Estimates of invariant distances on "convex" domains

Nikolai Nikolov

Received: 27 November 2012 / Accepted: 18 April 2013 / Published online: 3 May 2013
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract

Estimates for invariant distances of convexifiable, \mathbb{C}-convexifiable and planar domains are given.

Keywords Carathéodory • Kobayashi and Bergman distances • Bergman and Szegö kernels • Convex • Convexifiable and \mathbb{C}-convex domains

Mathematics Subject Classification (2010) 32A25 • 32F17 • 32F45

1 Introduction and results

Diederich and Ohsawa [6, p. 182] asked if D is a smooth bounded pseudoconvex domain in \mathbb{C}^{n}, then the following lower bound for the Bergman distance b_{D} holds: For fixed z and w close to ∂D, one has that

$$
b_{D}(z, w) \geq-c \log d_{D}(w),
$$

where $d_{D}(w)=\operatorname{dist}(w, \partial D)$ and $c>0$ is a constant depending only on D. Błocki [4, Theorem 1.3] mentioned this fact for bounded convexifiable domains (not necessarily smooth).

We shall prove the estimate in the case of bounded \mathbb{C}-convex domains (or, more generally, \mathbb{C}-convexifiable). Recall that a set in \mathbb{C}^{n} is called \mathbb{C}-convex if all its intersections with complex lines are contractible (cf. [2, p. 25]). Note that a C^{1}-smooth bounded domain is \mathbb{C}-convex if

[^0][^1]and only the complex tangent hyperplane through any boundary point does not intersect the domain (cf. [2, Theorem 2.5.2]).

Let D be a domain in \mathbb{C}^{n}. Denote by c_{D} and l_{D} the Carathéodory distance and the Lempert function of D, respectively:

$$
\begin{aligned}
c_{D}(z, w) & =\sup \left\{\tanh ^{-1}|f(w)|: f \in \mathcal{O}(D, \mathbb{D}) \text { with } f(z)=0\right\}, \\
l_{D}(z, w) & =\inf \left\{\tanh ^{-1}|\alpha|: \exists \varphi \in \mathcal{O}(\mathbb{D}, D) \text { with } \varphi(0)=z, \varphi(\alpha)=w\right\},
\end{aligned}
$$

where \mathbb{D} is the unit disk (we refer to [10] for basic properties of the objects under consideration). The Kobayashi distance k_{D} is the largest pseudodistance not exceeding l_{D}. We have that

$$
c_{D} \leq k_{D}, \quad c_{D} \leq b_{D}
$$

(if b_{D} is well-defined). Note also that $k_{D}=l_{D}$ for any planar domain D (cf. [10, Remark 3.3.8(e)]). By Lempert's theorem [11, Theorem 1], combining with a result by Jacquet [9, Theorem 5], $c_{D}=l_{D}$ on any C^{2}-smooth bounded \mathbb{C}-convex domain D and hence on any convex domain. On the other hand, it follows by [14, Theorem 12] that there exists a constant $c_{n}>0$, depending only on n, such that

$$
\begin{equation*}
k_{D} \leq 4 b_{D} \leq c_{n} k_{D} \tag{1}
\end{equation*}
$$

for any \mathbb{C}-convex domain D in \mathbb{C}^{n}, containing no complex lines (then b_{D} is well-defined). In other words, to estimate b_{D}, it is enough to find lower bounds for c_{D} and upper bounds for l_{D}.

Recall that b_{D} is the integrated form of Bergman metric

$$
\beta_{D}(z ; X)=\frac{M_{D}(z ; X)}{\sqrt{K_{D}(z)}}, \quad z \in D, X \in \mathbb{C}^{n}
$$

where

$$
M_{D}(z ; X)=\sup \left\{\left|f^{\prime}(z) X\right|: f \in L_{h}^{2}(D)\|f\|_{D} \leq 1, f(z)=0\right\}
$$

and

$$
K_{D}(z)=\sup \left\{|f(z)|^{2}: f \in L_{h}^{2}(D),\|f\|_{D} \leq 1\right\}
$$

is the Bergman kernel on the diagonal ($K_{D}(z)>0$ is assumed). So,

$$
b_{D}(z, w)=\inf _{\gamma} \int_{0}^{1} \beta_{D}\left(\gamma(t) ; \gamma^{\prime}(t)\right),
$$

where the infimum is taken over all smooth curves $\gamma:[0,1] \rightarrow D$ with $\gamma(0)=z$ and $\gamma(1)=w$.

Estimates for invariant distances of strictly pseudoconvex domains in \mathbb{C}^{n} and pseudoconvex domains of finite type in \mathbb{C}^{2} can be found in [3] (see also [1,10]) and [8], respectively.

Recall now in details two estimates. The proof of [4, Theorem 5.4] (cf. also [12, Proposition $2.4]$) implies that if D is a proper convex domain in \mathbb{C}^{n}, then

$$
\begin{equation*}
c_{D}(z, w) \geq \frac{1}{2} \log \frac{d_{D}(z)}{d_{D}(w)} \tag{2}
\end{equation*}
$$

(this proof uses only the existence of an appropriate supporting (real) hyperplane and the formula for the Poincaré distance of the upper half-plane). On the other hand, by [13, Theorem 1], for any $C^{1+\varepsilon}$-smooth bounded domain, there exists a constant $c>0$ such that

$$
\begin{equation*}
l_{D}(z, w) \leq-\frac{1}{2} \log \left(d_{D}(z) d_{D}(w)\right)+c \tag{3}
\end{equation*}
$$

(see [7, Proposition 2.5] for a stronger estimate for k_{D}).
The smoothness is essential as an example of a C^{1}-smooth bounded \mathbb{C}-convex planar domain shows (see [13, Example 2]). Moreover, using [16, p. 146, Theorem 7], one may find a bounded \mathbb{C}-convex planar domain for which there is no similar estimate with any constant instead of $-1 / 2$.

So, it natural to find an upper bound for l_{D} in the convex case and a lower bound for c_{D} in the \mathbb{C}-convex case.

Proposition 1 Let D be a proper convex domain in \mathbb{C}^{n}. Then

$$
l_{D}(z, w) \leq \frac{\|z-w\|}{d(z)-d(w)} \log \frac{d(z)}{d(w)} \leq \frac{\|z-w\|}{\min (d(z), d(w))} .
$$

${ }^{1}$ In particular, if, in addition, D is bounded, then for any compact subset K of D, there is a constant $c_{K}>0$ such that

$$
b_{D} \leq-c_{K} \log d_{D}(w)+1 / c_{K}, \quad z \in K, w \in D .
$$

The last estimate for k_{D} instead of b_{D} (and K a singleton) is the content of [12, Proposition 2.3]. Similar estimates for the Kobayashi distance of pseudoconvex Reinhardt domains can be found in [19].

Proposition 2 Let D be a proper \mathbb{C}-convex domain in \mathbb{C}^{n}. Then

$$
c_{D}(z, w) \geq \frac{1}{4} \log \frac{d_{D}(z)}{4 d_{D}(w)} .
$$

Hence, if, in addition, D is bounded, then for any compact subset K of D, there is a constant $c_{K}>0$ such that

$$
b_{D}(z, w) \geq-\frac{1}{4} \log d_{D}(w)-c_{K}, \quad z \in K, w \in D
$$

Note that by [5, p. 2381], the first estimate in Proposition 2 implies the following
Corollary 3 The Bergman and Szegö kernels (on the diagonal) are comparable on any C^{2} smooth bounded \mathbb{C}-convex domain.

We point out that [5, Theorem 1.3] deals with the convex case.
Remark (a) The estimate for l_{D} is sharp when $z \rightarrow w$. Moreover, it is sharp up to a constant when z is fixed and $w \rightarrow \partial D$. Indeed, denote by $R_{D}(z, w)$, the right-hand side of the first inequality in Proposition 1. If $\theta \in(0, \pi)$ and $D_{\theta}=\left\{z \in \mathbb{C}_{*}:|\arg z|<\theta\right\}$, then

$$
\lim _{\theta \rightarrow 0} \lim _{x \rightarrow 0+} \frac{l_{D_{\theta}}(1, x)}{R_{D_{\theta}}(1, x)}=\frac{\pi}{4} .
$$

[^2](b) The factor $1 / 4$ in the bound for c_{D} is optimal as $D=\mathbb{C}_{*} \backslash \mathbb{R}^{+}$shows.
(c) Estimates for the infinitesimal forms of the distances under consideration, namely, the Carathéodory, Kobayashi and Bergman metrics, of convex and \mathbb{C}-convex domains can be found in [14]. The bounds there depend only on the distance to the boundary from the respective point in the respective direction.
Our main result is in the spirit of [4, Theorem 1.3], where a lower bound for the Bergman metric is mentioned in the locally convexifiable case (and a hint for a proof is given).

Proposition 4 Let D be a bounded domain in \mathbb{C}^{n} which is locally \mathbb{C}-convexifiable, i.e., for any point $a \in \partial D$, there exist a neighborhood U_{a} of a, an open set V_{a} in \mathbb{C}^{n} and a biholomorphism $F_{a}: U_{a} \rightarrow V_{a}$ such that $F_{a}\left(D \cap U_{a}\right)$ is \mathbb{C}-convex. Then, there exists a constant $c>0$ such that for any compact subset K of D one can find a constant $c_{K}>0$ with

$$
s_{D}(z, w) \geq-c \log d_{D}(w)-c_{K}, \quad z \in K, w \in D,
$$

where $s_{D}=k_{D}$ or $s_{D}=b_{D}$.
Moreover, if D is locally convexifiable or $C^{1+\varepsilon}$-smooth and locally \mathbb{C}-confexifiable, then for any compact subset K of D, one can find a constant $c_{K}^{\prime}>0$ with

$$
s_{D}(z, w) \leq-c_{K}^{\prime} \log d_{D}(w)+1 / c_{K}^{\prime}, \quad z \in K, w \in D
$$

Finally, we consider the planar case. We shall say that a boundary point p of a planar domain D is Dini-smooth if ∂D near p is a Dini-smooth curve $\gamma:[0,1] \rightarrow \mathbb{C} .^{2}$ Call a planar domain Dini-smooth if it is Dini-smooth near any boundary point.

Proposition 5 Let p be a Dini-smooth boundary point of a planar domain D. Then, for any neighborhood U of p and any compact subset K of D, there exist a neighborhood V of p and a constant $c>0$ such that

$$
\begin{aligned}
& s_{D}(z, w) \geq-\frac{1}{2} \log d_{D}(w)-c, \quad z \in D \backslash U, w \in D \cap V, \\
& \left|s_{D}(z, w)+\frac{1}{2} \log d_{D}(w)\right| \leq c, \quad z \in K, w \in D \cap V
\end{aligned}
$$

where $s_{D}=c_{D}, s_{D}=l_{D}\left(=k_{D}\right)$ or $s_{D}=b_{D} / \sqrt{2}$.
Since k_{D} and b_{D} are the integrated forms of κ_{D} and β_{D}, we get the following
Corollary 6 Let p and q be different Dini-smooth boundary points of a planar domain D. If $s_{D}=l_{D}\left(=k_{D}\right)$ or $s_{D}=b_{D} / \sqrt{2}$, then the function

$$
2 s_{D}(z, w)+\log d_{D}(z)+\log d_{D}(w)
$$

is bounded for z near q and w near p.
In general, c_{D} is not an inner distance (even in the plane). So, the next proposition is not a direct consequence of Proposition 5.

Proposition 7 Let p and q be different Dini-smooth boundary points of a planar domain D. Then, the function

$$
2 c_{D}(z, w)+\log d_{D}(z)+\log d_{D}(w)
$$

is bounded for z near q and w near p.

[^3]The next result is optimal for the boundary behavior of c_{D} and $l_{D}\left(=k_{D}\right)$ in the planar case. It is more general than the last results, but its proof uses these results. Similar (and slightly weaker) result for k_{D} on C^{2}-smooth strictly pseudoconvex bounded follows by [3, Theorem 1, Proposition 1.2].

Proposition 8 Let D be a Dini-smooth bounded planar domain. ${ }^{3}$ Then, there exists a constant $c \geq 1$ such that

$$
\begin{aligned}
\log \left(1+\frac{|z-w|}{c \sqrt{d_{D}(z) d_{D}(w)}}+\frac{|z-w|^{2}}{c d_{D}(z) d_{D}(w)}\right) & \leq 2 c_{D}(z, w) \leq 2 l_{D}(z, w) \\
& \leq \log \left(1+\frac{c|z-w|}{\sqrt{d_{D}(z) d_{D}(w)}}+\frac{c|z-w|^{2}}{d_{D}(z) d_{D}(w)}\right) .
\end{aligned}
$$

In particular, the function $l_{D}-c_{D}$ is bounded on $D \times D$.
It is shown in [18, Theorem 1] that if D is strongly pseudoconvex domain in \mathbb{C}^{n}, then

$$
\lim _{\substack{w \rightarrow \partial D \\ z \neq w}} \frac{c_{D}(z, w)}{k_{D}(z, w)}=1 \text { uniformly in } z \in D .
$$

We have the following planar extension of this result.
Proposition 9 If D is finitely connected bounded planar domain without isolated boundary points, then

$$
\lim _{\substack{w \rightarrow \partial D \\ z \neq w}} \frac{c_{D}(z, w)}{l_{D}(z, w)}=1 \text { uniformly in } z \in D .
$$

2 Proofs

Proof of Proposition 1 Denote by $C_{z, w}$ the convex hull of the union of the disks $\mathbb{D}\left(z, d_{D}(z)\right)$ and $\mathbb{D}\left(w, d_{D}(w)\right)$, lying in the complex line through z and w. Let $\gamma(t)=z+t(w-z)$. Since $C_{z, w} \subset D$ and $l_{C_{z, w}}=k_{C_{z, w}}$ is the integrated form of the Kobayashi metric $\kappa_{C_{z, w}},{ }^{4}$ then

$$
\begin{aligned}
l_{D}(z, w) & \leq l_{C_{z, w}}(z, w) \leq \int_{0}^{1} \kappa_{C_{z, w}}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t \\
& \leq \int_{0}^{1} \frac{\left|\gamma^{\prime}(t)\right|}{d_{C_{z, w}}(\gamma(t))} d t=\frac{\|z-w\|}{d(z)-d(w)} \log \frac{d(z)}{d(w)} .
\end{aligned}
$$

This inequality and (1) lead to the wanted result for b_{D}.
Proof of Proposition 2 Let $p(w) \in \partial D$ be such that $\|w-p(w)\|=d_{D}(w)$. Since E is \mathbb{C} convex, there exists a hyperplane $H_{p(w)}$ through $p(w)$ and disjoint from D (cf. [2, Theorem 2.3.9(ii)]). Denote by D_{w} and z_{w} the projections of D and z onto the complex line through w and $p(w)$ in direction $H_{(p(w)}$, respectively. By [2, Theorem 2.3.6], D_{w} is a simply connected

[^4]domain and $p(w) \in \partial D_{w}$. Denote by $\psi_{w} \in \mathcal{O}\left(\mathbb{D}, D_{w}\right)$ a Riemann map such that $\psi_{w}(0)=z_{w}$. If $\psi_{w}\left(\alpha_{w}\right)=w$, then
$$
c_{D}(z, w) \geq c_{D_{w}}\left(z_{w}, w\right)=\tanh ^{-1}\left|\alpha_{w}\right| .
$$

By [16, p. 139, Corollary 6] (which is a consequence of the Köbe $1 / 4$ and the Köbe distortion theorems),

$$
\tanh ^{-1}\left|\alpha_{w}\right| \geq \frac{1}{4} \log \frac{\left|\psi^{\prime}{ }_{w}(0)\right|}{4 d_{D_{w}}(w)} .
$$

Since $d_{D_{w}}(w)=d_{D}(w)$ and $\left|\psi^{\prime}{ }_{w}(0)\right| \geq d_{D_{w}}\left(z_{w}\right) \geq d_{D}(z)$, it follows that

$$
c_{D}(z, w) \geq \frac{1}{4} \log \frac{d_{D}(z)}{4 d_{D}(w)} .
$$

This inequality and $b_{D} \geq c_{D}$ imply the desired result for b_{D}.
Proof of Proposition $4{ }^{5}$ First, we shall prove the lower bound.
Note that

$$
\begin{equation*}
0<c_{a} \leq \frac{d_{F_{a}\left(D \cap U_{a}\right)}\left(F_{a}(w)\right)}{d_{D}(w)} \leq \frac{1}{c_{a}} \text { near any } a \in \partial D . \tag{4}
\end{equation*}
$$

Then, by Proposition 2, we may find a finite set $M \subset \partial D$ and a constant $c_{1}>0$ such that

$$
s_{D \cap U_{a}}(z, w) \geq \frac{1}{4} \log \frac{d_{D}(z)}{d_{D}(w)}-c_{1}, \quad z, w \in D \cap V_{a}, a \in M,
$$

where $V_{a} \subset U_{a}$ is a neighborhood of a such that $\partial D \subset \cup_{a \in M} V_{a}$.
Denote now by S_{D} the Kobayashi or Bergman metrics of D. By localization principles (cf. [10, Proposition 7.2.9 and Proposition 6.3.5], since D is pseudoconvex), there exists a constant $c_{2}>0$ such that

$$
S_{D} \geq 4 c_{2} S_{D \cap U_{a}} \quad \text { on }\left(D \cap V_{a}\right) \times \mathbb{C}^{n}
$$

Let $W_{a} \Subset V_{a}$ be such that $W=\cup_{a \in M} W_{a}$ does not intersect K and contains ∂D. Set $r=\min _{a \in M} \operatorname{dist}\left(\partial W_{a}, \partial V_{a}\right)$.

Let $\varepsilon>0$. Since s_{D} is the integrated form of S_{D}, for any $z \in K$ and $w \in D \cap W$, there exists a smooth curve $\gamma:[0,1] \rightarrow D$ with $\gamma(0)=z, \gamma(1)=w$ and

$$
s_{D}(z, w)+\varepsilon>\int_{0}^{1} S_{D}\left(\gamma(t) ; \gamma^{\prime}(t)\right) d t .
$$

Let $t_{1}=\max \{t \in(0,1): \gamma(t) \in G=D \backslash W\}$. Choose a point $a_{1} \in M$ such that $\mathbb{B}_{n}\left(\gamma\left(t_{1}\right), r\right) \subset V_{a_{1}}$. Let $t_{2}=\sup \left\{t \in\left(t_{1}, 1\right]: \gamma\left(\left[t_{1}, t\right)\right) \in V_{a_{1}}\right\}$ and etc. In this way, we may find numbers $0<t_{1}<\cdots<t_{N+1}=1$ and points $a_{1}, \ldots, a_{N+1} \in M$ such that

[^5]$\gamma\left[t_{j}, t_{j+1}\right) \subset D \cap V_{a_{j}}$ and $\left\|\gamma\left(t_{j+1}\right)-\gamma\left(t_{j}\right)\right\| \geq r, 1 \leq j \leq N$. Then
\[

$$
\begin{aligned}
s_{D}(z, w)+\varepsilon & >c_{2} \sum_{j=1}^{N} s_{D \cap U_{a_{j}}}\left(\gamma\left(t_{j}\right), \gamma\left(t_{j+1}\right)\right) \\
& \geq c_{2} \sum_{j=1}^{N} \log \frac{d_{D}\left(\gamma\left(t_{j}\right)\right)}{d_{D}\left(\gamma\left(t_{j+1}\right)\right)}-c_{3} N \\
& \geq c_{2} \log \frac{\operatorname{dist}(G, \partial D)}{d_{D}(w)}-c_{3} N,
\end{aligned}
$$
\]

where $c_{3}=4 c_{1} c_{2}$.
On the other hand, since D is a bounded domain, there exists a constant $c_{4}>0$ such that $s_{D}\left(z_{1}, z_{2}\right) \geq c_{4}\left\|z_{1}-z_{2}\right\|$. Then

$$
s_{D}(z, w)+\varepsilon>\sum_{j=1}^{N} s_{D}\left(\gamma\left(t_{j}\right), \gamma\left(t_{j+1}\right)\right) \geq c_{4} r N .
$$

So,

$$
\left(1+\frac{c_{3}}{c_{4} r}\right)\left(s_{D}(z, w)+\varepsilon\right) \geq c_{2} \log \frac{\operatorname{dist}(G, \partial D)}{d_{D}(w)}
$$

The case when $w \in G$ is trivial which completes the proof of the lower bound.
The proof of the upper bound is easier. Fix a point $a \in \partial D$. It is enough to find a constant $c_{a, K}^{\prime}>0$ such that the estimate holds for w near a. Take a point $u \in U_{a}$ and a neighborhood $V_{a} \Subset U_{a}$ of a and a point $u \in D \cap U_{a}$. Proposition 1, (3) and (4) imply that

$$
\begin{aligned}
k_{D}(z, w) & \leq k_{D}(z, u)+k_{D}(u, w) \leq k_{D}(z, u)+k_{D \cap U}(u, w) \\
& \leq 1 / c_{a, K}^{\prime}-c_{a, K}^{\prime} \log d_{D}(w), \quad z \in K, w \in D \cap V_{a} .
\end{aligned}
$$

The upper bound for b_{D} follows similarly. It suffices to use that

$$
b_{D} \leq \widetilde{c}_{a} b_{D \cap U_{a}} \leq \widetilde{c}_{a} c_{n} k_{D \cap U_{a}}
$$

in view of [10, Proposition 6.3.5] and (1).
Proof of Proposition 5 for c_{D} and l_{D} We may find a Dini-smooth Jordan curve ζ such that $\zeta=\partial D$ near p and $D \subset G:=\zeta_{\text {ext }}$. Take a point $a \notin \bar{G}$ and consider the union G_{e} of 0 and the image of G under the map $\varphi: z \rightarrow(z-a)^{-1}$. There exists a conformal map $\psi: G_{e} \rightarrow \mathbb{D}$. It extends to a C^{1}-diffeomorphism from $\overline{G_{e}}$ to $\overline{\mathbb{D}}$ (cf. [20, Theorems 3.5]). Setting $\eta=\psi \circ \varphi$, then

$$
c_{D}(z, w) \geq c_{\mathbb{D}}(\eta(z), \eta(w)) .
$$

Now the lower bound for c_{D} follows by the same bound for $c_{\mathbb{D}}$ and an inequality of type (4).
The estimate

$$
l_{D}(z, w) \leq-\frac{1}{2} \log d_{D}(w)-c, \quad z \in K, w \in D \cap V
$$

follows by (3). It can be also obtained in the following way. There exist a Dini-smooth domain simply connected domain $G_{i} \subset D$ and a neighborhood V of p such that $\partial G \cap V=\partial D \cap V$. Take a point $u \in V$. Since $l_{D}=k_{D}$, then

$$
k_{D}(z, w) \leq k_{D}(z, u)+k_{G_{i}}(u, w) .
$$

It remains to repeat the final arguments from the first paragraph.
Proof of Proposition 5 for $b_{D}{ }^{6}$ Choosing G as above, then

$$
b_{D}(z, w)=b_{\eta(D)}(\eta(z), \eta(w)) .
$$

By the Dini-smoothness,

$$
\lim _{z \rightarrow p} \frac{d_{\eta(D)}(\eta(z))}{d_{D}(z)}=\left|\eta^{\prime}(p)\right| .
$$

We may assume that $\eta(p)=1$. So, it is enough to get the estimates for $D \subset \mathbb{D}$ such that $F=\mathbb{D} \cap \mathbb{D}(1, r) \subset D$ for some $r \in(0,1)$.

First, we shall prove that if $0<r^{\prime}<r$, then

$$
\sqrt{2} b_{D}(z, w) \leq-\log d_{D}(w)+c^{\prime}, \quad z \in K, w \in F^{\prime}=\mathbb{D} \cap \mathbb{D}\left(1, r^{\prime}\right)
$$

for some constant $c^{\prime}>0$.
For a domain $\Omega \subset \mathbb{C}$ set $\beta_{\Omega}(z)=B_{\Omega}(z ; 1)$ and $\kappa_{\Omega}(z)=\kappa_{\Omega}(z ; 1)$. Let $\check{F}=\mathbb{D} \backslash F$ and

$$
l_{\mathbb{D}}(u, \check{F})=\inf _{w \in \check{F}} l_{\mathbb{D}}(u, w) .
$$

Then, for any $r^{\prime \prime} \in\left(r^{\prime}, r\right)$, we may find a constant $\tilde{c}>0$ such that

$$
\begin{aligned}
\beta_{D}(u) & \leq \beta_{F}(u) \sqrt{\frac{K_{F}(u)}{K_{\mathbb{D}}(u)}}=\frac{\sqrt{2} \kappa_{F}^{2}(u)}{\kappa_{\mathbb{D}}(u)} \\
& \leq \sqrt{2} \operatorname{coth}^{2} l_{\mathbb{D}}(u, \check{F}) \kappa_{\mathbb{D}}(u) \leq \frac{\sqrt{2}}{1-|u|^{2}}+\tilde{c}, \quad u \in F^{\prime \prime}=\mathbb{D} \cap \mathbb{D}\left(1, r^{\prime \prime}\right) .
\end{aligned}
$$

(for the equality use that F is biholomorphic to \mathbb{D} and for the inequality "between the lines" cf. [10, Proposition 7.2.9]).

Let $z \in K, w \in F^{\prime}$ and $w^{\prime}=[0, w] \cap \partial D\left(1, r^{\prime \prime}\right)$. Then

$$
\begin{aligned}
b_{D}(z, w) & \leq b_{D}\left(z, w^{\prime}\right)+\left|w-w^{\prime}\right|\left(\tilde{c}+\sqrt{2} \int_{0}^{1} \frac{d t}{1-\left|w^{\prime}+t\left(w-w^{\prime}\right)\right|^{2}}\right) \\
& \leq\left(-\log d_{D}(w)+c^{\prime}\right) / \sqrt{2}
\end{aligned}
$$

for some constant $c^{\prime}>0$.
Now, shrinking r such that $\mathbb{D}(1, r) \subset U$, it remains to prove that

$$
\sqrt{2} b_{D}(z, w) \geq-\log d_{D}(w)-c^{\prime \prime}, \quad z \in \check{F}, w \in F^{\prime}
$$

for some constant $c^{\prime \prime}>0$.
We have that

$$
\begin{aligned}
\beta_{D}(u) & \geq \beta_{\mathbb{D}}(u) \sqrt{\frac{K_{\mathbb{D}}(u)}{K_{F}(u)}}=\frac{\sqrt{2} \kappa_{\mathbb{D}}^{2}(u)}{\kappa_{F}(u)} \\
& \geq \sqrt{2} \tanh l_{\mathbb{D}}(u, \check{F}) \kappa_{\mathbb{D}}(u) \geq \frac{\sqrt{2}}{1-|u|^{2}}-\hat{c}, \quad u \in F^{\prime \prime} .
\end{aligned}
$$

[^6]For $z \in \check{F}, w \in F^{\prime}$, and $\varepsilon>0$, there exists a smooth curve $\gamma:[0,1] \rightarrow D$ with

$$
b_{D}(z, w)+\varepsilon>\int_{0}^{1} \beta_{D}(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

Let $t_{0}=\sup \left\{t \in(0,1): \gamma(t) \notin F^{\prime \prime}\right\}$. Then,

$$
b_{D}(z, w)+\varepsilon>\int_{t_{0}}^{1} b_{D}(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \geq \hat{b}_{\mathbb{D}}(w, \check{F}),
$$

where $\hat{b}_{\mathbb{D}}$ is the integrated form of the Finsler pseudometric

$$
\hat{\beta}_{\mathbb{D}}(u ; X)=|X|\left(\frac{\sqrt{2}}{1-|u|^{2}}-\hat{c}\right)^{+} .
$$

It remains to use that, shrinking r^{\prime} (if necessary),

$$
\hat{b}_{\mathbb{D}}(w, \check{F}) \geq\left(-\log d_{D}(w)-c^{\prime \prime}\right) / \sqrt{2}
$$

for some constant $c^{\prime \prime}>0$ (cf. [3, Theorem 1.1]).
Proof of Corollary 6 Since k_{D} and b_{D} are the integrated forms of κ_{D} and β_{D}, the boundedness from below follows by the first inequality in Proposition 5 (cf. the proof of [10, Proposition 10.2.6]). Choosing a point $a \in D$, the boundedness from above is a consequence of the inequality $s_{D}(z, w) \leq s_{D}(z, a)+s_{D}(a, w)$ and the second inequality in Proposition 5 .

Proof of Proposition 7 In virtue of the inequality $c_{D} \leq k_{D}$ and Corollary 6, we have to prove only the boundedness from below. For this, take disjoint Dini-smooth Jordan curves ζ^{\prime} and $\zeta^{\prime \prime}$ such that $\zeta^{\prime}=\partial D$ near $p, \zeta^{\prime \prime}=\partial D$ near q and $D \subset G:=\zeta_{\text {ext }}^{\prime} \cap \zeta_{\text {ext }}^{\prime \prime}$. Note that any Dini-smooth bounded double-connected planar \tilde{G} domain can be conformally map to some annulus $A_{r}=\{z \in \mathbb{C}: 1 / r<|z|<r\}(r>1)$, and the respective mapping extends to a C^{1}-diffeomorphism from $\overline{\tilde{G}}$ to $\overline{A_{r}}{ }^{7}$

Then, proceeding similarly to the proof of Proposition 5 for c_{D}, it is enough to show that

$$
2 c_{A_{r}}(z, w)+\log d_{A_{r}}(z)+\log d_{A_{r}}(w)
$$

is bounded from below for $z \in \mathbb{R}$ near r and w near p, where $|p|=1 / r$; this is equivalent to

$$
m_{A_{r}}(z, w):=\tanh c_{A_{r}}(z, w) \geq 1-c d_{A_{r}}(z) d_{A_{r}}(w)
$$

for some constant $c>0$.
Recall that (cf. [10, Proposition 5.5])

$$
m_{A_{r}}(z, w)=\frac{f(z, w) f(1 / z,-|w|)}{r|w|},
$$

[^7]where f is a holomorphic function on $\overline{A_{r} \times A_{r}} \backslash\left\{u=v \in \partial A_{r}\right\}$ and $|f(u, v)|=1$ if $|u|=r, v \in \overline{A_{r}}$ or $u \in \overline{A_{r}},|v|=1 / r(u \neq v)$.

In particular,

$$
\frac{\partial^{n} f}{\partial u^{n}}=\frac{\partial^{n} f}{\partial v^{n}}=0, \quad n \in \mathbb{N},
$$

at any point (u, v) with $|u|=r$ and $|v|=1 / r$. Then, by the Taylor expansion,

$$
\left|f(z, w)-f\left(r, w(r|w|)^{-1}\right)\right| \leq c_{1} d_{A_{r}}(z) d_{A_{r}}(w) .
$$

This implies that

$$
|f(z,|w|)-f(r, 1 / r)| \leq c_{1} d_{A_{r}}(z) d_{A_{r}}(|w|)
$$

(the constant can be chosen the same for z near r and w away from r). Since $f(r, \cdot)$ is a unimodular constant and $d_{A_{r}}(w)=d_{A_{r}}(|w|)$, it follows that

$$
\left|m_{A_{r}}(z, w)-m_{A_{r}}(z,|w|)\right| \leq c_{2} d_{A_{r}}(z) d_{A_{r}}(|w|) .
$$

Further, $c_{A_{r}}(z,|w|)=c_{A_{r}}(z, t)+c_{A_{r}}(t,|w|)$ for $t \in[|w|, z]$ (cf. [10, Lemma 5.11(b)]). Then, Proposition 5 implies that

$$
m_{A_{r}}(z,|w|) \geq 1-c_{3} d_{A_{r}}(z) d_{A_{r}}(|w|) .
$$

Hence we may choose $c=c_{2}+c_{3}$ which completes the proof.
Proof of Proposition 8 Using Corollary 6 and Proposition 7, it is enough to prove the inequalities for z and w near a fixed point $p \in \partial D$. Moreover, it is easy to see that these inequalities are equivalent to

$$
\begin{aligned}
\frac{|z-w|}{\sqrt{c d_{D}(z) d_{D}(w)+|z-w|^{2}}} & \leq \tanh c_{D}(z, w) \leq \tanh l_{D}(z, w) \\
& \leq \frac{|z-w|}{\sqrt{c^{-1} d_{D}(z) d_{D}(w)+|z-w|^{2}}}
\end{aligned}
$$

for some constant $c \geq 1 .{ }^{8}$
To prove the lower bound for $\tanh c_{D}(z, w)$, let η be as in the proof of Proposition 5 for c_{D} and l_{D}. Then, it is not difficult to find a constant $c_{1}>0$ such that

$$
\tanh c_{D}(z, w) \geq \tanh c_{\mathbb{D}}\left(z_{1}, w_{1}\right) \geq \frac{\left|z_{1}-w_{1}\right|}{\sqrt{c_{1} d_{\mathbb{D}}\left(z_{1}\right) d_{\mathbb{D}}\left(w_{1}\right)+\left|z_{1}-w_{1}\right|^{2}}}
$$

where $z_{1}=\eta(z)$ and $w_{1}=\eta(w)$. It remains to use that, similarly to (4), $d_{D} \geq c_{2} d_{\mathbb{D}}$ and $\left|z_{1}-w_{1}\right| \geq c_{2}|z-w|$ for some constant $c_{2}>0$.

The proof of the upper bound for $\tanh l_{D}(z, w)$ is similar (by using G_{i} from the second part of the proof mentioned above) and we skip it.

Proof of Proposition 9 By the Köbe uniformization theorem, we may assume that ∂D consists of disjoint circles. Using Proposition 8 and compactness, it is enough to prove that for any point $p \in \partial D$,

$$
\lim _{z \neq w \rightarrow p} \frac{c_{D}(z, w)}{l_{D}(z, w)}=1
$$

[^8]Applying an inversion, we may suppose that the outer boundary of D is the unit circle Γ and $p \in \Gamma$. Let U be a disk centered at p such that $\mathbb{D} \cap U \subset D$. Then,

$$
1 \geq \frac{c_{D}(z, w)}{l_{D}(z, w)} \geq \frac{c_{\mathbb{D}}(z, w)}{l_{\mathbb{D} \cap U}(z, w)}=\frac{k_{\mathbb{D}}(z, w)}{k_{\mathbb{D} \cap U}(z, w)} .
$$

Considering \mathbb{D} as a part of the unit ball in \mathbb{C}^{2}, it follows that the last ratio tends to 1 as a particular case of the same result for strongly pseudoconvex domains (see [18, Proposition 3]).

References

1. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza (1989)
2. Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Birkhäuser, (2004)
3. Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75, 504-533 (2000)
4. Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 26132625 (2005)
5. Chen, B.-Y., Fu, S.: Comparison of the Bergman and Szegö kernels. Adv. Math. 228, 2366-2384 (2011)
6. Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann. Math. 141, 181-190 (1995)
7. Forstnerič, F., Rosay, J.P.: Localization of the Kobayshi metric and the boundary continuity of proper holomorphic mappings. Math. Ann 279, 239-252 (1987)
8. Herbort, G.: Estimation on invariant distances on pseudoconvex domains of finite type in dimension two. Math. Z. 251, 673-703 (2005)
9. Jacquet, D.: \mathbb{C}-convex domains with C^{2} boundary. Complex Var. Elliptic Equ. 51, 303-312 (2006)
10. Jarnicki, M., Pflug P.: Invariant distances and metrics in complex analysis. de Gruyter Exp. Math. 9, de Gruyter, Berlin (1993)
11. Lempert, L.: Intrinsic distances and holomorphic retracts, Complex analysis and applications '81, 341364. Sofia, (1984)
12. Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in \mathbb{C}^{n}. Trans. Am. Math. Soc. 338, 201-211 (1993)
13. Nikolov, N., Pflug, P., Thomas, P.J.: Upper bound for the Lempert function of smooth domains. Math. Z. 266, 425-430 (2010)
14. Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on \mathbb{C}-convex domains. Trans. Am. Math. Soc. 363, 6245-6256 (2011)
15. Pflug, P., Zwonek, W.: Logarithmic capacity and Bergman functions. Arch. Math. 80, 536-552 (2003)
16. Seidel, W., Walsh, J.L.: On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence. Trans. Am. Math. Soc. 52, 128-216 (1942)
17. Sweers, G.: Positivity for a strongly coupled elliptic system by Green function estimates. J. Geom. Anal. 4, 121-142 (1994)
18. Venturini, S.: Comparision between the Kobayashi and Carathéodory distances on strongly pseudoconvex bounded domains in \mathbb{C}^{n}. Proc. Am. Math. Soc. 107, 725-730 (1989)
19. Warszawski, T.: Boundary behavior of the Kobayashi distance in pseudoconvex Reinhardt domains. Michigan Math. J. 61, 575-592 (2012)
20. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Grundl. math. Wissensch. 299. Springer, Berlin (1992)

[^0]: The author would like to thank P. Pflug, T. Warszawski and the referee for their remarks on the paper.

[^1]: N. Nikolov (\boxtimes)

 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
 Acad. G. Bonchev 8, 1113 Sofia, Bulgaria
 e-mail: nik@math.bas.bg
 N. Nikolov

 Faculty of Information Sciences, State University of Library Studies and Information Technologies, 1574 Sofia, Bulgaria

[^2]: ${ }^{1}$ If $d(z)=d(w)$, then $l_{D}(z, w) \leq\|z-w\| / d(w)$.

[^3]: ${ }^{2}$ This means that $\int_{0}^{1} \frac{\omega(t)}{t} d t<\infty$, where ω is the modulus of continuity of γ^{\prime}.

[^4]: ${ }^{3}$ This means that D is Dini-smooth near any boundary point.
 ${ }^{4}$ If $D \subset \mathbb{C}^{n}$, then $\kappa_{D}(z ; X)=\inf \left\{|\alpha|: \exists \varphi \in \mathcal{O}(\mathbb{D}, D)\right.$ with $\left.\varphi(0)=z, \alpha \varphi^{\prime}(0)=X\right\}$.

[^5]: ${ }^{5}$ Some difficulty arises from the fact that, in contrast to invariant metrics, general localization principles for invariant distances are not known. However, a strong localization principle holds for k_{D} and c_{D} if D is strongly pseudoconvex (see [18, Proposition 3, Theorem 1].

[^6]: ${ }^{6}$ We have to modify the previous proof, since the Bergman distance is not monotone under inclusion of planar domains; to see this, use [15, Example 7].

[^7]: 7 To see this, we can proceed as follows (S. R. Bell, private communication). First, take a conformal mapping φ_{1} from the domain bounded by the outer boundary of \tilde{G} to \mathbb{D}. Next, choose a point a in the interior of the inner boundary Γ of $\psi_{1}(\tilde{G})$ and set $\psi_{2}: z \rightarrow(z-a)^{-1}$. Consider now a conformal mapping ψ_{3} from the domain bounded by $\psi_{2}(\Gamma)$ to \mathbb{D}. Then, $\psi=\psi_{3} \circ \psi_{2} \circ \psi_{1}$ maps conformally \tilde{G} to a bounded double-connected planar domain G^{\prime} with real-analytic boundary. It remains to apply the reflection principle to a conformal mapping from G^{\prime} to A_{r}.

[^8]: 8 These estimates imply the bounds for the Green function g_{D} from the crucial Lemma 4.2 in [17], since $\tanh c_{D} \leq \exp \left(-2 \pi g_{D}\right) \leq \tanh l_{D}$.

