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1 Introduction and results

Diederich and Ohsawa [6, p. 182] asked if D is a smooth bounded pseudoconvex domain in
C

n , then the following lower bound for the Bergman distance bD holds: For fixed z and w
close to ∂D, one has that

bD(z, w) ≥ −c log dD(w),

where dD(w) = dist(w, ∂D) and c > 0 is a constant depending only on D. Błocki [4, The-
orem 1.3] mentioned this fact for bounded convexifiable domains (not necessarily smooth).

We shall prove the estimate in the case of bounded C-convex domains (or, more generally,
C-convexifiable). Recall that a set in C

n is called C-convex if all its intersections with complex
lines are contractible (cf. [2, p. 25]). Note that a C1-smooth bounded domain is C-convex if
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1596 N. Nikolov

and only the complex tangent hyperplane through any boundary point does not intersect the
domain (cf. [2, Theorem 2.5.2]).

Let D be a domain in C
n . Denote by cD and lD the Carathéodory distance and the Lempert

function of D, respectively:

cD(z, w) = sup{tanh−1 | f (w)| : f ∈ O(D,D) with f (z) = 0},
lD(z, w) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, ϕ(α) = w},

where D is the unit disk (we refer to [10] for basic properties of the objects under consider-
ation). The Kobayashi distance kD is the largest pseudodistance not exceeding lD . We have
that

cD ≤ kD, cD ≤ bD

(if bD is well-defined). Note also that kD = lD for any planar domain D (cf. [10, Remark
3.3.8(e)]). By Lempert’s theorem [11, Theorem 1], combining with a result by Jacquet [9,
Theorem 5], cD = lD on any C2-smooth bounded C-convex domain D and hence on any
convex domain. On the other hand, it follows by [14, Theorem 12] that there exists a constant
cn > 0, depending only on n, such that

kD ≤ 4bD ≤ cnkD (1)

for any C-convex domain D in C
n , containing no complex lines (then bD is well-defined).

In other words, to estimate bD , it is enough to find lower bounds for cD and upper bounds
for lD .

Recall that bD is the integrated form of Bergman metric

βD(z; X) = MD(z; X)√
K D(z)

, z ∈ D, X ∈ C
n,

where

MD(z; X) = sup{| f ′(z)X | : f ∈ L2
h(D) || f ||D ≤ 1, f (z) = 0}

and

K D(z) = sup{| f (z)|2 : f ∈ L2
h(D), || f ||D ≤ 1}

is the Bergman kernel on the diagonal (K D(z) > 0 is assumed). So,

bD(z, w) = inf
γ

1∫

0

βD(γ (t); γ ′(t)),

where the infimum is taken over all smooth curves γ : [0, 1] → D with γ (0) = z and
γ (1) = w.

Estimates for invariant distances of strictly pseudoconvex domains in C
n and pseudocon-

vex domains of finite type in C
2 can be found in [3] (see also [1,10]) and [8], respectively.

Recall now in details two estimates. The proof of [4, Theorem 5.4] (cf. also [12, Proposition
2.4]) implies that if D is a proper convex domain in C

n , then

cD(z, w) ≥ 1

2
log

dD(z)

dD(w)
(2)
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Estimates of invariant distances 1597

(this proof uses only the existence of an appropriate supporting (real) hyperplane and the
formula for the Poincaré distance of the upper half-plane). On the other hand, by [13, Theorem
1], for any C1+ε-smooth bounded domain, there exists a constant c > 0 such that

lD(z, w) ≤ −1

2
log(dD(z)dD(w))+ c (3)

(see [7, Proposition 2.5] for a stronger estimate for kD).
The smoothness is essential as an example of a C1-smooth bounded C-convex planar

domain shows (see [13, Example 2]). Moreover, using [16, p. 146, Theorem 7], one may find
a bounded C-convex planar domain for which there is no similar estimate with any constant
instead of −1/2.

So, it natural to find an upper bound for lD in the convex case and a lower bound for cD

in the C-convex case.

Proposition 1 Let D be a proper convex domain in C
n. Then

lD(z, w) ≤ ||z − w||
d(z)− d(w)

log
d(z)

d(w)
≤ ||z − w||

min(d(z), d(w))
.

1 In particular, if, in addition, D is bounded, then for any compact subset K of D, there is a
constant cK > 0 such that

bD ≤ −cK log dD(w)+ 1/cK , z ∈ K , w ∈ D.

The last estimate for kD instead of bD (and K a singleton) is the content of [12, Proposition
2.3]. Similar estimates for the Kobayashi distance of pseudoconvex Reinhardt domains can
be found in [19].

Proposition 2 Let D be a proper C-convex domain in C
n. Then

cD(z, w) ≥ 1

4
log

dD(z)

4dD(w)
.

Hence, if, in addition, D is bounded, then for any compact subset K of D, there is a constant
cK > 0 such that

bD(z, w) ≥ −1

4
log dD(w)− cK , z ∈ K , w ∈ D.

Note that by [5, p. 2381], the first estimate in Proposition 2 implies the following

Corollary 3 The Bergman and Szegö kernels (on the diagonal) are comparable on any C2-
smooth bounded C-convex domain.

We point out that [5, Theorem 1.3] deals with the convex case.

Remark (a) The estimate for lD is sharp when z → w. Moreover, it is sharp up to a constant
when z is fixed and w → ∂D. Indeed, denote by RD(z, w), the right-hand side of the
first inequality in Proposition 1. If θ ∈ (0, π) and Dθ = {z ∈ C∗ : | arg z| < θ}, then

lim
θ→0

lim
x→0+

lDθ (1, x)

RDθ (1, x)
= π

4
.

1 If d(z) = d(w), then lD(z, w) ≤ ||z − w||/d(w).
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1598 N. Nikolov

(b) The factor 1/4 in the bound for cD is optimal as D = C∗ \ R
+ shows.

(c) Estimates for the infinitesimal forms of the distances under consideration, namely, the
Carathéodory, Kobayashi and Bergman metrics, of convex and C-convex domains can
be found in [14]. The bounds there depend only on the distance to the boundary from
the respective point in the respective direction.

Our main result is in the spirit of [4, Theorem 1.3], where a lower bound for the Bergman
metric is mentioned in the locally convexifiable case (and a hint for a proof is given).

Proposition 4 Let D be a bounded domain in C
n which is locally C-convexifiable, i.e.,

for any point a ∈ ∂D, there exist a neighborhood Ua of a, an open set Va in C
n and a

biholomorphism Fa : Ua → Va such that Fa(D ∩ Ua) is C-convex. Then, there exists a
constant c > 0 such that for any compact subset K of D one can find a constant cK > 0 with

sD(z, w) ≥ −c log dD(w)− cK , z ∈ K , w ∈ D,

where sD = kD or sD = bD.
Moreover, if D is locally convexifiable or C1+ε-smooth and locally C-confexifiable, then

for any compact subset K of D, one can find a constant c′
K > 0 with

sD(z, w) ≤ −c′
K log dD(w)+ 1/c′

K , z ∈ K , w ∈ D.

Finally, we consider the planar case. We shall say that a boundary point p of a planar
domain D is Dini-smooth if ∂D near p is a Dini-smooth curve γ : [0, 1] → C.2 Call a
planar domain Dini-smooth if it is Dini-smooth near any boundary point.

Proposition 5 Let p be a Dini-smooth boundary point of a planar domain D. Then, for any
neighborhood U of p and any compact subset K of D, there exist a neighborhood V of p
and a constant c > 0 such that

sD(z, w) ≥ −1

2
log dD(w)− c, z ∈ D \ U, w ∈ D ∩ V,

|sD(z, w)+ 1

2
log dD(w)| ≤ c, z ∈ K , w ∈ D ∩ V,

where sD = cD, sD = lD(= kD) or sD = bD/
√

2.

Since kD and bD are the integrated forms of κD and βD , we get the following

Corollary 6 Let p and q be different Dini-smooth boundary points of a planar domain D.
If sD = lD(= kD) or sD = bD/

√
2, then the function

2sD(z, w)+ log dD(z)+ log dD(w)

is bounded for z near q and w near p.

In general, cD is not an inner distance (even in the plane). So, the next proposition is not
a direct consequence of Proposition 5.

Proposition 7 Let p and q be different Dini-smooth boundary points of a planar domain D.
Then, the function

2cD(z, w)+ log dD(z)+ log dD(w)

is bounded for z near q and w near p.

2 This means that
∫ 1

0
ω(t)

t dt < ∞, where ω is the modulus of continuity of γ ′.

123



Estimates of invariant distances 1599

The next result is optimal for the boundary behavior of cD and lD(= kD) in the planar
case. It is more general than the last results, but its proof uses these results. Similar (and
slightly weaker) result for kD on C2-smooth strictly pseudoconvex bounded follows by [3,
Theorem 1, Proposition 1.2].

Proposition 8 Let D be a Dini-smooth bounded planar domain.3 Then, there exists a con-
stant c ≥ 1 such that

log

(
1 + |z − w|

c
√

dD(z)dD(w)
+ |z − w|2

cdD(z)dD(w)

)
≤ 2cD(z, w) ≤ 2lD(z, w)

≤ log

(
1+ c|z − w|√

dD(z)dD(w)
+ c|z − w|2

dD(z)dD(w)

)
.

In particular, the function lD − cD is bounded on D × D.

It is shown in [18, Theorem 1] that if D is strongly pseudoconvex domain in C
n , then

lim
w→∂D

z �=w

cD(z, w)

kD(z, w)
= 1 uniformly in z ∈ D.

We have the following planar extension of this result.

Proposition 9 If D is finitely connected bounded planar domain without isolated boundary
points, then

lim
w→∂D

z �=w

cD(z, w)

lD(z, w)
= 1 uniformly in z ∈ D.

2 Proofs

Proof of Proposition 1 Denote by Cz,w the convex hull of the union of the disks D(z, dD(z))
and D(w, dD(w)), lying in the complex line through z andw. Let γ (t) = z + t (w− z). Since
Cz,w ⊂ D and lCz,w = kCz,w is the integrated form of the Kobayashi metric κCz,w , 4 then

lD(z, w) ≤ lCz,w (z, w) ≤
1∫

0

κCz,w (γ (t); γ ′(t))dt

≤
1∫

0

|γ ′(t)|
dCz,w (γ (t))

dt = ||z − w||
d(z)− d(w)

log
d(z)

d(w)
.

This inequality and (1) lead to the wanted result for bD .

Proof of Proposition 2 Let p(w) ∈ ∂D be such that ||w − p(w)|| = dD(w). Since E is C-
convex, there exists a hyperplane Hp(w) through p(w) and disjoint from D (cf. [2, Theorem
2.3.9(ii)]). Denote by Dw and zw the projections of D and z onto the complex line throughw
and p(w) in direction H(p(w), respectively. By [2, Theorem 2.3.6], Dw is a simply connected

3 This means that D is Dini-smooth near any boundary point.
4 If D ⊂ C

n , then κD(z; X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, αϕ′(0) = X}.
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domain and p(w) ∈ ∂Dw . Denote byψw ∈ O(D, Dw) a Riemann map such thatψw(0) = zw.
If ψw(αw) = w, then

cD(z, w) ≥ cDw (zw,w) = tanh−1 |αw|.
By [16, p. 139, Corollary 6] (which is a consequence of the Köbe 1/4 and the Köbe distortion
theorems),

tanh−1 |αw| ≥ 1

4
log

|ψ ′
w(0)|

4dDw (w)
.

Since dDw (w) = dD(w) and |ψ ′
w(0)| ≥ dDw (zw) ≥ dD(z), it follows that

cD(z, w) ≥ 1

4
log

dD(z)

4dD(w)
.

This inequality and bD ≥ cD imply the desired result for bD .

Proof of Proposition 4 5 First, we shall prove the lower bound.
Note that

0 < ca ≤ dFa(D∩Ua)(Fa(w))

dD(w)
≤ 1

ca
near any a ∈ ∂D. (4)

Then, by Proposition 2, we may find a finite set M ⊂ ∂D and a constant c1 > 0 such that

sD∩Ua (z, w) ≥ 1

4
log

dD(z)

dD(w)
− c1, z, w ∈ D ∩ Va, a ∈ M,

where Va ⊂ Ua is a neighborhood of a such that ∂D ⊂ ∪a∈M Va .
Denote now by SD the Kobayashi or Bergman metrics of D. By localization principles

(cf. [10, Proposition 7.2.9 and Proposition 6.3.5], since D is pseudoconvex), there exists a
constant c2 > 0 such that

SD ≥ 4c2SD∩Ua on (D ∩ Va)× C
n .

Let Wa � Va be such that W = ∪a∈M Wa does not intersect K and contains ∂D. Set
r = mina∈M dist(∂Wa, ∂Va).

Let ε > 0. Since sD is the integrated form of SD , for any z ∈ K and w ∈ D ∩ W , there
exists a smooth curve γ : [0, 1] → D with γ (0) = z, γ (1) = w and

sD(z, w)+ ε >

1∫

0

SD(γ (t); γ ′(t))dt.

Let t1 = max{t ∈ (0, 1) : γ (t) ∈ G = D \ W }. Choose a point a1 ∈ M such that
Bn(γ (t1), r) ⊂ Va1 . Let t2 = sup{t ∈ (t1, 1] : γ ([t1, t)) ∈ Va1} and etc. In this way, we
may find numbers 0 < t1 < · · · < tN+1 = 1 and points a1, . . . , aN+1 ∈ M such that

5 Some difficulty arises from the fact that, in contrast to invariant metrics, general localization principles
for invariant distances are not known. However, a strong localization principle holds for kD and cD if D is
strongly pseudoconvex (see [18, Proposition 3, Theorem 1].
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Estimates of invariant distances 1601

γ [t j , t j+1) ⊂ D ∩ Va j and ||γ (t j+1)− γ (t j )|| ≥ r, 1 ≤ j ≤ N . Then

sD(z, w)+ ε > c2

N∑
j=1

sD∩Ua j
(γ (t j ), γ (t j+1))

≥ c2

N∑
j=1

log
dD(γ (t j ))

dD(γ (t j+1))
− c3 N

≥ c2 log
dist(G, ∂D)

dD(w)
− c3 N ,

where c3 = 4c1c2.
On the other hand, since D is a bounded domain, there exists a constant c4 > 0 such that

sD(z1, z2) ≥ c4||z1 − z2||. Then

sD(z, w)+ ε >

N∑
j=1

sD(γ (t j ), γ (t j+1)) ≥ c4r N .

So, (
1 + c3

c4r

)
(sD(z, w)+ ε) ≥ c2 log

dist(G, ∂D)

dD(w)
.

The case when w ∈ G is trivial which completes the proof of the lower bound.
The proof of the upper bound is easier. Fix a point a ∈ ∂D. It is enough to find a constant

c′
a,K > 0 such that the estimate holds for w near a. Take a point u ∈ Ua and a neighborhood

Va � Ua of a and a point u ∈ D ∩ Ua . Proposition 1, (3) and (4) imply that

kD(z, w) ≤ kD(z, u)+ kD(u, w) ≤ kD(z, u)+ kD∩U (u, w)

≤ 1/c′
a,K − c′

a,K log dD(w), z ∈ K , w ∈ D ∩ Va .

The upper bound for bD follows similarly. It suffices to use that

bD ≤ c̃abD∩Ua ≤ c̃acnkD∩Ua

in view of [10, Proposition 6.3.5] and (1).

Proof of Proposition 5 for cD and lD We may find a Dini-smooth Jordan curve ζ such that
ζ = ∂D near p and D ⊂ G := ζext. Take a point a �∈ G and consider the union Ge of
0 and the image of G under the map ϕ : z → (z − a)−1. There exists a conformal map
ψ : Ge → D. It extends to a C1-diffeomorphism from Ge to D (cf. [20, Theorems 3.5]).
Setting η = ψ ◦ ϕ, then

cD(z, w) ≥ cD(η(z), η(w)).

Now the lower bound for cD follows by the same bound for cD and an inequality of type (4).
The estimate

lD(z, w) ≤ −1

2
log dD(w)− c, z ∈ K , w ∈ D ∩ V

follows by (3). It can be also obtained in the following way. There exist a Dini-smooth domain
simply connected domain Gi ⊂ D and a neighborhood V of p such that ∂G ∩ V = ∂D ∩ V .
Take a point u ∈ V . Since lD = kD , then

kD(z, w) ≤ kD(z, u)+ kGi (u, w).
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1602 N. Nikolov

It remains to repeat the final arguments from the first paragraph.

Proof of Proposition 5 for bD
6 Choosing G as above, then

bD(z, w) = bη(D)(η(z), η(w)).

By the Dini-smoothness,

lim
z→p

dη(D)(η(z))

dD(z)
= |η′(p)|.

We may assume that η(p) = 1. So, it is enough to get the estimates for D ⊂ D such that
F = D ∩ D(1, r) ⊂ D for some r ∈ (0, 1).

First, we shall prove that if 0 < r ′ < r , then
√

2bD(z, w) ≤ − log dD(w)+ c′, z ∈ K , w ∈ F ′ = D ∩ D(1, r ′)

for some constant c′ > 0.
For a domain � ⊂ C set β�(z) = B�(z; 1) and κ�(z) = κ�(z; 1). Let F̌ = D \ F and

lD(u, F̌) = inf
w∈F̌

lD(u, w).

Then, for any r ′′ ∈ (r ′, r), we may find a constant c̃ > 0 such that

βD(u) ≤ βF (u)

√
K F (u)

KD(u)
=

√
2κ2

F (u)

κD(u)

≤ √
2 coth2 lD(u, F̌)κD(u) ≤

√
2

1 − |u|2 + c̃, u ∈ F ′′ = D ∩ D(1, r ′′).

(for the equality use that F is biholomorphic to D and for the inequality “between the lines”
cf. [10, Proposition 7.2.9]).

Let z ∈ K , w ∈ F ′ and w′ = [0, w] ∩ ∂D(1, r ′′). Then

bD(z, w) ≤ bD(z, w
′)+ |w − w′|

⎛
⎝c̃ + √

2

1∫

0

dt

1 − |w′ + t (w − w′)|2

⎞
⎠

≤ (− log dD(w)+ c′)/
√

2

for some constant c′ > 0.
Now, shrinking r such that D(1, r) ⊂ U , it remains to prove that

√
2bD(z, w) ≥ − log dD(w)− c′′, z ∈ F̌, w ∈ F ′

for some constant c′′ > 0.
We have that

βD(u) ≥ βD(u)

√
KD(u)

K F (u)
=

√
2κ2

D
(u)

κF (u)

≥ √
2 tanh lD(u, F̌)κD(u) ≥

√
2

1 − |u|2 − ĉ, u ∈ F ′′.

6 We have to modify the previous proof, since the Bergman distance is not monotone under inclusion of planar
domains; to see this, use [15, Example 7].
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For z ∈ F̌, w ∈ F ′, and ε > 0, there exists a smooth curve γ : [0, 1] → D with

bD(z, w)+ ε >

1∫

0

βD(γ (t))|γ ′(t)|dt.

Let t0 = sup{t ∈ (0, 1) : γ (t) �∈ F ′′}. Then,

bD(z, w)+ ε >

1∫

t0

bD(γ (t))|γ ′(t)|dt ≥ b̂D(w, F̌),

where b̂D is the integrated form of the Finsler pseudometric

β̂D(u; X) = |X |
( √

2

1 − |u|2 − ĉ

)+
.

It remains to use that, shrinking r ′ (if necessary),

b̂D(w, F̌) ≥ (− log dD(w)− c′′)/
√

2

for some constant c′′ > 0 (cf. [3, Theorem 1.1]).

Proof of Corollary 6 Since kD and bD are the integrated forms of κD and βD , the bound-
edness from below follows by the first inequality in Proposition 5 (cf. the proof of [10,
Proposition 10.2.6]). Choosing a point a ∈ D, the boundedness from above is a consequence
of the inequality sD(z, w) ≤ sD(z, a)+ sD(a, w) and the second inequality in Proposition 5.

Proof of Proposition 7 In virtue of the inequality cD ≤ kD and Corollary 6, we have to prove
only the boundedness from below. For this, take disjoint Dini-smooth Jordan curves ζ ′ and
ζ ′′ such that ζ ′ = ∂D near p, ζ ′′ = ∂D near q and D ⊂ G := ζ ′

ext ∩ ζ ′′
ext. Note that any

Dini-smooth bounded double-connected planar G̃ domain can be conformally map to some
annulus Ar = {z ∈ C : 1/r < |z| < r}(r > 1), and the respective mapping extends to a

C1-diffeomorphism from G̃ to Ar .7

Then, proceeding similarly to the proof of Proposition 5 for cD , it is enough to show that

2cAr (z, w)+ log dAr (z)+ log dAr (w)

is bounded from below for z ∈ R near r and w near p, where |p| = 1/r ; this is equivalent to

m Ar (z, w) := tanh cAr (z, w) ≥ 1 − cdAr (z)dAr (w)

for some constant c > 0.
Recall that (cf. [10, Proposition 5.5])

m Ar (z, w) = f (z, w) f (1/z,−|w|)
r |w| ,

7 To see this, we can proceed as follows (S. R. Bell, private communication). First, take a conformal mapping
ϕ1 from the domain bounded by the outer boundary of G̃ to D. Next, choose a point a in the interior of the inner
boundary � of ψ1(G̃) and set ψ2 : z → (z − a)−1. Consider now a conformal mapping ψ3 from the domain
bounded byψ2(�) to D. Then,ψ = ψ3 ◦ψ2 ◦ψ1 maps conformally G̃ to a bounded double-connected planar
domain G′ with real-analytic boundary. It remains to apply the reflection principle to a conformal mapping
from G′ to Ar .
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1604 N. Nikolov

where f is a holomorphic function on Ar × Ar \ {u = v ∈ ∂Ar } and | f (u, v)| = 1 if
|u| = r, v ∈ Ar or u ∈ Ar , |v| = 1/r(u �= v).

In particular,

∂n f

∂un
= ∂n f

∂vn
= 0, n ∈ N,

at any point (u, v) with |u| = r and |v| = 1/r . Then, by the Taylor expansion,

| f (z, w)− f (r, w(r |w|)−1)| ≤ c1dAr (z)dAr (w).

This implies that

| f (z, |w|)− f (r, 1/r)| ≤ c1dAr (z)dAr (|w|)
(the constant can be chosen the same for z near r and w away from r ). Since f (r, ·) is a
unimodular constant and dAr (w) = dAr (|w|), it follows that

|m Ar (z, w)− m Ar (z, |w|)| ≤ c2dAr (z)dAr (|w|).
Further, cAr (z, |w|) = cAr (z, t)+ cAr (t, |w|) for t ∈ [|w|, z] (cf. [10, Lemma 5.11(b)]).

Then, Proposition 5 implies that

m Ar (z, |w|) ≥ 1 − c3dAr (z)dAr (|w|).
Hence we may choose c = c2 + c3 which completes the proof.

Proof of Proposition 8 Using Corollary 6 and Proposition 7, it is enough to prove the inequal-
ities for z and w near a fixed point p ∈ ∂D. Moreover, it is easy to see that these inequalities
are equivalent to

|z − w|√
cdD(z)dD(w)+ |z − w|2 ≤ tanh cD(z, w) ≤ tanh lD(z, w)

≤ |z − w|√
c−1dD(z)dD(w)+ |z − w|2

for some constant c ≥ 1.8

To prove the lower bound for tanh cD(z, w), let η be as in the proof of Proposition 5 for
cD and lD . Then, it is not difficult to find a constant c1 > 0 such that

tanh cD(z, w) ≥ tanh cD(z1, w1) ≥ |z1 − w1|√
c1dD(z1)dD(w1)+ |z1 − w1|2

,

where z1 = η(z) and w1 = η(w). It remains to use that, similarly to (4), dD ≥ c2dD and
|z1 − w1| ≥ c2|z − w| for some constant c2 > 0.

The proof of the upper bound for tanh lD(z, w) is similar (by using Gi from the second
part of the proof mentioned above) and we skip it.

Proof of Proposition 9 By the Köbe uniformization theorem, we may assume that ∂D con-
sists of disjoint circles. Using Proposition 8 and compactness, it is enough to prove that for
any point p ∈ ∂D,

lim
z �=w→p

cD(z, w)

lD(z, w)
= 1.

8 These estimates imply the bounds for the Green function gD from the crucial Lemma 4.2 in [17], since
tanh cD ≤ exp(−2πgD) ≤ tanh lD .
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Applying an inversion, we may suppose that the outer boundary of D is the unit circle � and
p ∈ �. Let U be a disk centered at p such that D ∩ U ⊂ D. Then,

1 ≥ cD(z, w)

lD(z, w)
≥ cD(z, w)

lD∩U (z, w)
= kD(z, w)

kD∩U (z, w)
.

Considering D as a part of the unit ball in C
2, it follows that the last ratio tends to 1 as a

particular case of the same result for strongly pseudoconvex domains (see [18, Proposition 3]).
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