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Abstract In this paper, we develop a constructive theory for approximating absolutely con-
tinuous functions by series of certain sigmoidal functions. Estimates for the approximation
error are also derived. The relation with neural networks approximation is discussed. The
connection between sigmoidal functions and the scaling functions of r -regular multiresolu-
tion approximations are investigated. In this setting, we show that the approximation error for
C1-functions decreases as 2− j , as j → +∞. Examples with sigmoidal functions of several
kinds, such as logistic, hyperbolic tangent, and Gompertz functions, are given.
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1 Introduction

In this paper, we develop a new theory, for approximating uniformly functions in some class
by series of sigmoidal functions, i.e., functions σ : R → R such that limx→−∞ σ(x) = 0
and limx→+∞ σ(x) = 1. The idea is to start from appropriate real-valued functions, φ,
normalized so that

∫
R
φ(t) dt = 1, and to construct sigmoidal functions having the integral

form σφ(x) := ∫ x
−∞ φ(t) dt, x ∈ R. In this way, we can define the operators

(S
σφ
w f )(x) :=

∑

k∈Z

⎡

⎣
b∫

a

φ(wy − k) f ′(y) dy

⎤

⎦ σφ(wx − k)+ f (a), (I)
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290 D. Costarelli, R. Spigler

x ∈ [a, b], where f is an absolutely continuous function on [a, b] ⊂ R, and w > 0 (note
that (I) becomes trivial for constants f ).

We can show that, the family (S
σφ
w f )w>0 converges to f uniformly on [a, b]. Moreover,

we derive estimates for the approximation error and the truncation error of the series.
A remarkable result is obtained when φ is the real-valued wavelet-scaling function asso-

ciated with an r -regular multiresolution approximation of L2(R), constructed by a suitable
procedure, see [11,17,29,30]. In this setting, we replace the weightsw with 2 j , j ∈ N

+, as it
seems more natural in view of the relation that φ has with the multiresolution approximation.
Also in this case, we can show that the family of the operators (S

σφ
j f ) j∈N+ , converges to f as

j → +∞, uniformly on [a, b]. Approximating C1−functions, we obtain an approximation
error decreasing to zero as 2− j when j → +∞.

The approximation procedures based on sigmoidal functions find applications, for
instance, in the theory of neural networks (NNs). NNs arise as a practical technique, success-
fully adopted to model a number of real-world problems, are often used in Approximation
Theory as “universal approximators” and have the form

N∑

k=1

αk σ(x · wk − θk), x, wk ∈ R
n, αk, θk ∈ R, (II)

where x · wk := ∑n
i=1 xiwki denotes the inner product in R

n , the wk’s are the weights, the
θk’s are threshold values, and σ is a sigmoidal activation function.

A theory for approximating functions by NNs, defined by (II), was developed by Cybenko
in [16], and its feasibility was established by nonconstructive arguments. Often, σ is either the
well-known logistic function, or the sigmoidal function generated by the hyperbolic tangent,
see [1,2,8]. The theory of NNs is mainly multivariate in nature, but useful constructive
approximation results have been obtained also for univariate functions, see, e.g., [1,2,9,
14,19,22,33]. Basic results on NNs were established by Li, Lenze, Mhaskar, Micchelli and
Pinkus in [23,26,27,31,32,34]. For results concerning the order of approximation, see [3,10,
13,15,20,24,25]. One-dimensional NNs also play a role in numerical analysis. For instance,
they have been used to solve ordinary differential equations [28], or to solve Fredholm or
Volterra integral equations of the second kind [7,12]. In this context, available constructive
approximation algorithms are fundamental.

The theory for approximating certain functions by series of sigmoidal functions proposed
in this paper can be exploited to obtain some kind of NNs approximation. Such an approach
is completely new and allows us to obtain a constructive approximation algorithm based on
a new class of sigmoidal functions.

Such a theory, in the present form, however, does not cover the important cases of NNs
activated by either logistic, hyperbolic tangent or Gompertz sigmoidal functions. Therefore,
in Sect. 5, we propose an extension of the theory previously developed, which includes such
cases, also providing estimates for the approximation errors for functions belonging to the
Lipschitz class.

2 Approximation by series of sigmoidal functions

In what follows, we denote by C[a, b] and AC[a, b] the sets of all continuous and
absolutely continuous functions, f : [a, b] → R, on the bounded closed nonempty interval
[a, b], respectively; ‖ · ‖∞ is the usual sup norm ‖ f ‖∞ := maxx∈[a,b] | f (x)|. Moreover,
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Approximation by series of sigmoidal functions 291

Ĉn[a, b], n ∈ N
+, will denote the set of all functions f ∈ Cn(a′, b′), for some open real

interval (a′, b′), such that [a, b] ⊂ (a′, b′).
Let us introduce the class of functions we will work with.

Definition 2.1 The function φ : R → R
+
0 is said to belong to the class �, if it satisfies the

following conditions:

(ϕ1) φ is continuous on R and there exists C > 0 such that

φ(x) ≤ C(1 + |x |)−α,
for every x ∈ R, and for some α ≥ 2;
(ϕ2)

∑
k∈Z

φ(x − k) = 1, for every x ∈ R.

Remark 2.2 The condition (ϕ2) is equivalent to

φ̂(k) :=
{

0, k ∈ Z \ {0} ,
1, k = 0,

where φ̂(v) := ∫
R
φ(t) e−ivt dt, v ∈ R, is the Fourier transform of φ; see [6]. In particular,

it turns out that φ̂(0) = ∫
R
φ(t) dt = 1.

For any fixed φ ∈ �, the function Kφ : R
2 → R

+
0 , defined by

Kφ(x, y) :=
∑

k∈Z

φ(x − k) φ(y − k), (x, y) ∈ R
2, (1)

will be called the kernel associated to φ. Clearly, it follows from condition (ϕ2) and by
Remark 2.2 that

∫

R

Kφ(x, y) dy = 1, for every x ∈ R. (2)

Moreover, using (ϕ1), it is easy to see that

Kφ(x, y) ≤ L (1 + |x − y|)−α, for every x, y ∈ R, (3)

for some positive constant L . Under the previous assumptions on Kφ , the following lemma,
which will turn out to be useful later, could be established. Its proof is classical and can be
found in [30].

Lemma 2.3 Let (Tw)w>0 be the family of operators defined explicitly by

(Tw f )(x) := w

∫

R

K (wx, wy) f (y) dy, x ∈ R,

for f : R → R (or C), and where the kernel K : R
2 → R (or C) meets the conditions (2)

and (3). Then, for any uniformly continuous and bounded function f , we have

lim
w→+∞ ‖Tw f − f ‖∞ = 0.

Moreover, for every f ∈ L p(R), 1 ≤ p < +∞, it results

lim
w→+∞ ‖Tw f − f ‖p = 0.
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292 D. Costarelli, R. Spigler

Recall now the following

Definition 2.4 A function σ : R → R is called a “sigmoidal function”, whenever
limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1.

Sometimes, boundedness, continuity and/or monotonicity are prescribed in addition. Let
now φ ∈ � be fixed and define the function σφ : R → R

+
0 as

σφ(x) :=
x∫

−∞
φ(t) dt, x ∈ R. (4)

Clearly, from condition (ϕ2) and Remark 2.2, such a function σφ is a sigmoidal function. We
can now give the following

Definition 2.5 For every fixed function φ ∈ �, we define the family of operators (S
σφ
w )w>0

by

(S
σφ
w f )(x) :=

∑

k∈Z

⎡

⎣
b∫

a

φ(wy − k) f ′(y) dy

⎤

⎦ σφ(wx − k)+ f (a), x ∈ [a, b],

for every f ∈ AC[a, b] and w > 0. We call S
σφ
w f the “series of sigmoidal functions for f ,

based on φ”, for the given value of w > 0.

Clearly, when f is a constant function, the Definition 2.5 becomes trivial. Now, we can
prove the following

Theorem 2.6 Let φ ∈ � be fixed. For any given f ∈ AC[a, b], the family (S
σφ
w f )w>0

converges uniformly to f on [a, b], i.e.,

lim
w→∞ ‖S

σφ
w f − f ‖∞ = 0.

Moreover, if f ∈ Ĉ1[a, b], we have

‖S
σφ
w f − f ‖∞ ≤ C̃w−1,

for some positive constant C̃ and for every w > 0.

Proof Since f ∈ AC[a, b], f (x) = ∫ x
a f ′(z) dz + f (a) for every x ∈ [a, b]. Then, setting

f̃ ′(z) = f ′(z) for z ∈ [a, b] and f̃ ′(z) = 0 for z /∈ [a, b], we obtain

|(Sσφw f )(x)− f (x)| =
∣
∣
∣
∣
∣
∣

∑

k∈Z

⎡

⎣
b∫

a

φ(wy − k) f ′(y) dy

⎤

⎦ σφ(wx − k)−
x∫

a

f ′(z) dz

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

k∈Z

⎡

⎣
∫

R

φ(wy − k) f̃ ′(y) dy

⎤

⎦
wx−k∫

−∞
φ(t) dt −

x∫

−∞
f̃ ′(z) dz

∣
∣
∣
∣
∣
∣
.
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Approximation by series of sigmoidal functions 293

Changing variable, by setting t = wz − k, we get

|(Sσφw f )(x)− f (x)|

≤
x∫

−∞

∣
∣
∣
∣
∣
∣

∑

k∈Z

⎡

⎣w
∫

R

φ(wy − k) f̃ ′(y) dy

⎤

⎦φ(wz − k)− f̃ ′(z)

∣
∣
∣
∣
∣
∣

dz

=
x∫

−∞

∣
∣
∣
∣
∣
∣
w

∫

R

Kφ(wz, wy) f̃ ′(y) dy − f̃ ′(z)

∣
∣
∣
∣
∣
∣

dz

≤
+∞∫

−∞

∣
∣
∣
∣
∣
∣
w

∫

R

Kφ(wz, wy) f̃ ′(y) dy − f̃ ′(z)

∣
∣
∣
∣
∣
∣

dz. (5)

Being f̃ ′ ∈ L1(R), we obtain by Lemma 2.3 and inequality (5)

lim
w→+∞ ‖S

σφ
w f − f ‖∞ ≤ lim

w→+∞ ‖Tw f̃ ′ − f̃ ′‖1 = 0,

which completes the proof of the first part of the theorem.
Consider now f ∈ Ĉ1[a, b]. Note that, by conditions (ϕ2) and (2), we have

w

∫

R

Kφ(wz, wy) dy = 1, for every z ∈ R and w > 0.

Then, again from inequality (5), we obtain

|(Sσφw f )(x)− f (x)|

≤
∫

R

∣
∣
∣
∣
∣
∣
w

∫

R

Kφ(wz, wy) f̃ ′(y) dy − f̃ ′(z)w
∫

R

Kφ(wz, wy) dy

∣
∣
∣
∣
∣
∣

dz

≤ w

∫

R

∫

R

Kφ(wz, wy) | f̃ ′(y)− f̃ ′(z)| dy dz

≤ 2w‖ f ′‖∞
∫

R

∫

R

Kφ(wz, wy) dy dz. (6)

Changing the variables z and y in the last integral in (6) with z1/w and y1/w, respectively,
we obtain, in view of condition (3),

‖S
σφ
w f − f ‖∞ ≤ 2w−1‖ f ′‖∞

∫

R

∫

R

Kφ(z1, y1) dy1 dz1

≤ 2w−1‖ f ′‖∞ L
∫

R

∫

R

(1 + |z1 − y1|)−α dy1 dz1 =: C̃w−1,

for every w > 0, for some C̃ > 0, and where α ≥ 2 is the constant of condition (ϕ1). This
completes the proof of the second part of the theorem. 
�

Examples of functions φ ∈ � will be given in the next sections.
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3 Application to neural networks

Here, we give some applications of the theory developed in the previous sections to NNs
of the form (II). Below, we will study NNs of the type in (II) in a univariate setting and
activated by the sigmoidal functions generated by (4). We will denote by �C the subset of
� of functions having a compact support.

Let φ ∈ �C be fixed, and let M1, M2 > 0 such that suppφ ⊆ [−M1,M2]. In this case,
we have for any f ∈ AC[a, b] and w > 0,

b∫

a

φ(wy − k) f ′(y) dy = 0,

for every k < wa − M2 and k > wb + M1, k ∈ Z, since for these values of k, [wa −
k, wb − k] ∩ [−M1,M2] = ∅. Then, the series appearing in the definition of the operator
S
σφ
w f reduces to a finite sum, i.e.,

(S
σφ
w f )(x) =

�wb+M1�∑

k=�wa−M2�

⎡

⎣
b∫

a

φ(wy − k) f ′(y) dy

⎤

⎦ σφ(wx − k)+ f (a), (7)

for every x ∈ [a, b], where the functions �x� and �x� denote the upper and the lower integer
part of x ∈ R, respectively. Now, we introduce the following modification in definition 2.5
for the case φ ∈ �C . For any f ∈ AC[a, b], set

(G
σφ
w f )(x) :=

�wb+M1�∑

k=�wa−M2�

⎡

⎣
b∫

a

φ(wy−k) f ′(y) dy

⎤

⎦ σφ(wx − k)+ f (a) σφ(w(x − a + 1)),

for every x ∈ [a, b] and w > 0. The G
σφ
w f ’s are a kind of NNs. They approximate f ,

uniformly on [a, b], as w → +∞. The proof of this claim follows from the same arguments
made in Theorem 2.6, taking into account that

sup
x∈[a,b]

| f (a)||1 − σφ(w(x − a + 1))| ≤ | f (a)||1 − σφ(w)| = 0, (8)

for w > 0 sufficiently large. Indeed, by the definition of σφ , for every w > M2 we have

σφ(w) =
w∫

−∞
φ(x) dx =

∫

R

φ(x) dx = 1. (9)

Moreover, again by Theorem 2.6, if f ∈ Ĉ1[a, b] we obtain the convergence rate given
by ‖G

σφ
w f − f ‖∞ ≤ C̃w−1, for some positive constants C̃ and for every sufficiently large

w > 0.
Our work provides a unified approach for NNs approximations. In addition, our proofs are

constructive in nature and allow us to determine explicitly the form of the NN. In particular,
we show that the set of NNs G

σφ
w f is dense in the set AC[a, b], with respect to the uniform

norm.
Now, we show that we can obtain NNs also starting from functions φ ∈ � which are not

necessarily compactly supported. Let first prove the following

Lemma 3.1 The series
∑

k∈Z
φ(wx − k) converges uniformly on the compact subsets of R,

for every fixed w > 0.
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Approximation by series of sigmoidal functions 295

In particular, we have for every [a, b] ⊂ R

sup
x∈[a,b]

∑

|k|>N

φ(wx − k) ≤ C
{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
,

for some C > 0, for every N > wmax {|a|, |b|} , N ∈ N
+, where α ≥ 2 is the constant of

condition (ϕ1).

Proof Let [a, b] ⊂ R be fixed. By condition (ϕ1) and for N > wmax {|a|, |b|} we have

sup
x∈[a,b]

∑

|k|>N

φ(wx − k) ≤ C sup
x∈[a,b]

∑

|k|>N

(1 + |wx − k|)−α

= C

{

sup
x∈[a,b]

∑

k>N

(1 + |wx − k|)−α + sup
x∈[a,b]

∑

k>N

(1 + |wx + k|)−α
}

≤ C

{
∑

k>N

(1 + k − wb)−α +
∑

k>N

(1 + wa + k)−α
}

≤ C

⎧
⎨

⎩

+∞∫

N

(1 + x − wb)−αdx

+
+∞∫

N

(1 + wa + x)−αdx

⎫
⎬

⎭
=: C

{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
.

The proof then follows. 
�
We can now establish the following

Theorem 3.2 (i) For any f ∈ AC[a, b], we denote by

(G
σφ
N ,w f )(x) :=

N∑

k=−N

⎡

⎣
b∫

a

φ(wy − k) f ′(y) dy

⎤

⎦ σφ(wx − k)

+ f (a) σφ(w(x − a + 1)), (10)

for x ∈ [a, b], w > 0, and N ∈ N
+. Then, for every ε > 0 there exist w > 0 and

N ∈ N
+ such that

‖G
σφ
N ,w f − f ‖∞ < ε.

(ii) Moreover, for any f ∈ Ĉ1[a, b] we have

‖G
σφ
N ,w f − f ‖∞ ≤ C1

{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}

+C2 w
−1 + C3w

−(α−1),

for some constants C1, C2, C3>0, and for everyw>0 with N>wmax {|a|, |b|} , N ∈
N

+, where α ≥ 2 is the constant appearing in condition (ϕ1).

Proof (i) Let ε > 0 be fixed. For every x ∈ [a, b] we have

|(Gσφ
N ,w f )(x)− f (x)| ≤ |(Gσφ

N ,w f )(x)− (S
σφ
w f )(x)| + |(Sσφw f )(x)− f (x)|

≤
∑

|k|>N

⎡

⎣
b∫

a

φ(wy − k) | f ′(y)| dy

⎤

⎦ σφ(wx − k)+ | f (a)||1 − σφ(w(x − a + 1))|

+‖S
σφ
w f − f ‖∞ =: S1 + S2 + S3. (11)
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Proceeding as in (8) and using (ϕ1), we can write

S2 ≤ | f (a)||1 − σφ(w)| = | f (a)|
+∞∫

w

φ(x) dx

≤ | f (a)|C
+∞∫

w

(1 + x)−αdx =: C (1 + w)−(α−1), (12)

where α ≥ 2 is the constant appearing in condition (ϕ1), and C > 0, then S2 < ε for w > 0
sufficiently large. Moreover, we obtain from Theorem 2.6 that S3 < ε for w > 0 sufficiently
large. Finally, we can estimate S1. Being ‖σφ‖∞ ≤ 1, we obtain for S1

S1 ≤ ‖σφ‖∞
∑

|k|>N

⎡

⎣
b∫

a

φ(wy − k) | f ′(y)| dy

⎤

⎦

≤
⎡

⎣ sup
y∈[a,b]

∑

|k|>N

φ(wy − k)

⎤

⎦
b∫

a

| f ′(y)| dy. (13)

We have by Lemma 3.1, for every fixed and sufficiently large w > 0,

sup
y∈[a,b]

∑

|k|>N

φ(wy − k) ≤ C
{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
, (14)

for some constant C > 0 and for every N > wmax {|a|, |b|} with N ∈ N
+. Then, for N

sufficiently large, we obtain S1 < ε. This completes the proof of (i).

(ii) For any f ∈ Ĉ1[a, b], Theorem 2.6 shows that S3 ≤ C̃w−1 uniformly with respect to
x ∈ [a, b], for every w > 0. Moreover, we obtain by (12) and (14)

S1 + S2 + S3 ≤ C

⎡

⎣
b∫

a

| f ′(y)| dy

⎤

⎦
{
(N − wb + 1)−(α−1)

+ (N + wa + 1)−(α−1)
}

+ C̃ w−1 + C (1 + w)−(α−1)

≤ C1

{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}

+C2 w
−1 + C3w

−(α−1),

uniformly with respect to x ∈ [a, b], for some constants C1, C2, C3 > 0, and forw > 0
sufficiently large, with N > wmax {|a|, |b|}. 
�

Remark 3.3 Setting C3 = 0 in Theorem 3.2 (ii), we also obtain an estimate for the truncation
error for the series of sigmoidal functions introduced in Sect. 2. Note that, when the weight,
w, increases, we need a higher number of neurons, N , which depends on w.

We now construct few examples of sigmoidal functions, σφ , providing first some examples
of functionsφ ∈ �C satisfying all hypotheses of our theory. Recall that the “central B-splines”
of order n ∈ N

+, are defined as

Mn(x) := 1

(n − 1)!
n∑

i=0

(−1)i
(

n

i

)(n

2
+ x − i

)n−1

+
,
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Approximation by series of sigmoidal functions 297

where (x)+ := max {x, 0} is the positive part of x ∈ R [5]. The Fourier transform of Mn is
given by

M̂n(v) := sincn
( v

2π

)
, v ∈ R,

where the sinc function is defined by

sinc(x) :=
{ sin(πx)

πx
, x ∈ R \ {0} ,

1, x = 0.

The Mn’s are bounded and continuous on R for all n ∈ N
+, and are compactly supported on

[−n/2, n/2]. This implies that Mn ∈ L1(R) and satisfies condition (ϕ1) for every α ≥ 2.
Finally, condition (ϕ2) holds, in view of Remark 2.2, hence, Mn ∈ �C for every n ∈ N

+.
Therefore, we can construct explicitly the NNs G

σMn
w f, n ∈ N

+.
As an example of function φ ∈ � which is not compactly supported, consider the contin-

uous function

F(x) := 1

2π
sinc2

( x

2π

)
, x ∈ R.

Clearly, F(x) = O(x−2−ε) as x → ±∞, ε > 0, hence, F satisfies condition (ϕ1) with
α = 2, see [5]. Moreover, its Fourier transform is

F̂(v) :=
{

1 − |v|, |v| ≤ 1,
0, |v| > 1,

(see [5] again). By Remark 2.2, F satisfies also condition (ϕ2), and then F ∈ �.

Remark 3.4 Note that the theory developed in this section cannot be applied to the case of NNs
activated by the logistic functions, σ
(x) := (1 + e−x )−1 (see [4,21], e.g., for applications
to Demography and Economics), or to the hyperbolic tangent sigmoidal functions, σh(x) :=
1
2 + 1

2 tanh(x) = 1
2 + e2x −1

2(e2x +1)
, [1,2,8]. In fact, σ
 and σh can be generated by (4) from

φ
(x) := e−x (1 + e−x )−2 and φh(x) := 2e2x (e2x + 1)−2, respectively. However, φ̂
(v) =
πv/ sinh(πv) and φ̂h(v) = πv/(2 sinh(πv/2)), respectively, which do not meet the condition
in Remark 2.2, i.e., do not satisfy condition (ϕ2). In Sect. 5 below, an extension of the theory
developed above is proposed, which allows to use NNs activated by σ
 or σh .

4 Sigmoidal functions and multiresolution approximation

In this section, we will show a connection between the theory of multiresolution approx-
imation and our theory for approximating functions by series of sigmoidal functions. We
first recall some basic facts concerning the multiresolution approximation. For the detailed
theory, see [11,17,29,30,36]. We start recalling the following

Definition 4.1 A multiresolution approximation of L2(R) is an increasing sequence, Vj , j ∈
Z, of linear closed subspaces of L2(R), enjoying the following properties:

⋂

j∈Z

Vj = {0} ,
⋃

j∈Z

Vj is dense in L2(R); (15)

for all f ∈ L2(R) and all j ∈ Z,

f (x) ∈ Vj ⇐⇒ f (2x) ∈ Vj+1; (16)
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for all f ∈ L2(R) and all k ∈ Z,

f (x) ∈ V0 ⇐⇒ f (x − k) ∈ V0; (17)

there exists a function, h(x) ∈ V0, such that the sequence

(h(x − k))k∈Z is a Riesz basis of V0. (18)

Recall that a sequence of functions (hk)k∈Z is a Riesz basis of an Hilbert space, H ⊆
L2(R), if there exist two constants, C1 and C2, with C1 > C2 > 0, such that, for every
sequence of real or complex numbers (ak)k∈Z ∈ l2(Z), it turns out that

C2

(
∑

k∈Z

|ak |2
)1/2

≤
∥
∥
∥
∥
∥

∑

k∈Z

akhk

∥
∥
∥
∥
∥

L2(R)

≤ C1

(
∑

k∈Z

|ak |2
)1/2

,

and the vector space of finite linear combinations of hk , is dense in H .

Definition 4.2 A multiresolution approximation, Vj , j ∈ Z, is called r-regular (r ∈ N
+), if

the function h in (18) is such that h ∈ Cr (R) and

|h(i)(x)| ≤ Cm(1 + |x |)−m, x ∈ R, (19)

for each integer m ∈ N
+ and for every positive index i ≤ r .

For every r -regular multiresolution approximation Vj , j ∈ Z, we can define the function
φ ∈ L2(R), called scaling function, as

φ̂(v) := ĥ(v)

(
∑

k∈Z

|̂h(v + 2πk)|2
)−1/2

, v ∈ R. (20)

In [30, Ch. 2], it is proved that
∑

k∈Z
|̂h(v + 2πk)|2 ≥ c > 0, hence, φ is well-defined.

Moreover, by the regularity of h, we have, as a consequence of the Sobolev’s embedding
theorem, that

∑
k∈Z

|̂h(v + 2πk)|2 is a C∞(R) function. Furthermore, the family (φ(x −
k))k∈Z turns out to be an orthonormal basis of V0, [17,30], and from (16) and (17), we obtain
by a simple change of scale that (2 j/2φ(2 j x − k))k∈Z forms an orthonormal basis of Vj .

Now, by smoothness and periodicity of
(∑

k∈Z
|̂h(v + 2πk)|2)−1/2

, the latter can be writ-
ten by means of its Fourier series

∑
k∈Z

αkeikv , where the coefficients αk decrease rapidly.
We thus obtain φ̂(v) = (∑

k∈Z
αkeikv

)
ĥ(v) which gives φ(x) = ∑

k∈Z
αk h(x + k), and

then it follows that the scaling function φ satisfies the estimates in (19). In particular, we have

|φ(x)| ≤ C̃α (1 + |x |)−α, x ∈ R, (21)

for some C̃α > 0, for every integer α ∈ N
+, i.e., φ satisfies condition (ϕ1) for every α ∈ N

+.
Let now E j be the orthogonal projection of L2(R) onto Vj , given by

(E j f )(x) :=
∑

k∈Z

⎡

⎣2 j
∫

R

f (y) φ(2 j y − k) dy

⎤

⎦φ(2 j x − k), f ∈ L2(R), (22)

where φ is the complex conjugate of φ. Let define E(x, y) := ∑
k∈Z

φ(y − k) φ(x − k), the
kernel of the projection operator E0, hence, 2 j E(2 j x, 2 j y), j ∈ Z will be the kernel of the
projection operator E j .
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Again in [30], it is proved the following remarkable property for the kernel, E ,
∫

R

E(x, y) yα dy = xα, for every x ∈ R, (23)

for every integer α ∈ N and α ≤ r . From (23) with α = 0, the integral property
∫

R

E(x, y) dy = 1, for every x ∈ R,

follows. Moreover, since φ satisfies (21), it is easy to see that

|E(x, y)| ≤ Cα(1 + |x − y|)−α, ∀ (x, y) ∈ R
2, and ∀α ∈ N

+,

where Cα > 0. Hence, E is a bivariate kernel satisfying conditions (2) and (3). Then, by
Lemma 2.3, we infer that ‖E j f − f ‖p → 0 as j → +∞, for every f ∈ L p(R) and
1 ≤ p < ∞. Moreover, exploiting the properties of the projection operators E j , the quantity

�(x, v) :=
∑

k∈Z

ei2πkx φ̂(v + 2kπ) φ̂(v), x, v ∈ R,

can be defined, which satisfies the condition �(x, 0) = 1, for every x ∈ R, [30]. This yields
∑

k∈Z

ei2πkx φ̂(2kπ) φ̂(0) = 1. (24)

Now, we can adjust the scaling function φ merely multiplying φ̂ by a suitable constant of
modulus 1 so that φ̂(0) = ∫

R
φ(t) dt = 1, while preserving all the other properties, [30]. By

the regularity of φ, the Poisson summation formula holds, and from (24), we obtain

1 =
∑

k∈Z

ei2πkx φ̂(2kπ) =
∑

k∈Z

φ(x + k) =
∑

k∈Z

φ(x − k), x ∈ R,

i.e., the scaling function φ satisfies condition (ϕ2). Using (4), we can now consider the
function σφ constructed by the scaling function φ. Clearly, if φ is real valued, σφ turns out
to be a sigmoidal function. Then, we have the following

Theorem 4.3 Let φ be a real-valued scaling function like that constructed above, associated
with an r- regular multiresolution approximation of L2(R).

(i) Then, for any f ∈ AC[a, b], the sequence of operators (S
σφ
j f ) j∈N+ , defined by

(S
σφ
j f )(x) :=

∑

k∈Z

⎡

⎣
b∫

a

φ(2 j y − k) f ′(y) dy

⎤

⎦ σφ(2
j x − k)+ f (a),

for every x ∈ [a, b], converges uniformly to f on [a, b].
In particular, if f ∈ Ĉ1[a, b], we have

‖S
σφ
j f − f ‖∞ ≤ C 2− j ,

for some positive constant C and for every positive integer j .
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(ii) Denote by S
σφ
N , j f, N ∈ N

+, the truncated series S
σφ
j f , i.e.,

(S
σφ
N , j f )(x) :=

N∑

k=−N

⎡

⎣
b∫

a

φ(2 j y − k) f ′(y) dy

⎤

⎦ σφ(2
j x − k)+ f (a).

Then, for every f ∈ Ĉ1[a, b], we have

‖S
σφ
N , j f − f ‖∞ ≤ C1 2− j + C2,α

{
(N − 2 j b + 1)−(α−1) + (N + 2 j a + 1)−(α−1)

}
,

for some positive constants C1 and C2,α , for every j ∈ N
+, and N > 2 j max {|a|, |b|},

where α ∈ N
+ is an arbitrary integer.

The proof of Theorem 4.3 (i) follows as the proof of Theorem 2.6, taking into account
that, the sequence (E j f ) j∈Z, f ∈ L1(R), converges to f in L1(R). Moreover, the proof of
Theorem 4.3 (ii) follows, as the proof of Theorem 3.2 (ii), using condition (21) and Lemma
3.1, where we have 2 j in place of w.

Remark 4.4 Note that, in the special setting of r -regular multiresolution approximations, we
are able to prove that the real-valued scaling functions φ, constructed above, are such that
φ ∈ �. Moreover, condition (16) in definition 4.1 allows us to consider the weights in the
basis (2 j/2φ(2 j x − k))k∈Z, and then in the series S

σφ
j f , as 2 j , i.e., the weights increase

exponentially with respect to j . Then, the error of approximation of C1-functions decreases
as 2− j . Moreover, conditions (19) and (21) are crucial to prove that the truncation error also
decrease rapidly.

Examples of r -regular multiresolution analysis satisfying the conditions above can be
given, assuming h to be generated by spline wavelets of order r + 1. These are defined by

hr (x) := 1

r !
r+1∑

i=0

(−1)i
(

r + 1

i

)

(x − i)r+ , x ∈ R, (25)

which can be viewed just as shifted central B-spline Mn . Generally speaking, the definition
of hn is given in terms of convolution, i.e., hn can be defined as the convolution of r + 1
characteristic functions of the interval [0, 1), see [35]. Note that, also the central B-spline can
be defined similarly, in terms of convolutions of the characteristic functions of the interval
[−1/2, 1/2), see [5]. The Fourier transform of hr can be easily obtained by

ĥr (v) := e−iv(r+1)/2 sincr+1
( v

2π

)
, v ∈ R.

The scaling function φ associated with the spline wavelet multiresolution approximation
can be obtained using (20) and the normalization procedure described above, see [18,30,35].

5 An extension of the theory for neural networks approximation

The theory developed in the previous sections, concerning the approximation by means of
series of sigmoidal functions based on σφ is beset by the technical difficulty of checking that
φ satisfies condition (ϕ2). To this purpose, we could use the condition given in Remark 2.2.
However, this does not simplify the problem. In fact, evaluating the Fourier transform of a
given function is often a difficult task. Moreover, as noticed in Remark 3.4, the sigmoidal
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functions most used for NN approximation do not satisfy (ϕ2). Below, we propose an exten-
sion of the theory developed in the previous sections, aiming at obtaining approximations
with NNs activated by sigmoidal functions σφ , without assuming that condition (ϕ2) be
satisfied by φ.

Through this section, we consider functions φ : R → R
+
0 , with

∫
R
φ(t) dt = 1 and

satisfying condition (ϕ1) with α > 2. Moreover, we set

ψφ(t) := σφ(t + 1)− σφ(t) > 0, t ∈ R,

and assume in addition that ψφ satisfies:

(1) ψφ(t) ≤ A(1 + |t |)−α,
for every t ∈ R and some A > 0. We denote by T the set of all functions φ satisfying such
conditions. We can now prove the following

Lemma 5.1 For any given φ ∈ T , the relation
∑

k∈Z

ψφ(x − k) = 1, x ∈ R

holds.

Proof Let x ∈ R be fixed. Then,

N∑

k=−N

ψφ(x − k) =
N∑

k=−N

[σφ(x − k + 1)− σφ(x − k)] = σφ(x + N + 1)− σφ(x − N ),

since the sum is telescopic. Passing to the limit for N → +∞, we obtain immediately

+∞∑

k=−∞
ψφ(x − k) = lim

N→+∞[σφ(x + N + 1)− σφ(x − N )] = 1.


�
Let now introduce the bivariate kernel

Kφ,ψ(x, y) :=
∑

k∈Z

ψφ(x − k) φ(y − k), (x, y) ∈ R
2.

As made in Sect. 2 for the kernel Kφ , we can show, using Lemma 5.1 and conditions (ϕ1)
and (1), that Kφ,ψ satisfy both, (2) and (3). Now, for any given φ ∈ T , we consider the

family of operators (Fφw)w>0, defined by

(Fφw f )(x) :=
∑

k∈Z

w

⎡

⎣
∫

R

φ(wy − k) f (y) dy

⎤

⎦ψφ(wx − k)

:= w

∫

R

Kφ,ψ(wx, wy) f (y) dy, x ∈ R,

for every bounded f : R → R, w > 0.

Remark 5.2 Note that, by Lemma 2.3, for every uniformly continuous and bounded function
f , the family of operators (Fφw f )w>0 converges uniformly to f on R, as w → +∞.
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To study the order of approximation for the operators above, we define the Lipschitz class
of the Zygmund type we will work with. Let us define

Lip(ν) := {
f : R → R : ‖ f (·)− f (· + t)‖∞ = O(|t |ν) as t → 0

}
,

for every 0 < ν ≤ 1. We can now prove the following lemma concerning the order of
approximation of (F

σφ
w f )w>0 to f (x):

Lemma 5.3 Let f ∈ Lip(ν), 0 < ν ≤ 1, be a fixed bounded function. Then, there exist
C1 > 0 and C2 > 0 such that

sup
x∈R

|(Fφw f )(x)− f (x)| ≤ C1w
−ν + C2 w

−(α−1),

for every sufficiently large w > 0.

Proof Let x ∈ R be fixed. Since f ∈ Lip(ν), there exist M > 0 and γ > 0 such that

‖ f (·)− f (· + t)‖∞ ≤ M |t |ν,
for every |t | ≤ γ . Moreover, we infer from condition (2)

w

∫

R

Kφ,ψ(wx, wy) dy = 1, x ∈ R, (26)

and then we can write

|(Fφw f )(x)− f (x)| ≤ w

∫

R

Kφ,ψ(wx, wy) | f (y)− f (x)| dy

=
⎡

⎢
⎣

∫

|y−x |≤γ
+

∫

|y−x |>γ

⎤

⎥
⎦w Kφ,ψ(wx, wy) | f (y)− f (x)| dy =: J1+ J2.

Let first estimate J1. From (3) and (26), by the change of variable y = (t/w)+ x , and being
f ∈ Lip(ν), we obtain for w > 0 sufficiently large

J1 =
∫

w−1|t |≤γ
Kφ,ψ(wx, t + wx) | f (x + t/w)− f (x)| dt

≤ M

⎡

⎢
⎣

∫

|t |≤w γ
Kφ,ψ(wx, t + wx)

∣
∣
∣
∣

t

w

∣
∣
∣
∣

ν

dt

⎤

⎥
⎦ ≤ L̃w−ν

∫

R

(1 + |t |)−α |t |ν dt,

where L̃ > 0 is a suitable constant. Now, since α > 2, we have L̃
∫

R
(1 + |t |)−α |t |ν dt =:

C1 < +∞, then J1 ≤ C1w
−ν , for w > 0 sufficiently large. Moreover, setting t = wy and

using again condition (3), we have

J2 =
∫

|t−wx |>wγ
Kφ,ψ(wx, t)| f (t/w)− f (x)| dt

≤ 2‖ f ‖∞
∫

|t−wx |>wγ
Kφ,ψ(wx, t) dt ≤ L

∫

|t−wx |>wγ
(1 + |t − wx |)−α dt,
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where L is a suitable positive constant. Changing now the variable t into z, setting z = t −wx
in the last integral, we obtain

J2 ≤ L
∫

|z|>wγ
(1 + |z|)−α dz ≤ C2 w

−(α−1),

for every w > 0. This completes the proof. 
�

We can now prove the following

Theorem 5.4 Let φ ∈ T be fixed. Define the NNs

(Nφ
N ,w f )(x) :=

N∑

k=−N

w

⎡

⎣
∫

R

φ(wy − k) f (y) dy

⎤

⎦ψφ(wx − k), x ∈ R,

where w > 0, N ∈ N
+, and f : R → R is a bounded function on R.

(i) Let f ∈ C[a, b] be fixed. Then, for every ε > 0, there exist w > 0 and N >

wmax {|a|, |b|}, such that

‖Nφ
N ,w f̃ − f ‖∞ = sup

x∈[a,b]
|(Nφ

N ,w f̃ )(x)− f (x)| < ε,

where f̃ is a continuous extensions of f such that f̃ has compact support and f̃ = f
on [a, b].

(ii) Let f ∈ Lip(ν), 0 < ν ≤ 1, and [a, b] ⊂ R be fixed. Then, we have

‖Nφ
N ,w f − f ‖∞ = sup

x∈[a,b]
|(Nφ

N ,w f )(x)− f (x)|

≤ C1w
−ν + C2 w

−(α−1) + C3

{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
,

for every sufficiently largew > 0 and N > wmax {|a|, |b|}, for some positive constants
C1, C2, and C3.

Proof (i) Suppose for the sake of simplicity that ‖ f ‖∞ = ‖ f̃ ‖∞, and note that f̃ is
uniformly continuous. Let now ε > 0 and x ∈ [a, b] be fixed. We can write

|(Nφ
N ,w f̃ )(x)− f (x)| ≤ | f (x)− (Fφw f̃ )(x)| + |(Fφw f̃ )(x)− (Nφ

N ,w f̃ )(x)|
=: I1 + I2.

By Remark 5.2 we have I1 < ε for w > 0 sufficiently large. Moreover,

I2 ≤
∑

|k|>N

w

⎡

⎣
∫

R

φ(wy − k) | f̃ (y)| dy

⎤

⎦ψφ(wx − k).
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Hence,w
∫

R

φ(wy−k) dy = 1, and since (1) holds, we obtain forψφ the same estimate

given in Lemma 3.1 for φ, then for every fixed sufficiently large w > 0 we have

I2 ≤ ‖ f ‖∞ sup
x∈[a,b]

∑

|k|>N

⎡

⎣w
∫

R

φ(wy − k) dy

⎤

⎦ψφ(wx − k)

= ‖ f ‖∞

⎡

⎣ sup
x∈[a,b]

∑

|k|>N

ψφ(wx − k)

⎤

⎦

< ‖ f ‖∞C̃
{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
< ε, (27)

for some positive constant C̃, N ∈ N
+, N > wmax {|a|, |b|}, and then, (i) is proved

being ε > 0 arbitrary.
(ii) Let now f ∈ Lip(ν) be a fixed. We have by Lemma 5.3

I1 ≤ C1w
−ν + C2 w

−(α−1),

for every sufficiently largew > 0 and for some positive constants C1 and C2. Moreover,
we obtain from (27)

I2 ≤ C3

{
(N − wb + 1)−(α−1) + (N + wa + 1)−(α−1)

}
,

for a suitable constant C3 > 0. Then, the second part of the theorem is proved.

�

As a first example, we can consider the case of the logistic function, σ
 (see, e.g., [8]),
generated by φ
(x) := e−x (1 + e−x )−2. Clearly, conditions (ϕ1) and (1), are fulfilled,
since φ
 and

ψ
(x) := σ
(x + 1)− σ
(x) = e (e − 1) e−x

(1 + e−x−1)(1 + e−x )
,

decay exponentially as x → ±∞. A second example, is given by the hyperbolic tangent
sigmoidal function (see, e.g., [1,2]),

σh(x) := 1

2
+ 1

2
tanh(x) = 1

2
+ e2x − 1

2(e2x + 1)
.

This can be generated by φh(x) = 2 e2x (e2x + 1)−2, whose associated function ψh is

ψh(x) = (e2 − 1) e2x

(e2x+2 + 1)(e2x + 1)
.

It can be easily checked that such a function φh belongs to T .
Finally, we recall that another remarkable example of sigmoidal function is provided by

the class of Gompetz functions, defined by

σαβ(x) := e−α e−βx
, x ∈ R,

for α, β > 0. Gompertz functions are widely used in such fields as, for instance, demography
and in modeling tumor growth.
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Remark 5.5 Note that, in closing, in order to approximate functions by the NNs G
σφ
N ,w, the

half of the number of sigmoidal functions needed to approximate functions by the NNs Nφ
N ,w,

would now suffice. The theory developed in this section, however, can be applied to important
sigmoidal functions for which the theory earlier discussed in Sects. 2 and 3 cannot be applied.
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