leftrightarrows} \underline{\varphi}_{0} \xrightarrow{A_{\varphi_{0}}^{\prime}} \underline{\varphi}_{1} \xrightarrow{A_{\varphi_{1}}^{\prime}} \underline{\varphi}_{2} \xrightarrow{A_{\varphi_{2}}^{\prime}} \cdots \longrightarrow 0, \tag{3.34}
\end{equation*}
$$

where $\underline{\varphi}_{0}=\underline{i_{2} \circ \varphi}, \underline{\varphi}_{-1}=\mathbf{J} \underline{\varphi}_{1}, \underline{\varphi}_{-2}=\mathbf{J} \underline{\varphi}_{2}$.
We choose a unit column vector $\bar{X} \in \underline{\varphi}_{0}$, then we have

$$
\begin{equation*}
\underline{\varphi}_{0}=\underline{X} \oplus \mathbf{J} \underline{X}, \quad \underline{\varphi}_{1}=\operatorname{span}\left\{\underline{X}_{1}, \underline{Y}_{1}\right\}, \tag{3.35}
\end{equation*}
$$

where $X_{1}=\partial X-\langle\partial X, X\rangle X-\langle\partial X, \mathbf{J} X\rangle \mathbf{J} X$ and $Y_{1}=\partial \mathbf{J} X-\langle\partial \mathbf{J} X, X\rangle X-\langle\partial \mathbf{J} X, \mathbf{J} X\rangle \mathbf{J} X$. Here, X_{1} and Y_{1} are not orthogonal in general.

Let

$$
\begin{equation*}
E=[X, \mathbf{J} X]^{*} \partial[X, \mathbf{J} X] . \tag{3.36}
\end{equation*}
$$

Then, from (3.35), we have

$$
\left\{\begin{array}{l}
\partial[X, \mathbf{J} X]=[X, \mathbf{J} X] E+\left[X_{1}, Y_{1}\right], \tag{3.37}\\
\bar{\partial}[X, \mathbf{J} X]=-[X, \mathbf{J} X] E^{*}+\left[-\mathbf{J} Y_{1}, \mathbf{J} X_{1}\right],
\end{array}\right.
$$

where $\left[X_{1}, Y_{1}\right]^{*}[X, \mathbf{J} X]=\left[-\mathbf{J} Y_{1}, \mathbf{J} X_{1}\right]^{*}[X, \mathbf{J} X]=0$.
From (3.37) and the identity $\partial \bar{\partial}=\bar{\partial} \partial$, we get

$$
\bar{\partial} E+\partial E^{*}+\left[E, E^{*}\right]=\left[\begin{array}{ll}
\left|X_{1}\right|^{2}-\left|Y_{1}\right|^{2}, & 2\left\langle Y_{1}, X_{1}\right\rangle \tag{3.38}\\
2\left\langle X_{1}, Y_{1}\right\rangle, & \left|Y_{1}\right|^{2}-\left|X_{1}\right|^{2}
\end{array}\right] .
$$

From (3.35), we have $\varphi_{0}=X X^{*}+(\mathbf{J} X)(\mathbf{J} X)^{*}$. Then by (2.1), a straightforward calculation shows

$$
\left\{\begin{array}{l}
\lambda^{2}=2\left(\left|X_{1}\right|^{2}+\left|Y_{1}\right|^{2}\right), \tag{3.39}\\
A_{z}=(\mathbf{J} X)\left(\mathbf{J} X_{1}\right)^{*}-X\left(\mathbf{J} Y_{1}\right)^{*}-X_{1} X^{*}-Y_{1}(\mathbf{J} X)^{*}
\end{array}\right.
$$

Since φ_{0} is harmonic, the corresponding equivalent condition $\bar{\partial} A_{z}+A_{z} A_{z}^{*}-A_{z}^{*} A_{z}=0$ (cf. [12]) implies

$$
\left\{\begin{array}{l}
\frac{\left|\bar{\partial} X_{1}, X_{1}\right\rangle}{\left|X_{1}\right|^{2}}=-\frac{\left|\bar{\partial} Y_{1}, Y_{1}\right\rangle}{\left|Y_{1}\right|^{2}}=\langle\bar{\partial} X, X\rangle, \tag{3.40}\\
\frac{\left|\bar{\partial} X_{1}, Y_{1}\right\rangle}{\left|Y_{1}\right|^{2}}=\langle\bar{\partial} X, \mathbf{J} X\rangle, \quad \frac{\left|\bar{\partial} Y_{1}, X_{1}\right\rangle}{\left|X_{1}\right|^{2}}=\langle\overline{\mathrm{J}} \mathbf{J} X, X\rangle .
\end{array}\right.
$$

Now, we prove that if $\varphi: S^{2} \rightarrow H P^{n}$ is an irreducible linearly full harmonic map with parallel second fundamental form, then, up to $\operatorname{Sp}(n+1)$, it belongs to one of the following two
cases: (5) $\varphi=\left[(-2 \bar{z}, \sqrt{2}-\sqrt{2} z \bar{z}, 2 z)^{T}\right]: S^{2} \rightarrow C P^{2} \subset H P^{2}$, with $K=\frac{1}{2}, B=0$; (6) $\varphi=\left[\left(6 \bar{z}^{2},-6 \bar{z}+6 z \bar{z}^{2}, \sqrt{6}-4 \sqrt{6} z \bar{z}+\sqrt{6} z^{2} \bar{z}^{2}, 6 z-6 z^{2} \bar{z}, 6 z^{2}\right)^{T}\right]: S^{2} \rightarrow C P^{4} \subset$ $H P^{4}$, with $K=\frac{1}{6},\|B\|^{2}=\frac{2}{3}$.

If $\varphi: S^{2} \rightarrow H P^{n}$ is an irreducible linearly full harmonic map with parallel second fundamental form, then applying Lemma 3.2 and substituting (3.39) into the first equation of (3.33), we get

$$
\begin{equation*}
\lambda^{2}=4\left|X_{1}\right|^{2}, \quad 2 K+\|B\|^{2}=1, \quad\left\langle X_{1}, Y_{1}\right\rangle=0, \quad\left|X_{1}\right|^{2}=\left|Y_{1}\right|^{2} \tag{3.41}
\end{equation*}
$$

From (3.38) and (3.41) we have

$$
\begin{equation*}
\bar{\partial} E+\partial E^{*}+\left[E, E^{*}\right]=0 \tag{3.42}
\end{equation*}
$$

Let $\widetilde{X} \in \underline{\varphi}_{0}$ be another unit column vector such that $\underline{\varphi}_{0}=\underline{\widetilde{X}} \oplus \mathbf{J} \underline{\widetilde{X}}$, then

$$
\begin{equation*}
[\widetilde{X}, \mathbf{J} \widetilde{X}]=[X, \mathbf{J} X] T \tag{3.43}
\end{equation*}
$$

where $T: S^{2} \rightarrow S U(2)$ is to be determined such that \widetilde{X} satisfies $[\widetilde{X}, \mathbf{J} \widetilde{X}]^{*} d[\widetilde{X}, \mathbf{J} \widetilde{X}]=0$. Such T is a solution of the linear PDE

$$
\begin{equation*}
d T+\left(E d z-E^{*} d \bar{z}\right) T=0 \tag{3.44}
\end{equation*}
$$

The integrability condition of (3.44) is just (3.42), so it has a unique solution locally on S^{2} for any given initial value. Let T be a solution of (3.44) with the initial value $T(0) \in S U(2)$. From (3.44) we have $d\left(T^{*} T\right)=0$ and $d|T|=0$, so $T \in S U(2)$.

Now, we choose a unit column vector $X \in \underline{\varphi}_{0}$ such that $\underline{\varphi}_{0}=\underline{X} \oplus \mathbf{J} \underline{X}$ and

$$
\begin{equation*}
[X, \mathbf{J} X]^{*} d[X, \mathbf{J} X]=0 \tag{3.45}
\end{equation*}
$$

It follows from (3.40) and (3.45) that

$$
\begin{equation*}
\partial \bar{\partial} X=-\left|X_{1}\right|^{2} X \tag{3.46}
\end{equation*}
$$

Let $\underline{f}=[X]: S^{2} \rightarrow C P^{2 n+1}$ be a smooth immersion. Similarly, by calculating the equivalent condition of harmonic, we find \underline{f} is harmonic by (3.45) and (3.46). Of course, $\mathbf{J} \underline{f}=[\mathbf{J} X]: S^{2} \rightarrow C P^{2 n+1}$ is also harmonic. So $\underline{\varphi}_{0}=\underline{f} \oplus \mathbf{J} \underline{f}$, where \underline{f} belongs to the following harmonic sequence

$$
\begin{equation*}
0 \longrightarrow \cdots \xrightarrow{A_{p-1}^{\prime \prime}} \underline{f}_{p-1} \xrightarrow{A_{p}^{\prime \prime}} \underline{f}_{p}=\underline{f} \xrightarrow{A_{p}^{\prime}} \underline{f}_{p+1} \xrightarrow{A_{p+1}^{\prime}} \cdots \longrightarrow 0 \tag{3.47}
\end{equation*}
$$

As in the case (Ia), let f_{0} be a holomorphic section of \underline{f}_{0}, i.e. $\bar{\partial} f_{0}=0$, and f_{p} satisfy the corresponding formulas. From (3.41), we know $l_{p-1}=\bar{l}_{p}^{0}$, which implies that \underline{f}_{p} is totally real by ([2], Theorem 7.3), i.e. $\underline{f}_{p}=\underline{f}_{m}^{(2 m)}: S^{2} \rightarrow R P^{2 m} \subset C P^{2 m} \subset C P^{2 n+1}$, where $2 \leq 2 m \leq 2 n+1$. Let $f_{p}=f_{m}^{(2 m)}$ satisfy the corresponding formulas, then in harmonic sequence (3.34) by (3.40) and (3.45) we have

$$
\begin{equation*}
\underline{\varphi}_{0}=\underline{f}_{m}^{(2 m)} \oplus \mathbf{J} \underline{f}_{m}^{(2 m)}, \quad \underline{\varphi}_{1}=\underline{f}_{m+1}^{(2 m)} \oplus \mathbf{J} \underline{f}_{m-1}^{(2 m)}, \quad \underline{\varphi}_{2}=\underline{f}_{m+2}^{(2 m)} \oplus \mathbf{J} \underline{f}_{m-2}^{(2 m)} \tag{3.48}
\end{equation*}
$$

where $l_{i}^{(2 m)}=l_{2 m-1-i}^{(2 m)}(i=0, \ldots, m-1)$ and $\underline{\varphi}_{0}, \underline{\varphi}_{1}, \underline{\varphi}_{2}$ are mutually orthogonal.

At this time, from (3.48), we have $\varphi_{0}=\frac{f_{m}^{(2 m)}\left(f_{m}^{(2 m)}\right)^{*}}{\left|f_{m}^{(2 m)}\right|^{2}}+\frac{\left(\mathbf{J} f_{m}^{(2 m)}\right)\left(\mathbf{J} f_{m}^{(2 m)}\right)^{*}}{\left|f_{m}^{(2 m)}\right|^{2}}$. Then by (2.1) and a series of calculations, we obtain

Then applying Lemma 3.2 and substituting (3.49) into the second equation of (3.33), we get $m=1$ or

$$
\begin{equation*}
\left\langle\mathbf{J} f_{m-2}^{(2 m)}, f_{m-1}^{(2 m)}\right\rangle=\left\langle f_{m+2}^{(2 m)}, \mathbf{J} f_{m+1}^{(2 m)}\right\rangle=0,3 l_{m+1}^{(2 m)}=2 l_{m}^{(2 m)} \tag{3.50}
\end{equation*}
$$

In the latter case, since $l_{m+1}^{(2 m)}=\frac{(m+2)(m-1)}{\left(1+z \overline{)^{2}}\right.}$ and $l_{m}^{(2 m)}=\frac{(m+1) m}{(1+z \bar{z})^{2}}$ by ([2], §5), we have $m=2$ by (3.50). Hence, in the following, we discuss the above two cases of $m=1$ and $m=2$ respectively.

Case III, $m=1$.
In this case, by (3.50) we have

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{1}^{(2)} \oplus \mathbf{J} U \underline{V}_{1}^{(2)} \tag{3.51}
\end{equation*}
$$

where $\underline{V}_{1}^{(2)}$ is a Veronese surface in $C P^{2} \subset C P^{2 n+1}$ with the standard expression given in ([2], Section 5) and $U \in U(2 n+2)$ satisfies $\operatorname{tr}\left(V_{2}^{(2)} V_{0}^{(2)}{ }^{T} U^{T} J_{n+1} U\right)=0$, as this expresses the orthogonality of $J f_{0}^{(2)}$ and $f_{2}^{(2)}$.

By calculating, we find in this case $\bar{W}=U^{T} J_{n+1} U \in U(2 n+2)$ is the same type as (3.24). Then, the type of the corresponding $U \in U(2 n+2)$ is the same as (3.25). Thus, we have

$$
\begin{aligned}
& U V_{1}^{(2)}=\frac{1}{1+z \bar{z}}(-2 \bar{z}, 0, \sqrt{2}-\sqrt{2} z \bar{z}, 0,2 z, 0,0, \ldots, 0)^{T} \\
& \mathbf{J} U V_{1}^{(2)}=\frac{1}{1+z \bar{z}}(0,-2 z, 0, \sqrt{2}-\sqrt{2} z \bar{z}, 0,2 \bar{z}, 0, \ldots, 0)^{T} .
\end{aligned}
$$

In this case, it is easy to check that the corresponding map φ is totally geodesic. Obviously, it is congruent to the case (5) with $K=\frac{1}{2}, B=0$.
Case II2, $m=2$.
In this case, by (3.50) we have

$$
\begin{equation*}
\underline{\varphi}_{0}=U \underline{V}_{2}^{(4)} \oplus \mathbf{J} U \underline{V}_{2}^{(4)} \tag{3.52}
\end{equation*}
$$

where $\underline{V}_{2}^{(4)}$ is a Veronese surface in $C P^{4} \subset C P^{2 n+1}$ with the standard expression given in ([2], Section 5) and $U \in U(2 n+2)$ satisfies $\operatorname{tr}\left(V_{4}^{(4)} V_{0}^{(4)}{ }^{T} U^{T} J_{n+1} U\right)=0$, as this expresses the orthogonality of $J f_{0}^{(4)}$ and $f_{4}^{(4)}$.

Similarly, we get the type of $\bar{W}=U^{T} J_{n+1} U \in U(2 n+2)$ as follows:

$$
\bar{W}=\left[\begin{array}{ccccccc}
& & & & a_{16} & \cdots & a_{1,2 n+2} \\
& & & & & a_{26} & \cdots \\
a_{2,2 n+2} \\
& & & & & a_{36} & \cdots \\
a_{3,} & \cdots & a_{4,2 n+2} \\
& & & & & a_{56} & \cdots
\end{array}\right)
$$

And the type of the corresponding $U \in U(2 n+2)$ is as follows:

$$
U=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \tag{3.53}\\
0 & 0 & 0 & 0 & 0 & -a_{16} & \cdots & -a_{1,2 n+2} \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & -a_{26} & \cdots & -a_{2,2 n+2} \\
0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & -a_{36} & \cdots & -a_{3,2 n+2} \\
0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & -a_{46} & \cdots & -a_{4,2 n+2} \\
0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
& & 0 & & & & * &
\end{array}\right] .
$$

Thus, we have

$$
\begin{aligned}
U V_{2}^{(4)}= & \frac{2}{(1+z \bar{z})^{2}}\left(6 \bar{z}^{2}, 0,-6 \bar{z}+6 z \bar{z}^{2}, 0, \sqrt{6}-4 \sqrt{6} z \bar{z}\right. \\
& \left.+\sqrt{6} z^{2} \bar{z}^{2}, 0,6 z-6 z^{2} \bar{z}, 0,6 z^{2}, 0, \ldots, 0\right)^{T}, \\
\mathbf{J} U V_{2}^{(4)}= & \frac{2}{(1+z \bar{z})^{2}}\left(0,6 z^{2}, 0,-6 z+6 z^{2} \bar{z}, 0, \sqrt{6}-4 \sqrt{6} z \bar{z}\right. \\
& \left.+\sqrt{6} z^{2} \bar{z}^{2}, 0,6 \bar{z}-6 z \bar{z}^{2}, 0,6 \bar{z}^{2}, \ldots, 0\right)^{T} .
\end{aligned}
$$

In this case, it is easy to check that the Eq. (3.1) holds, which shows the second fundamental form of the corresponding map φ is parallel. Obviously, it is congruent to the case (6) with $K=\frac{1}{6},\|B\|^{2}=\frac{2}{3}$.

It is easy to check that no two of the above six cases are congruent, i.e., we cannot transform any one into any other by left multiplication by $S p(n+1)$. To sum up, we get Theorem 1.1.

Acknowledgments The authors would like to express gratitude for the referee's comments.

References

1. Bahy-El-Dien, A., Wood, J.C.: The explicit construction of all harmonic two-spheres in quaternionic projective spaces. Proc. Lond. Math. Soc. 62, 202-224 (1991)
2. Bolton, J., Jensen, G.R., Rigoli, M., Woodward, L.M.: On conformal minimal immersion of S^{2} into $C P^{N}$. Math. Ann. 279, 599-620 (1988)
3. Burstall, F.E., Wood, J.C.: The construction of harmonic maps into complex Grassmannians. J. Differ. Geom. 23, 255-297 (1986)
4. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1-68 (1978)
5. He, L., Jiao, X.X.: Classification of conformal minimal immersions of constant curvature from S^{2} to $H P^{2}$. Math. Ann. doi:10.1007/s00208-014-1013-y
6. Jiao, X.X., Peng, J.G.: On some conformal minimal two-spheres in a complex projective space. Q. J. Math. 61(1), 87-101 (2010)
7. Jiao, X.X.: On minimal two-spheres immersed in complex Grassmann manifolds with parallel second fundamental form. Monatsh. Math. 168, 381-401 (2012)
8. Nakagawa, H., Takagi, R.: On locally symmetric Kaehler submanifolds in a complex projective space. J. Math. Soc. Jpn. 28(4), 638-667 (1976)
9. Ros, A.: On spectral geometry of Kaehler submanifolds. J. Math. Soc. Jpn. 36(3), 433-447 (1984)
10. Tsukada, K.: Parallel submanifolds in a quaternion projective space. Osaka J. Math. 22, 187-241 (1985)
11. Tsukada, K.: Einstein-Kaehler submanifolds in a quaternion projective space. Bull. Lond. Math. Soc. 36, 527-536 (2004)
12. Uhlenbeck, K.: Harmonic maps into Lie groups (classical solutions of the chiral model). J. Differ. Geom. 30, 1-50 (1989)

[^0]: Project supported by the NSFC (Grant No. 11331002).
 L. He ($\boxtimes) \cdot$ X. Jiao

 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
 e-mail: heling11b@mails.ucas.ac.cn
 X. Jiao
 e-mail: xxjiao@ucas.ac.cn

