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Abstract We first classify (2n − 1)-dimensional cyclic parallel CR-submanifold M with
CR-dimension n − 1 in a non-flat complex space form of constant holomorphic sectional
curvature 4c. Then, we prove that ||∇h||2 ≥ 4(n − 1)c2, where h is the second fundamen-
tal form on M . We also completely classify (2n − 1)-dimensional CR-submanifolds with
CR-dimension n − 1 in a non-flat complex space form which satisfy the equality case of
this inequality. This generalizes an inequality for real hypersurfaces in a non-flat complex
space form obtained by Maeda (J Math Soc Jpn 28:529–540; 1976) and Chen et al. (Algebras
Groups Geom 1:176–212; 1984) for complex projective and hyperbolic spaces, respectively.
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1 Introduction

A complex n-dimensional complex space form M̂n(c) is a complete and simply connected
Kaehler manifold with constant holomorphic sectional curvature 4c, that is, it is either a
complex projective space CPn , a complex Euclidean space Cn , or a complex hyperbolic
space CHn (according to as the holomorphic sectional curvature 4c is positive, zero, or
negative).

The study of real hypersurfaces in a Kaehler manifold has been an active field in the past
few decades, especially when the ambient space is a complex space form. One of the first
results in this topic is the non-existence of real hypersurfaces M with parallel shape operator
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1168 T. H. Loo

A in a non-flat complex space form, that is, ∇ A = 0, where ∇ is the Levi-Civita connection
on M . This fact is an immediate consequence of the Codazzi equation of such a submanifold.
Several weaker notions such as η-parallelism and recurrence of the shape operator were hence
studied by the researchers.

The shape operator A is said to be recurrent if there is a 1-form τ on M such that
∇ A = A ⊗ τ . It is known that there does not exist any real hypersurface in M̂n(c), c �= 0,
with recurrent shape operator (cf. [14,21]). A real hypersurface M in M̂n(c) is said to be
η-recurrent if 〈∇X A)Y, Z〉 = τ(X)〈AY, Z〉, for any tangent vector fields X, Y, and Z in the
maximal holomorphic distribution D , where τ is a 1-form on M (cf. [13]). In particular, M
is said to be η-parallel when τ = 0 (cf. [17]).

In [18,19], the author and Kon classified η-parallel real hypersurfaces in M̂n(c), c �=
0, n ≥ 3. It was also proved in [20] that a real hypersurface in M̂n(c), c �= 0, n ≥ 3 is
η-recurrent if and only if it is η-parallel.

A submanifold M in a Riemannian manifold M̂ is said to be cyclic parallel if its second
fundamental form h satisfies

(∇X h)(Y, Z)+ (∇Y )h(Z , X)+ (∇Z h)(X, Y ) = 0

for any vector fields X, Y , and Z tangent to M . When M is a real hypersurface in M̂n(c), the
cyclic parallelism is equivalent to the condition

(∇X A)Y = −c{η(Y )φX + 〈φX, Y 〉ξ}
for any vector fields X and Y tangent to M , where (φ, ξ, η, 〈, 〉) is the almost contact structure
on M induced by the complex structure J of the ambient space. Maeda (cf. [22]) and Chen,
Ludden and Montiel (cf. [5]) classified real hypersurfaces in M̂n(c), c �= 0, under this
condition (cf. Theorem 4). With this result, it can be proved that

||∇ A||2 ≥ 4(n − 1)c2 (1)

and equality holds if and only if the real hypersurface M is an open part of a tube over
CPk, 1 ≤ k ≤ n − 1, for c > 0, and M is an open part of a horosphere, a geodesic
hypersphere in CHn , or a tube over CHk, 1 ≤ k ≤ n − 1, for c < 0.

Note that a real hypersurface in M̂n(c) is a CR-submanifold (see Definition 2 for precise
definition) of maximal CR-dimension (or of hypersurface type). Hence, one of the main
lines deals with generalizing these known results in real hypersurfaces in Mn(c) to CR-
submanifolds of maximal CR-dimension in M̂n(c). A number of results were obtained by
Djorić and Okumura (cf. [7]–[11]). In particular, they attempted to generalize certain results
concerning relationship between A and φ for real hypersurfaces in a complex space form
into the setting of CR-submanifolds of maximal CR-dimension.

This paper is also a contribution in this line. The main objective of this paper is to extend
the inequality (1) for real hypersurfaces in a non-flat complex space form to the setting of
CR-submanifolds of maximal CR-dimension. We shall first prove the following theorem.

Theorem 1 Let M be a (2n − 1)-dimensional CR-submanifold of maximal CR-dimension
in M̂n+p(c), c �= 0, n ≥ 2. Then, M is cyclic parallel if and only if M is an open part of
one of the following spaces.

(a) For c < 0:

(i) a horosphere in CHn,
(ii) a geodesic hypersphere or a tube over a hyperplane CHn−1 in CHn,

(iii) a tube over a totally geodesic CHk in CHn, where 1 ≤ k ≤ n − 2.
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CR-submanifolds of maximal CR-dimension 1169

(b) For c > 0:

(i) a geodesic hypersphere in CPn,
(ii) a tube over a totally geodesic CPk in CPn, where 1 ≤ k ≤ n − 2,

(iii) a standard CR-product CPn−1 × RP1 in CP2n−1.

With this result, we can prove the following.

Theorem 2 Let M be a (2n − 1)-dimensional CR-submanifold of maximal CR-dimension
in M̂n+p(c), c �= 0, n ≥ 2. Then, M satisfies

||∇h||2 ≥ 4(n − 1)c2

and equality holds if and only M is an open part of one of the following spaces.

(a) For c < 0:

(i) a horosphere in CHn,
(ii) a geodesic hypersphere or a tube over a hyperplane CHn−1 in CHn,

(iii) a tube over a totally geodesic CHk in CHn, where 1 ≤ k ≤ n − 2.

(b) For c > 0:

(i) a geodesic hypersphere in CPn,
(ii) a tube over a totally geodesic CPk in CPn, where 1 ≤ k ≤ n − 2,

(iii) a standard CR-product CPn−1 × RP1 in CP2n−1.

Remark 1 It is worthwhile to remark that there is an additional class of submanifolds, that is,
CPn−1×RP1 in Case (b)(iii), appeared in the list of Theorem 1 compared to the classification
of real hypersurfaces under the same condition (cf. Theorem 4). Chen and Maeda (cf. [6])
proved that there do not exist real hypersurfaces which are Riemannian product of Riemannian
manifolds. Hence, we can see that CPn−1 × RP1 can never be immersed in CPn as a real
hypersurface.

This paper is organized as follows. In the next two sections, we shall fix some notations and
discuss some fundamental properties of CR-submanifolds in a Kaehler manifold. We describe
the standard examples of cyclic parallel CR-submanifolds of maximal CR-dimension in a
non-flat complex space form in Sect. 4. In Sect. 5, we prepare some lemmas. We prove
Theorem 1 and Theorem 2 in the last two sections.

2 CR-submanifolds in a Kaehler manifold

In this section, we shall recall some structural equations in the theory of CR-submanifolds in a
Kaehler manifold and fix some notations. Some fundamental properties of CR-submanifolds
in a Kaehler manifold are also derived here.

Let M̂ be a Kaehler manifold with complex structure J , and let M be a connected Rie-
mannian manifold isometrically immersed in M̂ . The maximal J -invariant subspace Dx of
the tangent space Tx M, x ∈ M is given by

Dx = Tx M ∩ J Tx M.

Definition 1 ([4]) A submanifold M in a Kaehler manifold M̂ is said to be a generic sub-
manifold if the dimension of Dx is constant along M . The distribution D : x → Dx , x ∈ M
is called the holomorphic distribution (or Levi distribution) on M and the complex dimension
of D is called the CR-dimension of M .
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1170 T. H. Loo

Definition 2 ([1]) A generic submanifold M in a Kaehler manifold M̂ is said to be a CR-
submanifold if the orthogonal complementary distribution D⊥ of D in T M is totally real,
that is, JD⊥

x ⊂ Tx M⊥, x ∈ M .
If D⊥ = {0} (resp. D = {0}), the CR-submanifold M is said to be holomorphic (resp.

totally real). A CR-submanifold M is said to be proper if it is neither holomorphic nor
totally real. Let ν be the orthogonal complementary distribution of JD⊥ in T M⊥. Then, an
anti-holomorphic submanifold M is a CR-submanifold with ν = {0}, that is, JD⊥ = T M⊥.

Remark 2 The study of CR-submanifolds in the sense of Definition 2 was initiated by Bejancu
in [1]. Generic submanifolds have been studied by some researchers under the term of
“CR-submanifolds” from the CR geometric view point (cf. [12,24, pp. 345]). We will not fol-
low this term here in order to avoid the confusion. We remark that when a generic submanifold
M is of maximal CR-dimension, that is, dimR D = dim M −1, M will be a CR-submanifold
in the sense of Definition 2.

Suppose M is a CR-submanifold in a Kaehler manifold M̂ . Denote by 〈, 〉 the Riemannian
metric of M̂ as well as that induced on M . Also, we let ∇ be the Levi-Civita connection
on the tangent bundle T M of M, ∇⊥ the normal connection on the normal bundle T M⊥ of
M, h the second fundamental form, and Aσ the shape operator of M with respect to a vector
σ normal to M .

For a vector bundle V over M , we denote by Γ (V ) the 	0(M)-module of cross sections
on V , where	k(M) is the space of k-forms on M . For any X ∈ Γ (T M) and σ ∈ Γ (T M⊥),
we put φX = tan(J X), ωX = nor(J X), Bσ = tan(Jσ) and Cσ = nor(Jσ). From the
parallelism of J , we have (cf. [27, pp. 77])

(∇Xφ)Y = AωY X + Bh(X, Y ) (2)

(∇Xω)Y = −h(X, φY )+ Ch(X, Y ) (3)

(∇X B)σ = −φAσ X + ACσ X (4)

(∇X C)σ = −ωAσ X − h(X, Bσ) (5)

for any X, Y ∈ Γ (T M) and σ ∈ Γ (T M⊥).
We denote by H := Trace(h). For a local frame of orthonormal vectors e1, e2, . . . , e2m

in Γ (D), where m = dimC D , we define

HD :=
2m∑

j=1

h(e j , e j ).

Lemma 1 Let M be a CR-submanifold in a Kaehler manifold M̂. Then, 〈(φAσ +
Aσ φ)X, Y 〉 = 0, for any X, Y ∈ Γ (D) and σ ∈ Γ (ν). Moreover, we have C HD = 0.

Proof By putting X, Y ∈ Γ (D) in (3), we have

−ω∇X Y = −h(X, φY )+ Ch(X, Y ).

Taking inner product of both sides of this equation with σ ∈ Γ (ν), we obtain

0 = 〈φAσ X, Y 〉 − 〈ACσ X, Y 〉.
Since ACσ is self-adjoint, we obtain 〈(φAσ + Aσ φ)X, Y 〉 = 0, for any X, Y ∈ Γ (D).
Furthermore, for any unit vector field X ∈ Γ (D) and σ ∈ Γ (ν), we have

0 = 〈(φAσ + Aσ φ)X, φX〉 = 〈h(X, X)+ h(φX, φX), σ 〉.
This equation implies that 〈HD , σ 〉 = 0 and hence C HD = 0. ��
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CR-submanifolds of maximal CR-dimension 1171

A CR-submanifold M is said to be mixed totally geodesic if h(X, Y ) = 0, for any X ∈
Γ (D) and Y ∈ Γ (D⊥). A CR-submanifold M is called a CR-product if it is locally a
Riemannian product of a holomorphic submanifold and a totally real submanifold.

The following lemma characterizes CR-products in a Kaehler manifold.

Lemma 2 ([3]) A CR-submanifold M in a Kaehler manifold is a CR-product if and only if
Bh(X, Y ) = 0, for any X ∈ Γ (D) and Y ∈ Γ (T M).

Now suppose M̂q(c) is a q-dimensional complex space form with constant holomorphic
sectional curvature 4c, and let M be a CR-submanifold in M̂q(c).

Let R and R⊥ be the curvature tensors associated with ∇ and ∇⊥, respectively. The
equations of Gauss, Codazzi, and Ricci are then given, respectively, by

R(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈φY, Z〉φX − 〈φX, Z〉φY

−2〈φX, Y 〉φZ} + Ah(Y,Z)X − Ah(X,Z)Y (6)

(∇X h)(Y, Z)− (∇Y h)(X, Z) = c{〈φY, Z〉ωX − 〈φX, Z〉ωY − 2〈φX, Y 〉ωZ}
R⊥(X, Y )σ = c{〈ωY, σ 〉ωX − 〈ωX, σ 〉ωY − 2〈φX, Y 〉Cσ } + h(X, AσY )− h(Y, Aσ X)

for any X, Y, Z ∈ Γ (T M) and σ ∈ Γ (T M⊥).
A submanifold M in a Riemannian manifold M̂ is said to be cyclic parallel if its second

fundamental form h satisfies

(∇X h)(Y, Z)+ (∇Y )h(Z , X)+ (∇Z h)(X, Y ) = 0

for any X, Y , and Z ∈ Γ (T M). When M is CR-submanifold in M̂q(c), by the Codazzi
equation, the cyclic parallelism of M is equivalent to the condition

(∇X h)(Y, Z) = −c{〈φX, Z〉ωY + 〈φX, Y 〉ωZ} (7)

for any X, Y , and Z ∈ Γ (T M).
The second-order covariant derivative ∇2h on the second fundamental form h is defined

by

(∇2
XY h)(Z ,W ) = ∇⊥

X {(∇Y h)(Z ,W )} − (∇∇X Y h)(Z ,W )− (∇Y h)(∇X Z ,W )

−(∇Y h)(Z ,∇X W ).

The Ricci identity gives

R(X, Y )h = ∇2
XY h − ∇2

Y X h (8)

where

(R(X, Y )h)(Z ,W ) = R⊥(X, Y )h(Z ,W )− h(R(X, Y )Z ,W )− h(Z , R(X, Y )W )

for any X, Y, Z , and W ∈ Γ (T M).
Finally, we state without proof a codimension reduction theorem for real submanifolds in

a non-flat complex space form.

Theorem 3 ([15,25]) Let M be a connected real n-dimensional submanifold in M̂(n+p)/2(c),
c �= 0 and let N0(x) be the orthogonal complement of the first normal space in Tx M⊥. We put
H0(x) = J N0(x)∩N0(x) and let H(x) be a J -invariant subspace of H0(x). If the orthogonal
complement H2(x) of H(x) in Tx M⊥ is invariant under parallel translation with respect to
the normal connection and if q is the constant dimension of H2(x), for each x ∈ M, then
there exists a (n + q)-dimensional totally geodesic holomorphic submanifold M̂(n+q)/2(c)
in M̂(n+p)/2(c) such that M ⊂ M̂(n+q)/2(c).
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1172 T. H. Loo

3 CR-submanifolds of maximal CR-dimension in a complex space form

Suppose M̂n+p(c) is a complex (n + p)-dimensional complex space form of constant holo-
morphic sectional curvature 4c, and M is a real (2n − 1)-dimensional CR-submanifold
of maximal CR-dimension in M̂n+p(c). Then, dimC D = n − 1 and dim D⊥ = 1. Let
N ∈ Γ (JD⊥) be a local unit vector field normal to M, ξ = −J N and η the 1-form dual
to ξ . Then, we have

φ2 X = −X + η(X)ξ

ωX = η(X)N ; Bσ = −〈σ, N 〉ξ
for any X ∈ Γ (T M) and σ ∈ Γ (T M⊥). It follows from (2)–(5) that

(∇Xφ)Y = η(Y )AN X − 〈AN X, Y 〉ξ (9)

∇X ξ = φAN X; ∇⊥
X N = Ch(X, ξ) (10)

h(X, φY ) = −〈φAN X, Y 〉N − η(Y )Ch(X, ξ)+ Ch(X, Y ) (11)

(∇X C)σ = −〈h(X, ξ), σ 〉N + 〈σ, N 〉h(X, ξ) (12)

for any X, Y ∈ Γ (T M) and σ ∈ Γ (T M⊥).
The equations of Codazzi and Ricci can also be reduced to

(∇X h)(Y, Z)−(∇Y h)(X, Z)= c{η(X)〈φY, Z〉−η(Y )〈φX, Z〉−2η(Z)〈φX, Y 〉}N (13)

R⊥(X, Y )σ =−2c〈φX, Y 〉Cσ+h(X, AσY )−h(Y, Aσ X) (14)

for any X, Y, Z ∈ Γ (T M) and σ ∈ Γ (T M⊥). We define the covariant derivative of the
shape operator as

(∇X A)σY = ∇X {AσY } − Aσ∇X Y − A∇⊥
X σ

Y. (15)

Then, we have

〈(∇X A)σY, Z〉 = 〈(∇X h)(Y, Z), σ 〉
and the Codazzi equation (13) can be rephrased as

(∇X A)σY − (∇Y A)σ X = c〈σ, N 〉{η(X)φY − η(Y )φX − 2〈φX, Y 〉ξ} (16)

for any X, Y, Z ∈ Γ (T M) and σ ∈ Γ (T M⊥).
The following lemma can be obtained immediately from Lemma 1.

Lemma 3 Let M be a CR-submanifold of maximal CR-dimension in a Kaehler manifold M̂.
Then, Ch(ξ, ξ) = C H.

4 Examples

In this section, we discuss certain examples of cyclic parallel CR-submanifolds of maximal
CR-dimension in a non-flat complex space form. From (7), it is equivalent to said that M
satisfies the following condition.

(∇X h)(Y, Z) = −c{η(Y )〈φX, Z〉 + η(Z)〈φX, Y 〉}N (17)

for any X, Y , and Z ∈ Γ (T M).

123



CR-submanifolds of maximal CR-dimension 1173

Let C
1
n+1 be the complex Lorentzian space with Hermitian inner product

G(z, w) = −z0w̄0 +
n∑

j=1

z j w̄ j

where z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ C
1
n+1. Then, the anti-De Sitter space

of radius 1 is given by

H2n+1
1 := H2n+1

1 (−1) = {
z ∈ C

1
n+1 : 〈z, z〉 = −1

}

where 〈z, w〉 := �G(z, w). We denote by ψ : H2n+1
1 → CHn the principal S1-bundle over

CHn . Here, CHn denotes the complex hyperbolic space with constant holomorphic sectional
curvature −4.

Example 1 (Horospheres in CHn) Let M ′ be a Lorentzian hypersurface in H2n+1
1 given by

|z0 − z1| = 1; −|z0| +
n∑

j=1

|z j |2 = −1.

Then, M∗ = ψ(M ′) is a real hypersurface in CHn , so-called a horosphere (a self-tube).

Example 2 (Tubes over CHk in CHn, 0 ≤ k ≤ n − 1) Let k, l ≥ 0 be integers with
k + l = n − 1, r > 0. We consider a Lorentzian hypersurface M ′

k(r) in H2n+1
1 defined by

−|z0|2 +
k∑

j=1

|z j |2 = −cosh2r, −|z0| +
n∑

j=1

|z j |2 = −1.

Then, M ′
k(r) is the standard product H2k+1

1 (− cosh r)× S2l+1(sinh r). Mk(r) = ψ(M ′
k(r))

is a real hypersurface in CHn , which is a tube of radius r over a totally geodesic holomorphic
submanifold CHk in CHn . In particular, Mk(r) is a geodesic hypersphere in CHn when k = 0.

Now, we consider the complex Euclidean space Cn+1 with Hermitian inner product

G(z, w) =
n∑

j=0

z j w̄ j

where z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1. Then, the sphere of radius 1
centered at the origin is given by

S2n+1 := S2n+1(1) = {z ∈ Cn+1 : 〈z, z〉 = 1}
where 〈z, w〉 := �G(z, w). We denote by ψ : S2n+1 → CPn the principal S1-bundle over
CPn . Here, CPn denotes the complex projective space with constant holomorphic sectional
curvature 4.

Example 3 (Tubes over CPk in CPn, 0 ≤ k ≤ n − 1) Let k, l ≥ 0 be integers with k + l =
n − 1, r ∈ ] 0, π/2[. We consider a hypersurface M ′

k(r) in S2n+1 defined by

k∑

j=0

|z j |2 = cos2r,
n∑

j=0

|z j |2 = 1.

Then, M ′
k(r) is the standard product S2k+1(cos r) × S2l+1(sin r). Mk(r) = ψ(M ′

k(r)) is a
real hypersurface in CPn , which is a tube of radius r over a totally geodesic holomorphic
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submanifold CPk in CPn . In particular, when k = 0, Mk(r) is a geodesic hypersphere in
CPn .

Theorem 4 [5,22] Let M be a real hypersurface in M̂n(c), c �= 0, n ≥ 2. Then, M satisfies

(∇X A)Y = −c{η(Y )φX + 〈φX, Y 〉ξ}
for any X, Y ∈ Γ (T M), if and only if M is an open part of one of the following spaces.

(a) For c < 0

(i) a horosphere,
(ii) a geodesic hypersphere or a tube over CHn−1,

(iii) a tube over CHk, where 1 ≤ k ≤ n − 2.

(b) For c > 0

(i) a geodesic hypersphere,
(ii) a tube over CPk, where 1 ≤ k ≤ n − 2.

Remark 3 A real hypersurface in a Kaehler manifold is said to be Hopf if it is mixed totally
geodesic. The real hypersurfaces stated in Theorem 4 are categorized as Hopf hypersur-
faces of type A in the Takagi’s list (for c > 0) and Montiel’s list (for c < 0) of Hopf
hypersurfaces of constant principal curvatures in M̂n(c), c �= 0 (cf. [23,26]). These real
hypersurfaces in the Takagi’s list and Montiel’s list are in fact the only Hopf hypersurfaces
with constant principal curvatures in M̂n(c), c �= 0 (cf. [2,16]).

The spaces M stated in Theorem 4 can be naturally immersed into M̂n+p(c) with higher
codimension via the standard holomorphic immersion of M̂n(c) into M̂n+p(c) as follows

M −→ M̂n(c) −→ M̂n+p(c).

Clearly, such an immersion is not full. Next, we shall discuss an example of CR-submanifolds
with maximal CR-dimension in CPq , which are irreducible to real hypersurfaces in a totally
geodesic holomorphic submanifold of CPq .

We denote by (z0 : z1 : · · · : zn) the homogeneous coordinates of CPn . Then, the Segre
embedding Sm,l : CPm × CPl → CPm+l+ml is given by

Sm,l(z, w) = (z0w0 : · · · : z0wl : z1w0 : · · · : z1wl : · · · : zmw0 : · · · zmwl)

where (z0 : z1 : · · · : zm) ∈ CPm and (w0 : w1 : · · · : wl) ∈ CPl .

Example 4 (The standard CR-products CPn−1×RP1) We consider RPl as a totally geodesic,
totally real submanifold in CPl , and CPm+l+ml as a totally geodesic, holomorphic submani-
fold in CPq , m + l + ml ≤ q . The standard CR-product CPm × RPl can be immersed into
CPq via Sm,l as follows: (cf. [3])

CPm × RPl −→ CPm × CPl
Sm,l−→ CPm+l+ml −→ CPq . (18)

In particular, CPn−1 × RP1 is a CR-submanifold of maximal CR-dimension in CPq ,

2n − 1 ≤ q .

Theorem 5 ([3]) Let M be a CR-product in CPq , dimC D = m and dimR D⊥ = l. Then,
we have

||h||2 ≥ 4ml

and equality holds if and only if M is given by the immersion (18).
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CR-submanifolds of maximal CR-dimension 1175

Theorem 6 Let M = CPn−1×RP1. Then, M is a cyclic parallel CR-submanifold of maximal
CR-dimension in CPq.

Proof Since CPn−1 and RP1 are leaves of D and D⊥, respectively, and they are totally
geodesic in CPq , by the Gauss formula, we see that

h(D,D) = 0; h(ξ, ξ) = 0.

Further, as M is a Riemannian product CPn−1 × RP1, both distributions D and D⊥ are
auto-parallel, that is,

∇ : Γ (D) → 	1(M) 	0(M) ⊗ Γ (D); ∇ : Γ (D⊥) → 	1(M) 	0(M) ⊗ Γ (D⊥).

Therefore, we have

(∇X h)(Y, Z) = ∇⊥
X h(Y, Z)− h(∇X Y, Z)− h(Y,∇X Z) = 0

(∇X h)(ξ, ξ) = ∇⊥
X h(ξ, ξ)− 2h(∇X ξ, ξ) = 0

for any X ∈ Γ (T M) and Y, Z ∈ Γ (D). By using the above two equations and the Codazzi
equation, we have

(∇ξh)(Y, ξ) = (∇Y h)(ξ, ξ) = 0

(∇X h)(Y, ξ) = (∇ξh)(X, Y )− c〈φX, Y 〉N = −c〈φX, Y 〉N

for any X, Y ∈ Γ (D). Hence, M satisfies (17) and so it is cyclic parallel. ��
Remark 4 By using a similar manner as in the above proof, we may verify that such standard
CR-products with higher CR-codimension are also cyclic parallel.

5 Lemmas

Throughout this section, suppose M is a (2n − 1)-dimensional CR-submanifold of maximal
CR-dimension in M̂n+p(c), c �= 0, n ≥ 2 and M is cyclic parallel or equivalent, it satisfies
(17), that is,

(∇X h)(Y, Z) = −c{η(Y )〈φX, Z〉 + η(Z)〈φX, Y 〉}N

for any X, Y, and Z ∈ Γ (T M). By (15), we can see that the condition (17) is equivalent to

(∇X A)σY = −c〈σ, N 〉{η(Y )φX + 〈φX, Y 〉ξ} (19)

for any X, Y ∈ Γ (T M) and σ ∈ Γ (ν).
Lemma 4 (a) C H = 0;
(b) 〈H, N 〉Ch = 0.

Proof Note that the Eq. (17) implies that ∇⊥ H = 0, and by the Ricci equation (14), we have

−2c〈φY, Z〉C H + h(Y, AH Z)− h(Z , AH Y ) = 0

for any Y, Z ∈ Γ (T M). By differentiating this equation covariantly in the direction of
X ∈ Γ (T M), we have

−2c〈(∇Xφ)Y, Z〉C H − 2c〈φY, Z〉(∇X C)H + (∇X h)(Y, AH Z)+ h(Y, (∇X A)H Z)

−(∇X h)(Z , AH Y )− h(Z , (∇X A)H Y ) = 0.
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By using (9)–(12) and (17), we have

2{−η(Y )〈AN X, Z〉 + η(Z)〈AN X, Y 〉}C H + 2〈φY, Z〉{η(AH X)N

−〈H, N 〉h(X, ξ)} + {η(Z)〈φX, AH Y 〉 + η(AH Y )〈φX, Z〉
−η(Y )〈φX, AH Z〉 − η(AH Z)〈φX, Y 〉}N + 〈H, N 〉{η(Y )h(Z , φX)

+〈φX, Y 〉h(Z , ξ)− η(Z)h(Y, φX)− 〈φX, Z〉h(Y, ξ)} = 0. (20)

If we substitute X = ξ, Y ∈ Γ (D) and Z = φY in the above equation, then 〈h(ξ, ξ), H〉N −
〈H, N 〉h(ξ, ξ) = 0 and hence C H = 0.

Furthermore, after putting Y = X ∈ Γ (D) and Z = φX in (20), we get

〈H, N 〉Ch(X, ξ) = 0

for any X ∈ Γ (D). Next, by putting Z = ξ in (20) and making use of the above equation,
we obtain

〈H, N 〉Ch(Y, φX) = 0

for any X, Y ∈ Γ (T M). By these two equations and the fact that Ch(ξ, ξ) = 0(= C H), we
obtain Statement (b). ��
Lemma 5 For any X ∈ Γ (T M),

(a) 〈φAN ξ, X〉N = −h(ξ, φX)+ Ch(ξ, X);
(b) dα(X) = 2η(ANφAN X);
(c) 2Ch(AN X, ξ) = αCh(X, ξ).

Proof Statement (a) can be obtained easily from X = ξ in (11) and Lemma 4.
Taking into account that C H = 0 again, we see that h(ξ, ξ) = αN . It follows from (17),

(10), and Statement (a) that

0 = (∇X h)(ξ, ξ) = dα(X)N + αCh(X, ξ)+ 2〈φAN ξ, AN X〉N − 2Ch(ξ, AN X)

for any X ∈ Γ (T M). Statements (b) and (c) are the JD⊥- and ν-component of this equation,
respectively. ��
Lemma 6 For any X, Y, Z , andW ∈ Γ (T M),

c{−〈φY, φZ〉〈AN X,W 〉 + 〈φX, φZ〉〈AN Y,W 〉
−〈φY, φW 〉〈AN X, Z〉 + 〈φX, φW 〉〈AN Y, Z〉
+〈φY, Z〉〈(φAN − ANφ)X,W 〉 − 〈φX, Z〉〈(φAN − ANφ)Y,W 〉
+〈φY,W 〉〈(φAN − ANφ)X, Z〉 − 〈φX,W 〉〈(φAN − ANφ)Y, Z〉
−2〈φX, Y 〉〈(φAN − ANφ)Z ,W 〉}
−〈h(Y, Z), h(X, AN W )〉 + 〈h(X, Z), h(Y, AN W )〉
−〈h(Y,W ), h(X, AN Z)〉 + 〈h(X,W ), h(Y, AN Z)〉
−〈h(Z ,W ), h(X, AN Y )〉 + 〈h(Z ,W ), h(Y, AN X)〉 = 0, (21)

c
{− 〈Y, Z〉〈Aσ X,W 〉 + 〈X, Z〉〈AσY,W 〉

−〈Y,W 〉〈Aσ X, Z〉 + 〈X,W 〉〈AσY, Z〉
−〈φY, Z〉〈φAσ φX, φW 〉 + 〈φX, Z〉〈φAσ φY, φW 〉
−〈φY,W 〉〈φAσ φX, φZ〉 + 〈φX,W 〉〈φAσ φY, φZ〉
−2〈φX, Y 〉{η(Z)〈Aσ ξ, φW 〉 + η(W )〈Aσ ξ, φZ〉 + 〈ACσ Z ,W 〉}}
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−〈h(Y, Z), h(X, AσW )〉 + 〈h(X, Z), h(Y, AσW )〉
−〈h(Y,W ), h(X, Aσ Z)〉 + 〈h(X,W ), h(Y, Aσ Z)〉
−〈h(Z ,W ), h(X, AσY )〉 + 〈h(Z ,W ), h(Y, Aσ X)〉 = 0. (22)

Proof Differentiating the following equation

(∇Y h)(Z ,W ) = −c{η(Z)〈φY,W 〉 + η(W )〈φY, Z〉}N

covariantly in the direction of X ∈ Γ (T M), with the help of (9) and (10), we have

(∇2
XY h)(Z ,W ) = −c{〈φAN X, Z〉〈φY,W 〉 + η(Z)η(Y )〈AN X,W 〉

+〈φAN X,W 〉〈φY, Z〉 + η(W )η(Y )〈AN X, Z〉
−2η(Z)η(W )〈AN X, Y 〉}N

−c{η(Z)〈φY,W 〉 + η(W )〈φY, Z〉}Ch(X, ξ).

It follows from (8), (6), (14), and this equation that

c
{{−〈φAN X, Z〉〈φY,W 〉 − η(Z)η(Y )〈AN X,W 〉
−〈φAN X,W 〉〈φY, Z〉 − η(W )η(Y )〈AN X, Z〉
+〈φAN Y, Z〉〈φX,W 〉 + η(Z)η(X)〈AN Y,W 〉
+〈φAN Y,W 〉〈φX, Z〉 + η(W )η(X)〈AN Y, Z〉}N

−{η(Z)〈φY,W 〉 + η(W )〈φY, Z〉}Ch(X, ξ)

+{η(Z)〈φX,W 〉 + η(W )〈φX, Z〉}Ch(Y, ξ)
}

= c
{− 〈Y, Z〉h(X,W )+ 〈X, Z〉h(Y,W )

−〈φY, Z〉h(φX,W )+ 〈φX, Z〉h(φY,W )

−〈Y,W 〉h(X, Z)+ 〈X,W 〉h(Y, Z)

−〈φY,W 〉h(φX, Z)+ 〈φX,W 〉h(φY, Z)

+2〈φX, Y 〉{h(φZ ,W )+ h(φW, Z)− Ch(Z ,W )}}

−h(Ah(Y,Z)X,W )+ h(Ah(X,Z)Y,W )

−h(Ah(Y,W )X, Z)+ h(Ah(X,W )Y, Z)

−h(Ah(Z ,W )X, Y )+ h(Ah(Z ,W )Y, X). (23)

The Eq. (21) is the JD⊥-component of this equation. Next, it follows from Lemma 5(a) that

〈h(Z , φY )− η(Z)Ch(ξ, Y ), σ 〉 = −〈h(φ2 Z , φY ), σ 〉 = 〈φAσ φY, φZ〉
for any Y, Z ∈ Γ (T M) and σ ∈ Γ (ν). With the help of this equation, after taking inner
product of both sides of (23) with σ ∈ Γ (ν), we obtain (22). ��
Lemma 7 AN ξ = αξ .

Proof Suppose that β = ||φAN ξ || > 0 at some point x ∈ M . Then, we can write

AN ξ = αξ + βU (24)

where U = −β−1φ2 AN ξ and hence from Lemma 5(c), we have

Ch(ξ,U ) = 0. (25)

Next, by substituting Z = W = ξ in (21), we obtain

〈h(X,U ), h(Y, ξ)〉 − 〈h(Y,U ), h(X, ξ)〉 = 0 (26)
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for any X, Y ∈ Tx M . By putting Y = ξ in this equation, with the help of (25), we obtain
αAN U − βAN ξ = 0 and so

AN U = βξ + γU, (αγ = β2). (27)

Hence, from (24) and (27), we have

A2
N ξ = (α2 + β2)ξ + β(α + γ )U (28)

A2
N U = β(α + γ )ξ + (β2 + γ 2)U. (29)

On the other hand, by putting X = U in (26) and using (25) and (27), we have Ah(U,U )ξ−
βAN U = 0 or

AC2h(U,U )ξ = 0. (30)

Finally, with the help of (24), (25), (27)–(30), Lemma 5(c) and the fact that h(ξ, ξ) = αN ,
after substituting X = W = U, Y = Z = ξ in (21), gives

0 = cα − α〈AN U, AN U 〉 + γ 〈AN ξ, AN ξ 〉 = cα.

But from (27), αγ = β2 > 0. This is a contradiction. Accordingly, AN ξ = αξ at each point
of M . ��
Lemma 8 (a) α is a constant;
(b) (ANφAN − αφAN − cφ)X + Ah(φX,ξ)ξ = 0, for any X ∈ Γ (T M);
(c) α(φAN − ANφ) = 0.

Proof Statement (a) is directly from Lemma 5(b) and Lemma 7. Next, from Lemma 7, we
have

〈h(Y, ξ), N 〉 = αη(Y )

for any Y ∈ Γ (T M). It follows from this equation that

〈(∇X h)(Y, ξ)+ h(Y,∇X ξ), N 〉 + 〈h(Y, ξ),∇⊥
X N 〉 = dα(X)η(Y )+ α〈∇X ξ, Y 〉.

By applying (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

〈(ANφAN − αφAN − cφ)X, Y 〉 + 〈h(φX, ξ), h(Y, ξ)〉 = 0 (31)

for any X, Y ∈ Γ (T M) and so we obtain Statement (b). Finally, by letting X = Y in (31),
we have α〈φAN X, X〉 = 0, for any X ∈ Γ (T M), this deduces Statement (c). ��
Lemma 9 For any X, Y ∈ Γ (D) and σ ∈ Γ (ν),

2〈h(φX, ξ), h(Y, Aσ ξ)〉 + 〈2AN Y − αY, Aσ φAN X〉 = 0.

Proof By using Lemma 5(c) and Lemma 7, we have

2h(AN Y, ξ) = 2〈h(AN Y, ξ), N 〉N − 2C2h(AN Y, ξ) = α2η(Y )N + αh(Y, ξ)

for any Y ∈ Γ (T M). By differentiating this equation covariantly in the direction of X ∈
Γ (T M), we have

2{(∇X h)(AN Y, ξ)+ h((∇X A)N Y + A∇⊥
X N Y, ξ)+ h(AN Y,∇X ξ)}

= α2{〈∇X ξ, Y 〉N + η(Y )∇⊥
X N } + α{(∇X h)(Y, ξ)+ h(Y,∇X ξ)}.
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By using (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

−2c{〈φX, AN Y 〉N +η(Y )h(φX, ξ)+α〈φX, Y 〉N }+2{h(Ah(φX,ξ)Y, ξ)+h(AN Y, φAN X)}
=α2{〈φAN X, Y 〉N +η(Y )h(φX, ξ)}+α{−c〈φX, Y 〉N +h(Y, φAN X)}.

By first, putting X, Y ∈ Γ (D) and then taking inner product of both sides of this equation
with σ ∈ Γ (ν), we obtain the lemma. ��

6 Proof of Theorem 1

We shall consider two cases: (I) M is mixed totally geodesic and (II) M is non-mixed totally
geodesic.

Case (I) M is mixed totally geodesic.
By Lemma 4(a) and Lemma 7, we have

h(Y, ξ) = η(Y )h(ξ, ξ) = αη(Y )N (32)

for any Y ∈ Γ (T M). It follows from (10) that ∇⊥N = 0. Moreover, by applying
(10), (17), and (32), we obtain

0 = 〈(∇X h)(Y, ξ), σ 〉 = 〈∇⊥
X h(Y, ξ), σ 〉 − 〈h(Y,∇X ξ), σ 〉

= 〈h(Y, φAN X), σ 〉
for any X, Y ∈ Γ (T M) and σ ∈ Γ (ν). This means that

Aσ φAN = 0 (33)

for any σ ∈ Γ (ν). On the other hand, by Lemma 8(b), we have

ANφAN − αφAN − cφ = 0.

As c �= 0, we can observe from the above equation that AN |D is a vector bundle
automorphism on D . Hence, for any σ ∈ Γ (ν), we have Aσ |D = 0 by (33).
Also, we have Aσ ξ = 0 by using Lemma 4(a). We conclude that Aσ = 0 for
any σ ∈ Γ (ν). Further, since AN �= 0, νx is the J -invariant orthogonal comple-
mentary subspace of the first normal space in Tx M⊥, at each x ∈ M . Also, since
∇⊥N = 0, ν is a parallel normal subbundle of T M⊥. By applying Theorem 3, M
is contained in a totally geodesic holomorphic submanifold M̂n(c) of M̂n+p(c) as
a real hypersurface.
We denote by N ′ a unit normal vector field, ∇′, the Levi-Civita connection, A′
the shape operator of M , immersed in M̂n(c). Further, let (φ′, ξ ′, η′) denote the
almost contact structure on M induced by complex structure of M̂n(c).
Since M̂n(c) is totally geodesic in M̂n+p(c) and Ch = 0, we can see that ∇′

X Y =
∇X Y, A′ = AN , φ

′ = φ, η′ = η, ξ ′ = ξ , and N ′ = N . Then, by (19), we have

(∇′
X A′)Y = (∇X A)N Y = −c{η(Y ))φX + 〈φX, Y 〉ξ}

= −c{η′(Y ))φ′ X + 〈φ′ X, Y 〉ξ ′}
for any vectors X, Y tangent M . By using Theorem 4, we obtain Case (a) and Case
(b)(i) and (ii) in Theorem 1.
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Case (II) M is non-mixed totally geodesic.
Let x ∈ M , and X ∈ Dx be a unit vector with AN X = λX . If h(X, ξ) = 0, then
we also have h(φX, ξ) = Ch(X, ξ) = 0 and

λANφX − (αλ+ c)φX = 0, (by Lemma 8(b)).

If α = 0, then λ �= 0 and ANφX = cλ−1φX . On the other hand, if α �= 0,
then by Lemma 8(c), ANφX = λX . From these observations, there is an integer
m ≥ 1 and we may choose an orthonormal basis of Dx formed by eigenvectors
E1, E2 = φE1, . . . , E2n−1, E2n−2 = φE2n−1 of AN such that

h(Ei , ξ) �= 0, (1 ≤ i ≤ 2m) (34)

h(Ea, ξ) = 0, (2m + 1 ≤ a ≤ 2n − 2). (35)

In the rest of this section, we use the following convention of indices:

i, j, . . . ∈ {1, 2, . . . , 2m};
a, b, . . . ∈ {2m + 1, . . . , 2n − 2}.

For simplicity, we write σi = h(Ei , ξ) and Ai = Aσi .
It follows from Lemma 5(c) and Lemma 8(b) that

AN Ei = α

2
Ei (36)

Aiξ = α2 + 4c

4
Ei (37)

〈σi , h(X, ξ)〉 = α2 + 4c

4
〈Ei , X〉 (38)

for any X ∈ Tx M . We can further observe from (38) that

||σi ||2 = α2 + 4c

4
> 0. (39)

By using (36)–(39), after putting X = φEi , Y = E j , and σ = σk in Lemma 9,
we obtain (α2 + 4c)〈σi , h(E j , Ek)〉 = 0, and so

〈Ai E j , Ek〉 = 0. (40)

Now, we wish to prove that

Ai E j = α2 + 4c

4
δi jξ. (41)

If m = n − 1, then (37) and (40) imply (41). Next, suppose m < n − 1. Then,
by letting Y = Z = ξ, X = E j , W = Ea , and σ = σi in (22), with the help of
(35)–(37), we have c〈Ai E j , Ea〉 = 0, that is,

〈Ai E j , Ea〉 = 0.

From the above equation, (37) and (40), we also obtain (41).
By putting X = ξ, Y = Ei , Z = E j , W = Ek , and σ = σl in (22), we have

α2

4
{δ jkδil + δ j iδkl + δkiδ jl} = 〈Ch(E j , Ek),Ch(Ei , El)〉. (42)
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If we first put Ei = E j = Ek = El , and next follow by E j = Ei , Ek = El = φEi

in the above equation, then

3α2

4
= 〈Ch(Ei , Ei ),Ch(Ei , Ei )〉

α2

4
= 〈Ch(Ei , φEi ),Ch(Ei , φEi )〉 = 〈Ch(Ei , Ei ),Ch(Ei , Ei )〉.

These three equations, together with (36) and (39), give

α = 0 (43)

c > 0; (without loss of generality, we assume c = 1) (44)

h(Ei , E j ) = 0. (45)

Lemma 10 Suppose m < n − 1 and let AN Ea = λa Ea. Then,

(a) Ch(Ea, Eb) = 0,
(b) λa ∈ {1,−1},
(c) φAN − ANφ = 0.

Proof From (31), (35), (43), and (44), we have λa �= 0 and ANφEa = λ−1
a φEa . Hence,

after putting X = φEa and Y = Eb in Lemma 9, we obtain Statement (a). Furthermore, by
putting X = W = Ei and Y = Z = Ea , and X = Ei , Y = Ea, Z = φEa , and W = φEi ,
respectively, in (21), we have

0 = −λa + 2λa〈h(Ei , Ea), h(Ei , Ea)〉
0 = λa − λ−1

a + λ−1
a 〈h(Ei , φEa), h(φEi , Ea)〉 + λa〈h(Ei , Ea), h(φEi , φEa)〉

= {λa − λ−1
a }{1 − 〈h(Ei , Ea), h(Ei , Ea)}.

These two equations imply that λa = λ−1
a . Hence, we obtain Statement (b) and (c) as

AEi = AφEi = 0. ��
Now, we consider two subcases: ||AN || = 0 and ||AN || �= 0.
Subcase (II-a) ||AN || = 0.
In this case, we have m = n − 1 at each x ∈ M by (36), (43), and Lemma 10(b).

From Lemma 7 and (45), we see that 〈h(X, Y ), N 〉 = 0, for any X ∈ Γ (D) and Y ∈
Γ (T M). Hence, M is a CR-product by Lemma 2. Furthermore, it follows from (38), (45),
and h(ξ, ξ) = 0 that ||h||2 = 2(2n − 2). According to Theorem 5, M is an open part of the
standard CR-product CPn−1 × RP1, and we obtain Case (b)(iii) in Theorem 1.

Subcase (II-b) ||AN || �= 0.
From Lemma 4(b), we have Trace(AN |Dx ) = 〈H, N 〉 = 0. By using (36), (43),

Lemma 10(b), and the continuity of the eigenvalue functions, we can see that m < n − 1 and
AN has three distinct constant eigenvalues 0, 1, and −1 with multiplicities 2m, n − m − 1,
and n − m − 1, respectively, at each x ∈ M .

For λ ∈ {0, 1,−1}, we denote by Tλ the subbundle of D foliated by eigenspace of AN |D
corresponding to λ. From Lemma 10(c), we see that each Tλ is φ-invariant. We shall show
that T0 is auto-parallel, that is,

Γ (T0)
∇−→ 	1(M)⊗ Γ (T0).

For any X ∈ Γ (T M) and Y ∈ Γ (T0), we have

〈∇X Y, ξ 〉 = −〈Y, φAN X〉 = 0.
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Next, from (17), we have

−〈φX, Y 〉ξ = (∇X A)N Y = −AN ∇X Y − ACh(X,ξ)Y = −AN ∇X Y − Ah(φX,ξ)Y.

If X ∈ Γ (T1 ⊕ T−1 ⊕ Span{ξ}), it clearly that AN ∇X Y = 0; if X ∈ Γ (T0), then by
(37) and the above equation, we have AN ∇X Y = 0 too. From these observations, we have
∇X Y ∈ Γ (T0), for any X ∈ Γ (T M) and Y ∈ Γ (T0).

For any X ∈ Γ (T0) and Y, Z ∈ Γ (T1 ⊕ T−1 ⊕ Span{ξ}), from Lemma 10(a), we see
that h(Y, Z) = 〈AN Y, Z〉N . It follows that

(∇X h)(Y, Z) = ∇⊥
X h(Y, Z)− h(∇X Y, Z)− h(Y,∇X Z)

= {X〈AN Y, Z〉 − 〈AN ∇X Y, Z〉 − 〈AN Y,∇X Z〉}N

−〈AN Y, Z〉Ch(X, ξ).

In particular, if we choose Y = Z ∈ Γ (T1) with ||Y || = 1, then

C(∇X h)(Y, Z) = h(X, ξ) �= 0.

This is a contradiction, so this case cannot occur.
Conversely, all these submanifolds satisfy the condition (17) as we have discussed in

Sect. 4. This completes the proof.

7 Proof Theorem 2

Suppose M is a (2n − 1)-dimensional CR-submanifold of maximal CR-dimension in
M̂n+p(c), c �= 0, n ≥ 2. We define a tensor field T on M by

T (X, Y, Z) = (∇X h)(Y, Z)+ c{η(Y )〈φX, Z〉 + η(Z)〈φX, Y 〉}N

for any X, Y, and Z ∈ Γ (T M). Let e1, e2, . . . , e2n−1 be a local field of orthonormal vectors
in Γ (T M). Then,

||T ||2 = ||∇h||2 + 4(n − 1)c2 + 4c
2n−1∑

j=1

〈(∇e j h)(ξ, φe j ), N 〉.

On the other hand, by the Codazzi equation, we have

2n−1∑

j=1

〈(∇e j h)(ξ, φe j ), N 〉 =
2n−1∑

j=1

〈(∇ξh)(e j , φe j ), N 〉 − 2(n − 1)c = −2(n − 1)c.

Combining these two equations, we have

0 ≤ ||T ||2 = ||∇h||2 − 4(n − 1)c2

and equality holds if and only if M satisfies (17). By Theorem 1, we obtain the theorem.
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9. Djorić, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of
maximal CR dimension of complex projective space. Isr. J. Math. 169, 47–59 (2009)
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