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Abstract The S2×R geometry can be derived by the direct product of the spherical plane
S2 and the real line R. In (Beiträge zur Algebra und Geometrie (Contributions to Algebra
and Geometry) 42:235–250, 2001), Farkas has classified and given the complete list of the
space groups of S2 ×R. The S2 ×R manifolds were classified by Molnár and Farkas in [2]
by similarity and diffeomorphism. In Szirmai (Beiträge zur Algebra und Geometrie (Con-
tributions to Algebra and Geometry) 52(2):413–430, 2011), we have studied the geodesic
balls and their volumes in S2 ×R space; moreover, we have introduced the notion of geo-
desic ball packing and its density and have determined the densest geodesic ball packing
for generalized Coxeter space groups of S2 ×R. In this paper, we study the locally opti-
mal ball packings to the S2 × R space groups having Coxeter point groups, and at least
one of the generators is a glide reflection. We determine the densest simply transitive geo-
desic ball arrangements for the above space groups; moreover, we compute their optimal
densities and radii. The density of the densest packing is ≈ 0.80407553, may be surpris-
ing enough in comparison with the Euclidean result π√

18
≈ 0.74048. Molnár has shown in

(Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 38(2):261–
288, 1997) that the homogeneous 3-spaces have a unified interpretation in the real projective
3-sphere PS3(V4, V 4, R). In our work, we shall use this projective model of S2×R geometry.
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1202 J. Szirmai

1 Introduction

S2×R is derived as the direct product of the spherical plane S2 and the real line R. The points
are described by (P, p) where P ∈ S2 and p ∈ R [2]. The isometry group I som(S2×R) of
S2 ×R can be derived by the direct product of the isometry group of the sphere I som(S2)

and the isometry group of the real line I som(R).

I som(S2) := {A ∈ O(3) : S2 �→ S2 : (P, p) �→ (P A, p)} for any fixed p.

I som(R) := {ρ : (P, p) �→ (P,±p + r)}, for any fixed P.

Here, the “−” sign provides a reflection in the point
r

2
∈ R,

and by the “+” sign, we get a translation of R. (1.1)

The structure of an isometry group � ⊂ I som(S2 ×R) is the following: � := {(A1 ×
ρ1), . . . (An × ρn)}, where Ai × ρi := Ai × (Ri , ri ) := (gi , ri ), (i ∈ {1, 2, . . . n} and
Ai ∈ I som(S2), Ri is either the identity map 1R of R or the point reflection 1R. gi := Ai ×Ri

is called the linear part of the transformation (Ai × ρi ) and ri is its translation part. The
multiplication formula is the following:

(A1 × R1, r1) ◦ (A2 × R2, r2) = ((A1 A2 × R1 R2, r1 R2 + r2). (1.2)

Definition 1.1 A group of isometries � ⊂ I som(S2×R) is called space group if the linear
parts form a finite group �0 called the point group of �; moreover, the translation parts to
the identity of this point group are required to form a one-dimensional lattice L� of R.

Remark 1.2 1. It can be proved that the space group � has a compact fundamental domain
F� .

2. If � is not assumed to have a lattice, then it may have an infinite point group �0.

Definition 1.3 The S2 × R space groups �1 and �2 are geometrically equivalent, called
equivariant, if there is a “similarity” transformation � := S × σ (S ∈ I som(S2), σ ∈
Sim(R)), such that �2 = �−1�1�. Here, σ(s, t) : p → p · s + t is a similarity of R, that
is, multiplication by 0 	= s ∈ R and then addition by t ∈ R for every p ∈ R.

Remark 1.4 If �1 and �2 are equivariant space groups, then their factor groups �1/L�1 and
�2/L�2 are also equivariant.

Thus, the structure of the space group remains invariant under a similarity in the
R-component, and the spherical part is uniquely determined up to an isometry of S2.

We characterize the spherical plane groups by the Macbeath-signature (see [3,11]).
In this paper, we deal with such a S2 ×R space group where the generators gi , (i =

1, 2, . . . m) of its point group �0 are reflections and at least one of the possible translation
parts of the above generators is unequal to zero. These groups are called glide reflection
groups.

Remark 1.5 In [11], we have introduced the notion of generalized Coxeter group if the
generators gi , (i = 1, 2, . . . m) of its point group �0 are reflections with translation parts
τi = 0, (i = 1, 2, . . . m).

In this paper, we deal with the glide reflection space groups in S2×R space which are by
denotation of [1]:

1. (+, 0, [ ] {(q, q)}) × 1R, q ≥ 2,
�0 = (g1, g2 − g2

1, g2
2, (g1g2)

q), 2q. I. 2:
( 1

2 , 1
2

)
; 2qe. I. 3:

(
0, 1

2

)
;
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Simply transitive geodesic ball packings 1203

2. (+, 0, [ ] {(2, 2, q)}) × 1R, q ≥ 2,
�0 = (g1, g2, g3 − g2

1, g2
2, g2

3, (g1g3)
2, (g2g3)

2), (g1g2)
q), 4q. I. 2:

(
0, 0, 1

2

)
; 4q. I. 3:( 1

2 , 1
2 , 0

)
; 4q. I. 4:

( 1
2 , 1

2 , 1
2

)
; 4qe. I. 5:

(
0, 1

2 , 0
)
; 4qe. I. 6:

(
0, 1

2 , 1
2

)
;

3. (+, 0, [ ] {(2, 3, 3)}) × 1R,

�0 = (g1, g2, g3 − g2
1, g2

2, g2
3, (g1g2)

2, (g1g3)
3, (g2g3)

3), 11. I. 2:
( 1

2 , 1
2 , 1

2

)
;

4. (+, 0, [ ] {(2, 3, 4)}) × 1R,

�0 = (g1, g2, g3 − g2
1, g2

2, g2
3, (g1g2)

2, (g1g3)
3, (g2g3)

4), 12. I. 2:
(
0, 1

2 , 0
)
; 12. I. 3:( 1

2 , 0, 1
2

)
; 12. I. 4:

( 1
2 , 1

2 , 1
2

)
;

5. (+, 0, [ ] {(2, 3, 5)}) × 1R,

�0 = (g1, g2, g3 − g2
1, g2

2, g2
3, (g1g2)

2, (g1g3)
3, (g2g3)

5), 13. I. 2:
( 1

2 , 1
2 , 1

2

)
;

2 Geodesic curve and balls in S2×R space

E. Molnár has shown in [4] that the homogeneous 3-spaces have a unified interpretation in the
projective 3-sphere PS3(V4, V 4, R). In our work, we shall use this projective model of S2×
R and the Cartesian homogeneous coordinate simplex E0(e0), E∞

1 (e1), E∞
2 (e2), E∞

3 (e3),

({ei } ⊂ V4 with the unit point E(e = e0 + e1 + e2 + e3)) which is distinguished by an
origin E0 and by the ideal points of coordinate axes, respectively. Moreover, y = cx with
0 < c ∈ R (or c ∈ R \ {0}) defines a point (x) = (y) of the projective 3-sphere PS3 (or that
of the projective space P3 where opposite rays (x) and (−x) are identified). The dual system
{(ei )} ⊂ V 4 describes the simplex planes, especially the plane at infinity (e0) = E∞

1 E∞
2 E∞

3 ,
and generally, v = u 1

c defines a plane (u) = (v) of PS3 (or that of P3). Thus, 0 = xu = yv

defines the incidence of point (x) = (y) and plane (u) = (v), as (x)I(u) also denotes it.
Thus, S2×R can be visualized in the affine 3-space A3 (so in E3) as well.

In this context, Molnár [4] has derived the well-known infinitesimal arc-length square at
any point of S2×R as follows:

(ds)2 = (dx)2 + (dy)2 + (dz)2

x2 + y2 + z2 . (2.1)

We shall apply the usual geographical coordiantes (φ, θ) (−π < φ ≤ π, − π
2 ≤ θ ≤ π

2 )

of the sphere with the fibre coordinate t ∈ R. We describe points in the above coordinate
system in our model by the following equations:

x0 = 1, x1 = et cos φ cos θ, x2 = et sin φ cos θ, x3 = et sin θ. (2.2)

Then, we have x = x1

x0 = x1, y = x2

x0 = x2, z = x3

x0 = x3, that is, the usual Cartesian
coordinates. We obtain by [4] that in this parametrization, the infinitesimal arc-length square
at any point of S2×R is the following:

(ds)2 = (dt)2 + (dφ)2 cos2 θ + (dθ)2. (2.3)

The geodesic curves of S2×R are generally defined as having locally minimal arc length
between their any two (near enough) points. The equation systems of the parametrized geo-
desic curves γ (t (τ ), φ(τ), θ(τ )) in our model can be determined by the general theory of
Riemann geometry (see [11]).
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1204 J. Szirmai

Then by (2.2), we get with c = sin v, ω = cos v the equation systems of a geodesic curve,
visualized in Fig. 1 in our Euclidean model:

x(τ ) = eτ sin v cos (τ cos v),

y(τ ) = eτ sin v sin (τ cos v) cos u,

z(τ ) = eτ sin v sin (τ cos v) sin u,

−π < u ≤ π, −π

2
≤ v ≤ π

2
. (2.4)

Remark 2.1 Thus, we have harmonized the scales along the fibre lines.

Definition 2.2 The distance d(P1, P2) between the points P1 and P2 is defined by the arc
length of the geodesic curve from P1 to P2.

Definition 2.3 The geodesic sphere of radius ρ (denoted by SP1(ρ)) with centre at the point
P1 is defined as the set of all points P2 in the space with the condition d(P1, P2) = ρ.
Moreover, we require that the geodesic sphere is a simply connected surface without self-
intersection in S2×R space.

Remark 2.4 We shall see that this last condition depends on radius ρ.

Definition 2.5 The body of the geodesic sphere of centre P1 and of radius ρ in the S2 ×R
space is called geodesic ball, denoted by BP1(ρ), that is, Q ∈ BP1(ρ) iff 0 ≤ d(P1, Q) ≤ ρ.

In [11], we have proved that S(ρ) is a simply connected surface in E3 if and only if ρ ∈
[0, π), because if ρ ≥ π then there is at least one v ∈ [−π

2 , π
2 ] so that y(τ, v) = z(τ, v) = 0,

that is, self-intersection would occur (see (2.4)). Thus, we obtain the following.

Proposition 2.6 The geodesic sphere and ball of radius ρ exists in the S2×R space if and
only if ρ ∈ [0, π].

We have obtained (see [11]) the volume formula of the geodesic ball B(ρ) of radius ρ by
the metric tensor gi j and by the Jacobian of (2.4):

Fig. 1 Prism-like fundamental domains
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Simply transitive geodesic ball packings 1205

Theorem 2.7

V ol(B(ρ)) =
∫

V

1

(x2 + y2 + z2)3/2 dx dy dz

=
ρ∫

0

π
2∫

− π
2

π∫

−π

|τ · sin(cos(v)τ )| du dv dτ

= 2π

ρ∫

0

π
2∫

− π
2

|τ · sin(cos(v)τ )| dv dτ. (2.5)

2.1 On fundamental domains

A type of the fundamental domain of a studied space group can be combined as a fundamental
domain of the corresponding spherical group with a part of a real line segment. This domain
is called S2 ×R prism (see [11]). This notion will be important to compute the volume of
the Dirichlet–Voronoi cell of a given space group because their volumes are equal and the
volume of a S2×R prism can be calculated by Theorem 2.8.

The p-gonal faces of a prism called cover-faces, and the other faces are the side-faces.
The midpoints of the side edges form a “spherical plane” denoted by �. It can be assumed
that the plane � is the base plane: in our coordinate system (see (2.2)), the fibre coordinate
t = 0. From [11], we recall

Theorem 2.8 The volume of a S2×R trigonal prism PB0 B1 B2C0C1C2 and of a diagonal prism
PB0 B1C0C1 in S2×R (see Fig. 1a, b) can be computed by the following formula:

V ol(P) = A · h (2.5)

where A is the area of the spherical triangle A0 A1 A2 or digon A0 A1 in the base plane
� with fibre coordinate t = 0, and h = B0C0 is the height of the prism.

3 Ball packings

By remark (1.2), a S2 ×R space group � has a compact fundamental domain. Usually, the
shape of the fundamental domain of a group of S2 is not determined uniquely, but the area
of the domain is finite and unique by its combinatorial measure. Thus, the shape of the
fundamental domain of a crystallographic group of S2×R is not unique as well.

In the following, let � be a fixed glide reflection space group of S2 ×R. We will denote
by d(X, Y ) the distance of two points X, Y by definition (2.2).

Definition 3.1 We say that the point set

D(K ) = {X ∈ S2×R : d(K , X) ≤ d(K g, X)for all g ∈ �}
is the Dirichlet–Voronoi cell (D-V cell) to � around the kernel point K ∈ S2×R.

Definition 3.2 We say that

�X = {g ∈ � : Xg = X}
is the stabilizer subgroup of X ∈ S2×R in �.

123



1206 J. Szirmai

Definition 3.3 Assume that the stabilizer �K = I, that is, � acts simply transitively on the
orbit of a point K . Then, let BK denote the greatest ball of centre K inside the D-V cell
D(K ); moreover, let ρ(K ) denote the radius of BK . It is easy to see that

ρ(K ) = min
g∈�\I

1

2
d(K , K g).

The �-images of BK form a ball packing B�
K with centre points K G.

Definition 3.4 The density of ball packing B�
K is

δ(K ) = V ol(BK )

V olD(K )
.

It is clear that the orbit K � and the ball packing B�
K have the same symmetry group;

moreover, this group contains the starting crystallographic group �:

SymK � = SymB�
K ≥ �.

Definition 3.5 We say that the orbit K � and the ball packing B�
K is characteristic if

SymK � = �, else the orbit is not characteristic.

3.1 Simply transitive ball packings

Our problem is to find a point K ∈ S2 ×R and the orbit K � for � such that �K = I and
the density δ(K ) of the corresponding ball packing B�(K ) is maximal. In this case, the ball
packing B�(K ) is said to be optimal.

The lattice of � has a free parameter p(�). Then, we have to find the densest ball packing
on K for fixed p(�) and vary p to get the optimal ball packing.

δ(�) = max
K , p(�)

(δ(K )) (3.1)

Let � be a fixed glide reflection group. The stabilizer of K is trivial; that is, we are looking
the optimal kernel point in a 3-dimensional region, inside of a fundamental domain of �

with free fibre parameter p(�).It can be assumed by the homogeneity of S2×R that the fibre
coordinate of the centre of the optimal ball is zero.

3.2 Optimal ball packing to space group 12. I. 3

Now, we consider the following point group:

(+, 0; [ ]; {(2, 3, 4)}) × 1R;
�0 := {g1, g2, g3 − g2

1, g2
2, g2

3, (g1g2)
2, (g1g3)

3, (g2g3)
4}. (3.2)

This is the full isometry group of the usual cube surface, generated by the three reflections
gi , i = 1, 2, 3. The possible translation parts of the generators of �0 will be determined by
(1.2) and by the defining relations of the point group. Finally, from the so-called Frobenius
congruence relations, we obtain the four non-equivariant solutions:

(τ1, τ2, τ3) ∼= (0, 0, 0),

(
0,

1

2
, 0

)
,

(
1

2
, 0,

1

2

)
,

(
1

2
,

1

2
,

1

2

)
.

If (τ1, τ2, τ3) ∼= ( 1
2 , 0, 1

2 ), then we get the S2×R space group 12. I. 3.The fundamental
domain of its point group is a spherical triangle A0 A1 A2 with angles π

3 , π
2 , π

4 lying in the
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Fig. 2 Some elements of the
orbit K �

2

0

A

A

A1

K

K
g

2

K
g

1x y

z

K
g

3

K
g

1

base plane � (see Fig. 2). It can be assumed by the homogeneity of S2 ×R that the fibre
coordinate of the centre of the optimal ball is zero, and it is an interior point of A0 A1 A2

triangle.
We shall apply the Cartesian homogeneous coordinate system introduced in Sect. 2 (see

Fig. 2) and the usual geographical coordiantes (φ, θ), (−π < φ ≤ π, − π
2 ≤ θ ≤ π

2 ) of
the sphere with the fibre coordinate t ∈ R (see (2.2)).

We consider an arbitrary interior point K (x0, x1, x2, x3) of spherical triangle A0 A1 A2 in
the above coordinate system in our model by the following equations:

x0 = 1, x1 = cos φ cos θ, x2 = sin φ cos θ, x3 = sin θ (3.3)

Let B�(R) denote a geodesic ball packing of S2 ×R space with balls B(R) of radius
R where their centres give rise to the orbit K � . In the following, we consider to each ball
packing the possible smallest translation part τ(K , R) (see Fig. 2) depending on �, K and
R. A fundamental domain of � is its D-V cell D(K ) around the kernel point K . It is clear that
the optimal ball BK has to touch some faces of its D-V cell. The volume of D(K ) is equal to
the volume of the prism which is given by the fundamental domain of the point group �0 of
� and by the height 2τ(R, K ). The images of D(K ) by our discrete isometry group covers
the S2×R space without overlap. For the density of the packing, it is sufficient to relate the
volume of the optimal ball to that of the solid D(K ) (see Definition 3.4).

It is clear that the densest ball arrangement B�(R) of balls B(R) has to hold the following
requirements:

(a) d(K , K g2) = 2R = d(K , K τg1),

(b) d(K , K g2) = 2R = d(K , K τg3),

(c) d(K , K 2τ ) ≥ 2R

(d) Balls of radiusRwith centres

K , K g2 , K τg1 , K τg3 , K 2τ form a packing. (3.4)

Here, d is the distance function in the S2×R space (see Definition 2.2). The equations (a)
and (b) mean that the ball centres K τg1 and K τg3 lie on the equidistant geodesic surface of
the points K and K 2τ , which is a sphere in our model in this case (see [6]).

We consider two main ball arrangements:
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1208 J. Szirmai

1. We denote by B�(R0, K0) those packing where requirements (3.4)and d(K , K 2τ ) = 2R
hold (see Fig. 3).

2. We denote by B�(R1, K1) those packing where requirements (3.4) and d(K τg1 , K τg3) =
2R hold (see Fig. 4).

First, we determine the coordinates of the points Ki , (i = 1, 2) (Ki is given by (3.3) with
parameters φ and θ ), the radius R of the ball, the volume of a ball B(R) and the density of
the packing in both main cases. We get the following solutions by systematic approximation,
where the computations were carried out by Maple V Release 10 up to 30 decimals:

φ0 ≈ 0.24389626, θ0 ≈ 0.20663860, R0 ≈ 0.23860571,

V ol(B(R0) ≈ 0.05668684, δ(R0, K0) ≈ 0.45373556. (3.5)

φ1 ≈ 0.30773985, θ1 ≈ 0.17313169, R1 ≈ 0.30299179,

V ol(B(R1) ≈ 0.11580359, δ(R1, K1) ≈ 0.44472930. (3.6)

We obtain by careful investigation of the density function δ(R, K ) (R ∈ [R0, R1]) of the
considered ball packing the following:

Theorem 3.6 The ball arrangement B�(R0, K0) (see Fig. 3) provides the densest simply
transitive ball packing belonging to the S2×R space group 12. I. 3.

3.3 The densest simply transitive ball packing

We consider the following point group:

(+, 0, [ ] {(q, q)}) × 1R, q ≥ 2;
�0 = (g1, g2 − g2

1, g2
2, (g1g2)

q).

This point group is generated by two reflections gi , i = 1, 2, 3. The possible translation
parts of the generators of �0 will be determined by (1.2) and by the defining relations of
the point group. Finally, we obtain from the so-called Frobenius congruence relations three
non-equivariant solutions:

Fig. 3 The densest simply transitive ball packing B�(R0, K0)
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Simply transitive geodesic ball packings 1209

Fig. 4 The ball packing B�(R1, K1)

Fig. 5 Some elements of the
orbit K � by the space group
� = 2q.I.2

0

A

A

1

K
g

2

x y

z

K
g

1

K

(τ1, τ2) ∼= (0, 0),

(
0,

1

2

)
,

(
1

2
,

1

2

)
.

If (τ1, τ2) ∼= ( 1
2 , 1

2 ), then we have obtained the S2×R space group 2q. I. 2.
The fundamental domain of the point group of the considered space group is a spherical

digon A0 A1 with angle π
q in the base plane �. Similarly to the above section, it can be

assumed that the fibre coordinate of the centre of the optimal ball is zero, and it is an interior
point of A0 A1 digon (see Fig. 5).

In the following, we consider ball packings belonging to q = 2. We use also the above
introduced Cartesian homogeneous coordinate system and the usual geographical coordinates
(φ, θ), (−π < φ ≤ π, − π

2 ≤ θ ≤ π
2 ) of the sphere with the fibre coordinate t ∈ R (see

(2.2)).
We consider an arbitrary interior point K (1, x1, x2, x3) = K (φ, θ) of spherical digon

A0 A1 in the above coordinate system in our model (see Fig. 5).
Our aim is to determine the maximal radius R of the balls and the maximal density

δ(K , R).
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1210 J. Szirmai

Fig. 6 The densest simply transitive geodesic ball packing

Table 1 The data of the optimal simply transitive ball packings

Space group R V ol(BK (R)) δ

2q. I. 2, q = 2 π
2 ≈ 1.57079633 ≈ 13.74539472 ≈ 0.80407553

2qe. I. 3, q = 2 π
2 ≈ 1.57079633 ≈ 13.74539472 ≈ 0.69634983

4q. I. 2, q = 2 ≈ 0.64360446 ≈ 1.08624788 ≈ 0.53722971

4q. I. 3, q = 2 ≈ 0.67517586 ≈ 1.25058159 ≈ 0.58958340

4q. I. 4, q = 2 ≈ 0.95531662 ≈ 3.43551438 ≈ 0.74837055

4qe. I. 5, q = 2 ≈ 0.64360446 ≈ 1.08624788 ≈ 0.53722971

4qe. I. 6, q = 2 ≈ 0.67517586 ≈ 1.25058159 ≈ 0.58958340

11. I. 2 ≈ 0.46364761 ≈ 0.41154972 ≈ 0.58861600

12. I. 2 ≈ 0.22770028 ≈ 0.04928081 ≈ 0.41334779

12. I. 3 ≈ 0.23860571 ≈ 0.05668684 ≈ 0.45373556

12. I. 4 ≈ 0.31004511 ≈ 0.12404486 ≈ 0.53597559

13. I. 2 ≈ 0.18705243 ≈ 0.02735051 ≈ 0.49222087

The ball arrangement Bopt (K , R) is defined by the following equations:

(a)d(K , K τg1) = 2R = d(K , K τg2),

(b)d(K τg1 , K τg2) = 2R, (3.7)

We can determine the coordinates of the point K , the radius R of the ball, the volume of
a ball B(R) and the density of this packing:

φ = π

4
≈ 0.78539816, θ = 0, R = π

2
≈ 1.57079633,

V ol(B(R) ≈ 13.74539472, δ(R, K ) ≈ 0.80407553. (3.8)

Similarly to the above section, we can prove the following theorem:

Theorem 3.7 The ball arrangement Bopt (R, K ) (see Fig. 6) provides the densest simply
transitive ball packing belonging to the S2×R space group 2q. I. 2.

Finally, we get the next theorem (see [11]):

Theorem 3.8 The ball arrangement Bopt (R, K ) provides the densest simply transitive ball
packing belonging to the generalized Coxeter and glide reflections generated S2×R space
groups.
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Simply transitive geodesic ball packings 1211

By Theorems 2.7 and 2.8 and by Definitions 3.3 and 3.4, similarly to the above space
groups, we have determined the data (radii, densities and volumes of optimal balls) of the
optimal simply transitive ball packings to each glide reflections generated S2×R space group
which are summarized in Table 1.

Remark 3.9 The space groups 2q. I. 2, 2qe. I. 3, 4q. I. 2, 4q. I. 3, 4q. I. 4, 4qe. I. 5, f
4qe. I. 6 depend on parameter q; thus, their optimal ball packings depend also on q , but in
the Table 1, we give only the data of the densest ball packing indicating its q parameter to
each considered space group.

It is timely to arise the above question for further space groups in S2×R space.
In this paper, we have mentioned only some problems in discrete geometry of S2 ×R

space, but we hope that from these it can be seen that our projective method suits to study
and solve similar problems [6,10,11]. Analogous questions in other homogeneous Thurston
geometries are interesting (see [5,7–9,12]).
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