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Abstract We first classify (2n — 1)-dimensional cyclic parallel CR-submanifold M with
CR-dimension n — 1 in a non-flat complex space form of constant holomorphic sectional
curvature 4c. Then, we prove that || V| |2 > 4(n — 1)c?, where h is the second fundamen-
tal form on M. We also completely classify (2n — 1)-dimensional CR-submanifolds with
CR-dimension n — 1 in a non-flat complex space form which satisfy the equality case of
this inequality. This generalizes an inequality for real hypersurfaces in a non-flat complex
space form obtained by Maeda (J Math Soc Jpn 28:529-540; 1976) and Chen et al. (Algebras
Groups Geom 1:176-212; 1984) for complex projective and hyperbolic spaces, respectively.
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1 Introduction

A complex n-dimensional complex space form M,, (c) is a complete and simply connected
Kaehler manifold with constant holomorphic sectional curvature 4c, that is, it is either a
complex projective space CP,, a complex Euclidean space C,, or a complex hyperbolic
space CH,, (according to as the holomorphic sectional curvature 4c is positive, zero, or
negative).

The study of real hypersurfaces in a Kaehler manifold has been an active field in the past
few decades, especially when the ambient space is a complex space form. One of the first
results in this topic is the non-existence of real hypersurfaces M with parallel shape operator

This work was supported in part by the UMRG research grant (Grant No. RG190-11AFR).

T. H. Loo ()

Institute of Mathematical Sciences, University of Malaya,
50603 Kuala Lumpur, Malaysia

e-mail: looth@um.edu.my

@ Springer



1168 T. H. Loo

A in a non-flat complex space form, that is, VA = 0, where V is the Levi-Civita connection
on M. This fact is an immediate consequence of the Codazzi equation of such a submanifold.
Several weaker notions such as n-parallelism and recurrence of the shape operator were hence
studied by the researchers.

The shape operator A is said to be recurrent if there is a 1-form v on M such that
VA = A ® 7. It is known that there does not exist any real hypersurface in My (c), ¢ # 0,
with recurrent shape operator (cf. [14,21]). A real hypersurface M in M,, (c) is said to be
n-recurrent if (VxA)Y, Z) = ©(X)(AY, Z), for any tangent vector fields X, Y, and Z in the
maximal holomorphic distribution &, where t is a 1-form on M (cf. [13]). In particular, M
is said to be n-parallel when 7 = 0 (cf. [17]).

In [18,19], the author and Kon classified n-parallel real hypersurfaces in M,, (c), ¢ #
0, n > 3. It was also proved in [20] that a real hypersurface in M,, (¢),c #0,n > 3is
n-recurrent if and only if it is n-parallel.

A submanifold M in a Riemannian manifold M is said to be cyclic parallel if its second
fundamental form # satisfies

(Vxm)(Y, Z) + (VY (Z, X) + (Vz)(X,Y) =0

for any vector fields X, Y, and Z tangent to M. When M is a real hypersurface in M,, (c), the
cyclic parallelism is equivalent to the condition

(VxA)Y = —c{n(Y)¢X + (¢ X, Y)&}

for any vector fields X and Y tangent to M, where (¢, &, 7, (, )) is the almost contact structure
on M induced by the complex structure J of the ambient space. Maeda (cf. [22]) and Chen,
Ludden and Montiel (cf. [5]) classified real hypersurfaces in M,(c), ¢ # 0, under this
condition (cf. Theorem 4). With this result, it can be proved that

IVA|? > 4(n — 1) (1

and equality holds if and only if the real hypersurface M is an open part of a tube over
CPr,1 <k <n—1,forc > 0, and M is an open part of a horosphere, a geodesic
hypersphere in CH,,, or a tube over CHy, 1 <k <n —1,forc < 0.

Note that a real hypersurface in M, (c) is a CR-submanifold (see Definition 2 for precise
definition) of maximal CR-dimension (or of hypersurface type). Hence, one of the main
lines deals with generalizing these known results in real hypersurfaces in M, (c) to CR-
submanifolds of maximal CR-dimension in M,, (c). A number of results were obtained by
Djori¢ and Okumura (cf. [7]-[11]). In particular, they attempted to generalize certain results
concerning relationship between A and ¢ for real hypersurfaces in a complex space form
into the setting of CR-submanifolds of maximal CR-dimension.

This paper is also a contribution in this line. The main objective of this paper is to extend
the inequality (1) for real hypersurfaces in a non-flat complex space form to the setting of
CR-submanifolds of maximal CR-dimension. We shall first prove the following theorem.

Therrem 1 Let M be a (2n — 1)-dimensional CR-submanifold of maximal CR-dimension
in My p(c), c #0, n > 2. Then, M is cyclic parallel if and only if M is an open part of
one of the following spaces.

(a) Forc < 0:

(i) a horosphere in CH,,
(ii) a geodesic hypersphere or a tube over a hyperplane CH,_ in CH,,
(iii) a tube over a totally geodesic CHy in CHy, where 1 <k <n — 2.
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CR-submanifolds of maximal CR-dimension 1169

(b) Forc > 0:

(i) a geodesic hypersphere in CP,,
(ii) a tube over a totally geodesic CPy in CP,, where 1 <k <n — 2,
(iii) a standard CR-product CP,_1 X RP! inCPy,_;.

With this result, we can prove the following.

Theprem 2 Let M be a 2n — 1)-dimensional CR-submanifold of maximal CR-dimension
in Myy,(c), c #0, n > 2. Then, M satisfies

[IVA|* > 4(n — 1)c?

and equality holds if and only M is an open part of one of the following spaces.
(a) Forc < 0:

(i) a horosphere in CH,,
(ii) a geodesic hypersphere or a tube over a hyperplane CH,_1 in CH,,
(iii) a tube over a totally geodesic CHy in CH,, where 1 <k <n — 2.

(b) Forc > O:

(i) a geodesic hypersphere in CP,,
(ii) a tube over a totally geodesic CPy in CP,, where 1 <k <n — 2,
(iii) a standard CR-product CP,_1 X RP!inCPy,_;.

Remark 1 1tis worthwhile to remark that there is an additional class of submanifolds, that is,
CP,_1 xRP! inCase (b)(iii), appeared in the list of Theorem 1 compared to the classification
of real hypersurfaces under the same condition (cf. Theorem 4). Chen and Maeda (cf. [6])
proved that there do not exist real hypersurfaces which are Riemannian product of Riemannian
manifolds. Hence, we can see that CP,_; x RP! can never be immersed in CP, as a real
hypersurface.

This paper is organized as follows. In the next two sections, we shall fix some notations and
discuss some fundamental properties of CR-submanifolds in a Kaehler manifold. We describe
the standard examples of cyclic parallel CR-submanifolds of maximal CR-dimension in a
non-flat complex space form in Sect. 4. In Sect. 5, we prepare some lemmas. We prove
Theorem 1 and Theorem 2 in the last two sections.

2 CR-submanifolds in a Kaehler manifold

In this section, we shall recall some structural equations in the theory of CR-submanifolds in a
Kaehler manifold and fix some notations. Some fundamental properties of CR-submanifolds
in a Kaehler manifold are also derived here.

Let M be a Kachler manifold with complex structure J, and let M be a connected Rie-
mannian manifold isometrically immersed in M. The maximal J-invariant subspace Z, of
the tangent space Ty M, x € M is given by

Dy = TeM N JTM.

Definition 1 ([4]) A submanifold M in a Kaehler manifold M is said to be a generic sub-
manifold if the dimension of Z; is constant along M. The distribution 2 : x — 2., x e M
is called the holomorphic distribution (or Levi distribution) on M and the complex dimension
of 7 is called the CR-dimension of M.
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Definition 2 ([1]) A generic submanifold M in a Kaehler manifold M is said to be a CR-
submanifold if the orthogonal complementary distribution 2+ of 2 in T M is totally real,
that is, J@j‘ Cc .M+, x e M.

If 9+ = {0} (resp. 2 = {0}), the CR-submanifold M is said to be holomorphic (resp.
totally real). A CR-submanifold M is said to be proper if it is neither holomorphic nor
totally real. Let v be the orthogonal complementary distribution of J 2 in T M~*. Then, an
anti-holomorphic submanifold M is a CR-submanifold with v = {0}, that is, J 9t =1M*t.

Remark 2 The study of CR-submanifolds in the sense of Definition 2 was initiated by Bejancu
in [1]. Generic submanifolds have been studied by some researchers under the term of
“CR-submanifolds” from the CR geometric view point (cf. [12,24, pp. 345]). We will not fol-
low this term here in order to avoid the confusion. We remark that when a generic submanifold
M is of maximal CR-dimension, that is, dimgp 2 = dim M — 1, M will be a CR-submanifold
in the sense of Definition 2.

Suppose M is a CR-submanifold in a Kaehler manifold M. Denote by (, ) the Riemannian
metric of M as well as that induced on M. Also, we let V be the Levi-Civita connection
on the tangent bundle 7 M of M, V- the normal connection on the normal bundle 7 M=+ of
M, h the second fundamental form, and A, the shape operator of M with respect to a vector
o normal to M.

For a vector bundle 7" over M, we denote by I"(¥') the QO(M)-module of cross sections
on ¥, where Q¥ (M) is the space of k-formson M. Forany X € I'(TM) ando € r(rTMb),
we put X = tan(JX), wX = nor(JX), Bo = tan(Jo) and Co = nor(Jo). From the
parallelism of J, we have (cf. [27, pp. 77])

(Vx¢)Y = A,y X + Bh(X,Y) 2)
(Vxw)Y = —h(X, ¢Y) +Ch(X,Y) 3)
(VxB)o = —pAs X + Aco X (4)
(VxC)o = —wA, X — h(X, Bo) ()]
forany X, Y € I'(TM)and o € I'(TM™*).
We denote by H := Trace(h). For a local frame of orthonormal vectors e, ez, .. ., ey

in I'(2), where m = dimc 2, we define

2m
Hg = Zh(ej,ej).

j=1

Lemmal Let M be a CR-submanifold in a Kaehler manifold M. Then, ((pAs; +
AcP)X,Y) =0, forany X,Y € I'(Z) and o € I" (v). Moreover, we have CHg = 0.

Proof By putting X, Y € I'(2) in (3), we have
—wVyxY = —h(X,¢Y)+ Ch(X,Y).
Taking inner product of both sides of this equation with o € I"(v), we obtain
0= (pA:X,Y)— (Acs X, 7).

Since Ac, is self-adjoint, we obtain ((pAs + As@)X,Y) = 0, for any X, Y € I'(9).
Furthermore, for any unit vector field X € I' (%) and o € I"(v), we have

0=((¢A; +A;P)X, 9pX) = (h(X, X) + h(¢ X, $pX), o).

This equation implies that (Hy, ) = 0 and hence CHyp = 0. O
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CR-submanifolds of maximal CR-dimension 1171

A CR-submanifold M is said to be mixed totally geodesic if h(X,Y) = 0, for any X €
I'(2)and Y € I'(21). A CR-submanifold M is called a CR-product if it is locally a
Riemannian product of a holomorphic submanifold and a totally real submanifold.

The following lemma characterizes CR-products in a Kaehler manifold.

Lemma 2 ([3]) A CR-submanifold M in a Kaehler manifold is a CR-product if and only if
Bh(X,Y)=0,forany X e I'(2)andY € I'(TM).

Now suppose Mq (c) is a g-dimensional complex space form with constant holomorphic
sectional curvature 4c, and let M be a CR-submanifold in Mq (c).

Let R and R be the curvature tensors associated with V and V=, respectively. The
equations of Gauss, Codazzi, and Ricci are then given, respectively, by
R(X, Y)Z = c{(Y, Z)X — (X, 2)Y + (¢Y, Z)§X — ($X, Z)pY

22X, Y)PZ} + Anr. 2y X — Anx. )Y (6)

(Vxh)(Y, Z) — (Vyh)(X, Z) = c{{¢Y, Z)wX — (¢ X, Z)wY —2(¢pX, Y)wZ}
RL(X, Y)o = c{{wY, o)wX — (wX, o)wY —2(¢pX,Y)Co}+ h(X, AsY) — h(Y, Ac X)
forany X, Y, Ze I'(TM)and o € r(TM™b).

A submanifold M in a Riemannian manifold M is said to be cyclic parallel if its second
fundamental form # satisfies

(Vxh)(Y,Z) 4+ (Vy)h(Z, X) + (Vzh)(X,Y) =0
forany X, Y, and Z € I'(TM). When M is CR-submanifold in Mq (c), by the Codazzi
equation, the cyclic parallelism of M is equivalent to the condition

(Vx)(Y, Z) = —c{(¢ X, Z)wY + (¢ X, Y)wZ} (N

forany X,Y,and Z € I'(TM).
The second-order covariant derivative V2h on the second fundamental form # is defined
by
(ViyhW(Z, W) = Vi {(Vyh)(Z, W)} = (Vuyyh)(Z, W) — (Vyh) (VX Z, W)
—(Vyh)(Z,VxW).

The Ricci identity gives
R(X,Y)h = Viyh —Viyh ®)
where
(R(X,Y)h)(Z, W) = RY(X, Y)h(Z, W) — h(R(X,Y)Z, W) — h(Z, R(X, Y)W)

forany X, Y, Z,and W € I'(TM).
Finally, we state without proof a codimension reduction theorem for real submanifolds in
a non-flat complex space form.

Theorem 3 ([15,25]) Let M be a connected real n-dimensional submanifold in M(n+p)/2 (),

¢ # 0and let No(x) be the orthogonal complement of the first normal space in Ty M. We put
Hop(x) = JNo(x)NNo(x) and let H (x) be a J -invariant subspace of Hy(x). If the orthogonal
complement H»(x) of H(x) in Te M~ is invariant under parallel translation with respect to
the normal connection and if q is the constant dimension of Hy(x), for each x € M, then
there exists a (n + q)-dimensional totally geodesic holomorphic submanifold M(n+q) 2(c)

in M(n+p)/2(c) such that M C M(,H_q)/Q(C).
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3 CR-submanifolds of maximal CR-dimension in a complex space form

Suppose M,,+ p(c) is a complex (n + p)-dimensional complex space form of constant holo-
morphic sectional curvature 4c, and M is a real (2n — 1)-dimensional CR-submanifold
of maximal CR-dimension in Mn+p (¢). Then, dimc 2 = n — 1 and dim 2+ = 1. Let
N € I'(J2%) be a local unit vector field normal to M, & = —JN and 7 the 1-form dual
to £. Then, we have

$*X = —X + n(X)é
wX =n(X)N; Bo = —(o, N)&

forany X € '(TM) and o € (T MY). Tt follows from (2)—(5) that

(Vx9)Y = n(Y)AnX — (AnNX, Y)E 9
Vxé = pAnX; VyN = Ch(X,§) (10
h(X,9Y) = —(¢pANX,Y)N — n(Y)Ch(X,€) + Ch(X,Y) (11)
(VxC)o = —(h(X,§),0)N + (0, N)h(X, &) (12)

forany X, Y € '(TM) ando € I'(TM™).
The equations of Codazzi and Ricci can also be reduced to

Vxm)(Y, 2) = (Vyh)(X, Z) =c{n(X){9Y, Z) —n(Y)(¢ X, Z) —2n(Z)(¢ X, Y)}N (13)
R (X, Y)o =2¢(¢pX, Y)Co+h(X, AsY)—h(Y, Ay X) (14)

forany X, Y, Z e '(TM)ando € I'(TM 1). We define the covariant derivative of the
shape operator as

(VxA)sY = Vx{A;Y} — A;VxY — AV}%UY. (15)
Then, we have
(VxA)oY, Z) = ((Vxh)(Y, Z), o)
and the Codazzi equation (13) can be rephrased as
(VxA)oY — (VyA)o X = c(o, N){n(X)¢Y —n(Y)pX — 2(pX, Y)§} (16)

forany X, Y, Z e '(TM) ando € I'(TM™).
The following lemma can be obtained immediately from Lemma 1.

Lemma 3 Let M be a CR-submanifold of maximal CR-dimension in a Kaehler manifold M.
Then, Ch(&,£) = CH.

4 Examples

In this section, we discuss certain examples of cyclic parallel CR-submanifolds of maximal
CR-dimension in a non-flat complex space form. From (7), it is equivalent to said that M
satisfies the following condition.

Vxh)(Y, Z) = —c{n(Y){(¢pX, Z) + n(Z)(¢ X, Y)}N )
forany X, Y,and Z € I'(TM).
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CR-submanifolds of maximal CR-dimension 1173

Let C! | be the complex Lorentzian space with Hermitian inner product

n+1
n
G(z,w) = —zowp + Zz‘,-u')j
j=1
where z = (20, 21, ..., 2n), W = (wo, Wi, ..., Wy) € (C’LH. Then, the anti-De Sitter space

of radius 1 is given by
H" = H (D) ={zeChy i (2 2) = 1)

where (z, w) := NG (z, w). We denote by ¢ : H12”Jrl — CH,, the principal S'-bundle over
CH, . Here, CH,, denotes the complex hyperbolic space with constant holomorphic sectional
curvature —4.

Example 1 (Horospheres in CH,,) Let M’ be a Lorentzian hypersurface in H 12" +1 given by
n
o—zil=1  —lzol+ D> lzI* = -1
j=1

Then, M* = (M) is a real hypersurface in CH,,, so-called a horosphere (a self-tube).

Example 2 (Tubes over CHy in CH,, 0 < k < n — 1) Let k,/ > 0 be integers with
k+1=n—1, r>0.We consider a Lorentzian hypersurface M (r) in H12”+] defined by

k n
_|ZO|2+Z|Zj|2=—COSh2r, _|Z0|+Z|Zj|2=—1.
j=1 j=1

Then, Mj (r) is the standard product HX ! (= coshr) x §2*!(sinhr). Mi(r) = ¥ (M (r))
is areal hypersurface in CH,,, which is a tube of radius r over a totally geodesic holomorphic
submanifold C Hy in CH,,. In particular, My (r) is a geodesic hypersphere in CH,, when k = 0.

Now, we consider the complex Euclidean space C,, 1 with Hermitian inner product
n
G(z,w) = ZZJ'U_J]'
Jj=0
where z = (20, 21, ---,2n), W = (wo, Wi, ..., w,) € C,41. Then, the sphere of radius 1
centered at the origin is given by

s+l = g2 () =z € Cpyy = (2, 2) = 1)

where (z, w) := NG (z, w). We denote by ¢ : §2n+l 5 CP, the principal S!-bundle over
CP,. Here, CP, denotes the complex projective space with constant holomorphic sectional
curvature 4.

Example 3 (Tubes over CP; in CP,, 0 <k <n — 1) Letk,[ > 0 be integers with k + 1/ =
n—1,r €]0,m/2[. We consider a hypersurface M (r) in §2+1 defined by

k n
SlzjF =costr, D jzlP =1
=0 =0

Then, M (r) is the standard product S**+!(cosr) x S?*!(sinr). Mc(r) = Y(M[(r)) is a
real hypersurface in CP,, which is a tube of radius r over a totally geodesic holomorphic
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submanifold CPy in CP,. In particular, when k = 0, M (r) is a geodesic hypersphere in
CP,.

Theorem 4 [5,22] Let M be a real hypersurface in Mn (c), ¢ #0, n > 2. Then, M satisfies
(VxA)Y = —c{n(Y)9X + (¢X, Y)§}

forany X,Y € I'(TM), if and only if M is an open part of one of the following spaces.

(a) Forc <0

(i) a horosphere,
(ii) a geodesic hypersphere or a tube over CH,,_1,
(iii) a tube over CHy, where 1 <k <n — 2.

(b) Forc >0

(i) a geodesic hypersphere,
(ii) a tube over CPy, where 1 <k <n — 2.

Remark 3 A real hypersurface in a Kaehler manifold is said to be Hopf if it is mixed totally
geodesic. The real hypersurfaces stated in Theorem 4 are categorized as Hopf hypersur-
faces of type A in the Takagi’s list (for ¢ > 0) and Montiel’s list (for ¢ < 0) of Hopf
hypersurfaces of constant principal curvatures in My (c), ¢ # 0 (cf. [23,26]). These real
hypersurfaces in the Takagi’s list and Montiel’s list are in fact the only Hopf hypersurfaces
with constant principal curvatures in M,, (c), ¢ #0(cf. [2,16]).

The spaces M stated in Theorem 4 can be naturally immersed into M, | p(c) with higher
codimension via the standard holomorphic immersion of Mn (c) into Mn+ p(c) as follows
M — M, (c) —> Myy,(c).

Clearly, such an immersion is not full. Next, we shall discuss an example of CR-submanifolds
with maximal CR-dimension in C P, which are irreducible to real hypersurfaces in a totally
geodesic holomorphic submanifold of CP,.
We denote by (zo : z1 : -+ : z,) the homogeneous coordinates of CP,. Then, the Segre
embedding S, ; : CPy x CP; — CPpyqi4mi 1s given by
S (z, w) = (Zowo @ +++ 1 Z0Wy 1 ZIWQ = -+ D ZIWL v D ZpgWO Lt W)
where (zo :z1: - :zm) € CPyand (wg : wy : ---: wy) € CPy.

Example 4 (The standard CR-products C P, _; x RP') We consider R P/ as a totally geodesic,
totally real submanifold in C P, and C P, 44 as a totally geodesic, holomorphic submani-
foldin CP;, m + 1+ ml < q. The standard CR-product CP,, x R P! can be immersed into
CP, via Sy, as follows: (cf. [3])

SW!
CPy x RP! —> CP,, x CP =5 CPypyi1ymi — CP,. (18)

In particular, CP,_; X RP! is a CR-submanifold of maximal CR-dimension in Cpy,
2n—1<gq.

Theorem § ([3]) Let M be a CR-product in CP,, dim¢ 2 = m and dimg 9t = 1. Then,
we have

||k||* > 4ml

and equality holds if and only if M is given by the immersion (18).
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CR-submanifolds of maximal CR-dimension 1175

Theorem 6 Let M = CP,_| xRP'. Then, M is a cyclic parallel CR-submanifold of maximal
CR-dimension in CP,.

Proof Since CP,_; and RP! are leaves of 2 and 2+, respectively, and they are totally
geodesic in CP,, by the Gauss formula, we see that

h2,2)=0; h(, &) =0.

Further, as M is a Riemannian product CP,_1 X RP!, both distributions 2 and 21 are
auto-parallel, that is,

V:I(2) = QM) qoon @ (D) V:T(@Y) — QUM) qoyy ® T'(2).
Therefore, we have
(Vxh)(Y, Z) = V¥h(Y, Z) — h(VxY, Z) — h(Y,VxZ) = 0
(Vxh) (&, &) = Vxh(€,£) — 2h(VxE, &) =0

forany X € I'(TM) and Y, Z € I'(2). By using the above two equations and the Codazzi
equation, we have

(Veh)(Y, &) = (Vyh)(§.8) =0
(Vxh)(Y,§) = (Veh)(X,Y) — c(pX, Y)N = —c(¢X, V)N

forany X, Y € I'(2). Hence, M satisfies (17) and so it is cyclic parallel. ]

Remark 4 By using a similar manner as in the above proof, we may verify that such standard
CR-products with higher CR-codimension are also cyclic parallel.

5 Lemmas

Throughout this section, suppose M is a (2n — 1)-dimensional CR-submanifold of maximal
CR-dimension in M4 ,(c), ¢ # 0, n > 2 and M is cyclic parallel or equivalent, it satisfies
(17), that is,

(Vxh)(Y, Z) = —c{n(Y)(¢X, Z) + n(Z)(¢p X, Y)}N
forany X, Y,andZ € I'(T M). By (15), we can see that the condition (17) is equivalent to
(VxA)oY = —c(o, N){n(Y)9pX + (¢ X, Y)&} 19)
forany X,Y € I'(TM) and o € I"'(v).

Lemmad (a) CH =0,
(b) (H, NYCh = 0.

Proof Note that the Eq. (17) implies that V- H = 0, and by the Ricci equation (14), we have
—2c(¢Y, Z)CH +h(Y,AuZ) —h(Z,AgY) =0

for any Y, Z € I'(TM). By differentiating this equation covariantly in the direction of
X € I'(TM), we have

—2¢((Vx9)Y, Z)YCH —2¢{(¢Y, Z)(VxC)H + (Vxh)(Y, Ay Z) + h(Y, (Vx A)y Z)
—(VxI)(Z, AnY) = h(Z,(VxA)nY) = 0.
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By using (9)—(12) and (17), we have

2{—n(Y)(ANX, Z) + n(2)(ANX, Y)}CH + 2(¢Y, Z){n(An X)N

—(H, N)h(X,8)} + (n(2)(¢X, AnY) + n(AnY)(¢X, Z)

—NY)PX, AuZ) —n(AgZ){¢pX, Y)IN + (H, N{{n(Y)h(Z, pX)

HX, Y)W(Z, &) — n(2)h(Y, ¢X) — (pX, Z)h(Y, §)} = 0. (20)
If we substitute X = &, Y € I'(Z2) and Z = ¢Y in the above equation, then (h(€, &), H)N —

(H,N)h(£,&) = 0and hence CH = 0.
Furthermore, after putting ¥ = X € I'(%) and Z = ¢ X in (20), we get

(H, N)Ch(X,£) =0

for any X € I'(2). Next, by putting Z = £ in (20) and making use of the above equation,
we obtain

(H, NYCh(Y, $X) = 0

forany X, Y € I'(T M). By these two equations and the fact that Ch(§,&) = 0(= CH), we
obtain Statement (b). ]

Lemmas$ Forany X € I'(TM),

(a) (pANE, X)N = —h(§, ¢X) + Ch(, X);
(b) da(X) =2n(An¢ANX);
(c) 2Ch(ANX,§) = aCh(X, &).

Proof Statement (a) can be obtained easily from X = & in (11) and Lemma 4.
Taking into account that C H = 0 again, we see that 1 (&, &) = aN. It follows from (17),
(10), and Statement (a) that

0= (Vxh)(&,8) =da(X)N +aCh(X, &) +2(pAnE, ANX)N —2Ch(§, AN X)

forany X € I'(T M). Statements (b) and (c) are the J 2+ and v-component of this equation,
respectively. o

Lemma 6 Forany X,Y,Z,andW € I'(TM),

A=Y, PZ)(ANX, W) + (¢ X, pZ)(ANY, W)
— (Y, 9W)(ANX, Z) + (¢ X, pW)(ANY, Z)
+@Y, Z)((9AN — ANP)X, W) — (9 X, Z)((#AN — AND)Y, W)
HoY, Wi {(AN — ANP)X, Z) — (9 X, W)((9AN — AN®)Y, Z)
—2(¢X, Y (AN — AND)Z, W)}
—(h(Y,Z), h(X, ANW)) + (h(X, Z), h(Y, Ay W))
—(h(Y, W), h(X, ANZ)) + (h(X, W), h(Y, AN Z))
—(h(Z, W), h(X, ANY)) + (h(Z, W), h(Y, Ay X)) = 0, 1)
A=Y, Z2)(Ac X, W) + (X, Z)(AcY, W)
—(Y, W)(As X, Z) + (X, W)(AsY, Z)

(@Y. Z)(9Asd X, W) + (X, Z) (9 AcPY, W)

(Y, W)(pAcd X, ¢Z) + (9X, W) (PAs Y, 9 Z)

20X, YHN(Z)(Ack, ¢W) + n(W)(AcE, $Z) + (Aco Z, W)}}

+
+
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—(h(Y,Z),h(X, AcW)) + (h(X, Z), h(Y, Az W))
—(h(Y, W), h(X, Ac Z2)) + (h(X, W), h(Y, Ax Z))
—(h(Z, W), h(X,AsY))+ (h(Z, W), h(Y, Ax X)) = 0. (22)
Proof Differentiating the following equation
(Vym)(Z, W) = —c{n(Z)(pY, W) + n(W)(pY, Z)}N
covariantly in the direction of X € I' (T M), with the help of (9) and (10), we have

(Viyh)(Z. W) = —c{(pANX. Z)(pY. W) + n(Z)n(Y) (AN X, W)
HPANX, W)Y, Z) + n(Wn(Y)(An X, Z)
—2n(Z)n(W)(An X, Y)IN
—c{n(2)(@Y, W) + n(W){(¢Y, Z)}Ch(X, §).
It follows from (8), (6), (14), and this equation that

c{{—(@ANX. Z)(pY. W) —n(Z)n(Y)(ANX, W)
—(pANX, WYY, Z) —n(W)n(Y)(AN X, Z)
HPANY, Z) (@ X, W) + n(Z)n(X)(AnY, W)
HQANY, W)(PX, Z) + n(W)n(X){ANY, Z)}N
—{n(Z2)(@Y, W) + n(W)(¢Y, Z)}Ch(X, &)
+{n(Z2)(pX. W) + n(W)($pX, Z)}Ch(Y. §)}
=c{— (Y, Z)h(X, W) + (X, Z)h(Y, W)

—(@Y, Z)h(p X, W) + (¢ X, Z)h(9Y, W)

—(Y, WYh(X, Z) + (X, WYh(Y, Z)

—{(@Y, W)h(¢X, Z) + (¢ X, W)h(¢Y, Z)

+2(p X, Y){h(pZ, W) + h(pW,Z) — Ch(Z, W)}}

—h(Apy,2) X, W) + h(Apx,2)Y, W)

—h(Any,w) X, Z) + h(Apx.w)Y, Z)

—h(Apzw) X, Y) + h(Apzw)Y, X). (23)

The Eq. (21) is the J 2--component of this equation. Next, it follows from Lemma 5(a) that
(h(Z,$Y) = n(Z)Ch(E, ¥),0) = —(h($*Z, $Y), 0) = (pA,¢Y, $Z)

forany Y,Z € I'(TM) and o € I'(v). With the help of this equation, after taking inner
product of both sides of (23) with o € I"(v), we obtain (22). ]

Lemma7 Ayé = oé.

Proof Suppose that B = ||[¢pAyx&|| > 0 at some point x € M. Then, we can write

ANE = af + BU (24)
where U = —ﬂ_1¢2A ~E& and hence from Lemma 5(c), we have
Ch(,U)=0. (25)

Next, by substituting Z = W = & in (21), we obtain
(h(X,U),h(Y,8)) — (h(Y,U), h(X,§)) =0 (26)
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for any X,Y € T, M. By putting ¥ = £ in this equation, with the help of (25), we obtain
dANU — BANE = 0 and so

ANU = B +yU, (ay = o). 27)
Hence, from (24) and (27), we have

AVE = (@ + BHE + Bla + U (28)

AU = Bla+ y)E + (B2 +yHU. (29)

On the other hand, by putting X = U in (26) and using (25) and (27), we have A, v)§ —
BANU =0or

Acrpw,né = 0. (30)

Finally, with the help of (24), (25), (27)-(30), Lemma 5(c) and the fact that (£, &) = aN,
after substituting X = W =U, Y = Z = £ in (21), gives

0=ca—a(ANU, ANU) + y(ANE, ANE) = ca.

But from (27), ay = 8% > 0. This is a contradiction. Accordingly, Ay& = «£ at each point
of M. O

Lemma 8 (a) « is a constant;
(b) (ANGAN — ANy —cP)X + Appx,6 =0, forany X € I'(TM);
(c) a(pAn — Ang) = 0.

Proof Statement (a) is directly from Lemma 5(b) and Lemma 7. Next, from Lemma 7, we
have

(h(Y,§),N) = an(¥)
forany Y € I'(T M). It follows from this equation that
(Vxh)(Y.€) + h(Y, VX&), N) + (h(Y.£), Vy N) = da(X)n(Y) + a(VxE, Y).

By applying (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

((ANQAN —adAN —ch) X, Y) + (h(9X.§), h(Y,§)) =0 (31)
for any X,Y € I'(T M) and so we obtain Statement (b). Finally, by letting X = Y in (31),
we have o (pAn X, X) =0, forany X € I'(T M), this deduces Statement (c). ]

Lemma9 Forany X,Y € I'(2) and o € I (v),
2(h(@pX, &), h(Y, AsE)) + RANY — Y, AcpANX) = 0.
Proof By using Lemma 5(c) and Lemma 7, we have
2h(ANY.E) = 2(h(ANY, &), N)N —2C*h(ANY, &) = o*n(Y)N + ah(Y, £)

for any Y € I'(T M). By differentiating this equation covariantly in the direction of X €
(T M), we have

2(VXM(ANY,§) + h(Vx ANY + AgiyY. €) + h(AnY, Vx§))
= &> ((Vx&, YIN + n(Y)VE N} + a{(Vxh)(Y, &) + h(Y, Vx£)}.
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By using (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

2c{(pX, ANY)N+n(V)h($X, &) +a (X, Y)N}+2{h(Anpx.5)Y. ) +h(ANY, pAN X))}
=’ {(PANX, YIN+n()h($X, E)}+atc(@X, Y)N+h(Y, pAxX)}.

By first, putting X, Y € I'(2) and then taking inner product of both sides of this equation
with o € I"'(v), we obtain the lemma. ]

6 Proof of Theorem 1

We shall consider two cases: (I) M is mixed totally geodesic and (I) M is non-mixed totally
geodesic.

Case (I) M is mixed totally geodesic.
By Lemma 4(a) and Lemma 7, we have

h(Y,§) =n(h(E, &) = an(Y)N (32)

forany Y € I"(T M). It follows from (10) that V=N = 0. Moreover, by applying
(10), (17), and (32), we obtain

0= ((Vxh)(Y,§),0) = (Vyh(Y,§),0) — (h(Y, Vx§),0)
= (h(Y,9ANX), 0)

forany X,Y € I'(TM) and o € I"(v). This means that
AcpAN =0 (33)
for any o € I'(v). On the other hand, by Lemma 8(b), we have
ANPAN —apAN —cp = 0.

As ¢ # 0, we can observe from the above equation that Ay |4 is a vector bundle
automorphism on 2. Hence, for any o € I'(v), we have As|9 = 0 by (33).
Also, we have A& = 0 by using Lemma 4(a). We conclude that A, = 0 for
any o € I'(v). Further, since Ay # 0, v, is the J-invariant orthogonal comple-
mentary subspace of the first normal space in T, M+, at each x € M. Also, since
VLN =0, v is a parallel normal subbundle of 7 M. By applying Theorem 3, M
is contained in a totally geodesic holomorphic submanifold M,, (c) of M,H p(c) as
a real hypersurface.

We denote by N’ a unit normal vector field, V’, the Levi-Civita connection, A’
the shape operator of M, immersed in A;I,l (c). Further, let (¢, &', ") denote the
almost contact structure on M induced by complex structure of M, (c).

Since Mn (c) is totally geodesic in M,,+p(c) and Ch = 0, we can see that V;(Y =
VxY, A=Ay, ¢ =¢, n' =n, & =&,and N’ = N. Then, by (19), we have

(VYANY = (VxAnY = —c{n(V)¢X + (X, Y)E}
= —c(n'(¥Y)P'X +(¢'X, Y)E"}

for any vectors X, Y tangent M. By using Theorem 4, we obtain Case (a) and Case
(b)(1) and (ii) in Theorem 1.
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Case (I) M is non-mixed totally geodesic.
Let x € M, and X € %, be a unit vector with Ay X = AX. If h(X, &) = 0, then
we also have h(¢p X, &) = Ch(X, &) =0 and

AMNPX — (ar +c)pX =0, (by Lemma 8(b)).

Ifo = 0,then 2 # 0 and AypX = ck‘1¢X. On the other hand, if o # 0,
then by Lemma 8(c), Ax¢ X = L X. From these observations, there is an integer
m > 1 and we may choose an orthonormal basis of &, formed by eigenvectors
E\,Er =¢E,, ..., Ey—1, E2n—2 = ¢E2,—1 of Ay such that
h(E;,§) #0, (1 <i<2m) (34)
h(Eg,£) =0, Cm+1<a<2n-2). (35)

In the rest of this section, we use the following convention of indices:

iy J,... e{l1,2,...,2m};
a,b,...e{2m+1,...,2n—2}.

For simplicity, we write 0; = h(E;,§) and A; = A,;.
It follows from Lemma 5(c) and Lemma 8(b) that

ANE; = %E,- (36)
ng =& :4" E; (37)
(o1 h(X. ) = & e x) (38)
for any X € T, M. We can further observe from (38) that
ol 2 = “2:‘“ =0, (39)

By using (36)—(39), after putting X = ¢E;, Y = E;, and 0 = oy in Lemma 9,
we obtain (a? + 4c¢){o;, h(E;, Ex)) = 0, and so

(AEj, Ex) =0. (40)
Now, we wish to prove that

2
o” +4c
AEj = — 8. (41)

If m = n — 1, then (37) and (40) imply (41). Next, suppose m < n — 1. Then,
bylettingY = Z =&, X = E;, W = E,, and 0 = o; in (22), with the help of
(35)-(37), we have c(A; Ej, E;) = 0, that is,

(AJEj, Eq) = 0.

From the above equation, (37) and (40), we also obtain (41).
Byputting X =§, Y =E;, Z=E;, W = E;, and 0 = o7 in (22), we have

2
o
I{(Sjkfsil +8jidki + 0kidj1} = (Ch(Ej, Ex), Ch(E;, Ep)). 42)
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Ifwefirstput E; = E; = Ey = Ej,andnextfollowby E; = E;, Ex = E; = ¢E;
in the above equation, then

2
3% = (Ch(E;, E;), Ch(E;, E;))
2
“Z = (Ch(E;, pE;), Ch(E;, E;)) = (Ch(E;, E;), Ch(E;, E})).

These three equations, together with (36) and (39), give

a=0 (43)
¢ > 0; (without loss of generality, we assume ¢ = 1) 44)
h(E;, E;) = 0. (45)

Lemma 10 Suppose m < n — 1 and let ANE, = AqE,. Then,
(a) Ch(E,, Ep) =0,

(b) rq € {1, —1},

(c) pAN — Ang = 0.

Proof From (31), (35), (43), and (44), we have A, # 0 and ANyQE, = }g1¢>Ea. Hence,
after putting X = ¢E, and Y = E}, in Lemma 9, we obtain Statement (a). Furthermore, by
putting X =W =E;andY =Z=E;,,and X =E;, Y =E,;, Z =¢E,,and W = ¢E;,
respectively, in (21), we have

0= _)‘-a + 2)\a(h(Eia Ea)» h(Eia Ea))
0=2q—ry ' + A2, " (W(Ei, §EQ), h(PE;, E)) + halh(Ei, Eo), h(PE;, 9E,))
= {ha — A7 W1 — (h(Ei, Eq), h(Ei, Eg)).

These two equations imply that A, = A;l. Hence, we obtain Statement (b) and (c¢) as
AE; = A¢pE; = 0. O

Now, we consider two subcases: ||Ay|| = 0 and ||Ay|| # O.

Subcase (II-a) ||An|| = O.

In this case, we have m = n — 1 at each x € M by (36), (43), and Lemma 10(b).
From Lemma 7 and (45), we see that (h(X,Y),N) = 0, forany X € I'(Z) and Y €
I'(TM). Hence, M is a CR-product by Lemma 2. Furthermore, it follows from (38), (45),
and h(€, &) = 0 that ||h]]> = 2(2n — 2). According to Theorem 5, M is an open part of the
standard CR-product CP,,_1 x RP!, and we obtain Case (b)(iii) in Theorem 1.

Subcase (II-b) [|An|| #Z O.

From Lemma 4(b), we have Trace(Ay|g,) = (H,N) = 0. By using (36), (43),
Lemma 10(b), and the continuity of the eigenvalue functions, we can see thatm < n — 1 and
Ay has three distinct constant eigenvalues 0, 1, and —1 with multiplicities 2m, n —m — 1,
and n — m — 1, respectively, at each x € M.

For A € {0, 1, —1}, we denote by .7, the subbundle of Z foliated by eigenspace of Ay|y
corresponding to A. From Lemma 10(c), we see that each .7} is ¢-invariant. We shall show
that 9 is auto-parallel, that is,

r'(%) —> Q' (M) ® I'(%).
Forany X € I'(TM) and Y € I'(%), we have
(VxY, &) = —(Y,pANX) = 0.
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Next, from (17), we have
—(X,Y)E = (VxA)NY = —ANyVxY — ACh(X,E)Y = —AyVyxY — Ah(q)x,g)Y.

If X € I'(71 & -1 & Span{&}), it clearly that AyVxY = 0; if X € I'(%), then by
(37) and the above equation, we have Ay VxY = 0 too. From these observations, we have
VxY € I'(%), forany X € '(TM) and Y € I'(%).

Forany X € I'(%) and Y, Z € I'(91 & J_1 & Span{&}), from Lemma 10(a), we see
that h(Y, Z) = (AnY, Z)N. It follows that

(Vxh)(Y,Z) = Vih(Y,Z) —h(VxY,Z) —h(Y,VxZ)
= {X(ANY, Z) — (ANVxY, Z) — (ANY, VX Z)}N
—(ANY, Z)Ch(X,§).

In particular, if we choose Y = Z € I'(97) with |[|Y]| = 1, then
C(Vxh)(Y,Z) = h(X,§) #0.

This is a contradiction, so this case cannot occur.
Conversely, all these submanifolds satisfy the condition (17) as we have discussed in
Sect. 4. This completes the proof.

7 Proof Theorem 2

Suppose M is a (2n — 1)-dimensional CR-submanifold of maximal CR-dimension in
My p(c), ¢ #0, n > 2. We define a tensor field 7 on M by

T'(X,Y,Z) = (Vxh)(Y, Z) + c(n(Y)(¢ X, Z) + n(Z){¢ X, Y)}N

forany X, Y,andZ € I'(TM). Letey, ez, ..., ex;,—1 be alocal field of orthonormal vectors
in I'(T M). Then,
2n—1
ITI2 = |IVAI]? + 40 — D +4c > (Ve h)(E. dej). N).
j=1

On the other hand, by the Codazzi equation, we have

2n—1 2n—1
> {(Ve,h)E pej). Ny = D ((Veh)(ej. pej). N) — 2(n — 1)e = —2(n — 1)c.
j=1 j=1

Combining these two equations, we have
0 < ITI? =IVAI]? = 4(n — Dc?

and equality holds if and only if M satisfies (17). By Theorem 1, we obtain the theorem.

References

1. Bejancu, A.: CR-submanifolds of a Kaehler manifold I. Proc. Am. Math. Soc. 69, 135-142 (1978)

2. Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine
Angew. Math. 395, 132-141 (1989)

3. Chen B.Y.: CR-submanifolds of a Kaehler manifold, I, II. J. Diff. Geom. 16, 305-322 (1981) 16, 493-509
(1981)

@ Springer



CR-submanifolds of maximal CR-dimension 1183

20.

21.

22.

23.

25.

26.

217.

Chen, B.Y.: Differential geometry of real submanifolds in a Kdhler manifold. Monatsh. Math. 91,257-274
(1981)

. Chen, B.Y., Ludden, G.D., Montiel, S.: Real submanifolds of a Kaehler manifold. Algebras Groups Geom.

1, 176-212 (1984)

Chen, B.Y., Montiel, S.: Real hypersurfaces in nonflat complex space forms are irreducible. Osaka J.
Math. 40, 121-138 (2003)

Djorié¢, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of
maximal CR dimension of complex Euclidean space. Ann. Glob. Anal. Geom. 30, 383-396 (2006)
Djori¢, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of
maximal CR dimension of complex hyperbolic space. Ann. Glob. Anal. Geom. 39, 1-12 (2011)

Djori¢, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of
maximal CR dimension of complex projective space. Isr. J. Math. 169, 47-59 (2009)

Djori¢, M., Okumura, M.: Certain CR submanifolds of maximal CR dimension of complex space forms.
Differ. Geom. Appl. 26, 208-217 (2008)

. Djori¢, M., Okumura, M.: CR-Submanifolds of Complex Projective Space. Developments in Mathematics,

vol. 19. Springer, Berlin (2009)

Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds:Progress in Mathe-
matics, vol. 246. Birkhduser, Boston (2006)

Hamada, T.: On real hypersurfaces of a complex projective space with n-recurrent second fundamental
tensor. Nihonkai Math. J. 6, 153-163 (1995)

Hamada, T.: On real hypersurfaces of a complex projective space with recurrent second fundamental
tensor. J. Ramanujan Math. Soc. 11, 103-107 (1996)

. Kawamoto, S.I.: Codimension reduction for real submanifolds of complex hyperbolic space. Revista

Matematica de la Universidad Complutense de Madrid 7, 119-128 (1994)

Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am.
Math. Soc. 296, 137-149 (1986)

Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202, 299-311
(1989)

Kon, S.H., Loo, T.H.: On characterizations of real hypersurfaces in a complex space form with n-parallel
shape operator. Can. Math. Bull. 55, 114-126 (2012)

Kon, S.H., Loo, T.H.: Real hypersurfaces in a complex space form with n-parallel shape operator. Math.
Z.269,47-58 (2011)

Loo T.H.: On classification of real hypersurfaces in a complex space form with 7-recurrent shape operator
(preprint)

Lyu, S.M., Suh, Y.J.: Real hypersurfaces in complex hyperbolic space with n-recurrent second fundamental
tensor. Nihonkai Math. J. 8, 19-27 (1997)

Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28, 529-540 (1976)
Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 37, 515-535 (1985)
Nirenberg, R., Wells Jr, R.O.: Approximation theorems on differentiable submanifolds of a complex
manifold. Trans. Am. Math. Soc. 142, 15-35 (1969)

Okumura, M.: Codimension reduction problem for real submanifolds of complex projective space. Colloq.
Math. Soc. Janos Bolyai 56, 574-585 (1989)

Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495—
506 (1973)

Yano, K., Kon, M.: CR-submanifolds of Kaehlerian and Sasakian manifolds. Progress in Mathematics
vol. 30. Birkhduser, Boston (1983)

@ Springer



	Cyclic parallel CR-submanifolds of maximal CR-dimension in a complex space form
	Abstract
	1 Introduction
	2 CR-submanifolds in a Kaehler manifold
	3 CR-submanifolds of maximal CR-dimension in a complex space form
	4 Examples
	5 Lemmas
	6 Proof of Theorem 1
	7 Proof Theorem 2
	References


