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Abstract Jorge–Koutrofiotis (Am J Math 103:711–725, 1980) and Pigola et al. (Memoirs
Am Math Soc 174(822), 2005) proved sharp sectional curvature estimates for extrinsically
bounded submanifolds. In Alías et al. (Trans Am Math Soc 364(7):3513–3528, 2012), Alias
et al. showed that these estimates hold on properly immersed cylindrically bounded sub-
manifolds. On the other hand, Alias et al. (Math Ann 345(2):367–376, 2009) proved mean
curvature estimates for properly immersed cylindrically bounded submanifolds. In this paper,
we prove these sectional and mean curvature estimates for a larger class of submanifolds,
the properly immersed φ-bounded submanifolds, see Theorems 5 and 6. With the ideas
developed, we prove stronger forms of these estimates, see the results in Sect. 4.
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110 G. P. Bessa et al.

1 Introduction

The classical isometric immersion problem asks whether there exists an isometric immersion
ϕ : M → N for given Riemannian manifolds M and N of dimension m and n, respectively,
with m < n. The model result for this type of problem is the celebrated Efimov–Hilbert
Theorem [11,14] that says that there is no isometric immersion of a geodesically complete
surface M with sectional curvature KM ≤ −δ2 < 0 into R

3, δ ∈ R. On the other hand,
the Nash Embedding Theorem shows that there is always an isometric embedding into the
Euclidean n-space R

n provided the codimension n − m is sufficiently large, see [18]. For
small codimension, meaning in this paper that n −m ≤ m −1, the answer in general depends
on the geometries of M and N . For instance, a classical result of Tompkins [28] states
that a compact, flat, m-dimensional Riemannian manifold cannot be isometrically immersed
into R

2m−1. Tompkin’s result was extended in a series of papers, by Chern and Kuiper [9],
Moore [17], O’Neill [20], Otsuki [21] and Stiel [26], whose results can be summarized in
the following theorem.

Theorem 1 (Tompkins, Chern, Kuiper, Moore, O’Neil, Otsuki, Stiel) Let ϕ : M → N be
an isometric immersion of a compact Riemannian m-manifold M into a Cartan–Hadamard
n-manifold N with n − m ≤ m − 1. Then, the sectional curvatures of M and N satisfy

sup
M

KM > inf
N

KN . (1)

Jorge and Koutrofiotis [15] considered complete extrinsically bounded1 submanifolds with
scalar curvature bounded from below and proved the curvature estimates (3). Pigola et al.
[24] proved an all general and abstract version of the Omori–Yau maximum principle [8,29],
and in consequence, they were able to extend Jorge–Koutrofiotis’ Theorem to complete m-
submanifolds M immersed into regular balls of any Riemannian n-manifold N with scalar

curvature bounded below as sM ≥ −c · ρ2
M

·∏k
j=1

(
log( j)(ρM )

)2
, ρM � 1.

Their version of Jorge–Koutrofiotis Theorem is the following:

Theorem 2 (Jorge–Koutrofiotis, Pigola–Rigoli–Setti) Let ϕ : M → N be an isometric
immersion of a complete Riemannian m-manifold M into a n-manifold N , n − m ≤ m − 1,
with ϕ(M) ⊂ BN (r), where BN (r) is a regular geodesic ball of N . If the scalar curvature
of M satisfies

sM ≥ −c · ρ2
M

·
k∏

j=1

(
log( j)(ρM )

)2
, ρM � 1, (2)

for some constant c > 0 and some integer k ≥ 1, where ρM is the distance function on M to
a fixed point and log( j) is the j-th iterate of the logarithm. Then,

sup
M

KM ≥ C2
b (r)+ inf

BN (r)
KN , (3)

where b = supBN (r)
K rad

N and

Cb(t) =
⎧
⎨

⎩

√
b cot(

√
b t) if b > 0 and 0 < t < π/2

√
b

1/t if b = 0 and t > 0√−b coth(
√−b t) if b < 0 and t > 0.

(4)

1 Meaning: immersed into regular geodesic balls of a Riemannian manifold.
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Curvature estimates 111

Remark 1 The curvature estimate (3) is sharp. For instance, if BNn(b)(r) ⊂ N
n(b) is a geo-

desic ball of radius r in the simply connected space form of sectional curvature b, ∂BNn(b)(r)
its boundary and ϕ : ∂BNn(b)(r − ε) → BNn(b)(r) is the canonical immersion, where ε > 0
is small, then we have

sup
M

KM = K∂BNn (b)(r−ε) =
⎧
⎨

⎩

b/sin2(
√

b (r − ε)) if b > 0
1/(r − ε)2 if b = 0
−b/ sinh2(

√−b (r − ε)) if b < 0.

Therefore, supM KM − [C2
b (r) + infNn(b) KNn(b)] = [C2

b (r − ε) − C2
b (r)] ↘ 0 as ε → 0

showing that the inequality (3) is sharp.

Remark 2 One may assume without loss of generality that supM KM < ∞. This together
with the scalar curvature bounds (2) implies that

KM ≥ −c2 · ρ2
M

·
k∏

j=1

(
log( j)(ρM )

)2
, ρM � 1

for some positive constant c > 0. This curvature lower bound implies that M is stochastically
complete, which is equivalent to the fact that M satisfies the weak maximum principle—a
weaker form of Omori–Yau maximum principle, see details in [23]—and that is enough to
reproduce Jorge–Koutrofitis original proof of the curvature estimate (3).

Recently, Alias et al. [2] extended Theorem 2 to the class of cylindrically bounded, properly
immersed submanifolds, where an isometric immersion ϕ : M ↪→ N × R


 is cylindrically
bounded if ϕ(M) ⊂ BN (r)× R


. One should also see [13] for sectional curvature estimates
for cylindrically bounded submanifolds with scalar curvature bounded below. Here, BN (r)
is a geodesic ball in N of radius r > 0. They proved the following theorem.

Theorem 3 (Alias–Bessa–Montenegro) Let ϕ : M → N × R

 be a cylindrically bounded

isometric immersion, ϕ(M) ⊂ BN (r)×R

, where BN (r) is a regular geodesic ball of N and

b = sup K rad
BN (r)

. Let dim(M) = m, dim(N ) = n − 
 and assume that n − m ≤ m − 
− 1. If
either

i. the scalar curvature of M is bounded below as (2), or
ii. the immersion ϕ is proper and

sup
ϕ−1(BN (r)×∂B

R

(t))

‖α‖ ≤ σ(t), (5)

where α is the second fundamental form of ϕ and σ : [0,+∞) → R is a positive function
satisfying

∫ +∞
0 dt/σ(t) = +∞, then

sup
M

KM ≥ C2
b (r)+ inf

BN (r)
KN . (6)

Remark 3 The idea is to show that the hypotheses in both items i. & ii. imply that M is
stochastically complete, then Remark 2 applies.

In the same spirit, Alias et al. [1] had proved the following mean curvature estimates for
cylindrically bounded submanifolds properly immersed into N ×R


 immersed submanifolds.
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112 G. P. Bessa et al.

Theorem 4 (Alias–Bessa–Dajczer) Let ϕ : M → N × R

 be a cylindrically bounded iso-

metric immersion, ϕ(M) ⊂ BN (r) × R

, where BN (r) is a regular geodesic ball of N and

b = sup K rad
BN (r)

. Here, M and N are complete Riemannian manifolds of dimension m and
n − 
, respectively, satisfying m ≥ 
+ 1. If the immersion ϕ is proper, then

sup
M

| →
H | ≥ (m − 
) · Cb(r). (7)

2 Main results

The purpose of this paper is to extend these curvature estimates to a larger class of submani-
folds, precisely, the properly immersed φ-bounded submanifolds. To describe this class, we
need to introduce few preliminaries (Fig. 1).

2.1 φ-Bounded submanifolds

Consider G ∈ C∞([0,∞)) satisfying

G− ∈ L1(R+), t

+∞∫

t

G−(s)ds ≤ 1

4
on R

+, (8)

and h the solution of the following differential equation:
{

h′′(t)− G(t)h(t) = 0,
h(0) = 0, h′(0) = 1.

(9)

In [6, Prop. 1.21], it is proved that the solution h and its derivative h′ are positive in R
+ =

(0,∞), provided G satisfies (8), and furthermore, h→+∞ whenever the stronger condition

G(s) ≥ − 1

4s2 on R
+ (10)

holds. Define φh ∈ C∞([0,∞)) by

φh(t) =
t∫

0

h(s)ds. (11)

Since h is positive and increasing in R
+, we have that limt→∞ φh(t) = +∞. Moreover, φh

satisfies the differential equation

φ′′
h (t)− h′

h
(t)φ′

h(t) = 0

for all t ∈ [0,∞).

Notation and basic assumptions on the ambient manifold N × L . In this paper, N will always
be a complete Riemannian manifold with a distinguished point z0 and radial sectional curva-
tures along the minimal geodesic issuing from z0 bounded above by K rad

N (z) ≤ −G(ρN (z)),
where G satisfies the conditions (8), whereas L will be a complete Riemannian manifold
with a distinguished point y0 and sectional curvature bounded below by −Λ2 for some
Λ > 0. Let h be the solution of (9) associated with G and φh(t) = ∫ t

0 h(s)ds. Finally,
ρN (z) = distN (z0, z) will be the distance function on N , and ρL(y) = distL(y0, y) will be
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Curvature estimates 113

Fig. 1 φh -Bounded surface in R
3

the distance function on L . For any given ε ∈ (0, 1), consider the subset Ωφh (ε) ⊂ N × L
given by

Ωφh (ε) = {
(x, y) ∈ N × L : φh(ρN (x)) ≤ log(ρL(y)+ 1)1−ε} .

Definition 1 An isometric immersion ϕ : M → N × L of a Riemannian manifold M into
the product N × L is said to be φh-bounded if there exists a compact K ⊂ M and ε ∈ (0, 1)
such that ϕ(M \ K ) ⊂ Ωh(ε).

Remark 4 The class of φ-bounded submanifolds contains the class of cylindrically bounded
submanifolds. If N × L = R

3, then Ωφh (ε) = Ω(ε) is given by

Ω(ε) =
{
(x, y, z) ∈ R

3 : z ≥ e(x
2+y2)1/(1−ε) − 1

}
.

2.2 Curvature estimates for φ-bounded submanifolds

In this section, we extend the cylindrically bounded version of Jorge–Koutrofiotis’s Theorem,
Theorem 3-ii., due to Alias et al., and the mean curvature estimates of Theorem 4 in [1], due
to Alias et al., to the class of φh-bounded properly immersed submanifolds. These extensions
are done in two ways. First, the class we consider is larger than the cylindrically bounded
submanifolds. Second, there are no requirements on the growth on the second fundamental
form as in Thm. 3. We also should observe that although φ-bounded properly immersed
submanifold (ϕ : M → N ×� L) is stochastically complete, provided L has an Omori–Yau
pair, see Sect. 4, we do not need that to prove the following result.

Theorem 5 Let ϕ : M → N n−
 × L
 be a φh-bounded isometric immersion of a complete
Riemannian m-manifold M with n − m ≤ m − 
− 1. If ϕ is proper and −G ≤ b ≤ 0, then

supM KM ≥ |b| + inf
N

KN . (12)

With strict inequality, supM KM > inf N KN if b = 0.
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114 G. P. Bessa et al.

Corollary 1 Let ϕ : M → N n−
 × L
 be a properly immersed, cylindrically bounded sub-
manifold, ϕ(M) ⊂ BN (r)× L
, where BN (r) is a regular geodesic ball of N . Suppose that
n − m ≤ m − 
− 1. Then, the sectional curvature of M satisfies the following inequality:

sup
M

KM ≥ C2
b (r)+ inf

N
KN , (13)

where b = supBN (r) K rad
N and Cb is defined in (4).

Our next main result extends the mean curvature estimates (7) toφ-bounded submanifolds.

Theorem 6 Let ϕ : M → N n−
 × L
 be a φh-bounded isometric immersion of a complete
Riemannian m-manifold M with m ≥ 
 + 1. If ϕ is proper, then the mean curvature vector
→
H= tr α of ϕ satisfies

sup
M

| →
H | ≥ (m − 
) · inf

r∈[0,∞)

h′

h
(r)· (14)

If −G ≤ b ≤ 0, then

sup
M

| →
H | ≥ (m − 
) ·√|b|. (15)

With strict inequality, supM | →
H | > 0 if b = 0.

3 Proof of the main results

3.1 Basic results

Let M and W be Riemannian manifolds of dimension m and n, respectively, and let ϕ : M →
W be an isometric immersion. For a given function g ∈ C∞(W ), set f = g ◦ ϕ ∈ C∞(M).
Since

〈grad
M

f, X〉 = 〈grad
W

g, X〉
for every vector field X ∈ T M , we obtain

grad
W

g = grad
M

f + (grad
W

g)⊥

according to the decomposition T W = T M ⊕ T ⊥M . An easy computation using the Gauss
formula gives the well-known relation (see e.g. [15])

HessM f (X, Y ) = HessW g(X, Y )+ 〈grad
W

g, α(X, Y )〉 (16)

for all vector fields X, Y ∈ T M , where α stands for the second fundamental form of ϕ. In
particular, taking traces with respect to an orthonormal frame {e1, . . . , em} in T M yields

�M f =
m∑

i=1

HessW g(ei , ei )+ 〈grad
W

g,
→
H〉, (17)

where
→
H= ∑m

i=1 α(ei , ei ).
In the sequel, we will need the following well-known results, see the classical Greene–Wu

[12] for the Hessian Comparison Theorem and Pigola–Rigoli–Setti’s “must looking at”book
[25, Lemma 2.13], see also [27], [6, Thm. 1.9] for the Sturm Comparison Theorem.
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Curvature estimates 115

Theorem 7 (Hessian Comparison Thm.) Let W be a complete n-manifold and ρW (x) =
distW (x0, x), x0 ∈ W fixed. Let Dx0 = W \ ({x0} ∪ cut(x0)) be the domain of normal
geodesic coordinates at x0. Let G ∈ C0([0,∞)), and let h be the solution of (9). Let [0, R)
be the largest interval where h > 0. Then,

i. If the radial sectional curvatures along the geodesics issuing from x0 satisfies

K rad
W

≥ −G(ρW ), in BW (R),

then,

HessW ρ ≤ h′

h
(ρW ) [〈, 〉 − dρ ⊗ dρ] on Dx0 ∩ BW (R)

ii. If the radial sectional curvatures along the geodesics issuing from x0 satisfy

K rad
W

≤ −G(ρW ), in BW (R),

then,

HessW ρW ≥ h′

h
(ρ) [〈, 〉 − dρ ⊗ dρ] on Dx0 ∩ BW (R)

Lemma 1 (Sturm Comparison Thm.) Let G1,G2 ∈ L∞
loc(R),G1 ≤ G2 and h1 and h2

solutions of the following problems:

a.)

{
h′′

1(t)− G1(t)h1(t) ≤ 0
h1(0) = 0, h′

1(0) > 0
b.)

{
h′′

2(t)− G2(t)h2(t) ≥ 0
h2(0) = 0, h′

2(0) > h′
1(0),

(18)

and let I1 = (0, S1) and I2 = (0, S2) be the largest intervals where h1 > 0 and h2 > 0,
respectively. Then,

1. S1 ≤ S2. And on I1,
h′

1
h1

≤ h′
2

h2
and h1 ≤ h2.

2. If h1(to) = h2(to), to ∈ I1, then h1 ≡ h2 on (0, to).

For a more detailed Sturm Comparison Theorem, one should consult the beautiful book [25,
Chapter 2.]. If −G = b ∈ R, then the solution of h′′

b(t)− G · hb(t) = 0 with hb(0) = 0 and
h′

b(0) = 1 is given by

hb(t) =

⎧
⎪⎨

⎪⎩

1√−b
· sinh(

√−b t) if b < 0

t if b = 0
1√
b

· sin(
√

b t) if b > 0.

In particular, if the radial sectional curvatures along the geodesics issuing from x0 sat-
isfy K rad

W
(x) ≤ −G(ρW (x)) ≤ b, x ∈ BW (R) = {x, distW (x0, x) = ρW (x) < R},

then the solution h of (9) satisfies (h′/h)(t) ≥ (h′
b/hb)(t) = Cb(t), t ∈ (0, R),

R < π/2
√

b, if b > 0. Therefore, Hess W ρW ≥ Cb(ρW )
[〈, 〉 − dρW ⊕ dρW

]
. Likewise,

if K rad
W
(x) ≥ −G(ρW (x)) ≥ b, x ∈ BW (R), then (h′/h)(t) ≤ Cb(t), t ∈ (0, R) and

Hess W ρW ≤ Cb(ρW )
[〈, 〉 − dρW ⊕ dρW

]
.

3.2 Proof of Theorem 5

We may assume without loss of generality that there exists a x0 ∈ M such that ϕ(x0)

= (z0, y0) ∈ N × L , z0, y0 the distinguished points of N and L . For each x ∈ M , let
ϕ(x) = (z(x), y(x)). Define g : N × L → R by g(z, y) = φh(ρN (z)) + 1, recalling that
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116 G. P. Bessa et al.

φh(t) = ∫ t
0 h(s)ds, and define f = g◦ϕ : M → R by f (x) = g(ϕ(x)) = φh(ρN (z(x)))+1.

For each k ∈ N, set fk(x) = f (x)− 1
k · log(ρL (y(x))+ 1). Observe that fk(x0) = 1 for all

k, since ρN (z0) = ρL (y0) = 0. First, let us prove the item i.
If x → ∞ in M , then ϕ(x) = (z(x), y(x)) → ∞ in N × L since ϕ is proper. If

ρN (z(x)) < ∞ as x → ∞ in M , then necessarily ρL(y(x)) → ∞. If ρN (z(x)) → ∞
and since ϕ(M \ K ) ⊂ Ωh(ε) for some compact K ⊂ M and ε ∈ (0, 1), we have that
φh(ρN (z(x))) ≤ log(ρL(y(x)))(1−ε). This also imply that ρL(y(x)) → ∞ as x → ∞ in M .
Thus,

fk(x)

log(ρL (y(x))+ 1)
= f (x)

log(ρL (y(x))+ 1)
− 1

k
<

1

log(ρL (y(x))+ 1)ε
− 1

k
< 0

for ρM (x) � 1. This implies that fk(x) < 0 for ρM (x) � 1. Therefore, each fk reaches a
maximum at a point xk ∈ M . This yields a sequence {xk} ⊂ M so that HessM fk(xk)(X, X) ≤
0 for all X ∈ Txk M , that is, ∀X ∈ Txk M

HessM f (xk)(X, X) ≤ 1

k
· HessM log(ρL (y(xk))+ 1)(X, X). (19)

Observe that log(ρL (y(xk))+1) = log(ρL ◦πL +1)◦ϕ(xk), πL : N × L → L the projection
on the second factor; thus, the right-hand side of (19), using the formula (16), is given by

HessM log(ρL (y(xk))+ 1)(X, X) = HessN×L log(ρL ◦ πL + 1)(ϕ(xk))(X, X)

+〈grad
N×L

log(ρL ◦ πL + 1), α(X, X)〉 (20)

where α is the second fundamental form of ϕ. For simplicity, set ψ(t) = log(t + 1), zk =
z(xk), yk = y(xk), sk = ρN (zk) and tk = ρL (yk). Decomposing X ∈ T M as X = X N +
X L ∈ T N ⊕ T L , we see that the first term of the right-hand side of (20) is

HessN×Lψ ◦ ρL ◦ y(xk)(X, X) = ψ ′′(tk)|X L |2 + ψ ′(tk)HessLρL (yk)(X, X)

≤ ψ ′′(tk)|X L |2 + C−Λ2(tk)
|X N |2
(tk + 1)

≤ C−Λ2(tk)
|X N |2
(tk + 1)

, (21)

since HessLρL (yk)(X, X) ≤ C−Λ2(tk)|X N |2 (by Theorem 7) and ψ ′′ ≤ 0. Recall that C−Λ2

is defined in (4), and it comes from the curvature assumption on L .
The second term of the right-hand side of (20) is

〈grad N×Lψ ◦ ρL ◦ y(xk), α(X, X)〉 = ψ ′(tk)〈grad
L
ρL (yk), α(X, X)〉

≤ 1

(tk + 1)
‖α‖ · |X |2 (22)

From (21) and (22), we have the following:

HessMψ ◦ ρL ◦ y(xk)(X, X) ≤ C−Λ2(tk)+ ‖α‖
(tk + 1)

· |X |2, (23)

and from (19) and (23), we have that

HessM f (xk)(X, X) ≤ 1

k

(C−Λ2(tk)+ ‖α‖)
(tk + 1)

|X |2 (24)
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We will compute the left-hand side of (19). Using the formula (16) again, recalling that
f = g ◦ ϕ and g is given by g(z, y) = φh(ρN (z)), where φh is defined in (11) and ρN (z) =
distN (z0, z), we have

HessM f (xk) = HessN×L g(ϕ(xk))+ 〈grad
N×L

g, α〉. (25)

Let us consider an orthonormal basis (26)

{
∈T N

︷ ︸︸ ︷
grad ρN , ∂/∂θ1 , . . . , ∂/∂θn−
−1 ,

∈T L
︷ ︸︸ ︷
∂/∂γ1 , . . . , ∂/∂γ
} (26)

for Tϕ(xk )(N × L). Thus, if X ∈ Txk M, |X | = 1, we can decompose

X = a · grad ρN +
n−
−1∑

j=1

b j · ∂/∂θ j +

∑

i=1

ci · ∂/∂γi

with a2 +∑n−
−1
j=1 b2

j +∑

i=1 c2

i = 1. Recalling that sk = ρN (z(xk)), we can see that the
first term of the right-hand side of (25)

HessN×L g(ϕ(x))(X, X)=φ′′
h (sk)·a2 + φ′

h(sk)

n−
−1∑

j=1

b2
j ·Hess ρN(zk)(

∂

∂θ j
,
∂

∂θ j
)

≥φ′′
h (sk) · a2 + φ′

h(sk)

n−
−1∑

j=1

b2
j · h′

h
(sk)

= φ′′
h (sk) · a2 + (1 − a2 −


∑

i=1

c2
i ) · φ′

h(sk) · h′

h
(sk)

=

⎡

⎢
⎢
⎢
⎣

≡0

(

︷ ︸︸ ︷

φ′′
h − h′

h
· φ′

h) a2 + (1 −

∑

i=1

c2
i ) · φ′

h · h′

h

⎤

⎥
⎥
⎥
⎦
(sk)

=
(

1 −

∑

i=1

c2
i

)

· φ′
h(sk) · h′

h
(sk)

Thus,

HessN×L g(ϕ(x))(X, X) ≥
(

1 −

∑

i=1

c2
i

)

· φ′
h(sk) · h′

h
(sk). (27)

The second term of the right-hand side of (25) is the following:

〈grad
N×L

g, α(X, X)〉 = φ′
h(sk)〈grad

N
ρN (zk), α(X, X)〉

≥ −φ′
h(sk)|α(X, X)| (28)

From (25), (27) and (28), we have that

HessM f (xk)(X, X) ≥
[(

1 −

∑

i=1

c2
i

)

· h′

h
(sk)− |α(X, X)|

]

φ′
b(sk) (29)
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118 G. P. Bessa et al.

Recall that n + 
 ≤ 2m − 1. This dimensional restriction implies that m ≥ 
 + 2,
since n ≥ m + 1. Therefore, for every x ∈ M , there exists a subspace Vx ⊂ Tx M with
dim(Vx ) ≥ (m − 
) ≥ 2 such that Vx ⊥ T L; this is equivalent to ci = 0 for X ∈ Vx . If we
take any X ∈ Vxk ⊂ Txk M, |X | = 1, we have by (24) and (29) that

(C−Λ2(tk)+ |α(X, X)|)
k(tk + 1)

≥ HessM f (xk)(X, X) ≥
[

h′

h
(sk)− |α(X, X)|

]

φ′
h(sk)

Thus, reminding that φ′
h = h,

[
1

k(tk + 1)
+ h(sk)

]

|α(X, X)| ≥ h′(sk)− C−Λ2(tk)

k(tk + 1)
(30)

Since −G ≤ b ≤ 0, we have by Lemma 1 (Sturm’s argument) that the solution h of (9)
satisfies (h′/h)(t) ≥ Cb(t) >

√|b| and that h(t) → +∞ as t → +∞, where Cb is defined
in (4). Let us assume that xk is unbounded in M , so that passing to a subsequence if necessary
xk → ∞ (the case ρM (xk) ≤ C2 < ∞ will be considered later), then sk → ∞ as well as
tk → ∞. Thus, from (30), for sufficiently large k, we have at ϕ(xk) that

[
1

k(tk + 1)h(sk)
+ 1

]

|α(X, X)| ≥ h′(sk)

h(sk)
− C−Λ2(tk)

k(tk + 1)h(sk)

≥ Cb(sk)− C−Λ2(tk)

k(tk + 1)h(sk)

> 0 (31)

Thus, at xk and X ∈ Txk M with |X | = 1, we have

|α(X, X)| ≥
[

Cb(sk)− C−Λ2(tk)

k(tk + 1)h(sk)

] [
1

k(tk + 1)h(sk)
+ 1

]−1

> 0. (32)

We will need the following lemma known as Otsuki’s Lemma [16, p. 28].

Lemma 2 (Otsuki) Let β : R
q × R

q → R
d , d ≤ q − 1, be a symmetric bilinear form

satisfying β(X, X) �= 0 for X �= 0. Then, there exists linearly independent vectors X, Y such
that β(X, X) = β(Y, Y ) and β(X, Y ) = 0.

The horizontal subspace Vxk has dimension dim(Vxk ) ≥ m − 
 ≥ 2. Thus, by the inequality
(32) and n −m ≤ m −
−1 ≤ dim(Vxk )−1, we may apply Otsuki’s Lemma to α(xk) : Vxk ×
Vxk → Txk M⊥ � R

n−m to obtain X, Y ∈ Vxk , |X | ≥ |Y | ≥ 1 such that α(xk)(X, X) =
α(xk)(Y, Y ) and α(xk)(X, Y ) = 0.
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By the Gauss equation, we have that

KM (xk)(X, Y )− KN (ϕ(xk))(X, Y ) = 〈α(xk)(X, X), α(xk)(Y, Y )〉
|X |2|Y |2 − 〈X, Y 〉2

= |α(xk)(X, X)|2
|X |2|Y |2

≥
( |α(xk)(X, X)|

|X |2
)2

=
∣
∣
∣
∣α(xk)

(
X

|X | ,
X

|X |
)∣
∣
∣
∣

2

≥
[

Cb(sk)− C−Λ2(tk)

k(tk + 1)h(sk)

] [
1

k(tk + 1)h(sk)
+1

]−1

> 0 (33)

where this last inequality is implied by (32). Since

sup KM − inf KN ≥ KM (x)(X, Y )− KN (ϕ(x))(X, Y ),

for all X, Y ∈ Tx M ⊂ Tx N , we have by (33) that

sup KM − inf KN >

([
h′(sk)

h(sk)
− C−Λ2(tk)

k(tk + 1)h(sk)

] [
1

k(tk + 1)h(sk)
+ 1

]−1
)2

> 0.

Therefore, sup KM − inf KN > 0 regardless of b = 0 or b < 0. If b < 0, we let k → +∞,
and then, we have

sup KM − inf KN ≥ lim
sk→∞

[
h′

h
(sk)

]2

= |b| (34)

The case where the sequence {xk} ⊂ M remains in a compact set, we proceed as follows.
Passing to a subsequence, we have that xk → x∞ ∈ M . Thus, tk → t∞ < ∞ and sk →
s∞ < ∞. By (24)

Hess M f (x∞)(X, X) ≤ lim
k→∞

(C−Λ2(t∞)+ |α(x∞)(X, X)|)
k(t∞ + 1)

= 0, (35)

for all X ∈ Tx0 M . Using the expression on the right-hand side of (29), we obtain for every
X ∈ Vx∞

0 ≥ Hess f (x∞)(X, X) ≥
[(

1 −

∑

i=1

c2
i

)

· h′

h
(s∞)− |α(X, X)|

]

φ′
b(s∞).

There exists a subspace Vx ⊂ Tx M with dim(Vx ) ≥ (m − 
) ≥ 2 such that Vx ⊥ T R

; this

is equivalent to ci = 0, for X ∈ Vx . If we take any X ∈ Vx∞ ⊂ Tx∞ M, |X | = 1, we have

|αx∞(X, X)| ≥ h′

h
(s∞)|X |2.

Again, using Otsuki’s Lemma and Gauss equation, we conclude that

sup
M

KM − inf
BN (r)

KN ≥
[

h′

h
(s∞)

]2

> |b|. (36)
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3.3 Proof of Theorem 6

We will follow the proof of Theorem 5 closely. Recall that fk reaches a maximum at xk ∈
M, k = 1, 2, . . ., so that �M fk(xk) ≤ 0. Thus,

�M f (xk) ≤ 1

k
· �M (log(ρL ◦ πL + 1) ◦ ϕ(xk)). (37)

Using the formula (17),

�M (log(ρL ◦ πL + 1) ◦ ϕ(xk)) =
m∑

i=1

Hess N×L log(ρR
 ◦ πL + 1)(ϕ(xk))(Xi , Xi )

+〈grad
N×L

log(ρL ◦ πL + 1),
→
H〉 (38)

where
→
H= ∑m

i=1 α(Xi , Xi ) is the mean curvature vector, while α is the second fundamental
form of the immersion ϕ, and {Xi } is an orthonormal basis of Txk M .

As before, decomposing X ∈ T M as X = X N + X L ∈ T N ⊕ T L and setting ψ(t) =
log(t + 1), yk = y(xk) and tk = ρL (yk) we have that the right-hand side of (38)

m∑

i=1

Hess N×Lψ ◦ ρL ◦ y(xk)(Xi , Xi ) = ψ ′′(tk)
m∑

i=1

|X L
i |2

+ψ ′(tk)
m∑

i=1

Hess LρL (yk)(Xi , Xi )

≤ C−Λ2(tk)

(tk + 1)

m∑

i=1

|X N
i |2,

≤ m · C−Λ2(tk)

(tk + 1)
(39)

since ψ ′′ ≤ 0 and

〈grad N×Lψ ◦ ρL ◦ y(xk),
→
H〉 = ψ ′(tk)〈grad ρL (yk),

→
H〉

≤ 1

(tk + 1)
| →

H | (40)

From (38), (39) and (40), we have

�M log(ρL (y(xk))+ 1) ≤ m · C−Λ2(tk)+ | →
H |

(tk + 1)
(41)

And from (37) and (41), we have that

�M f (xk) ≤ m · C−Λ2(tk)+ | →
H |

k(tk + 1)
(42)

We will compute the left-hand side of (37). Recall that f = g ◦ ϕ and g is given by
g(z, y) = φh(ρN (z)), where φ is defined in (11). Using the formula (17) again, we have

�M f (xk) =
m∑

i=1

Hess N×L g(ϕ(xk))(Xi , Xi )+ 〈grad g,
→
H〉 (43)
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Consider the orthonormal basis (26) for Tϕ(xk )(N × L). Thus, if Xi ∈ Txk M, |Xi | = 1, we
can decompose

Xi = ai · grad ρN +
n−
−1∑

j=1

bi j · ∂/∂θ j +

∑

l=1

cil · ∂/∂γl

with a2
i +∑n−
−1

j=1 b2
i j +∑


l=1 c2
il = 1. Set zk = z(xk) and sk = ρN (zk). We have as in (27)

Hess N×L g(ϕ(x))(Xi , Xi ) ≥
(

1 −

∑

l=1

c2
il

)

· φ′
h(sk) · h′

h
(sk) (44)

The second term of the right-hand side of (43) is the following, if |X | = 1,

〈grad g,
→
H〉 = φ′

h(sk)〈grad ρN (zk),
→
H〉

≥ −φ′
h(sk)|

→
H | (45)

Therefore, from (43), (44) and (45), we have that

�M f (xk) ≥
[(

m −
m∑

i=1


∑

l=1

c2
il

)

· h′

h
(sk)− | →

H |
]

φ′
b(sk) (46)

From (42) and (46), we have

m · C−Λ2(tk)+ | →
H |

k(tk + 1)
≥ �M f (xk) ≥

[

(m − 
) · h′

h
(sk)− | →

H |
]

φ′
h(sk) (47)

Therefore,

sup
M

| →
H |

[
1

h(sk) · k · (tk + 1)
+ 1

]

≥ (m − 
) · h′

h
(sk)− m · C−Λ2(tk)

h(sk) · k · (tk + 1)

Letting k → ∞, we have

sup
M

| →
H | ≥ (m − 
) · lim

k→∞
h′

h
(sk)·

If in addition, we have that −G ≤ b ≤ 0 then (h′/h)(s) ≥ Cb(s). The case that b = 0,
we have (h′/h)(sk) ≥ 1/sk and h(sk) ≥ sk . Since the immersion is φ-bounded, we have
s2

k ≤ 2 log(tk + 1)(1−ε). Thus, for sufficient large k,

sup
M

| →
H |

[
1

sk · k · (tk + 1)
+ 1

]

≥ m − 


sk
− m · C−Λ2(tk)

sk · k · (tk + 1)
> 0.

This shows that supM | →
H | > 0.

In the case b < 0, we have (h′/h)(sk) ≥ Cb(sk) ≥ √|b| and

sup
M

| →
H | ≥ (m − 
) · lim

k→∞
h′

h
(sk) ≥ √|b|.
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Remark 5 The statements of Theorems 5 and 6 are also true in a slightly more general
situation. This is, if, instead a proper φ-bounded immersion, one asks a proper immersion
ϕ : M → N × L with the property

lim
x→∞in M

φh(ρN (z(x)))

log(ρL (y(x))+ 1)
= 0,

where ϕ(x) = (z(x), y(x)) ∈ N × L .

4 Omori–Yau pairs

Omori [19], in discovered an important global maximum principle for complete Riemannian
manifolds with sectional curvature bounded below. Omori’s maximum principle was refined
and extended by Cheng and Yau [8,29,30], to Riemannian manifolds with Ricci curvature
bounded below and applied to find elegant solutions to various analytic-geometric problems
on Riemannian manifolds.

There were other generalizations of the Omori–Yau maximum principle under more
relaxed curvature requirements in [7,10] and an extension to an all general setting by Pigola
et al. [24] in their beautiful book. There, they introduced the following terminology.

Definition 2 (Pigola–Rigoli–Setti) The Omori–Yau maximum principle holds on a Rie-
mannian manifolds W if for any u ∈ C2(W ) with u∗ : = sup

W
u < ∞, there exists a

sequence of points xk ∈ W , depending on u and on W , such that

lim
k→∞ u(xk) = u∗, |grad u|(xk) <

1

k
,�u(xk) <

1

k
. (48)

Likewise, the Omori–Yau maximum principle for the Hessian holds on W if

lim
k→∞ u(xk) = u∗, |grad u|(xk) <

1

k
,HessW u(xk)(X, X) <

1

k
· |X |2, (49)

for every X ∈ Txk W .

A natural and important question is, what are the Riemannian geometries that the Omori–Yau
maximum principle holds on? It does hold on complete Riemannian manifolds with sectional
curvature bounded below [19], and it also holds on complete Riemannian manifolds with
Ricci curvature bounded below [8,29,30]. It follows from the work of Pigola et al. [24] that
the Omori–Yau maximum principle holds on complete Riemannian manifolds W with Ricci
curvature with strong quadratic decay,

RicW ≥ −c2 · ρ2
W

·�k
i=1(log(i)(ρW + 1), ρW � 1.

The notion of the Omori–Yau pair was formalized in [3], after the work of Pigola-Rigoli-Setti.
The Omori–Yau pair is described for the Laplacian and for the Hessian; however, it certainly
can be extended to other operators or bilinear forms.

Definition 3 A pair (G, γ ) of functions G : [0,+∞) → (0,+∞), γ : W → [0,+∞),G ∈
C1([0,∞)), γ ∈ C2([0,∞)), forms an Omori–Yau pair for the Laplacian in a Riemannian
manifold W if they satisfy the following conditions:

h.1) γ (x) → +∞ as x → ∞in W.
h.2) G(0) > 0,G′(t) ≥ 0 and

∫ +∞
0

ds√G(s) = +∞.
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h.3) ∃A > 0 constant such that |grad
W
γ | ≤ A

√G(γ )
(∫ γ

0
ds√G(s) + 1

)
off a compact set.

h.4) ∃B > 0 constant such that �W γ ≤ B
√G(γ )

(∫ γ
0

ds√G(s) + 1
)

off a compact set.

The pair (G, γ ) forms an Omori–Yau pair for the Hessian if instead h.4) one has

h.5) ∃C > 0 constant such that Hess γ ≤ C
√G(γ )

(∫ γ
0

ds√G(s) + 1
)

off a compact set, in

the sense of quadratic forms.

The result [24, Thm. 1.9] captured the essence of the Omori–Yau maximum principle,
and it can be stated as follows.

Theorem 8 If a Riemannian manifold M has an Omori–Yau pair (G, γ ), then the Omori–Yau
maximum principle holds on it.

The main step in the proof of Alias–Bessa–Montenegro’s Theorem (Thm. 3) and Alias–
Bessa–Dajczer’s Theorem (Thm. 4) is to show that a cylindrically bounded submanifold,
properly immersed into N × L , with controlled second fundamental form or controlled
mean curvature vector, has an Omori–Yau pair, provided L has an Omori–Yau pair. Thus,
the Omori–Yau maximum principle holds on those submanifolds and their proof follows
the steps of Jorge–Koutrofiotis’s Theorem. On the other hand, the idea behind the proof
of Theorems 5 and 6 is that: The factor L has bounded sectional curvature; hence, it has a
natural Omori–Yau pair (G, γ ). This Omori–Yau pair together with the geometry of the factor
N allows us to consider an unbounded region Ωφ such that if ϕ : M → Ωφ ⊂ N × L is
an isometric immersion, then there exists a function f ∈ C2(M), not necessarily bounded,
and a sequence xk ∈ M satisfying � f (xk) ≤ 1/k. We show that a properly immersed φ-
bounded submanifold has an Omori–Yau pair for the Laplacian, provided the fiber L has
an Omori–Yau pair for the Hessian. We show in Theorem 10 that an Omori–Yau pair for
the Hessian guarantees the Omori–Yau sequence for certain unbounded functions, as this
unbounded function f we are working. This leads to stronger forms of Theorems 5 and 6.

Let M, N , L be complete Riemannian manifolds of dimension m, n − 
 and 
, with
distinguished points x0, z0 and y0, respectively. Let ρN (z) = distN (z0, z) and suppose that
K rad

N ≤ −G(ρN ),G satisfying (8). Let h be the solution of (9) and φh as in (11). Suppose in
addition that L has an Omori–Yau pair for the Hessian (γ,G). Let Ωh,γ,G(ε) ⊂ N × L be
the region defined by

Ωh,γ,G(ε) = {(z, y) ∈ N × L : φh ◦ ρN (z(x)) ≤ [
ψ ◦ γ (y(x))]1−ε},

where ψ(t) = log
(∫ t

0
ds√G(s) + 1

)
. In this setting, we have the following result.

Theorem 9 Let ϕ : M → N × L be a properly immersed submanifold such that ϕ(M \
K ) ⊂ Ωh,γ,G(ε) for some compact K ⊂ M and positive ε ∈ (0, 1). Suppose that K rad

N ≤
−G(ρN ) ≤ b ≤ 0.

1. If the codimension satisfies n − m ≤ m − 
− 1, then

sup
M

KM ≥ |b| + inf
N

KN . (50)

With strict inequality, supM KM > inf N KN if b = 0.
2. If m ≥ 
+ 1, then

sup
M

| →
H | ≥ (m − 
) ·√|b|. (51)

With strict inequality, supM | →
H | > 0 if b = 0.
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The curvature assumption can be relaxed to admit some positive curvature; that is, if K rad
N ≤

−G(ρN ),G satisfying (8) and if m ≥ 
+ 1, then

sup
M

| →
H | ≥ (m − 
) · inf

r∈[0,∞)

h′

h
(r)· (52)

Proof Assume without loss of generality that there exists x0 ∈ M such that ϕ(x0) =
(z0, y0) ∈ N × L . As before, ϕ(x) = (z(x), y(x)) and g, p : N × L → R given by
g(z, y) = φh(ρN (z)) + 1, p(z, y) = ψ(γ (y)). For each k ∈ N, let gk : M → R given
by gk(x) = g ◦ ϕ(x)− p ◦ ϕ(x)/k. Observe that gk(x0) = 1 − ψ(γ (y0))/k > 0 if k � 1.
We have that gk(x) < 0 for ρM (x) � 1. This implies that gk has a maximum at a point
xk , yielding in this way a sequence {xk} ⊂ M such that HessM gk(xk) ≤ 0 in the sense of
quadratic forms. Proceeding as in the proof of Theorem 5, we have that for X ∈ Txk M ,

HessM g ◦ ϕ(xk)(X, X) ≤ 1

k
HessM p ◦ ϕ(xk)(X, X). (53)

We have to compute both terms of this inequality. Considering once more the orthonormal
basis (26) for Tϕ(xk )(N × L), we can decompose, X ∈ Txk M, |X | = 1 (after identifying X
with dϕX ), as

X = a · grad ρN +
n−
−1∑

j=1

b j · ∂/∂θ j +

∑

i=1

ci · ∂/∂γi

with a2 +∑n−
−1
j=1 b2

j +∑

i=1 c2

i = 1. Setting sk = ρN (z(xk)), tk = γ (y(xk)), we have as
in (29),

HessM g ◦ ϕ(xk)(X, X) = HessN×L g(ϕ(xk))(X, X)+ 〈grad
N×L

g, α(X, X)〉

≥
[(

1 −

∑

i=1

c2
i

)

· h′

h
(sk)− |α(X, X)|

]

φ′
b(sk) (54)

HessM p ◦ ϕ(xk)(X, X) = HessN×L p(ϕ(xk))(X, X)+ 〈grad
N×L

p, α(X, X)〉
= ψ ′′(tk)〈X, grad

L
γ 〉2+ψ ′(tk)HessL γ (X, X)

+ ψ ′(tk)〈grad
L
γ, α(X, X)〉

≤ ψ ′(tk)
(
HessL γ (X, X)+ |grad

L
γ | · |α(X, X)|)

≤
[√G(γ (tk))

(∫ tk
0

ds√G(γ (s)) + 1
)]
(C + A · |α(X, X)|)

√G(γ (tk))
(∫ tk

0
ds√G(γ (s)) + 1

)

= C + A · |α(X, X)|, (55)

since ψ ′′ ≤ 0. Taking in consideration the bounds (54) and (55), the inequality (53) yields,
(φ′(s) = h(s)),

[
A

k · h(sk)
+ 1

]

|α(X, X)| ≥
(

1 −

∑

i=1

c2
i

)
h′

h
(sk)− C

k · h(sk)
. (56)

Under the hypotheses of item 1., we have that (h′/h)(s) ≥ Cb(s) >
√|b| and h(s) → ∞ as

s → ∞. Moreover, there exists a subspace Vxk ⊂ Txk M, dimVxk ≥ 2, such that if X ∈ Vxk ,
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then X = a · grad ρN +∑n−
−1
j=1 b j · ∂/∂θ j . Therefore, for X ∈ Vxk , |X | = 1, we have for

k � 1.
[

A

k · h(sk)
+ 1

]

|α(X, X)| ≥ h′

h
(sk)− C

k · h(sk)

> |b| − C

k · h(sk)
> 0. (57)

The proof follows exactly the steps of the proof of Theorem 5, and we obtain that sup
M

KM ≥
|b| + inf N KN if b < 0 and sup

M
KM > inf N KN if b = 0.

To prove item 2., take an orthonormal basis X1, . . . , Xq , . . . , Xm ∈ Txk M ,

Xq = aq · grad ρN +
n−
−1∑

j=1

b jq · ∂/∂θ j +

∑

i=1

ciq · ∂/∂γi

with a2
q +∑n−
−1

j=1 b2
jq +∑


i=1 c2
iq = 1. Tracing the inequality (56) to obtain

[
A

k · h(sk)
+ 1

]

|H | ≥ (m −
m∑

q=1


∑

i=1

c2
iq)

h′

h
(sk)− C

k · h(sk)

≥ (m − 
)Cb(sk)− C

k · h(sk)
> 0 (58)

for k � 1. If b = 0, then Cb(s) = 1/s; then, coupled with the estimate h(s) ≥ s
√

s, see [6],

we deduce that sup
M

| →
H | > 0. And if b < 0, then Cb(s) ≥ √|b| > 0; then, letting k → ∞,

we have sup
M

| →
H | ≥ (m − 
)

√|b| > 0 if b < 0. ��

These curvature estimates can be seen as geometric applications of the Theorem 10 below,
which is an extension of the Pigola et al. [24, Thm. 1.9]. In [22, Cor. A1.], Pigola–Rigoli–Setti
proved an Omori–Yau type result for quite general operators on Riemannian manifolds M ,
applicable to unbounded functions u ∈ C2(M) with growth rate to infinity faster than ours.
However, their result require a decay condition on the Ricci curvature of M instead a general
Omori–Yau pair (G, γ ), although the Ricci curvature decay RicM ≥ −B2G(ρM ), (B > 0
constant) yields an Omori–Yau pair, i.e., (G, ρM ). Another difference between our result and
theirs is that we have a condition on the gradient of the unbounded function u.

Theorem 10 Let W be a complete Riemannian manifold with an Omori–Yau pair (G, γ )
for the Hessian (Laplacian). If u ∈ C2(W ) satisfies limx→∞ u(x)

ψ(γ (x)) = 0, ψ(t) =
log

(∫ t
0

ds√G(s) + 1
)
,, then there exist a sequence xk ∈ M, k ∈ N such that

|grad
W

u|(xk) ≤ A

k
,Hess W u(xk) ≤ C

k

(

�W u(xk) ≤ B

k

)

(59)

If u∗ = supM u < ∞, then u(xk) → u∗. The constants A, B and C come from the Omori–Yau
pair (G, γ ), see Definition 3.

Proof Assume that the Omori–Yau pair (G, γ ) is for the Hessian. The case of the Laplacian
is similar. Fix a point x0 ∈ M such that γ (x0) > 0 and define for each k ∈ N, uk : M → R

by uk(x) = u(x) − 1
kψ(γ (x)) + 1 − u(x0) − 1

kψ(γ (x0)). We have that uk(x0) = 1 and
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uk(x) ≤ 0 for ρW (x) = distW (x0, x) � 1. Thus, there is a point xk such that uk reaches a
maximum. In this way, we find a sequence xk ∈ M such that for all X ∈ Txk W

Hess W u(X, X) ≤ 1

k
Hess Wψ(γ )(X, X)

= 1

k

[
ψ ′′(γ )〈grad

W
γ, X〉2 + ψ ′(γ )Hess W γ (X, X)

]

≤ 1

k

⎡

⎢
⎢
⎢
⎢
⎣

1√G(γ )
1

(
γ∫

0

ds
G(s) + 1

) C
√

G(γ )
⎛

⎝

γ∫

0

ds

G(s) + 1

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎦

|X |2

= C

k
|X |2.

We used that ψ ′′ ≤ 0 and Hess W γ (X, X) ≤ C
√G(γ )

(∫ γ
0

ds
G(s) + 1

)
.

|grad
W

u| = 1

k
|grad

W
ψ(γ )|

≤ 1

k

⎡

⎣ 1√G(γ )
1

(∫ γ
0

ds
G(s) + 1

) A
√

G(γ )
⎛

⎝

γ∫

0

ds

G(s) + 1

⎞

⎠

⎤

⎦ ≤ A

k
·

��
4.1 Omori–Yau pairs and warped products

Let (N , gN ) and (L , gL ) be complete Riemannian manifolds of dimension n − 
 and 
,
respectively, and � : L → R+ be a smooth function. Let ϕ : M → L ×� N be an isometric
immersion into the warped product L ×� N = (L × N , ds2 = gL + �2gN ). The immersed
submanifold ϕ(M) is cylindrically bounded ifπN (ϕ(M)) ⊂ BN (r), whereπN : L ×N → N
is the canonical projection in the N -factor and BN (r) is a regular geodesic ball of radius r
of N . Alías and Dajczer in the proof of [4, Thm. 1] showed that if ϕ is proper in L × N ,
then the existence of an Omori–Yau pair for the Hessian in L induces an Omori–Yau pair
for the Laplacian on M provided the mean curvature |H | is bounded. We can prove a slight
extension of this result.

Lemma 3 Let ϕ : M → L ×� N be an isometric immersion, proper in the first entry, where
L carries an Omori–Yau pair (G, γ ) for the Hessian, � ∈ C∞(L) is a positive function
satisfying

|grad log �(y)| ≤ ln

⎛

⎜
⎝

γ (y)∫

0

ds√G(s) + 1

⎞

⎟
⎠ . (60)

Letting ϕ(x) = (y(x), z(x)) and if

| →
H (ϕ(x))| ≤ ln

⎛

⎜
⎝

γ (y(x))∫

0

ds√G(s) + 1

⎞

⎟
⎠ , (61)
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then M has an Omori–Yau pair for the Laplacian. In particular, M holds the Omori–Yau
maximum principle for the Laplacian.

Proof The idea of the proof is presented in [4] and therefore will try to follow the same
notation to simplify the demonstration. Let (G, γ ) be the Omori–Yau pair for the Hessian of
L . Assume w.l.o.g. that M is non-compact and denoteϕ(x) = (y(x), z(x)). DefineΓ (y, z) =
γ (y) and define ϑ(x) = Γ ◦ ϕ = γ (y(x)). We will show that (G, ϑ) is an Omori–Yau pair
for the Laplacian in M . Indeed, let qk ∈ M a sequence such that qk → ∞ in M as k → +∞.
Since ϕ is proper in the first entry, we have that y(qk) → ∞ in L . Since ϑ(qk) = γ (y(qk)),

we have ϑ(qk) → ∞ as qk → ∞ in M .
We have that

grad
L×�N

Γ (z, y) = grad
L
γ (z). (62)

Since � = Γ ◦ ϕ, we obtain at ϕ(q)

grad
L×�N

Γ = (grad
L×�N

Γ )T + (grad
L×�N

Γ )⊥

= grad
M
� + (grad

L×�N
Γ )⊥.

By hypothesis, we have

|grad
M
�|(q) ≤ |grad

L×�N
Γ |(ϕ(q)) = |grad

L
γ |(y(q))

≤ √
G(γ (y(q)))

⎛

⎜
⎝

γ (y(q))∫

0

ds√G(s) + 1

⎞

⎟
⎠

out of a compact subset of M .
Let T, S ∈ T L , X, Y ∈ T N and ∇L×�N ,∇L and ∇N be the Levi-Civita connections of

the metrics ds2 = gL +�2gN , gL and gN , respectively. It is easy to show that ∇ L×�N

S T = ∇ L

S T

and ∇ L×�N

X T = ∇ L×�N

T X = T (η)X where η = log �. Therefore,

∇ L×�N

T grad
L×�N

Γ = ∇ L

T
grad

L
γ

∇ L×�N

X grad
L×�N

Γ = grad
L
γ (η) X.

Hence,

HessL×�NΓ (T, S) = HessL γ (T, S), HessL×�NΓ (T, X) = 0

HessL×�NΓ (X, Y ) = 〈grad
L
η, grad

L
γ 〉〈X, Y 〉.

For any unit vector e ∈ Tq M , decompose e = eL + eN , where eL ∈ Ty(q)L and eN ∈
Tz(q)N . Then, we have at ϕ(q)

HessL×�NΓ (e, e) = HessL γ (y(q))(e
L , eL)+ 〈grad

L
γ, grad

L
η〉(y(q))|eN |2.

On the other hand, HessM�(q)(e, e) = HessL×�NΓ (e, e)+〈grad L×�NΓ, α(e, e)〉. Therefore,

HessM�(q)(e, e) = HessL γ (e
L , eL)+ 〈grad

L
γ, grad

L
η〉(z(q))|eP |2

+ 〈grad
L
γ, α(e, e)〉. (63)
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However,

HessL γ ≤ √
G(γ )

⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠ , (64)

out of a compact subset of L . By hypothesis, see (60),

〈grad
L
γ, grad

L
η〉(y(q))≤|grad

L
γ | · |grad

L
η|

≤√G(γ )
⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠ ln

⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠ . (65)

Considering (64), (65) and (63), we have that (off a compact set)

HessM�(q)(e, e) ≤ C ·√G(γ )
⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠ ln

⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠

+〈grad
L
γ, α(e, e)〉,

for some positive constant C . Thus, by (61), it follows that

�γ ≤ B
√

G(γ )

⎛

⎝

γ∫

0

ds√G(s) + 1

⎞

⎠ ln

(∫ γ

0

ds√G(s) + 1

)

for some positive constant B. Concluding that (G, �) is an Omori–Yau pair for the Laplacian
in M . ��

The proof of [4, Thm. 1] coupled with Lemma 3 allows us to state the following technical
extension of Alias–Dajczer’s Theorem [4, Thm. 1].

Theorem 11 (Alias–Dajczer) Let ϕ : M → L ×� N be an isometric immersion, proper in
the first entry, where L carries an Omori–Yau pair (G, γ ) for the Hessian, � ∈ C∞(L) is a
positive function satisfying

|grad log �(y)| ≤ ln

⎛

⎜
⎝

γ (y)∫

0

ds√G(s) + 1

⎞

⎟
⎠ . (66)

Letting ϕ(x) = (y(x), z(x)) and if

| →
H (ϕ(x))| ≤ ln

⎛

⎜
⎝

γ (y(x))∫

0

ds√G(s) + 1

⎞

⎟
⎠ . (67)

Suppose that ϕ(M) ⊂ {(y, z) : y ∈ L , z ∈ BN (r)}; then,

sup
M
�| →

H | ≥ (m − 
)Cb(r),

where b = supBN (r)
K rad

N
.
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Remark 6 The Theorems 5 and 6 should have versions forφ-bounded submanifold of warped
product L ×� N . Specially interesting should be the Jorge–Koutrofiotis Theorem in this
setting. We leave to the interested reader to pursue it.

As a last application of Theorem 10, let N n+1 = I ×� Pn the product manifold endowed
with the warped product metric, I ⊂ R is a open interval, Pn is a complete Riemannian man-
ifold, and � : I → R+ is a smooth function. Given an isometrically immersed hypersurface
ϕ : Mn → N n+1, define h : Mn → I the C∞(Mn) height function by setting h = πI ◦ ϕ,
where πI : I × P → I is a projection. This result below is a technical extension of [5, Thm.
7]. The key point is to prove the existence of an Omori–Yau sequence. Here, we prove it
under hypotheses weaker than of those of [5].

Theorem 12 Let ϕ : Mn → N n+1 be an isometrically immersed hypersurface. If Mn

has an Omori–Yau pair (G, γ ) for the Laplacian and the height function h satisfies
limx→∞ h(x)

ψ(γ (x)) = 0, then

sup
Mn

| →
H | ≥ inf

Mn
H(h), (68)

with
→
H being the mean curvature and H(t) = ρ′(t)

ρ(t) .
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