Annali di Matematica (2014) 193:1595-1605
DOI 10.1007/s10231-013-0345-7

Estimates of invariant distances on “convex’’ domains

Nikolai Nikolov

Received: 27 November 2012 / Accepted: 18 April 2013 / Published online: 3 May 2013
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract Estimates for invariant distances of convexifiable, C-convexifiable and planar
domains are given.

Keywords Carathéodory - Kobayashi and Bergman distances - Bergman and Szego
kernels - Convex - Convexifiable and C-convex domains

Mathematics Subject Classification (2010) 32A25 - 32F17 - 32F45

1 Introduction and results

Diederich and Ohsawa [6, p. 182] asked if D is a smooth bounded pseudoconvex domain in
C", then the following lower bound for the Bergman distance bp holds: For fixed z and w
close to d D, one has that

bp(z, w) > —clogdp(w),

where dp(w) = dist(w, dD) and ¢ > 0 is a constant depending only on D. Btocki [4, The-
orem 1.3] mentioned this fact for bounded convexifiable domains (not necessarily smooth).

We shall prove the estimate in the case of bounded C-convex domains (or, more generally,
C-convexifiable). Recall that a setin C" is called C-convex if all its intersections with complex
lines are contractible (cf. [2, p. 25]). Note thata C I_smooth bounded domain is C-convex if
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1596 N. Nikolov

and only the complex tangent hyperplane through any boundary point does not intersect the
domain (cf. [2, Theorem 2.5.2]).

Let D be adomain in C*. Denote by ¢p and [ p the Carathéodory distance and the Lempert
function of D, respectively:

¢p(z, w) = sup{tanh ™! | f(w)| : f € O(D, D) with f(z) = 0},
Ip(z, w) = inf{tanh ™" || : g € OD, D) with (0) = z, p(a) = w},

where D is the unit disk (we refer to [10] for basic properties of the objects under consider-
ation). The Kobayashi distance kp is the largest pseudodistance not exceeding /p. We have
that

¢p <kp, cp=<bp

(if bp is well-defined). Note also that kp = [p for any planar domain D (cf. [10, Remark
3.3.8(e)]). By Lempert’s theorem [11, Theorem 1], combining with a result by Jacquet [9,
Theorem 5], cp = Ip on any C 2_smooth bounded C-convex domain D and hence on any
convex domain. On the other hand, it follows by [14, Theorem 12] that there exists a constant
cn > 0, depending only on n, such that

kp <4bp < c,kp (1)

for any C-convex domain D in C", containing no complex lines (then bp is well-defined).
In other words, to estimate bp, it is enough to find lower bounds for ¢p and upper bounds
forlp.

Recall that bp is the integrated form of Bergman metric

B (Z'X)—M zeD,XeC"
P VKp@ ’ ’
where
Mp(z; X) = supl|f'()X|: f € LE(D) I fllp < 1, f(z) =0}
and

Kp() =sup{| f@I* : f € Li(D), IIfllp < 1)

is the Bergman kernel on the diagonal (K p(z) > 0 is assumed). So,

1
bp(z, w) = il;f/ﬂD(J/(t); Y (@),
0

where the infimum is taken over all smooth curves y : [0, 1] — D with y(0) = z and
y(1) =w.
Estimates for invariant distances of strictly pseudoconvex domains in C" and pseudocon-
vex domains of finite type in €2 can be found in [3] (see also [1,10]) and [8], respectively.
Recall now in details two estimates. The proof of [4, Theorem 5.4] (cf. also [ 12, Proposition
2.4]) implies that if D is a proper convex domain in C”, then

1 d
cp(z, w) > 3 log d;)((;))

(@)
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Estimates of invariant distances 1597

(this proof uses only the existence of an appropriate supporting (real) hyperplane and the
formula for the Poincaré distance of the upper half-plane). On the other hand, by [13, Theorem
1], for any C I+¢_smooth bounded domain, there exists a constant ¢ > 0 such that

1
Ip(z,w) < -3 log(dp(z)dp(w)) + ¢ 3)

(see [7, Proposition 2.5] for a stronger estimate for kp).

The smoothness is essential as an example of a C'-smooth bounded C-convex planar
domain shows (see [13, Example 2]). Moreover, using [16, p. 146, Theorem 7], one may find
a bounded C-convex planar domain for which there is no similar estimate with any constant
instead of —1/2.

So, it natural to find an upper bound for /p in the convex case and a lower bound for cp
in the C-convex case.

Proposition 1 Let D be a proper convex domain in C". Then

le—wll  d@ llz — wl|
@) = T " aw) 8 d(w) = min@), dw))’

U In particular, if, in addition, D is bounded, then for any compact subset K of D, there is a
constant cg > 0 such that

bp < —cklogdp(w)+1/cx, z€ K,w € D.

The last estimate for kp instead of bp (and K a singleton) is the content of [ 12, Proposition
2.3]. Similar estimates for the Kobayashi distance of pseudoconvex Reinhardt domains can
be found in [19].

Proposition 2 Let D be a proper C-convex domain in C". Then

dp(2)
4dp(w)’

Hence, if, in addition, D is bounded, then for any compact subset K of D, there is a constant
cgx > 0 such that

1
cplz, w) = ! log

1
bp(z, w) > _ZIOng(w) —cg, z€ K,we D.

Note that by [5, p. 2381], the first estimate in Proposition 2 implies the following

Corollary 3 The Bergman and Szegé kernels (on the diagonal) are comparable on any C2-
smooth bounded C-convex domain.

We point out that [5, Theorem 1.3] deals with the convex case.

Remark (a) The estimate for /p is sharp when z — w. Moreover, it is sharp up to a constant
when z is fixed and w — 9 D. Indeed, denote by Rp(z, w), the right-hand side of the
first inequality in Proposition 1. If 6 € (0, ) and Dy = {z € C, : |argz| < 6}, then

Ip,(1,x) =

lim lim ———— = —.
0—0x—0+ RDB(l,x) 4

VI d(z) = d(w). then Ip(z, w) < ||z — wl|/d(w).
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1598 N. Nikolov

(b) The factor 1/4 in the bound for cp is optimal as D = C,, \ R* shows.

(c) Estimates for the infinitesimal forms of the distances under consideration, namely, the
Carathéodory, Kobayashi and Bergman metrics, of convex and C-convex domains can
be found in [14]. The bounds there depend only on the distance to the boundary from
the respective point in the respective direction.

Our main result is in the spirit of [4, Theorem 1.3], where a lower bound for the Bergman
metric is mentioned in the locally convexifiable case (and a hint for a proof is given).

Proposition 4 Let D be a bounded domain in C" which is locally C-convexifiable, i.e.,
for any point a € 0D, there exist a neighborhood U, of a, an open set V, in C" and a
biholomorphism F, : U, — V, such that F,(D N U,) is C-convex. Then, there exists a
constant ¢ > 0 such that for any compact subset K of D one can find a constant cx > 0 with

sp(z, w) > —clogdp(w) —ck, z€ K,we D,

where sp = kp or sp = bp.
Moreover, if D is locally convexifiable or C't¢-smooth and locally C-confexifiable, then
for any compact subset K of D, one can find a constant ¢, > 0 with

sp(z, w) < —clogdp(w) + 1/, z€ K, we D.

Finally, we consider the planar case. We shall say that a boundary point p of a planar
domain D is Dini-smooth if d D near p is a Dini-smooth curve y : [0, 1] — cZcCalla
planar domain Dini-smooth if it is Dini-smooth near any boundary point.

Proposition 5 Let p be a Dini-smooth boundary point of a planar domain D. Then, for any
neighborhood U of p and any compact subset K of D, there exist a neighborhood V of p
and a constant ¢ > 0 such that

1

sD(Z,w)Z—Elong(w)—c, zeD\U,weDNV,
1

|SD(st)+§10ng(w)|§C, zeK,weDNYV,

where sp = c¢p, sp = Ilp(=kp) or sp = bD/\/E.
Since kp and bp are the integrated forms of kp and Bp, we get the following

Corollary 6 Let p and g be different Dini-smooth boundary points of a planar domain D.
If sp =Ilp(=kp) orsp = bD/\/E, then the function

2sp(z, w) +logdp(z) + logdp(w)
is bounded for 7 near q and w near p.

In general, cp is not an inner distance (even in the plane). So, the next proposition is not
a direct consequence of Proposition 5.

Proposition 7 Let p and g be different Dini-smooth boundary points of a planar domain D.
Then, the function

2¢p(z, w) +logdp(z) +logdp(w)

is bounded for z near q and w near p.

2 This means that fol @d t < 0o, where w is the modulus of continuity of y’.
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Estimates of invariant distances 1599

The next result is optimal for the boundary behavior of ¢p and Ip(= kp) in the planar
case. It is more general than the last results, but its proof uses these results. Similar (and
slightly weaker) result for kp on C2-smooth strictly pseudoconvex bounded follows by [3,
Theorem 1, Proposition 1.2].

Proposition 8 Let D be a Dini-smooth bounded planar domain.® Then, there exists a con-
stant ¢ > 1 such that

|z — w] lz —wf?

c/dp(2)dp(w) + cdp(z)dp (w)

log (1 + ) <2cp(z, w) < 2p(z, w)

clz—wl . clz — wl? )
Vdp@dpw) dp(z)dp(w))’

In particular; the function lp — cp is bounded on D x D.

<log (l—l-

It is shown in [18, Theorem 1] that if D is strongly pseudoconvex domain in C", then

cp(z, w)

=1 uniformlyinz € D.
w—0D kD(Z, w) yimz
ZFW

We have the following planar extension of this result.

Proposition 9 If D is finitely connected bounded planar domain without isolated boundary
points, then

cp(z, w)

=1 uniformly in z € D.
w—0dD lD(Z, w)
ZFw

2 Proofs

Proof of Proposition 1 Denote by C ,, the convex hull of the union of the disks D(z, dp(z))
and D(w, dp(w)), lying in the complex line through z and w. Let y () = z+1(w — z). Since
C.w C Dandlc,, = kc,, is the integrated form of the Kobayashi metric ¢, , 4 then

1

b@moskMQJOE/}Qﬁwmy%»m
0
1

5/ ly' @) dt le—wll 4@

de., )"~ d@) —dw) S dw)’

0

This inequality and (1) lead to the wanted result for bp.

Proof of Proposition 2 Let p(w) € 9D be such that |jw — p(w)|| = dp(w). Since E is C-
convex, there exists a hyperplane H, () through p(w) and disjoint from D (cf. [2, Theorem
2.3.9(ii)]). Denote by D,, and z,, the projections of D and z onto the complex line through w
and p(w) in direction H,y), respectively. By [2, Theorem 2.3.6], D, is a simply connected

3 This means that D is Dini-smooth near any boundary point.
4If D C C", then kp(z; X) = inf{|a| : 3p € O, D) with ¢(0) = z, a¢’(0) = X}.
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1600 N. Nikolov

domainand p(w) € dD,,. Denote by v, € O(D, D,,) aRiemann map such that yr,,(0) = zy,.
If ¥y (o) = w, then

—1
cp(z, w) > cp, (Zw, w) = tanh™" |ay|.

By [16, p. 139, Corollary 6] (which is a consequence of the Kobe 1/4 and the Kobe distortion
theorems),

[/ (0)]
4dp, (w)’

Since dp,, (w) = dp(w) and |¢',(0)| > dp,, (zw) > dp(2), it follows that

1 dp(z2)
) .
cp(z.w) = Jlog 700

1
tanh ™! |ty | > Zlog

This inequality and bp > cp imply the desired result for bp.

Proof of Proposition 4 5 First, we shall prove the lower bound.

Note that
d F, 1
O<ca§M§— near any a € aD. “)
dD(w) a
Then, by Proposition 2, we may find a finite set M C 9D and a constant ¢; > 0 such that
1 d
spnu, (2, w) > —log (@) —c1, ZweDNV,,aeM,
4 dp(w)

where V,, C U, is a neighborhood of a such that 9D C Ugepn V.

Denote now by Sp the Kobayashi or Bergman metrics of D. By localization principles
(cf. [10, Proposition 7.2.9 and Proposition 6.3.5], since D is pseudoconvex), there exists a
constant ¢ > 0 such that

Sp > 4c2Spny, on(DNV,) x C".

Let W, € V, be such that W = U,cy W, does not intersect K and contains dD. Set
r = mingey dist(d W, 0V,).

Let ¢ > 0. Since sp is the integrated form of Sp, forany z € K and w € D N W, there
exists a smooth curve y : [0, 1] — D with y(0) = z, y(1) = w and

1
o w) +e > [ o003y @nar
0
Let #{ = max{t € (0,1) : y(t) € G = D\ W}. Choose a point a; € M such that

B, (y(t1),r) C Vg,.Lettp = sup{t € (#1,1] : y([t1,1)) € V,,} and etc. In this way, we
may find numbers 0 < #; < --- < ty4+1 = 1 and points ay, ...,ay+1 € M such that

5 Some difficulty arises from the fact that, in contrast to invariant metrics, general localization principles
for invariant distances are not known. However, a strong localization principle holds for kp and cp if D is
strongly pseudoconvex (see [ 18, Proposition 3, Theorem 1].
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vltj, tj41) C DNV and [y (1) —y ()l = r, 1 < j < N.Then

N

sp(@w) +& > 2 Y spru,, (7 (1), ¥ (tj41)
j=]

Aoy (i)
@ Z o)

1 dist(G, D) N
Qg —m—— — C s
Z c2log dp(w) 3

A%

where c3 = 4cjcp.
On the other hand, since D is a bounded domain, there exists a constant ¢4 > 0 such that
sp(z1,22) = c4llz1 — z2]|. Then
N
sz w) + &> D sp(y(t)), y(tj41)) = carN.
j=1
So,
dist(G, 9D)
dp(w)
The case when w € G is trivial which completes the proof of the lower bound.
The proof of the upper bound is easier. Fix a pointa € 9 D. It is enough to find a constant

c;y x > 0 such that the estimate holds for w near a. Take a point u € U, and a neighborhood
Va @ U, of a and a point u € D N U,. Proposition 1, (3) and (4) imply that

C
(1 + = )(sp(z, w) + &) > ¢3 log
cqr

kp(z,w) < kp(z,u) + kpu, w) < kp(z,u) + kpny (u, w)
< 1/c, x —cyxlogdp(w), z€ K,we DNV,.

The upper bound for b follows similarly. It suffices to use that
bp < ¢ubpnu, < Cacnkpnu,
in view of [10, Proposition 6.3.5] and (1).

Proof of Proposition 5 for cp and [p We may find a Dini-smooth Jordan curve ¢ such that
¢ =dDnear pand D C G := Cext. Take a point @ ¢ G and consider the union G, of
0 and the image of G under the map ¢ : z — (z — a)~'. There exists a conformal map
¥ G, — D. It extends to a Cl-diffeomorphism from G, to D (cf. [20, Theorems 3.5]).
Setting n = ¢ o ¢, then

cp(z, w) = ep(n(2), n(w)).

Now the lower bound for cp follows by the same bound for cp and an inequality of type (4).
The estimate

1
Ip(z,w) < —Elong(w) —c¢, zeK,we DNV

follows by (3). It can be also obtained in the following way. There exist a Dini-smooth domain
simply connected domain G; C D and a neighborhood V of p suchthat o0GNV =dDNV.
Take a point u € V. Since [p = kp, then

kp(z,w) < kp(z,u) + kg; (u, w).
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1602 N. Nikolov

It remains to repeat the final arguments from the first paragraph.

Proof of Proposition 5 for bp © Choosing G as above, then
bp(z, w) = byp)(n(z), n(w)).

By the Dini-smoothness,

d, ,
tim DO ).

We may assume that n(p) = 1. So, it is enough to get the estimates for D C D such that
F=DND(,r) C D forsomer € (0, 1).
First, we shall prove that if 0 < r’ < r, then

V2bp(z, w) < —logdp(w) +¢’, ze K,we F =DNDA,r")

for some constant ¢’ > 0.
For a domain Q C C set Bq(z) = Bq(z; 1) and kq(z) = kq(z; 1). Let F =D\ F and

In(u, F) = inf Ip(u, w).

welF

Then, for any " € (+/, r), we may find a constant ¢ > 0 such that

K 2uc2
Bpw) < fru),| K;EZ; - fgfu()”)

< V2 coth? Ip(u, Fkp(u) <

+¢, ue F"=DnDA,r").

1 — |ul?

(for the equality use that F is biholomorphic to D and for the inequality “between the lines”
cf. [10, Proposition 7.2.9]).
Letze K,we F'andw' = [0, w]NadD(, r"”). Then

1

- dt
bp(z, w) < bp(z, w') + |w — w'| c+ﬁ/
1—jw +
0

t(w—w)|?

< (—logdp(w) +¢)/v2

for some constant ¢’ > 0.
Now, shrinking r such that D(1, r) C U, it remains to prove that

V2bp(z, w) = —logdp(w) — ¢, z€ F,weF

for some constant ¢/ > 0.
‘We have that

K 22
Bo) = o), | KHF’)EZ; = [Kf?u()” )

. 2
> 2 tanh Ip(u, F)kp(u) > ] { B —¢, ueF.
—u

6 We have to modify the previous proof, since the Bergman distance is not monotone under inclusion of planar
domains; to see this, use [15, Example 7].
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Estimates of invariant distances 1603

Forz € ﬁ, w € F’, and ¢ > 0, there exists a smooth curve y : [0, 1] — D with

1
bz w) + ¢ > / Bo(r )y 0)ld.
0

Let tg = sup{r € (0, 1) : y(r) ¢ F"}. Then,
1
bp(z, w) + & > /bD(y<r)>|y/(r>|dt > bp(w, F),
o
where by is the integrated form of the Finsler pseudometric
+
. V2 .
o X) =X ——m -2 .
1 — Jul
It remains to use that, shrinking r’ (if necessary),
bp(w, F) > (—logdp(w) — ") /~/2
for some constant ¢’ > 0 (cf. [3, Theorem 1.1]).
Proof of Corollary 6 Since kp and bp are the integrated forms of xp and Sp, the bound-
edness from below follows by the first inequality in Proposition 5 (cf. the proof of [10,

Proposition 10.2.6]). Choosing a pointa € D, the boundedness from above is a consequence
of the inequality sp(z, w) < sp(z, a) +sp(a, w) and the second inequality in Proposition 5.

Proof of Proposition 7 In virtue of the inequality cp < kp and Corollary 6, we have to prove
only the boundedness from below. For this, take disjoint Dini-smooth Jordan curves ¢’ and
¢" such that ¢ = 9D near p,{” = dD near g and D C G := ¢ N ¢l - Note that any
Dini-smooth bounded double-connected planar G domain can be conformally map to some
annulus A, = {z € C : 1/r < |z| < r}(r > 1), and the respective mapping extends to a
C'-diffeomorphism from G to A,

Then, proceeding similarly to the proof of Proposition 5 for ¢p, it is enough to show that

2c4, (z, w) +logda, (z) +logda, (w)
is bounded from below for z € R near r and w near p, where |p| = 1/r; this is equivalent to
ma,(z, w) :=tanhcy, (z, w) > 1 — cda, (2)da, (w)

for some constant ¢ > 0.
Recall that (cf. [10, Proposition 5.5])

_ fewfd/z —w)

rlwl

ma,(z, w)

’

7 To see this, we can proceed as follows (S. R. Bell, private communication). First, take a conformal mapping
¢ from the domain bounded by the outer boundary of G to . Next, choose a point a in the interior of the inner
boundary I" of ¥1(G) and set ¥ : z — (z — a)~ L. Consider now a conformal mapping ¥r3 from the domain
bounded by v, (I") to D. Then, ¥ = 13 0 ¥» o Y1 maps conformally G to a bounded double-connected planar
domain G’ with real-analytic boundary. It remains to apply the reflection principle to a conformal mapping
from G’ to A,.
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1604 N. Nikolov

where f is a holomorphic function on A, x A, \ {u = v € 9A,} and |f(u,v)| = 1if
lul=r,ve A oru € A, |v|=1/r(u # v).
In particular,
onf o"f
du" "

at any point (u, v) with |u| = r and |v| = 1/r. Then, by the Taylor expansion,

|f(z,w) — f(r, w(rw)) ™| < c1da, (2)da, (w).

=0, neN,

This implies that
[f (@ lwl) = f(r, 1/r)| < c1da, (2)da, (Jw])

(the constant can be chosen the same for z near r and w away from r). Since f(r,-) is a
unimodular constant and d4, (w) = da, (|w|), it follows that

Ima, (z, w) —ma,(z, lw|)| < cada, (2)da, (|w]).

Further, c4, (z, |lw]) = ca, (z,1) + ca, (¢, lw|) for ¢ € [|w], z] (cf. [10, Lemma 5.11(b)]).
Then, Proposition 5 implies that

ma, (z, [w]) = 1 — c3da, (2)da, (Jw)).
Hence we may choose ¢ = ¢> 4 ¢3 which completes the proof.

Proof of Proposition 8 Using Corollary 6 and Proposition 7, itis enough to prove the inequal-
ities for z and w near a fixed point p € 9 D. Moreover, it is easy to see that these inequalities
are equivalent to

|z — w]

Jedn@dnto) 1] B < tanhcp(z, w) < tanhlp(z, w)
cdp(Z)dp(w Z—w

- |z — w|
= Ve ldp()dp(w) + |z — w?

for some constant ¢ > 1.8
To prove the lower bound for tanh c¢p(z, w), let n be as in the proof of Proposition 5 for
cp and [p. Then, it is not difficult to find a constant ¢; > 0 such that

tanh cp(z, w) > tanhcep(zy, wy) > 21— wil
Verdp(zndp(wy) + |z1

— w2’
where z1 = n(z) and w; = n(w). It remains to use that, similarly to (4), dp > cadp and
|z1 — wi| > ¢2]z — w| for some constant ¢, > 0.

The proof of the upper bound for tanh /p(z, w) is similar (by using G; from the second
part of the proof mentioned above) and we skip it.

Proof of Proposition 9 By the Kobe uniformization theorem, we may assume that d D con-
sists of disjoint circles. Using Proposition 8 and compactness, it is enough to prove that for
any point p € aD,
cplz, w)
#w—p Ip(z, w)

8 These estimates imply the bounds for the Green function gp from the crucial Lemma 4.2 in [17], since
tanhcp < exp(—2mgp) < tanhlp.
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Estimates of invariant distances 1605

Applying an inversion, we may suppose that the outer boundary of D is the unit circle I" and
p € I'. Let U be a disk centered at p such that DN U C D. Then,

| > p@w - iw) _ kp(w)
“ IpGz.w) T Ipru(zow)  kpu(z,w)’

Considering ID as a part of the unit ball in C2, it follows that the last ratio tends to 1 as a
particular case of the same result for strongly pseudoconvex domains (see [ 18, Proposition 3]).

References

1. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza
(1989)
2. Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Birkhiuser,
(2004)
3. Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex
domains. Comment. Math. Helv. 75, 504-533 (2000)
4. Btocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 2613—
2625 (2005)
5. Chen, B.-Y., Fu, S.: Comparison of the Bergman and Szego kernels. Adv. Math. 228, 2366-2384 (2011)
6. Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann. Math.
141, 181-190 (1995)
7. Forstneri¢, F., Rosay, J.P.: Localization of the Kobayshi metric and the boundary continuity of proper
holomorphic mappings. Math. Ann 279, 239-252 (1987)
8. Herbort, G.: Estimation on invariant distances on pseudoconvex domains of finite type in dimension two.
Math. Z. 251, 673-703 (2005)
9. Jacquet, D.: C-convex domains with c? boundary. Complex Var. Elliptic Equ. 51, 303-312 (2006)
10. Jarnicki, M., Pflug P.: Invariant distances and metrics in complex analysis. de Gruyter Exp. Math. 9, de
Gruyter, Berlin (1993)
11. Lempert, L.: Intrinsic distances and holomorphic retracts, Complex analysis and applications *81, 341—
364. Sofia, (1984)
12. Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in C". Trans.
Am. Math. Soc. 338, 201-211 (1993)
13. Nikolov, N., Pflug, P., Thomas, P.J.: Upper bound for the Lempert function of smooth domains. Math. Z.
266, 425-430 (2010)
14. Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on C-convex domains. Trans. Am.
Math. Soc. 363, 6245-6256 (2011)
15. Pflug, P., Zwonek, W.: Logarithmic capacity and Bergman functions. Arch. Math. 80, 536-552 (2003)
16. Seidel, W., Walsh, J.L.: On the derivatives of functions analytic in the unit circle and their radii of
univalence and of p-valence. Trans. Am. Math. Soc. 52, 128-216 (1942)
17. Sweers, G.: Positivity for a strongly coupled elliptic system by Green function estimates. J. Geom. Anal.
4,121-142 (1994)
18. Venturini, S.: Comparision between the Kobayashi and Carathéodory distances on strongly pseudoconvex
bounded domains in C". Proc. Am. Math. Soc. 107, 725-730 (1989)
19. Warszawski, T.: Boundary behavior of the Kobayashi distance in pseudoconvex Reinhardt domains.
Michigan Math. J. 61, 575-592 (2012)
20. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Grundl. math. Wissensch. 299. Springer,
Berlin (1992)

@ Springer



	Estimates of invariant distances on ``convex'' domains
	Abstract
	1 Introduction and results
	2 Proofs
	References


