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Abstract We study the composition operator T f (g) := f ◦ g on Besov spaces Bs
p,q(R). In

case 1 < p < +∞, 0 < q ≤ +∞ and s > 1 + (1/p), we will prove that the operator T f

maps Bs
p,q(R) to itself if, and only if, f (0) = 0 and f belongs locally to Bs

p,q(R). For the
case p = q , i.e., in case of Slobodeckij spaces, we can extend our results from the real line
to R

n .
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1 Introduction

The present paper is a continuation of our earlier investigations, see [13–15] as well as [20],
on composition operators, i.e., mappings

T f : g �→ f ◦ g, g ∈ E,
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1520 G. Bourdaud et al.

where f is a function of R to itself and E is a Besov or Lizorkin-Triebel space. Except the
trivial case that f is linear, these operators are nonlinear. The theory of these mappings is
rather incomplete, in particular in the framework of function spaces with fractional order of
smoothness. A survey about the state of the art from our point of view has been given in [16].

Besov spaces represent one approach to fill in the gaps between Sobolev spaces W m
p (R

n),
with integer exponent m, by introducing spaces of fractional order of smoothness. Before
turning to our main results with respect to Besov spaces, we recall what is known in case of
Sobolev spaces.

Proposition 1 Let n be a natural number ≥1, let m be a natural number ≥ 2, and 1 ≤ p <
+∞.

(i) Let f ∈ Ẇ 1∞ ∩ Ẇ m
p (R). For all g ∈ Ẇ 1∞ ∩ W m

p (R
n), it holds

‖ f ◦ g‖Ẇ m
p

≤ c
(‖ f ‖Ẇ 1∞ + ‖ f ‖Ẇ m

p

) ‖g‖W m
p

(
1 + ‖∇g‖∞

)m−1−(1/p) (1)

with a constant c independent of f and g.
(ii) Let f ∈ Ẇ 1∞ ∩ Ẇ m

p (R). For all g ∈ L∞ ∩ W m
p (R

n), it holds

‖ f ◦ g‖Ẇ m
p

≤ c
(‖ f ‖Ẇ 1∞ + ‖ f ‖Ẇ m

p

) ‖g‖W m
p

(
1 + ‖g‖∞

)m−1−(1/p) (2)

with a constant c independent of f and g.
(iii) The operator T f maps W m

p ∩ L∞(Rn) to itself if, and only if, f ∈ W m,�oc
p (R) and

f (0) = 0.

For a proof of the second statement, we refer to [8], see in particular Proposition 4, estimate
(18)1. The first statement follows by a minor modification of the proof. Sufficiency in part
(iii) is a consequence of (ii). Necessity is more or less obvious.

Based upon the last statement in Proposition 1, we believe on the following variant in case
of Besov spaces on R

n :

Conjecture 1 If s > 1+(1/p), 1 ≤ p < ∞ and 0 < q ≤ ∞, then T f maps Bs
p,q ∩L∞(Rn)

to itself if, and only if, f ∈ Bs,�oc
p,q (R) and f (0) = 0.

We refer to [9] for a more extended introduction into Conjecture 1. For 0 < s < 1, the
characterization of all f such that T f takes Bs

p,q(R
n) to itself has been known for a longer

time, see [5,16]. In case 1 < s < 1 + (1/p) not so much is known, even when we restrict
us to n = 1. We refer to [16,19] and [23, 5.3] for some sufficient conditions, and to [9] for a
reasonable conjecture.

In our earlier articles, we established Conjecture 1 in case n = 1, p > 1, with some
restrictions on q , including the case q ≥ p. In comparison with those works, we have
obtained progresses in three different directions. First of all, we have been able to remove
the restrictions on q . Second, we improved the inequalities reflecting the acting condition
T f (Bs

p,q(R)) ⊂ Bs
p,q(R). Finally, based on these extensions and improvements, we can deal

with E being the Slobodeckij spaces on R
n .

Our main tools in the proofs are always a combination of appropriate characterizations
by differences in the function spaces, including various embeddings between them. In prin-
ciple, this is not complicated. However, the main difficulty in our proof consists in finding a

1 This estimate must be corrected in [8]: the term ‖ f ‖Ẇ 1∞ + ‖ f ‖Ẇ m
p

is missing.
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Besov spaces on the real line 1521

clever decomposition of the term ‖ f ◦ g‖E to apply these tools. These rather sophisticated
decompositions depend on s and p.

The homogeneous Besov spaces will play an important technical role in our work. We need
their definition by the Littlewood–Paley decomposition as well as their characterizations by
differences. However, the link between these two points of view is not completely referenced
in the literature (in our opinion). For this reason, we will give a complete proof of the
equivalence in the Appendix at the end of the paper. Furthermore, a number of basic properties
of homogeneous Besov spaces is either recalled or proved there. In our opinion, Sect. 4 (the
Appendix) is of self-contained interest.

1.1 Notation and plan of the paper

The paper is organized as follows. In Sect. 2, we state our main results. The next section is
devoted to the proofs. In Sect. 4, we collect definitions and basic properties of the function
spaces under consideration.

As usual, N denotes the natural numbers, N0 the natural numbers including 0, Z the
integers, and R the real numbers. The integer part of a real number x is denoted by [x]. If A
is any finite set, we denote by Card A its cardinal number. All functions are assumed to be
real-valued, except in Sect. 4.

If E is a quasi-Banach function space on R
n , we denote by E�oc the collection of all

functions f such that the product ϕ f belongs to E , for all ϕ ∈ D(Rn). If E and F are
quasi-Banach spaces, then the symbol E ↪→ F indicates a continuous embedding. All the
function spaces we consider are subspaces of L�oc

1 (Rn), i.e., spaces of equivalence classes
w.r.t. almost everywhere equality. However, if such an equivalence class contains a continuous
representative, then usually we work with this representative and call also the equivalence
class a continuous function.

As usual, the symbol c denotes a positive constant which depends only on the fixed
parameters n, s, p, q , unless otherwise stated; its value may vary from line to line.

If p ∈ [1,+∞] and m ∈ N, we denote by ‖ f ‖p the norm of a function f in L p(R
n),

by W m
p (R

n) the usual Sobolev space, and Ẇ m
p (R

n) its homogeneous counterpart. For the
definitions of the inhomogeneous as well as the homogeneous Besov spaces, we refer to
Sect. 4. General information about these function spaces can be found, e.g., in [22,23,25–
27].

The Fourier transform of a function f ∈ L1(R
n) is defined by

f̂ (ξ) :=
∫

Rn

f (x) e−i x ·ξ dx .

It is extended to tempered distributions in the usual way.
We choose, once and for all, a cutoff function, i.e., a radial, positive, C∞ function ρ such

that 0 ≤ ρ ≤ 1, ρ(ξ) = 1 for |ξ | ≤ 1, ρ(ξ) = 0 for |ξ | ≥ 3/2. We associate with ρ the
sequence of operators (S j ) j∈Z defined by

Ŝ j f (ξ) := ρ
(

2− jξ
)

f̂ (ξ), ∀ξ ∈ R
n . (3)

Clearly, the operator S j is defined on S ′(Rn) and takes values in the space of analytical
functions of exponential type.
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2 Statement of the main results

We prefer to formulate the results for the one-dimensional case and the n-dimensional case
separately.

2.1 Results in the one-dimensional case

Our main results consist in the following two theorems.

Theorem 1 Let 1 < p < +∞, 0 < q ≤ +∞ and s > 1 + (1/p). For a Borel measurable
function f : R → R, the composition operator T f acts on Bs

p,q(R) if, and only if, f (0) = 0

and f ∈ Bs,�oc
p,q (R).

The necessity part of Theorem 1 is almost immediate: it suffices to test T f on a function
g ∈ D(R) such that g(x) = x on an arbitrary bounded interval of R.

The sufficiency part of Theorem 1 relies upon a precise estimate of the quasi-norm of
f ◦ g. For the formulation of this result, it is convenient to introduce the space

Bs
p,q(R

n) := { f ∈ L∞(Rn) : ‖ f ‖Ḃs
p,q
< +∞}, (4)

endowed with the quasi-norm

‖ f ‖Bs
p,q

:= ‖ f ‖∞ + ‖ f ‖Ḃs
p,q
,

see Sect. 4.2 for the definition of the homogeneous quasi-seminorm ‖·‖Ḃs
p,q

. The real number

δ := s −1−(1/p)will play a central role in our investigations (as an exponent); this notation
will be used all along the paper (except if several values of s are under consideration, see
Proposition 2 and Sect. 3.1).

Theorem 2 Let s, p, q be real numbers so as in Theorem 1. Then, there exists a constant
c > 0 such that the inequality

‖( f ◦ g)′‖Bs−1
p,q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)δ (5)

holds for all functions f such that f ′ ∈ Bs−1
p,q (R) and all g ∈ Bs

p,q(R).

Let us add a few comments.

(i) The connection between both theorems is clear. From the embedding Bs
p,q(R) ↪→

L∞(R), a consequence of s > 1/p, we derive f ◦ g = f ϕ ◦ g, where ϕ ∈ D(R)
satisfies ϕ(x) = 1 on the range of g. Hence, we can apply Theorem 2 to f ϕ and deduce
the sufficiency part of Theorem 1. Notice that the cutoff function ϕ depends only on
‖g‖∞. Indeed, we can take ϕ(t) := ρ

(
t ‖g‖−1∞

)
. Under the assumptions of Theorem

1, it follows that any composition operator acting on Bs
p,q(R) maps bounded sets to

bounded sets.
(ii) Thus, Conjecture 1 turns out to be true for n = 1 and p > 1. Indeed, we have been able

to prove it also for n = p = 1, but our proof has the following defaults:

• It does not cover the case of s being an integer, i.e., the Besov spaces Bm
1,q(R) for

m = 3, 4, . . ..
• We did not succeed in obtaining the “good” estimate (5); hence, the extension to the

general n-dimensional case is open.
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Besov spaces on the real line 1523

(iii) The exponent δ is known to be sharp in estimate (5), see [15, prop. 16].
(iv) In our earlier publications, we always proved estimates of the type

‖( f ◦ g)′‖Bs−1
p,q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g‖Bs

p,q

)δ
. (6)

Of course, (5) implies (6) in view of the embedding Bs
p,q(R) ↪→ W 1∞(R), since s >

1 + (1/p). The difference between (5) and (6) does not look so important. However, (5)
allows an extension to the n-dimensional case, at least partially, whereas we have been
unable to do this using (6).

(v) Of course, inequality (5) represents the counterpart of (1) in case of Besov spaces. There
should be also a counterpart of (2), reading as:

‖( f ◦ g)′‖Bs−1
p,q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(1 + ‖g‖∞)δ .

Such an optimal estimate should open the door to an extension to the n-dimensional
case for the natural range of parameters, see [7] for a significant partial result.

2.2 Results in the n-dimensional case

Now, we turn to the consequences of Theorems 1 and 2 for the n-dimensional situation.

Theorem 3 Let 1 < p < +∞ and s > 1 + (1/p). For a Borel measurable function
f : R → R, the composition operator T f acts on Bs

p,p ∩ W 1∞(Rn) if, and only if, f (0) = 0

and f ∈ Bs,�oc
p,p (R).

Remark 1 (i) For s > 0 not being a natural number, the spaces Bs
p,p(R

n) are usually called
Slobodeckij spaces.

(ii) In case 1 < p < +∞, we have

Bs
p,p ∩ W 1∞(Rn) = Bs

p,p(R
n) if s >

n

p
+ 1.

Thus, the Conjecture 1 holds true for Slobodeckij spaces Bs
p,p(R

n) under the condition
s > (n/p)+ 1. However, the full Conjecture 1 remains open if n > 1, unlike in the case
of the Sobolev spaces, see Proposition 1.

Theorem 4 Let 1 < p < +∞ and s > 1 + (1/p). Then, there exists a constant c > 0 such
that the inequality

‖ f ◦ g‖Bs
p,p

≤ c ‖ f ′‖Bs−1
p,p

‖g‖Bs
p,p

(1 + ‖∇g‖∞)δ

holds for all functions f such that f ′ ∈ Bs−1
p,p (R) and f (0) = 0, and all g ∈ Bs

p,p ∩Ẇ 1∞(Rn).

When turning to the situation on domains, not so much is changed.

Theorem 5 Let � ⊂ R
n be a bounded Lipschitz domain. Let 1 < p < +∞ and s >

1 + (1/p). For a Borel measurable function f : R → R, the composition operator T f acts

on Bs
p,p ∩ Ẇ 1∞(�) if, and only if, f ∈ Bs,�oc

p,p (R).
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3 Proofs of the main theorems

Here, we collect the proofs of Theorems 2, 4 and 5 (recall that Theorems 1 and 3 follow
easily).

In our preceding papers [13–15,20], we always used, as the first step of the proof of
Theorem 2, some arguments to simplify the situation. We will do this here as well. We claim
that Theorem 2 can be derived from the following statement:

Proposition 2 Let 1 < p < +∞, 0 < q ≤ +∞ and 1 + (1/p) < s ≤ 2 + (1/p). There
exists a constant c > 0 such that the estimate

‖ f ◦ g‖Bs
p,q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)s−1−(1/p) (7)

holds for all functions f and g satisfying the following conditions:

(i) f is of class C2, f ′ ∈ Bs−1
p,q (R) and f (0) = 0,

(ii) g is real analytic and g ∈ Bs
p,q(R).

3.1 From Proposition 2 to Theorem 2

Let us introduce the following intermediate property:
(Qs) For some constant c > 0 depending only on s, p and q , the inequality

‖( f ◦ g)′‖Bs−1
p,q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)s−1−(1/p) (8)

holds true for all functions f such that f ′ ∈ Bs−1
p,q (R) and all g ∈ Bs

p,q(R).

3.1.1 From Proposition 2 to (Qs) for 1 + (1/p) < s ≤ 2 + (1/p).

We give here a sketchy proof and refer to our previous articles for details, in particular to
[20, sect. 4.1].

Step 1. Assuming Proposition 2, let us prove the inequality (7) under the sole assumptions
f ′ ∈ Bs−1

p,q (R), f (0) = 0 and g ∈ Bs
p,q(R).

We use the cutoff function ρ and the operators S j introduced in Notation, see (3). Then,
we define

g j := S j g, f j := S j f − S j f (0)ρ.

The functions g j and f j are real analytic, and by standard estimations, it holds

‖g j‖Bs
p,q

≤ c ‖g‖Bs
p,q
, ‖g′

j‖∞ ≤ c ‖g′‖∞,
‖ f ′

j‖Bs−1
p,q

≤ c
(‖ f ′‖Bs−1

p,q
+ |S j f (0)|),

where the constant c does not depend on j . Applying Proposition 2 to f j and g j , and
using the above estimates, we obtain

‖ f j ◦ g j ‖Bs
p,q

≤ c (‖ f ′‖Bs−1
p,q

+ |S j f (0)|) ‖g‖Bs
p,q

(
1 + ‖g′‖∞

)s−1−(1/p)
.

It is easily seen that f j ◦ g j tends to f ◦ g in L p(R), and that S j f (0) tends to 0, as
j → +∞. By using the Fatou property of the Besov space, see [20, prop. 3.18], we
complete the proof of (7).
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Besov spaces on the real line 1525

Step 2. Now, assume f ′ ∈ Bs−1
p,q (R) and g ∈ Bs

p,q(R).

Let us define f̃ := f − f (0). Then, we can apply Step 1 to the functions f̃ and g. By
Proposition 8 and by embedding (55), we deduce

‖( f ◦ g)′‖Bs−1
p,q

= ‖( f̃ ◦ g)′‖Bs−1
p,q

≤ c1 ‖ f̃ ◦ g‖Bs
p,q

≤ c2 ‖ f̃ ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)s−1−(1/p)
.

This complete the proof of (8).

3.1.2 End of the proof of Theorem 2

By Sect. 3.1.1, the proof of Theorem 2 will be complete if we establish the following:

Claim: (Qs) implies (Qs+1) for all s > 1 + (1/p).

Proof of the Claim Let us assume (Qs). Let f, g be such that f ′ ∈ Bs
p,q(R) and g ∈ Bs+1

p,q (R).
By Proposition 8 and by embedding (55), it holds

‖g′‖Bs
p,q

≤ c1 ‖g′‖Bs
p,q

≤ c2 ‖g‖Bs+1
p,q
.

By Proposition 12 and by (39), it holds f ′′ ∈ Bs−1
p,q (R), g ∈ Bs

p,q(R), and

‖ f ′′‖Bs−1
p,q

≤ c ‖ f ′‖Bs
p,q
, ‖g‖Bs

p,q
≤ c ‖g‖Bs+1

p,q
. (9)

Applying (Qs) to f ′ and g, we deduce ( f ′ ◦ g)′ ∈ Bs−1
p,q (R) and

‖( f ′ ◦ g)′‖Bs−1
p,q

≤ c ‖ f ′′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)s−1−(1/p)
.

By Proposition 12 and by (9), it holds

‖ f ′ ◦ g‖Bs
p,q

≤ c
(
‖ f ′‖Bs

p,q
‖g‖Bs+1

p,q

(
1 + ‖g′‖∞

)s−1−(1/p) + ‖ f ′‖∞
)
.

Applying Proposition 11 to f ′ ◦ g and g′, we obtain

‖( f ◦ g)′‖Bs
p,q

≤ c
(
‖ f ′ ◦ g‖Bs

p,q
‖g′‖∞ + ‖ f ′ ◦ g‖∞ ‖g′‖Bs

p,q

)

≤ c ‖ f ′‖Bs
p,q

‖g‖Bs+1
p,q

( (
1 + ‖g′‖∞

)s−1−(1/p) ‖g′‖∞ + 1
)
.

The estimate (Qs+1) follows at once. ��
3.2 Proof of Proposition 2: a preparation

First, we begin with some notation. For all functions f on R
n , we set

	h f (x) := f (x + h)− f (x).

The mth power of 	h is defined inductively as usual:

	1
h := 	h; 	m+1

h := 	h ◦	m
h , ∀m ∈ N.
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1526 G. Bourdaud et al.

The following formulas allow the computation of	2
h for the product and the composition

of functions f, g:

	2
h( f g)(x) = g(x)	2

h f (x)+ f (x + 2h)	2
h g(x)+ 2	h f (x + h)	h g(x), (10)

2	2
h( f ◦ g)(x) = f (g(x + 2h))− f (2g(x + h)− g(x))

+ f (g(x))− f (2g(x + h)− g(x + 2h))

+ f (g(x + 2h))+ f (2g(x + h)− g(x + 2h))− 2 f (g(x + h))

+ f (g(x))+ f (2g(x + h)− g(x))− 2 f (g(x + h)).

We will use the following modified L p-moduli of continuity:

�m
p ( f ; t) :=

( ∫

Rn

sup
|h|≤t

|	m
h f (x)|p dx

)1/p

.

The Hardy–Littlewood maximal function Mg of a locally integrable function g on R is
defined by

Mg(x) := sup
x∈I

1

|I |
∫

I

|g(y)| dy, ∀x ∈ R.

Here, the supremum is taken with respect to all intervals I containing x , and |I | denotes
the length of I . In our proof below the Wiener classes BVp will play an important role. Let
us recall its definition. For a function g : R → R, we denote by ‖g‖BVp the supremum of
numbers

(
N∑

k=1

|g(bk)− g(ak)|p

)1/p

,

taken over all finite sets {]ak, bk[ ; k = 1, . . . , N } of pairwise disjoint open intervals. A
function g is said to be of bounded p-variation if ‖g‖BVp < +∞. The collection of all such
functions is called a Wiener class and denoted by BVp . Their connection with Besov spaces
is given by the Peetre embedding:

B1/p
p,1 (R) ↪→ BVp(R), 1 ≤ p < +∞, (11)

see [22, thm. 7, p. 122] or [11]. We refer also to [12,28] for some further properties of these
classes.

Notice that our function g belongs to Bs
p,q(R)with p < ∞; hence, it cannot be a constant

except if g = 0. Thus, all along the proof of Proposition 2, we will assume that ‖g′‖∞ > 0.
Also, by assumption s > 1 + (1/p), it holds g ∈ C0(R). Since g is assumed to be real
analytic, this implies that the set of zeros of g′ is a nonempty discrete set in R.

Our proof will be divided into three parts, corresponding to the following cases:

1 + (1/p) < s < 2, s = 2, 2 < s ≤ 2 + (1/p).

Convention: In estimations of 	h and 	2
h , we often restrict ourselves to h > 0. Clearly,

similar arguments can be applied for h < 0.
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Besov spaces on the real line 1527

3.3 Proof of Proposition 2: the case 1 + (1/p) < s < 2

This case was the first one which has been solved, with some restriction on q , see [6]. Then,
the same basic ideas worked for 2 ≤ s ≤ 2 + (1/p), with more technicalities.

We apply Propositions 7, 8, and 9 in Sect. 4. This means we have to estimate

‖ f ◦ g ‖p +
⎛

⎝
1∫

0

(‖	h(( f ◦ g)′)‖p

hs−1

)q dh

h

⎞

⎠

1/q

.

Concerning the first term, we have

‖ f ◦ g ‖p = ‖ f ◦ g − f (0) ‖p ≤ ‖ f ′‖∞ ‖g‖p.

(The above argument will work also for s ≥ 2, so we will not refer anymore to it).
Now, we turn to the estimation of the second term. Let us define

U (h) :=
( ∫

R

|g′(x)|p |	h( f ′ ◦ g)(x)|p dx
)1/p

.

Since |	h( f ◦ g)′(x)| ≤ ‖ f ′‖∞ |	h(g
′)(x)| + |g′(x)| |	h( f ′ ◦ g)(x)|, we are reduced to

prove the following estimate:

⎛

⎝
1∫

0

(
h1−sU (h)

)q dh

h

⎞

⎠

1/q

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

(
1 + ‖g′‖∞

)δ
. (12)

To prove (12), we observe that the set {x ∈ R : g′(x) �= 0} is the union of a finite or
countable family (I�)�∈
 of open disjoint intervals. For any h > 0, we denote by I ′

�,h the set
of x ∈ I� whose distance to the boundary of I� is greater than 2h, and we set

I ′′
�,h := I� \ I ′

�,h, a� := sup
I�

|g′|, g� := g|I� .

Then, we have the following inequality:
(

∑

�

a p
�

)1/p

≤ ‖g′‖BVp . (13)

Proof of (13) Since s − 1 > 1/p > 0, g′ is a member of C0(R). Then, there exists α� ∈ I�
such that a� = |g′(α�)|. Moreover, since g′ vanishes at the end points of I�, it holds α� ∈ I�.
As observed before, it holds I� �= R: thus, we can consider one of the end points of I�, say β�.
Let J� be the open interval with end points α� and β�. The intervals J� are pairwise disjoint,
since J� ⊂ I�. As a consequence, it holds

∑

�

a p
� =

∑

�

|g′(α�)− g′(β�)|p ≤ ‖g′‖p
BVp

.

This completes the proof of (13). ��
Let us notice that I ′

�,h is an open interval, possibly empty. In case it is not empty, we have

|	h g(g−1
� (y))| ≤ a� h, ∀y ∈ g(I ′

�,h). (14)
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The set I ′′
�,h is an interval of length ≤4h, or the union of two intervals of length 2h, and g′

vanishes at one of the end points of this or those intervals. Now, we introduce

U1(h) :=
( ∑

�

∫

I ′
�,h

|g′(x)|p |	h( f ′ ◦ g)(x)|p dx

)1/p

and U2(h), defined in the same way, but replacing I ′
�,h by I ′′

�,h .

3.3.1 Estimation of U1

By the change of variable y := g�(x) on I ′
�,h and by (14), it holds

U1(h) ≤
(

∑

�

a p−1
�

(
�1

p( f ′; a�h)
)p

)1/p

. (15)

We introduce the following notation:

• ω(t) := t1−s �1
p( f ′ ; t), t > 0 ;

• Zm := {� ∈ 
 : 2−m−1‖g′‖∞ < a� ≤ 2−m‖g′‖∞}, m ∈ N0 .

By (13), it follows

( ∞∑

m=0

2−mp (Card Zm)

)1/p

≤ 2 ‖g′‖−1∞

(
∑

�

a p
�

)1/p

≤ 2 ‖g′‖−1∞ ‖g′‖BVp .

A fortiori the following estimate holds:

(Card Zm)
1/p ≤ 2m+1‖g′‖−1∞ ‖g′‖BVp , ∀m ∈ N0. (16)

By the estimates (15,16) and by the monotonicity of �1
p , we obtain

U1(h) ≤ c1 hs−1

(
∑

�

asp−1
�

(
ω(a�h)

)p
)1/p

≤ c2 ‖g′‖s−(1/p)∞ hs−1

( ∞∑

m=0

2−m(sp−1)Card (Zm)
(
ω(2−m h ‖g′‖∞)

)p
)1/p

≤ c3 ‖g′‖δ∞ ‖g′‖BVp hs−1

( ∞∑

m=0

2−mpδ
(
ω(2−m h ‖g′‖∞)

)p
)1/p

.

By condition p ≥ 1, the above �p-norm is less than the corresponding �1-norm. Hence,

U1(h) ≤ c ‖g′‖δ∞ ‖g′‖BVp hs−1
∞∑

m=0

2−mδ ω(2−m h ‖g′‖∞). (17)

Then, we apply the following result:
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Lemma 1 For all α > 0 and all q ∈]0,+∞], there exists c = c(α, q) > 0 such that the
inequality

⎛

⎝
∞∫

0

( ∞∑

m=0

2−mα u(t 2−m A)
)q dt

t

⎞

⎠

1/q

≤ c

⎛

⎝
∞∫

0

u(t)q
dt

t

⎞

⎠

1/q

(18)

holds for all Borel measurable function u : ]0,+∞[→ [0,+∞[ and all A > 0.

Proof of Lemma 1 By the change of variable t ′ := t A, we see that the left-hand side of (18)
does not depend on A. Thus, we can assume A = 1.

We put r := min(1, q) and we use both the embedding of �r into �1 and the Minkowski
inequality w.r.t. q/r ≥ 1. We obtain

⎛

⎝
∞∫

0

( ∞∑

m=0

2−mα u(t 2−m)

)q dt

t

⎞

⎠

1/q

≤
⎛

⎝
∞∫

0

( ∞∑

m=0

2−rmα u(t 2−m)r
)q/r dt

t

⎞

⎠

1/q

≤
⎛

⎝
∞∑

m=0

2−rmα
( ∞∫

0

u(t 2−m)q
dt

t

)r/q
⎞

⎠

1/r

=
⎛

⎝
∞∑

m=0

2−rmα
( ∞∫

0

u(t)q
dt

t

)r/q
⎞

⎠

1/r

.

We conclude the proof by using condition rα > 0. ��
Now applying (17) and Lemma 1, we deduce

( ∞∫

0

(
h1−sU1(h)

)q dh

h

)1/q

≤ c1 ‖g′‖δ∞ ‖g′‖BVp

( ∞∫

0

ω(t)q
dt

t

)1/q

≤ c2 ‖g′‖δ∞ ‖g′‖BVp ‖ f ′‖Bs−1
p,q
,

see Proposition 13 in the Appendix. By the Peetre embedding (11), in combination with
Proposition 8 in the Appendix, we conclude that (12) holds with U1 instead of U .

3.3.2 Estimation of U2

By the inequality |	h( f ′ ◦ g)(x)| ≤ �1∞( f ′; h ‖g′‖∞) and the properties of I ′′
�,h , it holds

U2(h) ≤ c �1∞( f ′; h ‖g′‖∞) h1/p

(
∑

�

a p
�

)1/p

.

By condition 0 < δ < 1 and by (13), we deduce

( 1∫

0

(
h1−sU2(h)

)q dh

h

)1/q

≤ c1 ‖g′‖BVp

( 1∫

0

(
h−δ�1∞( f ′; h ‖g′‖∞)

)q dh

h

)1/q

≤ c2 ‖ f ′‖Bδ∞,q
‖g′‖δ∞ ‖g′‖BVp .

With the help of the embedding Bs−1
p,q (R) ↪→ Bδ∞,q(R), see (57) in Sect. 4.6, we conclude

that (12) holds with U2 instead of U .

123



1530 G. Bourdaud et al.

3.4 Proof of Proposition 2: the case s = 2

Because of s = 2, we have δ = 1−(1/p), hence 0 < δ < 1. The use of first-order differences
is not longer possible. Instead, we can work with the second-order differences operator 	2

h
defined in Sect. 3.2, see Propositions 7, 8, and 9 in Sect. 4. By (10), we can write

	2
h(( f ′ ◦ g) g′)(x) = A1(x, h)+ A2(x, h)+ 1

2

6∑

j=3

A j (x, h),

where the A j ’s are defined by:

A1(x, h) := f ′(g(x + 2h))	2
h g′(x),

A2(x, h) := 2	h g′(x)	h( f ′ ◦ g)(x + h),

A3(x, h) := g′(x)
(

f ′(g(x))+ f ′(2g(x + h)− g(x))− 2 f ′(g(x + h))
)
,

A4(x, h) := g′(x)
(

f ′(g(x + 2h))+ f ′(2g(x + h)− g(x + 2h))− 2 f ′(g(x + h))
)
,

A5(x, h) := g′(x)
(

f ′(g(x))− f ′(2g(x + h)− g(x + 2h))
)
,

A6(x, h) := g′(x)
(

f ′(g(x + 2h))− f ′(2g(x + h)− g(x))
)
.

We introduce the notation

Vj (h) :=
⎛

⎝
∫

R

|A j (x, h)|p dx

⎞

⎠

1/p

. (19)

Then, it suffices to prove
⎛

⎝
1∫

0

(
h−1Vj (h)

)q dh

h

⎞

⎠

1/q

≤ c ‖ f ′‖B1
p,q

‖g‖B2
p,q

(
1 + ‖g′‖∞

)δ
. (20)

In some cases, the above estimate will follow by the stronger estimate:

Vj (h) ≤ c hα ‖ f ′‖B1
p,q

‖g‖B2
p,q

(
1 + ‖g′‖∞

)δ
, ∀h ∈]0, 1], for some α > 1. (21)

3.4.1 Estimation of V1

We obtain immediately

( 1∫

0

(
h−1V1(h)

)q dh

h

)1/q

≤ ‖ f ′‖∞
( 1∫

0

(
h−1‖	2

h g′‖p

)q dh

h

)1/q

≤ c ‖ f ′‖∞ ‖g′‖B1
p,q
.

Combined with Propositions 8 and 9 in the Appendix, this yields (20) in case j = 1.

3.4.2 Estimation of V2

Using the embedding

B1
p,q(R) ↪→ Bγp,∞(R),

where γ is any number < 1, see (38) and (39) in Sect. 4.3.2, we derive

V2(h) ≤ c ‖ f ′‖Bδ∞,∞ ‖g′‖δ∞ ‖g′‖B1
p,q

hδ+γ .

123



Besov spaces on the real line 1531

Choosing 1/p < γ < 1, we obtain δ+γ > 1. By embeddings B1
p,q(R) ↪→ Bδ∞,∞(R) ↪→

L∞(R), see (57) and (39) in Appendix, and Proposition 8, we conclude that (21) holds for
j = 2.

3.4.3 Estimation of V3

Notice that
∣
∣ f ′(g(x))+ f ′(2g(x + h)− g(x))− 2 f ′(g(x + h))

∣
∣ =

∣
∣
∣
(
	2
	h g(x) f ′) (g(x))

∣
∣
∣

≤ sup
|θ |≤h‖g′‖∞

∣
∣(	2

θ f ′) (g(x))
∣
∣ .

(22)

With the same notation as in Sect. 3.3, it holds V3(h) ≤ V7(h)+ V8(h), where

V7(h) :=
( ∑

�

∫

I ′
�,h

|A3(x, h)|p dx

)1/p

and V8(h) :=
( ∑

�

∫

I ′′
�,h

|A3(x, h)|p dx

)1/p

.

Estimation of V7

On I ′
�,h , the estimate (22) can be improved as follows:

∣∣∣
(
	2
	h g(x) f ′) (g(x))

∣∣∣ ≤ sup
|θ |≤a�h

∣∣(	2
θ f ′) (g(x))

∣∣ .

Hence,

V7(h) ≤
(

∑

�

a p−1
�

(
�2

p( f ′; a�h)
)p

)1/p

.

Then, we proceed exactly as in Sect. 3.3.1 to obtain

( 1∫

0

(
h−1V7(h)

)q dh

h

)1/q

≤ c1 ‖g′‖δ∞ ‖g′‖BVp ‖ f ′‖B1
p,q

≤ c2 ‖g′‖δ∞ ‖g‖Bs
p,q

‖ f ′‖B1
p,q
.

This yields (20) in case of j = 7.

Estimation of V8

The same arguments as in Sect. 3.3.2 can be applied. We find

V8(h) ≤ �2∞( f ′; h ‖g′‖∞)

⎛

⎜⎜
⎝

∑

�

∫

I ′′
�,h

|g′(x)|p dx

⎞

⎟⎟
⎠

1/p

≤ c h1/p ‖g′‖BVp �
2∞( f ′; h ‖g′‖∞).
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Since h−1 h1/p = h−δ , we deduce

( 1∫

0

(
h−1V8(h)

)q dh

h

)1/q

≤ c1 ‖g′‖BVp

( 1∫

0

(
h−δ �2∞( f ′; h ‖g′‖∞)

)q dh

h

)1/q

≤ c2 ‖g′‖BVp ‖ f ′‖Bδ∞,q
‖g′‖δ∞,

the latter term following from Proposition 9, and the fact that 0 < δ < 2. We conclude with
the help of the embedding B1

p,q(R) ↪→ Bδ∞,q(R). This yields (20) also in case j = 8.

3.4.4 Estimation of V4

We need a further splitting A4 = −A9 + A10, where

A9(x, h) := 	2h(g
′)(x)

(
f ′(g(x + 2h))+ f ′(2g(x+h)− g(x + 2h))− 2 f ′(g(x + h))

)
,

A10(x, h) := g′(x+2h)
(

f ′(g(x + 2h))+ f ′(2g(x + h)− g(x + 2h))− 2 f ′(g(x + h))
)
.

Then, we define V9 and V10 according to (19).

Estimation of V9

It holds:
∣∣ f ′(g(x + 2h))+ f ′(2g(x + h)− g(x + 2h))− 2 f ′(g(x + h))

∣∣

≤ ∣∣ f ′(g(x + 2h))− f ′(g(x + h))
∣∣ + ∣∣ f ′(2g(x + h)− g(x + 2h))− f ′(g(x + h))

∣∣

≤ c hδ ‖ f ′‖Bδ∞,∞ ‖g′‖δ∞.
Thus, the estimation of V9 is similar to that of V2.

Estimation of V10

By a change of variable, it holds

V10(h) =
⎛

⎝
∫

R

|g′(x)|p | f ′(g(x))+ f ′(2g(x − h)− g(x))− 2 f ′(g(x − h))|p dx

⎞

⎠

1/p

.

Thus, the estimation of V10 is similar to that of V3.

3.4.5 Estimation of V5

Taking in account the inequality |	2
h g(x)| ≤ 2h‖g′‖∞, it makes sense to compare |	2

h g(x)|
with hr‖g′‖∞, for some r > 0, to be chosen later on. Then, we introduce the following
notation:

C(h) :=
{

x ∈ R : |	2
h g(x)| ≤ hr‖g′‖∞

}
.

We split V5 w.r.t. to C(h) by setting

V11(h) :=
⎛

⎜
⎝

∫

C(h)

|A5(x, h)|p dx

⎞

⎟
⎠

1/p
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and V12 defined similarly, with R \ C(h) instead of C(h).

Estimation of V12

For all x ∈ R and all h > 0, we have

| f ′(g(x))− f ′(2g(x + h)− g(x + 2h))| ≤ c ‖ f ′‖Bδ∞,∞ ‖g′‖δ∞ hδ

and
( ∫

R\C(h)

|g′(x)|p dx

)1/p

≤ h−r
( ∫

R

|	2
h g(x)|p dx

)1/p

≤ c h2−ε−r‖g‖B2−ε
p,∞ ,

for an arbitrary ε ∈]0, 2[. Hence,

V12(h) ≤ c hδ+2−r−ε ‖ f ′‖Bδ∞,∞ ‖g′‖δ∞ ‖g‖B2
p,q
. (23)

V12 will satisfy (21) if δ+2−r −ε > 1, for a sufficiently small ε. Thus we need the condition

r < 1 + δ. (24)

Estimation of V11

Consider a number v > p, to be fixed later on. By Hölder inequality with exponents v/p
and v/(v − p), we have

V11(h) ≤ ‖g′‖1−(p/v)
p

⎛

⎜
⎝

∫

C(h)

|g′(x)|p
∣∣ f ′(g(x))− f ′(2g(x + h)− g(x + 2h))

∣∣v dx

⎞

⎟
⎠

1/v

.

Using the notations I ′
�,h, I ′′

�,h and a� of Sect. 3.3, we have

V11(h) ≤ ‖g′‖1−(p/v)
p (V13(h)+ V14(h)), (25)

where

V13(h) :=

⎛

⎜⎜
⎝

∑

�

∫

I ′
�,h∩C(h)

|g′(x)|p
∣∣ f ′(g(x))− f ′(2g(x + h)− g(x + 2h))

∣∣v dx

⎞

⎟⎟
⎠

1/v

,

and V14(h) is defined similarly, with I ′′
�,h instead of I ′

�,h .

Estimation of V13

Clearly, for every x ∈ I ′
�,h ∩ C(h), it holds

|	2
h g(x)| ≤ c min

(
h a�, hr‖g′‖∞

)
.

Then, by the change of variable y := g�(x), we have

V13(h) ≤ c

(
∑

�

a p−1
�

(
�1
v

(
f ′; c min

(
h a�, hr‖g′‖∞

)))v
)1/v

. (26)
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Next, we will use the embedding B1
p,q(R) ↪→ Bδ+(1/v)v,∞ (R), see (56) in Sect. 4.6, a conse-

quence of

δ + 1

v
= 1 − 1

p
+ 1

v
< 1.

This yields

�1
v( f ′; t) ≤ c ‖ f ′‖B1

p,q
tδ+(1/v), ∀t > 0.

By (26), we obtain

V13(h) ≤ c1 ‖ f ′‖B1
p,q

( ∑

a�≤hr−1‖g′‖∞

a p−1
� (h a�)

δv+1 +
∑

a�>hr−1‖g′‖∞

a p−1
� (hr ‖g′‖∞)δv+1

)1/v

≤ c2 ‖ f ′‖B1
p,q

( ∑

�

a p
�

)1/v (
hδv+1(hr−1‖g′‖∞)δv + hr(δv+1)‖g′‖δv+1∞ (h−r+1‖g′‖−1∞ )

)1/v
.

By (11) and (13), this implies

V13(h) ≤ c ‖ f ′‖B1
p,q

‖g‖p/v
B2

p,q
‖g′‖δ∞ hrδ+(1/v). (27)

In view of condition (21), we need

rδ + 1

v
> 1. (28)

Estimation of V14

In this situation, for x ∈ I ′′
�,h ∩ C(h), it follows

| f ′(g(x))− f ′(2g(x + h)− g(x + 2h))| ≤ c ‖ f ′‖Bδ∞,∞ ‖g′‖δ∞ hrδ,

resulting in

V14(h) ≤ c ‖ f ′‖Bδ∞,∞

(∑

�

a p
�

)1/v ‖g′‖δ∞ hrδ+(1/v).

Hence, V14 satisfies the same estimate (27) as V13.

Conclusion.
We have to justify that the choice of v and r is possible. First, we observe that

1

δ

(
1 − 1

v

)
→ 1+, for v → p + .

Thus, we can chose v > p such that

1 <
1

δ

(
1 − 1

v

)
< 1 + δ.

Then, we chose r such that

1

δ

(
1 − 1

v

)
< r < 1 + δ.

The last condition implies (24) and (28). This completes the estimation of V5.
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3.4.6 Estimation of V6

We write A6 = −A15 + A16, where

A15(x, h) := 	2h(g
′)(x)

(
f ′(g(x + 2h))− f ′(2g(x + h)− g(x))

)

A16(x, h) := g′(x + 2h)
(

f ′(g(x + 2h))− f ′(2g(x + h)− g(x))
)
.

Then, we define V15 and V16 according to (19). The estimations of V15 and V16 are similar
to that of V2 and V5, respectively.

3.5 Proof of Proposition 2: the case 2 < s ≤ 2 + (1/p)

Since f and g are functions of class C2, it holds

( f ◦ g)′′ = ( f ′′ ◦ g) g′2 + ( f ′ ◦ g) g′′.

Step 1 : Estimation of ( f ′ ◦ g) g′′.
Let β be a parameter such that β ≤ δ and s − 2 < β < 1 (recall that p > 1, hence
s < 3). Then, Bs−1

p,q (R) is embedded into Bβ∞,∞(R), see (39, 57).
A straightforward computation leads to

‖ f ′ ◦ g ‖
Bβ∞,∞

≤ c ‖ f ′‖
Bβ∞,∞

(
1 + ‖g′‖∞

)β
.

By a classical result on multipliers, see [23, thm. 4.7.1], and by assumption β > s − 2,
we deduce

‖ ( f ′ ◦ g) g′′‖Bs−2
p,q

≤ c1 ‖ f ′‖
Bβ∞,∞

(
1 + ‖g′‖∞

)β ‖ g′′‖Bs−2
p,q

≤ c2 ‖ f ′‖Bs−1
p,q

(
1 + ‖g′‖∞

)β ‖ g ‖Bs
p,q
,

see Proposition 8 in the Appendix.

Step 2 : Estimation of ( f ′′ ◦ g) g′2.
We employ Proposition 9(ii). Since 0 < s − 2 < 1, we have to estimate

W (t) :=
( ∫

R

(
t−1

t∫

−t

|	h(( f ′′ ◦ g) g′ 2)(x)| dh
)p

dx
)1/p

.

Similarly to [15, p. 1118], we split the area of integration with respect to h. For x ∈ R,
we define

Q(x) :=
{

h ∈ R : |g′(x + h)| ≤ |g′(x)|
}
,

P(x) :=
{

h ∈ R : |g′(x)| < |g′(x + h)|
}
,

and

Q(x; t) := Q(x) ∩ [−t, t], P(x; t) := P(x) ∩ [−t, t].
On Q(x; t) we will use the elementary identity

	h(( f ′′ ◦ g) g′ 2)(x) = g′(x + h)2	h( f ′′ ◦ g)(x)+ f ′′(g(x))	h(g
′ 2)(x),
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whereas on P(x; t) we will use

	h(( f ′′ ◦ g) g′ 2)(x) = g′(x)2 	h( f ′′ ◦ g)(x)+ f ′′(g(x + h))	h(g
′ 2)(x)

instead. Hence, W (t) ≤ ∑4
j=1 W j (t), where

W1(t) :=
( ∫

R

(
t−1

∫

Q(x;t)
| f ′′(g(x))| |	h(g

′ 2)(x)| dh
)p

dx

)1/p

,

W2(t) :=
( ∫

R

(
t−1

∫

P(x;t)
| f ′′(g(x + h))| |	h(g

′ 2)(x)| dh
)p

dx

)1/p

,

W3(t) :=
( ∫

R

(
t−1

∫

Q(x;t)
|	h( f ′′ ◦ g)(x)| g′(x + h)2 dh

)p
dx

)1/p

,

W4(t) :=
( ∫

R

(
t−1

∫

P(x;t)
|	h( f ′′ ◦ g)(x)| g′(x)2 dh

)p
dx

)1/p

.

3.5.1 Estimations of W3 and W4

We concentrate on W3. The estimation of W4 can be done in a similar way. Using the notation
I�, I ′

�,t , I ′′
�,t , a� and g�, as in Sect. 3.3, we can write W3(t) ≤ W5(t)+ W6(t) where

W5(t) :=
(∑

�

∫

I ′
�,t

(
t−1

∫

Q(x;t)
|	h( f ′′ ◦ g)(x)| g′(x + h)2 dh

)p
dx

)1/p
,

and W6 is defined in the same way, but with I ′′
�,t instead of I ′

�,t .

Estimation of W5
We begin with the elementary inequality

g′(x + h)2 ≤ |g′(x)| |g′(x + h)|, ∀h ∈ Q(x).

Then, we perform the following changes of variables:

y := g�(x) and � := �(h) = g(g−1
� (y)+ h)− y.

Since |�| ≤ al t for all h ∈ [−t, t], see (14), we obtain

W5(t) ≤
⎛

⎜
⎝

∑

�

a p−1
�

∫

R

(
t−1

∫

|�|≤a�t

|	� f ′′(y)| d�
)p

dy

⎞

⎟
⎠

1/p

.

With the abbreviation

ω(t) := t2−s

⎛

⎜
⎝

∫

R

(
t−1

∫

|�|≤t

|	� f ′′(y)| d�
)p

dy

⎞

⎟
⎠

1/p

,
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it follows

W5(t) ≤ c ts−2

(
∑

�

asp−1
�

(
ω(a�t)

)p
)1/p

.

Now, arguing so as in Sect. 3.3.1, we conclude

( 1∫

0

(
t2−s W5(t)

)q dt

t

)1/q

≤ c ‖g′‖δ∞ ‖g′‖BVp ‖ f ′‖Bs−1
p,q
,

where we have used

Ms−2,1,1
p,q ( f ′′) ≤ c ‖ f ′‖Bs−1

p,q
,

see Proposition 14.

Estimation of W6

By definition of Q(x), we find

W6(t) ≤ W7(t)+ 21/p W8(t), 0 < t ≤ 1,

where

W7(t) :=
(∑

�

∫

I ′′
�,t

(
t−1

∫

Q(x;t)
| f ′′(g(x + h))| g′(x + h)2 dh

)p
dx

)1/p
,

W8(t) :=
(∑

�

∫

I ′′
�,t

| f ′′(g(x))|p |g′(x)|2p dx
)1/p

.

Estimation of W7

The main difficulty consists in the fact that f ′′ need not be bounded. Instead, we use the
embedding Bs−1

p,q (R) ↪→ Ẇ 1
v (R) for all v satisfying

1 − δ <
1

v
<

1

(s − 1)p
, (29)

see (59) in Sect. 4.6 (notice that 1 − δ < ((s − 1)p)−1 follows by s > 2). The value of v
will be chosen later. The restrictions in (29) imply v > p. Hence, the following definitions
make sense:

1

w
:= 1

p
− 1

v
and α := p + 1

v
. (30)

Observe that (29) and 2 < s ≤ 2 + (1/p) imply α < 2. By definition of the set Q(x; t), we
find
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∫

I ′′
�,t

(
t−1

∫

Q(x;t)
| f ′′(g(x + h))| g′(x + h)2 dh

)p

dx

≤
∫

I ′′
�,t

|g′(x)|p(2−α)
(

t−1

t∫

−t

| f ′′(g(x + h))| |g′(x + h)|α dh

)p

dx

≤ c
∫

I ′′
�,t

|g′(x)|p(2−α) (
M(( f ′′ ◦ g) |g′|α)(x)

)p
dx .

Hölder inequality in 
× R (
 has been defined in Sect. 3.3) yields

W7(t) ≤ c1

⎛

⎜
⎜
⎝

∑

�

∫

I ′′
�,t

|g′(x)|(2−α)w dx

⎞

⎟
⎟
⎠

1/w ⎛

⎜
⎜
⎝

∑

�

∫

I ′′
�,t

(
M(( f ′′ ◦ g) |g′|α)(x)

)v
dx

⎞

⎟
⎟
⎠

1/v

≤ c1

⎛

⎜⎜
⎝

∑

�

∫

I ′′
�,t

|g′(x)|(2−α)w dx

⎞

⎟⎟
⎠

1/w ⎛

⎝
∫

R

(
M(( f ′′ ◦ g) |g′|α)(x)

)v
dx

⎞

⎠

1/v

≤ c2

⎛

⎜⎜
⎝

∑

�

∫

I ′′
�,t

|g′(x)|(2−α)w dx

⎞

⎟⎟
⎠

1/w

‖( f ′′ ◦ g)|g′|α‖v,

where the last estimate follows by the Hardy–Littlewood maximal inequality in Lv . By using
the identity αv = p + 1, we conclude

‖ ( f ′′ ◦ g) |g′|α ‖v ≤
(∑

�

a p
�

∫

g(I�)

| f ′′(y)|v dy
)1/v

≤ ‖ f ′‖Ẇ 1
v

‖g′‖p/v
BVp

. (31)

Since w(2 − α) = p + w(1 − (1/v)) and g′ vanishes at one of the end points of I ′′
�,t , we

obtain
⎛

⎜⎜
⎝

∑

�

∫

I ′′
�,t

|g′(x)|(2−α)w dx

⎞

⎟⎟
⎠

1/w

≤ ‖g′‖1−(1/v)∞

⎛

⎝
∫

R

sup
|h|≤2t

|	h g′(x)|p dx

⎞

⎠

1/w

≤ c tr p/w ‖g′‖1−(1/v)∞ ‖g′‖p/w
Br

p,∞

as long as

1

p
< r < 1, (32)

see Proposition 9 in the Appendix. As used many times before, we know Bs−1
p,q (R) ↪→

BVp(R). Furthermore, since s > 2, we have s−1 > 1 > r and hence Bs−1
p,q (R) ↪→ Br

p,∞(R).
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Summarizing, we proved up to now the inequality

W7(t) ≤ c ‖ f ′‖Ẇ 1
v

‖g‖p/v
Bs

p,q
tr p/w ‖g′‖1−(1/v)∞ ‖g′‖p/w

Bs−1
p,q

≤ c ‖ f ′‖Ẇ 1
v

‖g‖Bs
p,q

‖g′‖1−(1/v)∞ tr p/w.

For the desired estimate of W7, we wish to have also

r p

w
> s − 2. (33)

Looking at this inequality, it becomes clear that we should choose r and v as large as possible.
Obviously,

lim
r↑1

lim
v↑1/(1−δ)

r p

w
= p (s − 2).

Since p > 1, we can always find appropriate parameters r and v with (33). This leads to

( 1∫

0

(
t2−s W7(t)

)q dt

t

)1/q ≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q

‖g′‖1−(1/v)∞

≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q
(1 + ‖g′‖∞)δ. (34)

Estimation of W8

It is similar to that of W7, indeed a little simpler since the maximal inequality is no more
needed. We omit the details. The estimate (34) holds with W7 replaced by W8.

3.5.2 Estimations of W1 and W2

We concentrate on W2. The estimation of W1 is similar. Let us take v and w as in (29,30).
First, observe the elementary inequality

|	h(g
′2)(x)| ≤ c ‖g′‖1−(1/v)∞ |g′(x + h)|(p+1)/v |	h g′(x)|1−(p/v), ∀h ∈ P(x).

Now, we argue so as in the estimation of W7 and obtain

W2(t) ≤ c1 ‖g′‖1−(1/v)∞

⎛

⎝
∫

R

(
M(( f ′′ ◦ g) |g′|(p+1)/v)(x)

)p
( sup
|h|≤t

|	h g′(x)|)p(1−(p/v)) dx

⎞

⎠

1/p

≤ c2 ‖g′‖1−(1/v)∞ ‖( f ′′ ◦ g) |g′|(p+1)/v‖v
⎛

⎝
∫

R

( sup
|h|≤t

|	h g′(x)|)p dx

⎞

⎠

1/w

≤ c3 tr p/w‖g′‖1−(1/v)∞ ‖ f ′′‖v ‖g′‖p/v
BVp

‖g′‖p/w
Br

p,∞ .

From this, again as above, we deduce

( 1∫

0

(
t2−s W2(t)

)q dt

t

)1/q ≤ c ‖ f ′‖Bs−1
p,q

‖g‖Bs
p,q
(1 + ‖g′‖∞)δ.

This completes the proof of Proposition 2. ��
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3.6 Proof of Theorem 4

Our main ingredient is the Fubini-type characterization of Bs
p,p(R

n). For n ≥ 2, 1 ≤ p ≤ ∞
and s > 0

n∑

j=1

( ∫

Rn−1

‖g(x1, . . . , x j−1, ·, x j+1, . . . , xn)‖p
Bs

p,p(R)
d�x j

)1/p

can be used as an equivalent norm in Bs
p,p(R

n), see, e.g., [25, 2.5.13]. Here,

d�x j :=
∏

1≤�≤n
��= j

dx�.

Under the conditions of Theorem 4 and using Theorem 2, Propositions 7-8, we derive
∫

Rn−1

‖∂ j ( f ◦ g)(x1, . . . , x j−1, ·, x j+1, . . . , xn)‖p

Bs−1
p,p (R)

d�x j

≤ c
(
‖( f ′ ◦ g) ∂ j g‖p

p

+
∫

Rn−1

‖∂ j ( f ◦ g)(x1, . . . , x j−1, ·, x j+1, . . . , xn)‖p

Bs−1
p,p (R)

d�x j

)

≤ c
(
‖ f ′‖p∞ ‖∂ j g‖p

p + ‖ f ′‖p

Bs−1
p,p

(
1 + ‖∂ j g‖∞

)δp

×
∫

Rn−1

‖g(x1, . . . , x j−1, ·, x j+1, . . . , xn)‖p
Bs

p,p(R)
d�x j

)

≤ c ‖ f ′‖p

Bs−1
p,p

(1 + ‖ ∇g ‖∞)δp ‖g‖p
Bs

p,p(R
n),

where we used Bs−1
p,p (R

n) ↪→ L p(R
n) since s > 1. This completes the proof.

3.7 Proof of Theorem 5

Step 1.
Let f ∈ Bs,�oc

p,p (R) and g ∈ Bs
p,p ∩ Ẇ 1∞(�). Now, let Eg be an extension of g s.t.

Eg ∈ Bs
p,p ∩ W 1∞(Rn). Then, by Theorem 3, ( f − f (0)) ◦ Eg ∈ Bs

p,p(R
n). Obviously,

f (0) Eg ∈ Bs
p,p(R

n). Hence, the restriction of f ◦ Eg to � belongs to Bs
p,p(�). This

proves sufficiency.

Step 2.
Necessity. Let x0 ∈ �. Testing the operator T f with the family of functions

ga(x) = a (x1 − x0
1 ), x ∈ �, a > 0,

we conclude f ◦ga ∈ Bs
p,p(�) since ga ∈ Bs

p,p(�). By E( f ◦ga)we denote an arbitrary
extension of f ◦ ga and by Q a cube with side-length ε > 0 and center x0 s.t. the set

{x : max
j=1,...n

|x j − x0
j | < m ε} ⊂ �
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for some sufficiently large integer m > s. Then, the characterization of Bs
p,p(R

n) by
differences yields

‖ E( f ◦ ga) ‖Bs
p,p(R

n) ≥ c1

⎛

⎝
ε∫

0

[t−s sup
|h|<t

‖	m
h E( f ◦ ga)‖L p(Q)]p dt

t

⎞

⎠

1/p

≥ c2

⎛

⎝
ε∫

0

[t−s sup
|h|<at

‖	m
h f ‖L p([−aε,aε])]p dt

t

⎞

⎠

1/p

with a constant c2 = c2(Q, ε, a) > 0. But this implies f ∈ Bs,�oc
p,p (R). The proof is

complete.

4 Appendix

For the convenience of the reader, we collect here all what is needed about Besov spaces.
This includes inhomogeneous, homogeneous, and modified Besov spaces [see (4)]. In case
of homogeneous and modified Besov spaces, we found the existing literature not sufficient.
For this reason, certain parts of this collection are with proofs.

4.1 Distributions modulo polynomials

Since the elements of the homogeneous Besov spaces are distributions modulo polynomials,
we need convenient notation. For m ∈ N0, we denote by Pm(R

n) the set of polynomials in
R

n , of degree less than m. In particular, P0(R
n) is reduced to {0}, and P∞(Rn) the set of all

polynomials on R
n . For m ∈ N0 ∪ {∞}, we denote by Sm(R

n) the set of all u ∈ S(Rn) such
that 〈 f, u〉 = 0 for all f ∈ Pm(R

n). For all f ∈ S ′(Rn), we denote by [ f ]m the equivalence
class of f modulo Pm(R

n). The mapping which takes any [ f ]m to the restriction of f to
Sm(R

n) turns out to be a vector space isomorphism of S ′(Rn)/Pm(R
n) onto S ′

m(R
n). For

this reason, S ′
m(R

n) is called the space of distributions modulo polynomials of degree less
than m.

Definition 1 Let 0 ≤ k < m ≤ ∞ and let E be a vector subspace of S ′
m(R

n) endowed with
a quasi-norm such that the embedding E ↪→ S ′

m(R
n) holds. A realization of E in S ′

k(R
n) is

a continuous linear mapping σ : E → S ′
k(R

n) such that [σ( f )]m = f for all f ∈ E .

In short words, a realization is a coherent way to associate to each element of E a specific
representative. We need a further notion.

Definition 2 A distribution f ∈ S ′(Rn) vanishes at infinity if limλ→0 f
(
.
λ

) = 0 in S ′(Rn).

Here are examples of such distributions:

• functions in L p(R
n), for p < ∞,

• derivatives of functions in L∞(Rn),
• derivatives of distributions which vanish at infinity.

This notion was first introduced in [4]. Its usefulness relies upon the following:

Lemma 2 The only polynomial vanishing at infinity is the zero polynomial.

Proof See [4, p. 46]. ��
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4.2 The Littlewood–Paley setting

Probably, the easiest way to introduce both, inhomogeneous as well as homogeneous, Besov
spaces is the Fourier theoretical approach via the Littlewood–Paley decomposition. This
nowadays classical approach, initiated by Peetre and Triebel, see, e.g., the monographs [22,
25], is still very popular, in particular in the “Nonlinear World,” we refer to the recent
monograph of Bahouri, Chemin, and Danchin [1].

We start with the cutoff function ρ introduced in the Notation. Then, we define

γ (ξ) := ρ(ξ)− ρ(2ξ), ∀ξ ∈ R
n .

The function γ is supported in the compact annulus 1/2 ≤ |ξ | ≤ 3/2 and the following
identities hold:

∑

j∈Z

γ (2 jξ) = 1, ∀ξ ∈ R
n \ {0},

ρ(ξ)+
∑

j≥1

γ (2− jξ) = 1, ∀ξ ∈ R
n .

For j ∈ Z, we define the operator Q j similarly to S j , by replacing ρ by γ in the formula
(3); this operator takes S ′∞(Rn) to the space of analytical functions of exponential type. The
Littlewood–Paley decompositions of a tempered distribution are described in the following
well-known statements:

Proposition 3 (i) For every f ∈ S∞(Rn) (resp. S ′∞(Rn)), it holds

f =
∑

j∈Z

Q j f, (35)

in S∞(Rn) (resp. S ′∞(Rn)).
(ii) For every f ∈ S(Rn) (resp. S ′(Rn)) and every k ∈ Z, it holds

f = Sk f +
∑

j>k

Q j f, (36)

in S(Rn) (resp. S ′(Rn)).

There is only a short step from the Littlewood–Paley decomposition to the definition of
the Besov spaces.

Definition 3 Let s ∈ R, 1 ≤ p ≤ ∞ and 0 < q ≤ ∞.

(i) The homogeneous Besov space Ḃs
p,q(R

n) is the set of f ∈ S ′∞(Rn) such that

‖ f ‖Ḃs
p,q

:=
( ∑

j∈Z

(2s j ‖Q j f ‖p)
q
)1/q

< +∞.

(ii) The inhomogeneous Besov space Bs
p,q(R

n) is the set of tempered distributions f such
that

‖ f ‖Bs
p,q

:= ‖S0 f ‖p +
(∑

j≥1

(2s j‖Q j f ‖p)
q
)1/q

< +∞.
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Ḃs
p,q(R

n) and Bs
p,q(R

n) are quasi-Banach spaces for the above-defined quasi-norms, con-
tinuously embedded in S ′∞(Rn) and S ′(Rn), respectively. For all f ∈ S ′(Rn), we define

‖ f ‖Ḃs
p,q

:= ‖[ f ]∞‖Ḃs
p,q
.

We will make use of the following convention: In all the following statements, the numbers
s, p, q will verify assumptions of Definition 3, unless otherwise stated.

The dyadic decomposition, given in Proposition 3, can be replaced by continuous ones:

Proposition 4 Let φ ∈ S(Rn) be such that φ̂ is a nonzero radial function with compact
support contained in R

n \ {0}. Let us set

φt (x) := t−nφ(x/t), ∀t > 0, ∀x ∈ R
n . (37)

Then, for all f ∈ S ′∞(Rn), it holds f ∈ Ḃs
p,q(R

n) if, and only if,

⎛

⎝
∞∫

0

(
1

t s
‖φt ∗ f ‖p

)q dt

t

⎞

⎠

1/q

< +∞.

Moreover, the above expression is an equivalent quasi-norm in Ḃs
p,q(R

n).

Remark 2 Proposition 4 has a counterpart for inhomogeneous spaces, which we do not need
in the present paper.

Proposition 4 has an immediate consequence, which explains the terminology used for
spaces Ḃs

p,q(R
n):

Corollary 1 There is an equivalent quasi-norm N, in Ḃs
p,q(R

n), which enjoys the homo-
geneity property:

N
(

f (λ(·))) = λs−(n/p) N ( f ) ∀ f ∈ Ḃs
p,q(R

n), ∀λ > 0.

4.3 Properties of Besov spaces

4.3.1 Convergence of the Littlewood–Paley series

In case f ∈ Ḃs
p,q(R

n), the series expansion (35) makes sense not only in S ′∞(Rn) but also
in S ′

m(R
n) for some minimal value of m that we introduce first. We associate to any set

(s, n, p, q) of parameters a number ν ∈ N0 defined by

ν = ([s − (n/p)] + 1
)
+ if s − (n/p) /∈ N0 or q > 1;

ν = s − (n/p) if s − (n/p) ∈ N0 and q ≤ 1.

The following statement explains the intrinsic meaning of ν w.r.t. the space Ḃs
p,q(R

n). We
refer to [10, prop. 4.6, thm. 4.2] for details.

Proposition 5 (i) Let f ∈ Ḃs
p,q(R

n). Then, the series (35) converges in S ′
ν(R

n), and its
sum in S ′

ν(R
n), denoted by σν( f ), is the unique representative of f in S ′

ν(R
n) whose

derivatives of order ν vanish at infinity.
(ii) The mappingσν is a realization of Ḃs

p,q(R
n) in S ′

ν(R
n)which commutes with translations,

and the integer ν is minimal for this property: if there exists a translation commuting
realization of Ḃs

p,q(R
n) in S ′

m(R
n), then m ≥ ν.
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4.3.2 Various embeddings

We recall successively: (i) the embeddings between spaces with different values of s and/or
p, (ii) the connection between homogeneous and inhomogeneous spaces, (iii) the behavior
of Besov spaces w.r.t. differentiation.

Proposition 6 The continuous embedding Ḃs1
p1,q(R

n) ↪→ Ḃs2
p2,q(R

n) holds for all parameters
such that

s1 − n

p1
= s2 − n

p2
and p2 ≥ p1.

For a proof, we refer to Jawerth [18]. The following so-called elementary embeddings are
also useful, see, e.g., [2, thm. 6.3.1] or [25, prop. 2.3.2/2].

(i) Besov spaces are monotonic with respect to the third index, i.e.,

Ḃs
p,q0

(Rn) ↪→ Ḃs
p,q1

(Rn), Bs
p,q0

(Rn) ↪→ Bs
p,q1

(Rn) if q0 ≤ q1. (38)

(ii) Inhomogeneous Besov spaces are monotone with respect to the smoothness index, i.e.,

Bs0
p,q0

(Rn) ↪→ Bs1
p,q1

(Rn) if s0 > s1. (39)

To the contrary, homogeneous Besov spaces are not monotone with respect to the
smoothness index (just as a consequence of the homogeneity property stated in Corollary
1).

(iii) Finally, we wish to mention

Bs
p,q(R

n) ↪→ B0
p,1(R

n) ↪→ L p(R
n) if s > 0, (40)

see [25, 2.5.7].

Proposition 7 If s > 0, then it holds

Bs
p,q(R

n) =
{

f ∈ L p(R
n) : [ f ]∞ ∈ Ḃs

p,q(R
n)

}
.

Moreover, ‖ f ‖p + ‖ f ‖Ḃs
p,q

is an equivalent quasi-norm in Bs
p,q(R

n).

Proof Step 1. Let f ∈ L p(R
n) and [ f ]∞ ∈ Ḃs

p,q(R
n). Since S0 is a bounded convolution

operator in L p , it holds

‖S0 f ‖p +
( ∑

j≥1

(2s j‖Q j f ‖p)
q
)1/q ≤ c ‖ f ‖p +

(∑

j∈Z

(2s j‖Q j f ‖p)
q
)1/q

≤ c ‖ f ‖p + ‖ f ‖Ḃs
p,q
.

Step 2. Let f ∈ Bs
p,q(R

n). By (40), it holds ‖ f ‖p ≤ c ‖ f ‖Bs
p,q

. Since (Q j ) j∈Z is a
bounded family of convolution operators in L p , it holds

( ∑

j∈Z

(2s j‖Q j f ‖p)
q
)1/q ≤ c

⎛

⎝
∑

j≤0

2s jq

⎞

⎠

1/q

‖ f ‖p +
⎛

⎝
∑

j≥1

(2s j‖Q j f ‖p)
q

⎞

⎠

1/q

.

The proof is complete.
��

123



Besov spaces on the real line 1545

Remark 3 Of course, the statement of Proposition 7 is essentially known, see [2, thm. 6.3.2].
There the identity

Bs
p,q(R

n) = L p ∩ Ḃs
p,q(R

n) if s > 0,

is proved.

Proposition 8 (i) An element f of S ′∞(Rn) belongs to Ḃs
p,q(R

n) if, and only if, its first-order

derivatives ∂� f belong to Ḃs−1
p,q (R

n) for � = 1, . . . , n. Moreover,
∑n
�=1 ‖∂� f ‖Ḃs−1

p,q
is an

equivalent quasi-norm in Ḃs
p,q(R

n).

(ii) For all f ∈ Bs
p,q(R

n), its first-order derivatives ∂� f (� = 1, . . . , n) belong to Bs−1
p,q (R

n)

and ‖∂� f ‖Bs−1
p,q

≤ c ‖ f ‖Bs
p,q

.

Proof The second statement is classical, see, e.g., [25, 2.3.8]. We give a sketchy proof of the
first one.

Step 1. Let f ∈ Ḃs
p,q(R

n). By Bernstein inequality, see, e.g., [25, rem. 1.3.2/1], it holds

‖Q j (∂� f )‖p ≤ c 2 j‖Q j f ‖p

with a constant c independent of f and j . Hence, ‖∂� f ‖Ḃs−1
p,q

≤ c ‖ f ‖Ḃs
p,q

.

Step 2. Let ρ�, � = 1, . . . , n, be C∞ functions on the unit sphere Sn−1 of R
n , such that

n∑

�=1

ρ�(ξ) = 1, ∀ξ ∈ Sn−1,

and such that ξ� �= 0 on the support of ρ�. Let us define

γ�(ξ) := − i

ξ�
γ (ξ)ρ�

(
ξ

|ξ |
)
.

Then, γ� is a C∞ function with compact support in R
n \ {0}, and

Q j f = 2− j
n∑

�=1

γ�(2
− j D)(∂� f ), ∀ f ∈ S ′∞(Rn).

Hence, by a standard convolution inequality

‖ f ‖Ḃs
p,q

≤ c
n∑

�=1

‖∂� f ‖Ḃs−1
p,q

with c independent of f .

��
4.4 Inhomogeneous Besov spaces via differences

In this subsection, we recall the characterizations of inhomogeneous Besov spaces involving
the iterated difference operators 	m

h . For simplicity, we introduce the following notation: if
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1546 G. Bourdaud et al.

1 ≤ p, u ≤ ∞, 0 < q ≤ +∞, s > 0, m ∈ N, and if f is any measurable function on R
n ,

we put

Ms,m
p,q ( f ) :=

( ∫

Rn

|h|−sq‖	m
h f ‖q

p
dh

|h|n
)1/q

Ms,m,u
p,q ( f ) :=

( ∞∫

0

t−sq
( ∫

Rn

(
t−n

∫

|h|≤t

|	m
h f (x)|u dh

)p/u
dx

)q/p dt

t

)1/q

.

Proposition 9 Let s > 0, and m ∈ N such that s < m.

(i) A tempered distribution f belongs to Bs
p,q(R

n) if, and only if, f ∈ L p(R
n) and

Ms,m
p,q ( f ) < +∞. Moreover, the expression ‖ f ‖p + Ms,m

p,q ( f ) is an equivalent quasi-
norm in Bs

p,q(R
n).

(ii) Assume further

s > n
( 1

p
− 1

u

)
. (41)

Then, we can replace Ms,m
p,q ( f ) by Ms,m,u

p,q ( f ) in the preceding statement.

Proof The first statement is classical, see, e.g., Besov et al. [3], Nikol’skij [21], Peetre [22],
and Triebel [25–27]. For the second one, we refer to Seeger [24] and Triebel [26, thm. 3.5.3,
p. 194]. ��
Remark 4 The above assertion remains true if, in the expressions of Ms,m

p,q ( f ) and Ms,m,u
p,q ( f ),

one replaces integration for h ∈ R
n and 0 < t < ∞ by integration for |h| ≤ a and 0 < t < a,

respectively, for any fixed a > 0.

4.5 Homogeneous Besov spaces via differences

Characterization of homogeneous Besov spaces by differences is given in at least three
different places, we refer to Peetre [22, chap. 8, p. 160] in case q = ∞, Bergh and Löfström
[2, thm. 6.3.1] and Triebel [25, thm. 5.2.3/2]. In the first two references, the authors identify
spaces defined modulo all polynomials with spaces defined modulo polynomials of a certain
degree. In the third reference only a sketch of a proof is given (which differs at least partly
from our one).

Our point of departure is the following simple lemma.

Lemma 3 Under the assumptions of Proposition 9, there exist constants c1, c2 > 0 such
that Ms,m

p,q ( f ) ≤ c1 ‖ f ‖Ḃs
p,q

and Ms,m,u
p,q ( f ) ≤ c2 ‖ f ‖Ḃs

p,q
hold for all f ∈ Bs

p,q(R
n),

respectively.

Proof By Propositions 7 and 9, it holds

Ms,m
p,q ( f ) ≤ c

(
‖ f ‖p + ‖ f ‖Ḃs

p,q

)
, ∀ f ∈ Bs

p,q(R
n). (42)

We replace now f by f (λ(·)), for any λ > 0, in (42). Using Corollary 1, dividing by λs−(n/p),
and letting λ → +∞, we obtain the desired estimate. The same proof holds for Ms,m,u

p,q under
condition (41). ��
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Lemma 3 suggests that Ms,m
p,q could be used as an equivalent quasi-norm in Ḃs

p,q(R
n). But

things are not that simple. Indeed, Ms,m
p,q and Ms,m,u

p,q are functionals with kernel Pm(R
n). For

any polynomial f of degree m, it holds Ms,m
p,q ( f ) = +∞, while Ms,m′

p,q ( f ) = ‖ f ‖Ḃs
p,q

= 0

for all m′ > m.

Proposition 10 For all s > 0 and m ∈ N such that s < m, there exist constants c1, c2 > 0
depending only on n, s, p, q and m, satisfying the following:

(i) For all regular tempered distribution f , such that Ms,m
p,q ( f ) < +∞, it holds [ f ]∞ ∈

Ḃs
p,q(R

n), and

‖ f ‖Ḃs
p,q

≤ c1 Ms,m
p,q ( f ). (43)

(ii) Conversely, for all f ∈ Ḃs
p,q(R

n), there exists a regular tempered distribution g satisfying
[g]∞ = f and

Ms,m
p,q (g) ≤ c2 ‖ f ‖Ḃs

p,q
.

The distribution g can be chosen so that g(α) vanishes at infinity for all |α| = ν.

Under condition (41), we can replace Ms,m
p,q by Ms,m,u

p,q in the preceding statements.

Proof Step 1. Proof of statement (i) in case q ≥ 1.
Substep 1.1. We need some auxiliary measures and functions that we first introduce. Let
φ be a function like in Proposition 4. We can divide it by a constant, in order that

∞∫

0

φ̂(tξ)
dt

t
= 1,∀ξ ∈ R

n \ {0}. (44)

Let μ be the compactly supported distribution defined by

〈μ, f 〉 :=
∫

Sn−1

	m
y f (0) dy, ∀ f ∈ S(Rn).

Here, we integrate on the unit sphere Sn−1 of R
n , endowed with its canonical measure.

By defining μt according to (37), we obtain

μt ∗ f =
∫

Sn−1

	m
ty f dy, ∀ f ∈ S ′(Rn), (45)

where the integral exists in the ∗-weak sense in S ′(Rn). The Fourier transform of μ is a
radial nonzero C∞ function on R

n . Let us choose the function φ such that supp φ̂ is a
compact subset of {ξ : μ̂(ξ) �= 0}. Then, there exists a function ψ ∈ S(Rn) such that ψ̂
has compact support included in R

n \ {0}, and

φ̂(ξ) = ψ̂(ξ)μ̂(ξ). (46)

Substep 1.2. Let f be a regular tempered distribution such that Ms,m
p,q ( f ) < +∞. Using

polar coordinates, we find
⎛

⎜
⎝

∞∫

0

1

t sq

∫

Sn−1

‖	m
ty f ‖q

p dy
dt

t

⎞

⎟
⎠

1/q

= c Ms,m
p,q ( f ), (47)
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for some c > 0 depending only on n and q . By assumptions p ≥ 1 and q ≥ 1, and by
(45), it holds

‖μt ∗ f ‖p ≤
∫

Sn−1

‖	m
ty f ‖p dy ≤ c

⎛

⎜
⎝

∫

Sn−1

‖	m
ty f ‖q

p dy

⎞

⎟
⎠

1/q

. (48)

Combining (48) and (47), we obtain

⎛

⎝
∞∫

0

(
1

t s
‖ψt ∗ (μt ∗ f )‖p

)q dt

t

⎞

⎠

1/q

≤ c ‖ψ‖1 Ms,m
p,q ( f ). (49)

By the definition of ψ , there exist numbers b > a > 0 such that the Fourier transform
of ψt ∗ (μt ∗ f ) is supported into the annulus at−1 ≤ |ξ | ≤ bt−1, for every t > 0. Then,
using (49), together with a Nikol’skij representation argument, see [20, prop. 3.4], [23,
prop. 2.3.2(1), p. 59], we deduce that

U f :=
∞∫

0

ψt ∗ (μt ∗ f )
dt

t
(50)

exists in the ∗-weak sense in S ′∞(Rn), and that

‖U f ‖Ḃs
p,q

≤ c Ms,m
p,q ( f ). (51)

By computing the Fourier transform of U f , and by using (46) and (44), we obtain
U f = [ f ]∞. By (51), we conclude that [ f ]∞ ∈ Ḃs

p,q(R
n) with the estimate (43).

Step 2. Proof of statement (i) in case 0 < q < 1.
We use the same ideas as in Step 1, with some technical modifications. We change first
the definition of the measure μ by replacing m by 2m. We will use the following identity
for the difference operators:

	2m
h f (x) =

m∑

k=0

(−1)m−k
(

m

k

)
	m

h f (x + kh). (52)

Let f be a regular tempered distribution such that Ms,m
p,q ( f ) < +∞. Using (52), we

obtain the following counterpart of (48):

‖μt ∗ f ‖p ≤ c

( ∫

Sn−1

‖	m
ty f ‖q

p dy

)(
sup
|h|≤t

‖	2m
h f ‖1−q

p

)
.

123



Besov spaces on the real line 1549

By Hölder inequality with the exponents 1/q and 1/(1 − q), and the identity (47), we
deduce

⎛

⎝
∞∫

0

( 1

t s
‖ψt ∗ (μt ∗ f )‖p

)q dt

t

⎞

⎠

1/q

≤ c ‖ψ‖1

⎛

⎜
⎝

∞∫

0

( 1

t sq

∫

Sn−1

‖	m
ty f ‖q

p dy
)q( 1

t sq
sup
|h|≤t

‖	2m
h f ‖q

p

)1−q dt

t

⎞

⎟
⎠

1/q

≤ c
(

Ms,m
p,q ( f )

)q ( ∞∫

0

1

t sq
sup
|h|≤t

‖	2m
h f ‖q

p
dt

t

)(1/q)−1
.

Then, we use the following estimate:

( ∞∫

0

1

t sq
sup
|h|≤t

‖	2m
h f ‖q

p
dt

t

)1/q ≤ c Ms,m
p,q ( f ),

proved by Triebel [25, proof of thm. 2.5.12/Step 3, p. 112]. We conclude that the estimate
(49) still holds for 0 < q < 1.

Step 3. Let f be a tempered distribution such that [ f ]∞ ∈ Ḃs
p,q(R

n).

It holds ‖Q j f ‖p ≤ 2−s j ‖ f ‖Ḃs
p,q

. By assumption s > 0, by Proposition 7, and by the

identity (36), it holds f − S0 f ∈ Bs
p,q(R

n). By Lemma 3, we deduce

Ms,m
p,q ( f − S0 f ) ≤ c ‖ f ‖Ḃs

p,q
.

To deal with the remaining term S0 f , we set vk :=
0∑

j=−k

Q j f for all k ∈ N0. Then,

vk ∈ Bs
p,q(R

n) for all k, and

‖vk‖Ḃs
p,q

≤ c ‖ f ‖Ḃs
p,q
, ∀k ≥ 0.

Hence, by Lemma 3,

Ms,m
p,q (vk) ≤ c ‖ f ‖Ḃs

p,q
, ∀k ≥ 0. (53)

��
Moreover, we have the following:

Claim: There exists a sequence (Rk)k≥0 of polynomials of degree< ν, such that the sequence
(vk − Rk)k≥0 converges uniformly on every compact subset of R

n.

Proof of the Claim Case ν = 0. By Nikol’skij inequality, it holds

‖Q j f ‖∞ ≤ c 2 jn/p‖Q j f ‖p ≤ c 2 j ((n/p)−s)‖ f ‖Ḃs
p,q

with c independent of f and j , see, e.g., [25, rem. 1.3.2/1]. Hence, the series
∑

j≤0 Q j f
converges uniformly on R

n in the following two cases: (i) s < n/p, and (ii) s = n/p
and q ≤ 1.
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Case ν > 0. If we set

r j (x) :=
∑

|α|<ν
(Q j f )(α)(0)

xα

α! ,

then the series
∑

j≤0(Q j f − r j ) converges uniformly on every compact subset of R
n ,

see [10, prop. 4.8, rem. 4.9]. Then, we define Rk := ∑0
j=−k r j .

Let v be the limit of the sequence (vk − Rk)k≥0. Since m > s ≥ ν, 	m
h (vk) = 	m

h (vk −
Rk) converges pointwise to 	m

h v for all h. Now, applying twice the Fatou lemma in
estimate (53), we obtain

Ms,m
p,q (v) ≤ c ‖ f ‖Ḃs

p,q
.

By setting g := v + ( f − S0 f ), we obtain a function such that

[g]∞ = [ f ]∞ and Ms,m
p,q (g) ≤ c ‖ f ‖Ḃs

p,q
.

By definition of g, it holds [g]ν = σν([ f ]∞). By Proposition 5, it follows that g(α)

vanishes at infinity for all |α| = ν.
Step 4. Now, we justify the replacement of Ms,m

p,q by Ms,m,u
p,q under assumption (41).

Substep 4.1. Let f be a regular tempered distribution such that Ms,m,u
p,q ( f ) < +∞.

Noticing that u �→ Ms,m,u
p,q ( f ) is an increasing function on [1,+∞[, we may consider

only the case u = 1. We modify the notation of Step 1, by setting

〈μ, f 〉 :=
∫

|h|≤1

	m
h f (0) dh, ∀ f ∈ S(Rn).

Here, we integrate on the unit ball of R
n . We define also μt according to (37). It holds

μt ∗ f =
∫

|h|≤1

	m
th f dh, ∀ f ∈ S ′(Rn).

Then, the estimate (49) holds, with Ms,m
p,q replaced by Ms,m,1

p,q in the right-hand side. The
remaining of Step 1 is unchanged, with q ∈]0,+∞] instead of q ≥ 1.
Substep 4.2. Clearly, Ms,m

p,q can be replaced by Ms,m,u
p,q in all Step 3.

��
4.6 The modified Besov space Bs

p,q(R
n)

Some of the notions and results of this subsection are taken from the paper of Moussai [20,
sect. 3]. In his paper, Moussai deals only with q ≥ 1, but his results extend without difficulty
to any q > 0.

4.6.1 Definition and main properties

The modified Besov space has been defined in (4). Its main properties are the following.
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Proposition 11 For s > 0, Bs
p,q(R

n) is a quasi-Banach algebra for the pointwise product.
Moreover, it holds

‖ f g‖Bs
p,q

≤ c
(
‖ f ‖∞‖g‖Bs

p,q
+ ‖g‖∞‖ f ‖Bs

p,q

)
(54)

for all f, g in Bs
p,q(R

n).

Proof See Moussai [20, thm. 3.26]. The precise estimate (54) occurs in the proof given in
[20]. ��
Proposition 12 For s > 1 + (n/p), it holds

Bs
p,q(R

n) = { f ∈ L∞(Rn) : ∂� f ∈ Bs−1
p,q (R

n), � = 1, . . . , n }
and ‖ f ‖∞ + ∑n

�=1 ‖∂� f ‖Bs−1
p,q

is an equivalent quasi-norm in Bs
p,q(R

n).

Proof See [20, prop. 3.21]. ��
We will also use the following embeddings, where we limit ourselves to the case n = 1.

(i) For s > 1/p, it holds

Bs
p,q(R) ↪→ Bs

p,q(R). (55)

(ii) Let 1 ≤ p < v ≤ ∞. Then, it holds

Bs
p,q(R) ↪→ Bs− 1

p + 1
v

v,q (R). (56)

Since Bs∞,q(R) = Bs∞,q(R) for all s > 0, it follows that

Bs
p,q(R) ↪→ B

s− 1
p∞,q (R) for s > 1/p. (57)

(iii) Let s > 1, 1 ≤ p < ∞, 0 < q ≤ ∞. Let v be a real number s.t.

max
(

1 + 1

p
− s, 0

)
<

1

v
<

1

sp
. (58)

Then, there exists a constant c s.t.

‖ f ′‖v ≤ c ‖ f ‖Bs
p,q

(59)

holds for all f ∈ Bs
p,q(R).

Property (ii) is a direct consequence of the Sobolev embedding for homogeneous Besov
spaces, see Proposition 6. The proof of (iii) is a bit more complicated, we refer to [20,
prop. 3.23].

4.6.2 Characterization by differences

Proposition 13 Let s > 0 and m ∈ N be such that s < m. Then, a regular tempered
distribution f belongs to Bs

p,q(R
n) if and only if

‖ f ‖∞ + Ms,m
p,q ( f ) < +∞. (60)

Moreover, the above expression is an equivalent quasi-norm on Bs
p,q(R

n). The same result
holds with Ms,m

p,q replaced by Ms,m,u
p,q under condition (41).
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Proof Under condition (60), the first assertion of Proposition 10 yields

‖ f ‖∞ + ‖ f ‖Ḃs
p,q

≤ c
(‖ f ‖∞ + Ms,m

p,q ( f )
)
.

Assume conversely that f ∈ L∞ and [ f ]∞ ∈ Ḃs
p,q(R

n). By Proposition 10, there exists
a regular distribution g satisfying the following conditions:

• f − g is a polynomial,
• Ms,m

p,q (g) ≤ c ‖ f ‖Ḃs
p,q

,

• g(α) vanishes at infinity for all |α| = ν.

Let α a multi-index such that |α| = m. By assumptions f ∈ L∞(Rn) and ν ≤ m, we
deduce that ( f − g)(α) vanishes at infinity. By Lemma 2, it follows that f − g ∈ Pm(R

n).
Hence, Ms,m

p,q (g) = Ms,m
p,q ( f ). This ends up the proof. ��

Proposition 14 Let s > 1 and m ∈ N be such that s − 1 < m. It holds

Ms−1,m
p,q (∂� f ) ≤ c ‖ f ‖Ḃs

p,q

for all f ∈ Bs
p,q(R

n) and all � = 1, . . . , n. The same result holds with Ms−1,m
p,q replaced by

Ms−1,m,u
p,q under condition s − 1 > n

(
p−1 − u−1

)
.

Proof The statement is a consequence of Propositions 8 and 10. The argument is similar to
that used in the preceding proof. ��
4.7 Besov spaces on bounded domains

The most convenient way to introduce Besov spaces on domains is to consider them as
quotient spaces, see [25–27]. We use the classical notion of restriction of a distribution on
R

n to an open subset of R
n .

Definition 4 Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let � ⊂ R
n be a bounded open set.

(i) Then, we define Bs
p,q(�) to be the collection of all the restrictions to � of elements of

Bs
p,q(R

n). For f ∈ Bs
p,q(�), we define ‖ f ‖Bs

p,q (�)
as the infimum of ‖ g ‖Bs

p,q (R
n), for

all g s.t. f is the restriction of g to �.
(ii) By Bs

p,q ∩ Ẇ 1∞(�), we mean the collection of all Lipschitz continuous functions f on

� which are restrictions to � of elements of Bs
p,q ∩ Ẇ 1∞(Rn).

The advantage of such a definition is obvious: several facts immediately carry over from
the spaces defined on R

n to the spaces defined on �. The disadvantage is also clear. We do
not have intrinsic characterizations. One of the assertions which carry over is the following,
see [25, thm. 2.3.8].

Lemma 4 Let � be an open set in R
n. Let 1 ≤ p ≤ ∞ and 0 < m < s for some integer m.

Then, f ∈ L p(�) belongs to Bs
p,q(�) if, and only if, Dα f ∈ Bs−m

p,q (�) for all α, |α| = m.

Under certain restrictions on the quality of the domain � intrinsic characterizations are
known, we refer to Dispa [17] and Triebel [27, thm. 1.118].
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Proposition 15 Let 1 ≤ p ≤ ∞ and let s be a positive real number, but not an integer. Let
m be an integer s.t. 0 < s − m < 1. Furthermore, let � be a bounded Lipschitz domain in
R

n. A real-valued function f belongs to Bs
p,p(�) if, and only if, f ∈ W m

p (�) and

‖ f ‖W m
p (�)

+
∑

|α|=m

⎛

⎝
∫

�

∫

�

|Dα f (x)− Dα f (y)|p

|x − y|(s−m)p+n
dx dy

⎞

⎠

1/p

< +∞ . (61)

Moreover, the above expression generates an equivalent norm on Bs
p,p(�).

Proof In the above-mentioned references, one only can find the case m = 0. However, by
means of Lemma 4, one can extend this to all natural numbers m, m < s. ��
Remark 5 The spaces with the norm defined by the expression in (61) are usually called
Slobodeckij spaces.
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