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Abstract We prove that the general tensor of size 2n and rank k has a unique decomposition
as the sum of decomposable tensors if k ≤ 0.9997 2n

n+1 (the constant 1 being the optimal
value). Similarly, the general tensor of size 3n and rank k has a unique decomposition as the
sum of decomposable tensors if k ≤ 0.998 3n

2n+1 (the constant 1 being the optimal value).
Some results of this flavor are obtained for tensors of any size, but the explicit bounds obtained
are weaker.
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1 Introduction

We are interested in the problem to decompose a tensor in C
a1+1 ⊗ · · · ⊗ C

aq+1 as a sum
of decomposable tensors. We study the decomposition of the general tensor of given rank k.
Conditions which guarantee the uniqueness of this decomposition are quite important in the
applications [13]. Indeed, many decomposition algorithms converge to one decomposition,
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1692 C. Bocci et al.

so that a uniqueness result guarantees that the decomposition found is the one we looked for.
Even from a purely theoretical point of view, the study of the decomposition shows some
beautiful and not expected phenomena. After a look at the table in Sect. 7, we see that there
are some exceptional sporadic cases which are intriguing.

It is well known that when k is bigger that the critical value

kc :=
∏q

i=1(ai + 1)

1 + ∑q
i=1 ai

then the decomposition can never be unique (see the introduction of [3]). Only one case is
known when kc is an integer and there is a unique decomposition for tensors of rank equal
to kc, namely when q = 3 and a1 = 1, a2 = a3.

So, let us consider the range k < kc, where the problem can be understood better.
Indeed, we consider two different cases, where the behavior is quite different. Let us order

the numbers ai , so that a1 ≤ · · · ≤ aq . The first case is when aq ≥ ∏q−1
i=1 (ai +1)−

(∑q−1
i=1 ai

)
,

that is when the last dimension is much bigger with respect to the others. In this case, there are
always values of k < kc such that the general tensor of rank k has a not unique decomposition.
This case is completely described, see Corollary 8.4.

The second remaining case is when aq ≤ ∏q−1
i=1 (ai + 1) −

(
1 + ∑q−1

i=1 ai

)
. We believe

in this case that the decomposition is almost always unique (for k < kc), with the exception
of few cases which we list in Sect. 7 and have been studied in previous papers [3,7,8].
Further references can be found in [7]. In general, we believe that the aforementioned list of
exceptional cases is complete.

We illustrate some situations, where our analysis covers almost all the possible ranks.
In the case of many copies of P

1, we prove (Theorem 4.4) that the general tensor of rank
≤ 4095

4096 kc has a unique decomposition. Notice that 4095
4096 = 0.9997 . . ., so we are very close

to cover the range k ≤ kc.
In the case of many copies of P

2, we prove (Theorem 5.3) that the general tensor of rank
≤ 728

729 kc has a unique decomposition. Notice that 728
729 = 0.998 . . .. A similar result for many

copies of P
3 is listed in the same section.

To give some evidence to our guess, that only a small set of exceptional cases occur, in

the range aq ≤ ∏q−1
i=1 (ai + 1) −

(
1 + ∑q−1

i=1 ai

)
, we have implemented an algorithm that

uses the concept of weak defectivity [5]. With respect to the algorithm implemented in [7],
it is much faster, because it reduces the problem to numerical linear algebra operation, while
the algorithm in [7] needed Gröbner basis computations.

We can prove that the list of exceptional cases, appearing at the end of Sect. 7, is complete
for all (a1, . . . , aq) such that

∏q
i=1(ai + 1) ≤ 100 (see Theorem 7.5).

Our general technique goes back to the seminal paper of Strassen [15], and we owe a lot
to his point of view. Strassen proved the case c even of our Theorem 6.1, which provides a
starting point for general results on cubic and general tensors (Theorems 7.1, 7.2).

In fact, we point out that our technique is inductive: once we know that a particular
Segre product X of projective spaces satisfies the k-tangency condition in Lemma 3.1 and
consequently is k-identifiable for k ≤ αkc, where α is some positive real ≤ 1, then the same
happens to be true for a larger product X × P

a .
This principle, which is indeed our main tool in the paper, is enlightened in Corollary 3.3.

We hope that it will produce even more interesting results, when applied to specific types of
tensors that people working in Multilinear Algebra are considering.
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Refined methods for the identifiability of tensors 1693

A consequence of this technique is a result on the dimension of secant varieties (Corol-
lary 7.3), which can be seen as a generalization, to any number of factors, of previously
known results in the case of three factors.

Let we finish with a short account of the status of the art, for the identifiability of binary
tensors, i.e., tensors in the span of P

1 × · · · × P
1. After the paper of Strassen [15], and using

methods of Algebraic Geometry, Elmore, Hall and Neeman proved in [10] the following
asymptotic result: when the number m of factors is “very large” with respect to k, a, then the
Segre product P

a × · · · × P
a is k-identifiable. A much more precise bound for identifiability

of binary products was obtained by Allman, Matias, and Rhodes. In [2] (Corollary 5), they
proved that the product of m copies of P

1 is k-identifiable when m > 2�log2(k+1)�+1. Thus,
they gave a lower bound for 2m which is quadratic with respect to k + 1. Successively, using
Geometric methods as well as a result by Catalisano et al. [4], the first and second authors in
[3] improved the bound, showing that a product of m > 5 copies of P

1 is k-identifiable for all k
such that k+1 ≤ 2m−1/m. The case of 5 copies of P

1 was shown to be exceptional. The bound,
which happened to be the best known up to now, is substantially improved in the present paper.

2 Preliminaries

We follow [14] for basic facts about the geometric point of view on tensors. For any irreducible
projective varieties X , we denote by Sk(X) the k-th secant variety of X , which is the Zariski
closure of the set

⋃
x1,...,xk∈X 〈x1, . . . , xk〉. In other words, Sk(X) is the Zariski closure of the

set of elements having X -rank equal to k.
We recall, from [7] Definition 2.1, the following:

Definition 2.1 X is called k-identifiable if the general element of Sk(X) has a unique decom-
position as the sum of k elements of X .

Those who wonder why we ask for the uniqueness just for a general element of Sk(X)

should consider that for any k ≥ 2 there are always points of Sk(X) which have rank smaller
than k.

Notice that k-identifiable implies (k − 1)-identifiable, and so on.
A fundamental Geometric tool for the analysis of the identifiability of tensors is Proposition

2.4 in [7], which is essentially a consequence of Terracini Lemma.

Proposition 2.2 If there exists a set of k particular points x1, . . . , xk ∈ X, such that the
span 〈Tx1 X, . . . , Txk X〉 contains Tx X only if x = xi for some i = 1, . . . , k, then X is
k-identifiable.

3 The Main Lemma

The inductive step, that allows us to provide effective results on the identifiability of tensors,
relies in the following:

Lemma 3.1 Let X be a smooth non-degenerate projective subvariety of P
N , of dimension

n. Let Y denote the canonical Segre embedding of X × P
m into P

M , M = m N + m + N.
Fix k with (n + 1)k < N + 1 and r < N such that r + 1 ≥ (n + m + 1)k. Assume that a
general linear subspace of P

N , of dimension r, which is tangent to X at k general points, is
not tangent to X elsewhere.

Then, the general linear subspace of P
M , of dimension mr + m + r , which is tangent to

Y at (m + 1)k general points, is not tangent to Y elsewhere.

123
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Proof First of all, notice that dim(Y ) = (m +n), and (m +1)(r +1) ≥ (m +n +1)(m +1)k.
Thus, by an obvious parameter count, there are linear subspaces of dimension mr + m + r
which are tangent to Y at (m + 1)k general points.

Fix m + 1 independent points p0, . . . , pm of P
m and for j = 0, . . . , m take k general

points qi j of the fiber X × {p j }. Call π j the natural projection of X × {p j } to X .
For h = 0, . . . , m, fix a general linear subspace Rh , of dimension r , which is tangent

to X × {ph} at the k points q1h, . . . , qkh and passes through the points π j (qi j ) × {ph}, for
j 
= h. Since r + 1 ≥ k(n + 1) + km, such spaces Rh exist. Moreover, Rh is tangent to
X × {ph} only at the point q1h, . . . , qkh , by our assumption on X .

Let R be the span of all the Rh’s. We claim that R, which is a linear subspace of dimension
mr + m + r , is tangent to Y at all the points qi j , and it is not tangent to Y elsewhere. This
will conclude the proof of the lemma by semicontinuity.

First notice that for all i, j , R contains m + 1 general points of {π j (qi j )} × P
m ; hence,

it contains these fibers. Since R also contains the tangent spaces to X × {ph} at the points
qih’s for all h, then it is tangent to Y at all the points qi j ’s.

Assume now that there exists a point x ∈ Y , different from the qih’s, such that R is
tangent to Y at x . Call x ′ the projection of x to P

m , so that in some coordinate system, we can
write x ′ = a0 p0 + · · · + am pm . There is at least one of the ai ’s, say a0, which is non-zero.
Assume that also a1 
= 0. Then, the projection of R to P

N × {p0}, which by construction
coincides with R0, is also tangent to X × {p0} at the projection of qk1. By the generality of
the choice of the qi j ’s, qk1 cannot coincide with any of the points q10, . . . , qk0. Thus, we get
a contradiction.

So, we conclude that a1 = 0. Similarly we get that a2 = · · · = am = 0. It follows that
x = x ′ belongs to X × {p0} and since R0 is tangent to X × {p0} at x , then x must coincide
with some point qi0. �
Remark 3.2 It is worthy of spending one Remark to point out that, by semicontinuity, if a
general linear subspace of P

N , of dimension r , which is tangent to X at k general points, is
not tangent to X elsewhere, then the same phenomenon occurs for general linear subspaces
of dimension r − 1, r − 2, and so on.

The Lemma, together with Theorem 2.2, produces the following general principle:

Corollary 3.3 With the same assumptions on X of Lemma 3.1, then Y = X × P
m is (m + 1)

k-identifiable.

Thus, we will prove the identifiability of Segre products, starting with a X who is a Segre
product for which we know that the assumptions of Lemma 3.1 hold (by computer-aided
specific computations or by Theorem 6.1 below) and then extending the number of factors
of X , and using Lemma 3.1 inductively.

4 Many copies of P
1

The main case in which the previous result applies is the Segre product of many projective
lines.

Proposition 4.1 Let X be the product of n copies of P
1, 6 ≤ n ≤ 12, naturally embedded

in P
2n−1. Then, for k < kc = 2n

n+1 , the linear span of k general tangent spaces at X is not
tangent to X elsewhere. In particular, X is k-identifiable for all k < kc.
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Refined methods for the identifiability of tensors 1695

Proof Just a computer-aided computation, following the algorithm presented in Sect. 9. In
the case of 12 copies, the algorithm goes out of memory if implemented in a straightforward
way. We used a “divide and conquer” technique to save memory, running in 2 h on a PC with
two processors at 2 GHz. �
Theorem 4.2 For n ≥ 12, let X be the product of n copies of P

1, naturally embedded in P
N ,

with N = 2n − 1. Then, for r < 2n − 2n−12 and for k ≤ r+1
n+1 , a general linear subspace of

dimension r which is tangent to X at k points, is not tangent to X elsewhere.

Proof The proof goes by induction on n ≥ 12. If n = 12, the claim follows from the previous
Proposition and Remark 3.2.

Assume the claim holds for n − 1. Again by Remark 3.2, it suffices to prove the claim for
r + 1 = 2n − 2n−12. Fix k as above. Notice that k′ := �k/2� is at most (2n−1 − 2n−13)/(n +
1) + 1, which is smaller than (2n−1 − 2n−13)/n for n ≥ 12. Thus, we may apply induction:
the general linear subspace of P N ′

, N ′ := 2n−1 − 1, of dimension (2n−1 − 2n−13) − 1,
which is tangent to X ′ := (P1)n−1 at k′ points, is not tangent to X ′ elsewhere. The claim now
follows directly from the Main Lemma 3.1. �
Remark 4.3 The assumption n ≥ 6 is motivated by the fact that for 5 copies of P

1, X is
k-identifiable if and only if k ≤ 4, while the general tensor of rank 5 has exactly two
decompositions [3].

We recall that for 4 copies of P
1, X is k-identifiable if and only if k ≤ 2, while it is a result

of Strassen that the general tensor of rank 3 has infinitely many decompositions.
For 3 copies of P

1, X is k-identifiable if and only if k ≤ 2, 2 being the general rank.

As a corollary, we get

Theorem 4.4 For n ≥ 12, let X be the product of n copies of P
1, naturally embedded in P

N ,
with N = 2n − 1. Then, for k ≤ (2n − 2n−12)/(n + 1), X is k-identifiable.

Let us compare the result with the (best known) bound on the identifiability of P
1×· · ·×P

1

given in [3], which makes a fundamental use of the main result in [4].
The main result of [3] proves that X is k-identifiable for k < 2n−1/n, which is a little

better than half way from the critical (maximal) value kc.
The previous result shows that X is k-identifiable for

k ≤ 2n

n + 1

(

1 − 1

212

)

= 4095

4096

2n

n + 1
= 0, 9997 . . . · kc

a sensible improvement, as n grows.

5 Many copies of P
2 and P

3

Let us see what happens with the Segre product of many projective planes.

Proposition 5.1 Let X be the product of n copies of P
2, 4 ≤ n ≤ 6, naturally embedded

in P
3n−1. Then, for k < kc = 2n

n+1 the linear span of k general tangent spaces at X, is not
tangent to X elsewhere. In particular X is k-identifiable for all k < kc.

Proof Just a computer-aided computation, following the algorithm presented in Sect. 9. �
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Remark 5.2 The assumption n ≥ 4 is motivated by the fact that for 3 copies of P
2, X is

k-identifiable if and only if k ≤ 3, while it is a result of Strassen ([15], §4) that the general
tensor of rank 4 has infinitely many decompositions.

Theorem 5.3 For n ≥ 6, let X be the product of n copies of P
2, naturally embedded in P

N ,
with N = 3n − 1. Then, for r < 3n − 3n−6 and for k ≤ (r + 1)/(2n + 1), a general linear
subspace of dimension r which is tangent to X at k points, is not tangent to X elsewhere.

Proof The proof goes by induction on n ≥ 6. If n = 6, the claim follows from the previous
proposition and Remark 3.2.

Assume n ≥ 7 and the claim holds for n − 1. Again by Remark 3.2, it suffices to prove
the claim for r + 1 = 3n − 3n−6. Fix k as above. Notice that k′ := �k/3� is at most
(3n−1 − 3n−7)/(2n + 1)+ 1, which is smaller than (3n−1 − 3n−7)/(2n − 1) for n ≥ 5. Thus,
we may apply induction: the general linear subspace of P N ′

, N ′ := 3n−1 − 1, of dimension
(3n−1 − 3n−7) − 1, which is tangent to X ′ := (P2)n−1 at k′ points, is not tangent to X ′
elsewhere. The claim now follows directly from the Main Lemma 3.1. �

As a corollary, we get

Theorem 5.4 For n ≥ 6, let X be the product of n copies of P
2, naturally embedded in P

N ,
with N = 3n − 1. Then, for k ≤ (3n − 3n−6)/(2n + 1), X is k-identifiable.

The previous result shows that X is k-identifiable for

k ≤ 3n

2n + 1

(

1 − 1

36

)

= 728

729

3n

2n + 1
,

i.e. up to 728/729 = 0.998 . . . of the critical (maximal) value kc.
And now the reader can see how the trick goes, at least for cubic tensors. Once one

determines a starting point, for few copies of given projective spaces (e.g. by using a computer-
aided computation), then the Main Lemma 3.1 provides an extension to the product of an
arbitrary number of copies of projective spaces, in which the bound is expressed as a constant
fraction of the critical value kc.

We end the list of particular cases with the product of many copies of P
3, which is relevant

because of its connection with the Algebraic Statistics of DNA chains.

Theorem 5.5 Let X be the product of n ≥ 5 copies of P
3, naturally embedded in P

N , with
N = 4n − 1.

(i) for n = 5, a general linear subspace of dimension r = 1, 007 which is tangent to X at
k ≤ 63 points, is not tangent to X elsewhere.

(ii) For n > 5 and k ≤ (4n − 4n−3)/(3n + 1), a general linear subspace of dimension
r = 4n − 4n−3 − 1 which is tangent to X at k points, is not tangent to X elsewhere.

(iii) For k ≤ (4n−4n−3)/(3n+1), then X is k-identifiable. In other words, X is k-identifiable
up to 63/64 = 0.98 . . . of the critical (maximal) value kc.

Proof (i) follows from a computer-aided computation, following the algorithm presented in
Sect. 9. (ii) is a consequence of (i) and the inductive Lemma 3.1. (iii) follows from (ii) and
Theorem 2.2. �
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6 Products of three projective spaces

For the general case, in which we have projective spaces of arbitrary dimension, in order to
produce examples similar to the ones of the previous section, we need a starting point for the
induction.

We obtain a starting point, for the case of the product of three projective spaces X =
P

a × P
b × P

c, 2 < a ≤ b ≤ c, from the following Theorem, which is due to Strassen in the
case c odd (see [15], Corollary 3.7), and we generalize to any c.

Our proof is apparently independent from the argument given by Strassen. Indeed, fol-
lowing correctly the details of the steps, one realizes that the two arguments are essentially
equivalent.

Theorem 6.1 Let X be the product of three projective spaces X = P
a × P

b × P
c, 2 < a ≤

b ≤ c, naturally embedded in P
N , with N = (a + 1)(b + 1)(c + 1) − 1. Then, a general

linear subspace L of codimension a + b + 2 in P
N , that contains the span of the tangent

spaces to X at k general points, with:

k≤ (a + 1)(b + 1)(c + 1)

a + b + c + 1
− c − 1,

is not tangent to X elsewhere.

Proof Let P
c = P(C), where C is a vector space of dimension c + 1. Fix one vector v0 ∈ C

and split C in a direct sum C = 〈v0〉⊕C ′, where C ′ is a supplementary subspace of dimension
c. From the geometric point of view, this is equivalent to split the product X in two products

X ′ = P
a × P

b × P
c−1 and X ′′ = P

a × P
b × {P0} = P

a × P
b.

Fix general points P1, . . . , Pk ∈ X ′, with Pi = vi ⊗ wi ⊗ ui and let Q1, . . . , Qk, Qi =
vi ⊗ wi , be the corresponding points of X ′′. The linear span of the Qi ’s is a space of dimension
k − 1 in P

N ′′
, where N ′′ = ab + a + b.

By assumption k − 1≤N ′′ − dim(X ′′) = N ′′ − a − b. Indeed if c + 1 ≥ a + b then

k − 1 ≤ (a + 1)(b + 1)(c + 1)

a + b + c + 1
− a − b − 1 ≤ (a + 1)(b + 1) − a − b − 1.

If c + 1 < a + b then k < (a + 1)(b + 1)/2 and (a + 1)(b + 1)/2 > a + b.
Fix a linear space L ′′ of codimension a + b + 1 in P

N ′′
, which contains the span of the

Qi ’s. Since the points Qi ’s are general in X ′′, it follows from the Theorem 2.6 in [6] (it is a
generalization of the “trisecant lemma”) that the linear space L ′′ does not meet X ′′ in other
points. Moreover L ′′ is not tangent to X ′′ at any of the points Qi ’s.

Let L ′ be a hyperplane in P
N ′

, N ′ = (a + 1)(b + 1)c − 1, which is tangent to X ′ at the
points Pi ’s. The hyperplane L ′ exists, since by assumption

k(dim(X ′) + 1) < (a + 1)(b + 1)(c + 1) − c(a + b + c) < N − 1.

Let L be the linear span of L ′ and L ′′. L has codimension a + b + 2 and it is tangent to X
at the k points P1, . . . , Pk , since it contains the tangent spaces to X ′ at the Pi ’s; moreover, it
contains the points Qi ’s, so it contains the fiber P

c passing through each Pi .
We want to exclude that L is tangent to X at any other point P 
= Pi . Call Q the projection

of P to X ′′. If L is tangent to X at P , then it must contain the fiber P
c passing through P ,

and thus, it contains Q. This proves that Q is one of the Qi ’s (say Q = Q1), since L does
not meet X ′′ elsewhere. But then L contains the fibers P

a and P
b at two points P, P1 with the
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same projection to X ′′. Thus, it contains these fibers at any point of the line � joining P, P1.
As � contains Q1, we get a contradiction, since L ′′ = L ∩ P

N ′′
is not tangent to X ′′ at Q1.

�
Corollary 6.2 Let X be the product of three projective spaces X = P

a × P
b × P

c, 2 < a ≤
b ≤ c, naturally embedded in P

N , with N = (a + 1)(b + 1)(c + 1) − 1. Then, for

k≤ (a + 1)(b + 1)(c + 1)

a + b + c + 1
− c − 1,

X is k-identifiable.

Proof Follows immediately from the previous Theorem and [7]. �
The identifiability of products of three projective spaces has been studied by a long list

of authors, who refined the celebrated Kruskal’s bound for arbitrary tensors. We mention De
Lauthawer’s results for unbalanced tensor ([9]), and the general bounds found by the second
and third authors in [7].

We believe that the bound of Corollary 6.2, at least for some balanced case, is the
best-known result for tensors of type a, b, c.

7 Inductive bounds for the identifiability of general tensors

The same procedure we used for products of many projective lines and planes, based on the
bound found in Corollary 6.2, can produce results for cubic tensors, which, in some cases,
are far beyond any known result on the identifiability problem.

Then, with the above notation, we have:

Theorem 7.1 For n ≥ 3, let X be the product of n copies of P
a, naturally embedded in

P
N , with N = (a + 1)n − 1. Then, for r < (a + 1)n − (3a + 1)(a + 1)n−2 and for

k ≤ (r + 1)/(an + 1), a general linear subspace of dimension r which is tangent to X at k
points is not tangent to X elsewhere.

As a consequence, we get that X is k-identifiable, for

k ≤ (a + 1)n − (3a + 1)(a + 1)n−2

an + 1
.

Proof The proof is absolutely similar to the ones of the cases a = 1, 2, 3 given above. We
may assume a ≥ 4. It goes by induction on n ≥ 3 and uses Theorem 6.1 as a starting point.

We leave the straightforward details to the reader. �
We recall that we defined, in the introduction, the critical value

kc =
∏q

i=1(ai + 1)

1 + ∑q
i=1 ai

which is essentially the maximum for which k-identifiability can hold. Then, the previous
bound proves that X is k-identifiable, for

k≤a(a − 1)

(a + 1)2 kc.

Even for the case of rectangular tensors, we are able to prove some results, using the same
procedure.
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Theorem 7.2 Let X be the product of q ≥ 3 projective spaces X = P
a1 ×· · ·×P

aq , naturally
embedded in P

N , with N = −1 + �
q
i=1(ai + 1). Then, for

r < �
q
i=1(ai + 1)− (a1 + a2 + a3 + 1)�

q
i=3(ai + 1) and for k ≤ (r + 1)/(1 +∑q

i=1 ai ),
a general linear subspace of dimension r which is tangent to X at k points is not tangent to
X elsewhere.

As a consequence, we get that X is k-identifiable, for

k ≤ �
q
i=1(ai + 1) − (a1 + a2 + a3 + 1)�

q
i=3(ai + 1)

1 + ∑q
i=1 ai

.

Again, notice that we get k-identifiability for

k≤ a1a2 − a3

(a1 + 1)(a2 + 1)
kc.

Of course, the previous bound changes if one reorders the ai suitably. Notice that the
previous theorem requires a1a2 > a3 in order to give a an effective range of values for
k. Moreover, one of the conditions among a1 � a3, a2 � a3 and a1a2 � a3 is strongly
preferable to have a larger range of values for k.

We strongly believe that some ad hoc procedure, as well as the improvements of our com-
putational facilities, for the starting point of the induction, are suitable to produce advance-
ment in the inequalities of our results.

Let us stress that the previous bounds provide also some answers to the problem of finding
the dimension of secant varieties to Segre varieties (i.e., to the dimension of paces of tensors
of given rank).

Corollary 7.3 Let X be the product of q ≥ 3 projective spaces X = P
a1 × · · · × P

aq . If

k ≤ �
q
i=1(ai + 1) − (a1 + a2 + a3 + 1)�

q
i=3(ai + 1)

1 + ∑q
i=1 ai

then the dimension of the k-secant variety Sk(X) is the expected one, namely it is equal to
k(1 + ∑q

i=1 ai ) − 1.

Remark 7.4 One should compare the previous result with the result of Gesmundo [11], Theor.
1.1, who proved that the dimension of k-secant variety to P

a1 × · · · × P
aq is the expected

one for k ≤ �qkc, where �q is a constant depending only on q . Moreover, in the case where
ai + 1 are powers of 2, then �q → 1 when q → ∞.

Next, we show a list of Segre products for which k-identifiability does not hold. We refer
to Sect. 5 of [7] for further details.

Table of known cases when aq ≤ ∏q−1
i=1 (ai +1)−

(
1 + ∑q−1

i=1 ai

)
and the decomposition

of the general tensor of rank k < kc is not unique.
A straightforward application of the algorithm presented in the last section shows the

following

Theorem 7.5 The previous list is complete for all (a1, . . . , aq) such that
∏q

i=1(ai +1) ≤ 100.

8 The unbalanced case

Consider again X = P
a1 ×· · ·×P

aq be a Segre product, canonically embedded in P
N , where

N + 1 = ∏q
i=1(ai + 1). We may assume a1 ≤ . . . ≤ aq and q ≥ 3.
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(a1, . . . , aq ) k Number of decompositions

(2, 3, 3) 5 ∞1

(2, b, b)b even 3b+2
2 ∞ b

2 +1

(1, 1, n, n) 2n + 1 ∞1

(3, 3, 3) 6 2

(2, 5, 5) 8 Finite, ≥6

(1, 1, 1, 1, 1) 5 2

When the dimension of aq is much bigger than the dimension of the other factors, then the
tensor decomposition has a not expected behavior, which can be understood by considering
the Segre variety consisting of only two factors, P

aq and the product of all the others.
In [1], it was settled completely the dimension of secant variety in the unbalanced case

aq ≥ ∏q−1
i=1 (ai + 1) −

(∑q−1
i=1 ai

)
+ 1. In these cases, the last secant variety, which does not

fill the ambient space, always has dimension smaller than expected.
We consider now the k-identifiability. It turns out (see Corollary 8.4) that the analogous

condition to be unbalanced is a bit weaker, namely aq ≥ ∏q−1
i=1 (ai + 1) −

(∑q−1
i=1 ai

)
. This

explains why in the table shown in Sect. 7 we considered just the remaining cases.
The following Proposition is certainly well known, we prove it for the convenience of the

reader.

Proposition 8.1 The general tensor of rank k ≤ ∏q−1
i=1 (ai + 1) −

(
1 + ∑q−1

i=1 ai

)
in

P(Ca1+1 ⊗ · · · ⊗ C
aq+1) has a unique decomposition as sum of k decomposable summands

for aq ≥ ∏q−1
i=1 (ai + 1) −

(
2 + ∑q−1

i=1 ai

)
.

Proof Let φ ∈ C
a1+1 ⊗· · ·⊗C

aq+1 be general of rank k ≤ ∏q−1
i=1 (ai +1)−

(
1 + ∑q−1

i=1 ai

)
.

It induces the flattening contraction operator

Aφ : (Caq+1)∨ → C
a1+1 ⊗ · · · ⊗ C

aq−1+1

which has still rank k, by the assumption aq ≥ ∏q−1
i=1 (ai + 1) −

(
2 + ∑q−1

i=1 ai

)
. Indeed, if

φ = ∑k
i=1 vi,1⊗vi,2⊗· · ·⊗vi,q with vi, j ∈ C

a j +1, where vi,q can be chosen as part of a basis
of C

aq+1, then Im Aφ is the span of the representatives of vi,1 ⊗· · ·⊗vi,q−1 for i = 1, . . . , k.
It is well known that the projectification of this span, whose dimension is smaller than the
codimension of the Segre variety Y = P

a1 ×· · ·×P
aq−1 ⊂ P(Ca1+1 ⊗· · ·⊗C

aq−1+1), meets
Y only in these k points (see again, for example, the Theorem 2.6 in [6]). The claim follows.

�
The case q = 3 of next Propositions 8.2 and 8.3 is contained in Prop. 5.4 of [7].

Proposition 8.2 If aq ≥ ∏q−1
i=1 (ai + 1) −

(∑q−1
i=1 ai

)
+ 1, then the rank of a general tensor

in P(Ca1+1 ⊗ · · · ⊗ C
aq+1) is min{aq + 1,

∏q−1
i=1 (ai + 1)}.

Moreover, P
a1 × · · · × P

aq is not k-identifiable for k >
∏q−1

i=1 (ai + 1) −
(∑q−1

i=1 ai

)
.

If aq = ∏q−1
i=1 (ai + 1) −

(∑q−1
i=1 ai

)
, then the rank of a general tensor in

P(Ca1+1 ⊗ · · · ⊗ C
aq+1) is aq + 1.
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Proof When aq ≥ ∏q−1
i=1 (ai +1)−

(∑q−1
i=1 ai

)
+1, we are in the unbalanced case, according

to Definition 4.2 of [1] (in the defective setting, the range of the unbalanced case is slightly
bigger than in the weakly defective setting). In this case, the statement follows from Theorem
4.4 of [1].

When aq = ∏q−1
i=1 (ai + 1) −

(∑q−1
i=1 ai

)
, using the same technique, we show that the

secant variety Sk(P
a1 × · · · × P

aq ) has the expected dimension, for k ≤ aq , and fills the
ambient space, for k = aq + 1.

Indeed, with the notations of [1], condition T (a1, . . . , aq ; aq ; 0q) reduces to T (a1, . . . ,

aq−1, 0; 1; 0q−1, aq − 1) and T (a1, . . . , aq−1, 0; 0; 0q−1, aq) which are true and subabun-
dant, while condition T (a1, . . . , aq ; aq +1; 0, 0, 0) reduces to condition T (a1, . . . , aq−1, 0;
1; 0q−1, aq) which is superabundant and true. �
Proposition 8.3 Assume aq ≥ ∏q−1

i=1 (ai + 1) −
(∑q−1

i=1 ai

)
. Then, the number of different

decompositions of a general tensor of rank k = ∏q−1
i=1 (ai +1)−

(∑q−1
i=1 ai

)
is

(
D
k

)

where

D = deg P
a1 × · · · × P

aq−1 = (
∑q−1

i=1 ai )!
a1!...aq−1! . This number is always bigger than 1, so we have

never identifiability.

Proof We apply the same argument of the proof of Proposition 8.1. We pick a general φ of
rank k. The only difference is that, now, the dimension of the projectification of Im Aφ , which
is k − 1, equals the codimension of P

a1 × · · · × P
aq−1 . Thus, we get D points of intersection.

Any choice of k among these D points yields a decomposition. �
Corollary 8.4 Assume aq ≥ ∏q−1

i=1 (ai + 1) −
(∑q−1

i=1 ai

)
. Then, P

a1 × · · · × P
aq is k-

identifiable if and only if

k ≤
q−1∏

i=1

(ai + 1) −
⎛

⎝1 +
q−1∑

i=1

ai

⎞

⎠

Remark 8.5 We notice a misprint in the table in section 5 of [7]. The condition for “defective
unbalanced” should read as c ≥ (a − 1)(b − 1) + 3 instead of c ≥ (a − 1)(b − 1) + 1. The
proof of Prop. 5.3 of [7] needs slight modifications accordingly, but the statement remains
correct.

9 The algorithm

The algorithm we have used has been implemented in Macaulay2 [12], and it can be found
as ancillary file in the arXiv submission of this paper.

The steps are the following.

1. We choose s random points p1, . . . , ps on the Segre variety X , working on an affine
chart. The point p1 can be chosen as (1, 0, . . .) on each factor.

2. We compute the equations of the span of tangent spaces 〈Tp1 , . . . , Tps 〉.
3. For any of the Cartesian equations, we compute its partial derivatives, the common locus

is the locus C of points p such that Tp X ⊂ 〈Tp1 , . . . , Tps 〉.
4. We compute the rank of the Jacobian matrix of C at p1. If it is equal to the dimension

of X , then X is k-identifiable. If it is smaller than the dimension of X , then a further
analysis is required.
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