Cyclic parallel CR-submanifolds of maximal CR-dimension in a complex space form

Tee-How Loo

Received: 19 June 2012 / Accepted: 9 January 2013 / Published online: 2 February 2013
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract

We first classify ($2 n-1$)-dimensional cyclic parallel CR-submanifold M with CR-dimension $n-1$ in a non-flat complex space form of constant holomorphic sectional curvature $4 c$. Then, we prove that $\|\nabla h\|^{2} \geq 4(n-1) c^{2}$, where h is the second fundamental form on M. We also completely classify $(2 n-1)$-dimensional CR-submanifolds with CR-dimension $n-1$ in a non-flat complex space form which satisfy the equality case of this inequality. This generalizes an inequality for real hypersurfaces in a non-flat complex space form obtained by Maeda (J Math Soc Jpn 28:529-540; 1976) and Chen et al. (Algebras Groups Geom 1:176-212; 1984) for complex projective and hyperbolic spaces, respectively.

Keywords CR-submanifolds • Cyclic parallel submanifolds • Complex space forms
Mathematics Subject Classification (2000) 53C40 • 53C15

1 Introduction

A complex n-dimensional complex space form $\hat{M}_{n}(c)$ is a complete and simply connected Kaehler manifold with constant holomorphic sectional curvature $4 c$, that is, it is either a complex projective space $\mathbb{C} P_{n}$, a complex Euclidean space \mathbb{C}_{n}, or a complex hyperbolic space $\mathbb{C} H_{n}$ (according to as the holomorphic sectional curvature $4 c$ is positive, zero, or negative).

The study of real hypersurfaces in a Kaehler manifold has been an active field in the past few decades, especially when the ambient space is a complex space form. One of the first results in this topic is the non-existence of real hypersurfaces M with parallel shape operator

[^0]A in a non-flat complex space form, that is, $\nabla A=0$, where ∇ is the Levi-Civita connection on M. This fact is an immediate consequence of the Codazzi equation of such a submanifold. Several weaker notions such as η-parallelism and recurrence of the shape operator were hence studied by the researchers.

The shape operator A is said to be recurrent if there is a 1-form τ on M such that $\nabla A=A \otimes \tau$. It is known that there does not exist any real hypersurface in $\hat{M}_{n}(c), c \neq 0$, with recurrent shape operator (cf. [14,21]). A real hypersurface M in $\hat{M}_{n}(c)$ is said to be η-recurrent if $\left.\left\langle\nabla_{X} A\right) Y, Z\right\rangle=\tau(X)\langle A Y, Z\rangle$, for any tangent vector fields X, Y, and Z in the maximal holomorphic distribution \mathscr{D}, where τ is a 1 -form on M (cf. [13]). In particular, M is said to be η-parallel when $\tau=0$ (cf. [17]).

In $[18,19]$, the author and Kon classified η-parallel real hypersurfaces in $\hat{M}_{n}(c), c \neq$ $0, n \geq 3$. It was also proved in [20] that a real hypersurface in $\hat{M}_{n}(c), c \neq 0, n \geq 3$ is η-recurrent if and only if it is η-parallel.

A submanifold M in a Riemannian manifold \hat{M} is said to be cyclic parallel if its second fundamental form h satisfies

$$
\left(\nabla_{X} h\right)(Y, Z)+\left(\nabla_{Y}\right) h(Z, X)+\left(\nabla_{Z} h\right)(X, Y)=0
$$

for any vector fields X, Y, and Z tangent to M. When M is a real hypersurface in $\hat{M}_{n}(c)$, the cyclic parallelism is equivalent to the condition

$$
\left(\nabla_{X} A\right) Y=-c\{\eta(Y) \phi X+\langle\phi X, Y\rangle \xi\}
$$

for any vector fields X and Y tangent to M, where $(\phi, \xi, \eta,\langle\rangle$,$) is the almost contact structure$ on M induced by the complex structure J of the ambient space. Maeda (cf. [22]) and Chen, Ludden and Montiel (cf. [5]) classified real hypersurfaces in $\hat{M}_{n}(c), c \neq 0$, under this condition (cf. Theorem 4). With this result, it can be proved that

$$
\begin{equation*}
\|\nabla A\|^{2} \geq 4(n-1) c^{2} \tag{1}
\end{equation*}
$$

and equality holds if and only if the real hypersurface M is an open part of a tube over $\mathbb{C} P_{k}, 1 \leq k \leq n-1$, for $c>0$, and M is an open part of a horosphere, a geodesic hypersphere in $\mathbb{C} H_{n}$, or a tube over $\mathbb{C} H_{k}, 1 \leq k \leq n-1$, for $c<0$.

Note that a real hypersurface in $\hat{M}_{n}(c)$ is a CR-submanifold (see Definition 2 for precise definition) of maximal CR-dimension (or of hypersurface type). Hence, one of the main lines deals with generalizing these known results in real hypersurfaces in $M_{n}(c)$ to CRsubmanifolds of maximal CR-dimension in $\hat{M}_{n}(c)$. A number of results were obtained by Djorić and Okumura (cf. [7]-[11]). In particular, they attempted to generalize certain results concerning relationship between A and ϕ for real hypersurfaces in a complex space form into the setting of CR-submanifolds of maximal CR-dimension.

This paper is also a contribution in this line. The main objective of this paper is to extend the inequality (1) for real hypersurfaces in a non-flat complex space form to the setting of CR-submanifolds of maximal CR-dimension. We shall first prove the following theorem.

Theorem 1 Let M be a $(2 n-1)$-dimensional CR-submanifold of maximal CR-dimension in $\hat{M}_{n+p}(c), c \neq 0, n \geq 2$. Then, M is cyclic parallel if and only if M is an open part of one of the following spaces.
(a) For $c<0$:
(i) a horosphere in $\mathbb{C} H_{n}$,
(ii) a geodesic hypersphere or a tube over a hyperplane $\mathbb{C} H_{n-1}$ in $\mathbb{C} H_{n}$,
(iii) a tube over a totally geodesic $\mathbb{C} H_{k}$ in $\mathbb{C} H_{n}$, where $1 \leq k \leq n-2$.
(b) For $c>0$:
(i) a geodesic hypersphere in $\mathbb{C} P_{n}$,
(ii) a tube over a totally geodesic $\mathbb{C} P_{k}$ in $\mathbb{C} P_{n}$, where $1 \leq k \leq n-2$,
(iii) a standard CR-product $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$ in $\mathbb{C} P_{2 n-1}$.

With this result, we can prove the following.
Theorem 2 Let M be a $(2 n-1)$-dimensional CR-submanifold of maximal CR-dimension in $\hat{M}_{n+p}(c), c \neq 0, n \geq 2$. Then, M satisfies

$$
\|\nabla h\|^{2} \geq 4(n-1) c^{2}
$$

and equality holds if and only M is an open part of one of the following spaces.
(a) For $c<0$:
(i) a horosphere in $\mathbb{C} H_{n}$,
(ii) a geodesic hypersphere or a tube over a hyperplane $\mathbb{C} H_{n-1}$ in $\mathbb{C} H_{n}$,
(iii) a tube over a totally geodesic $\mathbb{C} H_{k}$ in $\mathbb{C} H_{n}$, where $1 \leq k \leq n-2$.
(b) For $c>0$:
(i) a geodesic hypersphere in $\mathbb{C} P_{n}$,
(ii) a tube over a totally geodesic $\mathbb{C} P_{k}$ in $\mathbb{C} P_{n}$, where $1 \leq k \leq n-2$,
(iii) a standard CR-product $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$ in $\mathbb{C} P_{2 n-1}$.

Remark 1 It is worthwhile to remark that there is an additional class of submanifolds, that is, $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$ in Case (b)(iii), appeared in the list of Theorem 1 compared to the classification of real hypersurfaces under the same condition (cf. Theorem 4). Chen and Maeda (cf. [6]) proved that there do not exist real hypersurfaces which are Riemannian product of Riemannian manifolds. Hence, we can see that $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$ can never be immersed in $\mathbb{C} P_{n}$ as a real hypersurface.

This paper is organized as follows. In the next two sections, we shall fix some notations and discuss some fundamental properties of CR-submanifolds in a Kaehler manifold. We describe the standard examples of cyclic parallel CR-submanifolds of maximal CR-dimension in a non-flat complex space form in Sect. 4. In Sect. 5, we prepare some lemmas. We prove Theorem 1 and Theorem 2 in the last two sections.

2 CR-submanifolds in a Kaehler manifold

In this section, we shall recall some structural equations in the theory of CR-submanifolds in a Kaehler manifold and fix some notations. Some fundamental properties of CR-submanifolds in a Kaehler manifold are also derived here.

Let \hat{M} be a Kaehler manifold with complex structure J, and let M be a connected Riemannian manifold isometrically immersed in \hat{M}. The maximal J-invariant subspace \mathscr{D}_{x} of the tangent space $T_{x} M, x \in M$ is given by

$$
\mathscr{D}_{x}=T_{x} M \cap J T_{x} M .
$$

Definition 1 ([4]) A submanifold M in a Kaehler manifold \hat{M} is said to be a generic submanifold if the dimension of \mathscr{D}_{x} is constant along M. The distribution $\mathscr{D}: x \rightarrow \mathscr{D}_{x}, x \in M$ is called the holomorphic distribution (or Levi distribution) on M and the complex dimension of \mathscr{D} is called the CR-dimension of M.

Definition 2 ([1]) A generic submanifold M in a Kaehler manifold \hat{M} is said to be a $C R$ submanifold if the orthogonal complementary distribution \mathscr{D}^{\perp} of \mathscr{D} in $T M$ is totally real, that is, $J \mathscr{D}_{x}^{\perp} \subset T_{x} M^{\perp}, x \in M$.

If $\mathscr{D}^{\perp}=\{0\}$ (resp. $\mathscr{D}=\{0\}$), the CR-submanifold M is said to be holomorphic (resp. totally real). A CR-submanifold M is said to be proper if it is neither holomorphic nor totally real. Let v be the orthogonal complementary distribution of $J \mathscr{D}^{\perp}$ in $T M^{\perp}$. Then, an anti-holomorphic submanifold M is a CR-submanifold with $v=\{0\}$, that is, $J \mathscr{D}^{\perp}=T M^{\perp}$.

Remark 2 The study of CR-submanifolds in the sense of Definition 2 was initiated by Bejancu in [1]. Generic submanifolds have been studied by some researchers under the term of "CR-submanifolds" from the CR geometric view point (cf. [12,24, pp. 345]). We will not follow this term here in order to avoid the confusion. We remark that when a generic submanifold M is of maximal CR-dimension, that is, $\operatorname{dim}_{\mathbb{R}} \mathscr{D}=\operatorname{dim} M-1, M$ will be a CR-submanifold in the sense of Definition 2.

Suppose M is a CR-submanifold in a Kaehler manifold \hat{M}. Denote by \langle,$\rangle the Riemannian$ metric of \hat{M} as well as that induced on M. Also, we let ∇ be the Levi-Civita connection on the tangent bundle $T M$ of M, ∇^{\perp} the normal connection on the normal bundle $T M^{\perp}$ of M, h the second fundamental form, and A_{σ} the shape operator of M with respect to a vector σ normal to M.

For a vector bundle \mathscr{V} over M, we denote by $\Gamma(\mathscr{V})$ the $\Omega^{0}(M)$-module of cross sections on \mathscr{V}, where $\Omega^{k}(M)$ is the space of k-forms on M. For any $X \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$, we put $\phi X=\tan (J X), \omega X=\operatorname{nor}(J X), B \sigma=\tan (J \sigma)$ and $C \sigma=\operatorname{nor}(J \sigma)$. From the parallelism of J, we have (cf. [27, pp. 77])

$$
\begin{align*}
& \left(\nabla_{X} \phi\right) Y=A_{\omega Y} X+B h(X, Y) \tag{2}\\
& \left(\nabla_{X} \omega\right) Y=-h(X, \phi Y)+C h(X, Y) \tag{3}\\
& \left(\nabla_{X} B\right) \sigma=-\phi A_{\sigma} X+A_{C \sigma} X \tag{4}\\
& \left(\nabla_{X} C\right) \sigma=-\omega A_{\sigma} X-h(X, B \sigma) \tag{5}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$.
We denote by $H:=\operatorname{Trace}(h)$. For a local frame of orthonormal vectors $e_{1}, e_{2}, \ldots, e_{2 m}$ in $\Gamma(\mathscr{D})$, where $m=\operatorname{dim}_{\mathbb{C}} \mathscr{D}$, we define

$$
H_{\mathscr{D}}:=\sum_{j=1}^{2 m} h\left(e_{j}, e_{j}\right)
$$

Lemma 1 Let M be a CR-submanifold in a Kaehler manifold \hat{M}. Then, $\left\langle\left(\phi A_{\sigma}+\right.\right.$ $\left.\left.A_{\sigma} \phi\right) X, Y\right\rangle=0$, for any $X, Y \in \Gamma(\mathscr{D})$ and $\sigma \in \Gamma(v)$. Moreover, we have $C H_{\mathscr{D}}=0$.
Proof By putting $X, Y \in \Gamma(\mathscr{D})$ in (3), we have

$$
-\omega \nabla_{X} Y=-h(X, \phi Y)+C h(X, Y) .
$$

Taking inner product of both sides of this equation with $\sigma \in \Gamma(\nu)$, we obtain

$$
0=\left\langle\phi A_{\sigma} X, Y\right\rangle-\left\langle A_{C \sigma} X, Y\right\rangle .
$$

Since $A_{C \sigma}$ is self-adjoint, we obtain $\left\langle\left(\phi A_{\sigma}+A_{\sigma} \phi\right) X, Y\right\rangle=0$, for any $X, Y \in \Gamma(\mathscr{D})$. Furthermore, for any unit vector field $X \in \Gamma(\mathscr{D})$ and $\sigma \in \Gamma(\nu)$, we have

$$
0=\left\langle\left(\phi A_{\sigma}+A_{\sigma} \phi\right) X, \phi X\right\rangle=\langle h(X, X)+h(\phi X, \phi X), \sigma\rangle .
$$

This equation implies that $\left\langle H_{\mathscr{D}}, \sigma\right\rangle=0$ and hence $C H_{\mathscr{D}}=0$.

A CR-submanifold M is said to be mixed totally geodesic if $h(X, Y)=0$, for any $X \in$ $\Gamma(\mathscr{D})$ and $Y \in \Gamma\left(\mathscr{D}^{\perp}\right)$. A CR-submanifold M is called a $C R$-product if it is locally a Riemannian product of a holomorphic submanifold and a totally real submanifold.

The following lemma characterizes CR-products in a Kaehler manifold.
Lemma 2 ([3]) A CR-submanifold M in a Kaehler manifold is a CR-product if and only if $B h(X, Y)=0$, for any $X \in \Gamma(\mathscr{D})$ and $Y \in \Gamma(T M)$.

Now suppose $\hat{M}_{q}(c)$ is a q-dimensional complex space form with constant holomorphic sectional curvature $4 c$, and let M be a CR-submanifold in $\hat{M}_{q}(c)$.

Let R and R^{\perp} be the curvature tensors associated with ∇ and ∇^{\perp}, respectively. The equations of Gauss, Codazzi, and Ricci are then given, respectively, by

$$
\begin{align*}
R(X, Y) Z= & c\{\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle\phi Y, Z\rangle \phi X-\langle\phi X, Z\rangle \phi Y \\
& \quad-2\langle\phi X, Y\rangle \phi Z\}+A_{h(Y, Z)} X-A_{h(X, Z)} Y \tag{6}\\
\left(\nabla_{X} h\right)(Y, Z)- & \left(\nabla_{Y} h\right)(X, Z)=c\{\langle\phi Y, Z\rangle \omega X-\langle\phi X, Z\rangle \omega Y-2\langle\phi X, Y\rangle \omega Z\} \\
R^{\perp}(X, Y) \sigma= & c\{\langle\omega Y, \sigma\rangle \omega X-\langle\omega X, \sigma\rangle \omega Y-2\langle\phi X, Y\rangle C \sigma\}+h\left(X, A_{\sigma} Y\right)-h\left(Y, A_{\sigma} X\right)
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$.
A submanifold M in a Riemannian manifold \hat{M} is said to be cyclic parallel if its second fundamental form h satisfies

$$
\left(\nabla_{X} h\right)(Y, Z)+\left(\nabla_{Y}\right) h(Z, X)+\left(\nabla_{Z} h\right)(X, Y)=0
$$

for any X, Y, and $Z \in \Gamma(T M)$. When M is CR-submanifold in $\hat{M}_{q}(c)$, by the Codazzi equation, the cyclic parallelism of M is equivalent to the condition

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=-c\{\langle\phi X, Z\rangle \omega Y+\langle\phi X, Y\rangle \omega Z\} \tag{7}
\end{equation*}
$$

for any X, Y, and $Z \in \Gamma(T M)$.
The second-order covariant derivative $\nabla^{2} h$ on the second fundamental form h is defined by

$$
\begin{aligned}
\left(\nabla_{X Y}^{2} h\right)(Z, W)= & \nabla_{X}^{\perp}\left\{\left(\nabla_{Y} h\right)(Z, W)\right\}-\left(\nabla_{\nabla_{X} Y} h\right)(Z, W)-\left(\nabla_{Y} h\right)\left(\nabla_{X} Z, W\right) \\
& -\left(\nabla_{Y} h\right)\left(Z, \nabla_{X} W\right) .
\end{aligned}
$$

The Ricci identity gives

$$
\begin{equation*}
R(X, Y) h=\nabla_{X Y}^{2} h-\nabla_{Y X}^{2} h \tag{8}
\end{equation*}
$$

where

$$
(R(X, Y) h)(Z, W)=R^{\perp}(X, Y) h(Z, W)-h(R(X, Y) Z, W)-h(Z, R(X, Y) W)
$$

for any X, Y, Z, and $W \in \Gamma(T M)$.
Finally, we state without proof a codimension reduction theorem for real submanifolds in a non-flat complex space form.
Theorem 3 ([15,25]) Let M be a connected real n-dimensional submanifold in $\hat{M}_{(n+p) / 2}(c)$, $c \neq 0$ and let $N_{0}(x)$ be the orthogonal complement of the first normal space in $T_{x} M^{\perp}$. We put $H_{0}(x)=J N_{0}(x) \cap N_{0}(x)$ and let $H(x)$ be a J-invariant subspace of $H_{0}(x)$. If the orthogonal complement $H_{2}(x)$ of $H(x)$ in $T_{x} M^{\perp}$ is invariant under parallel translation with respect to the normal connection and if q is the constant dimension of $H_{2}(x)$, for each $x \in M$, then there exists $a(n+q)$-dimensional totally geodesic holomorphic submanifold $\hat{M}_{(n+q) / 2}(c)$ in $\hat{M}_{(n+p) / 2}(c)$ such that $M \subset \hat{M}_{(n+q) / 2}(c)$.

3 CR-submanifolds of maximal CR-dimension in a complex space form

Suppose $\hat{M}_{n+p}(c)$ is a complex $(n+p)$-dimensional complex space form of constant holomorphic sectional curvature $4 c$, and M is a real ($2 n-1$)-dimensional CR-submanifold of maximal CR-dimension in $\hat{M}_{n+p}(c)$. Then, $\operatorname{dim}_{\mathbb{C}} \mathscr{D}=n-1$ and $\operatorname{dim} \mathscr{D}^{\perp}=1$. Let $N \in \Gamma\left(J \mathscr{D}^{\perp}\right)$ be a local unit vector field normal to $M, \xi=-J N$ and η the 1 -form dual to ξ. Then, we have

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi \\
\omega X=\eta(X) N ; \quad B \sigma=-\langle\sigma, N\rangle \xi
\end{gathered}
$$

for any $X \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$. It follows from (2)-(5) that

$$
\begin{align*}
\left(\nabla_{X} \phi\right) Y & =\eta(Y) A_{N} X-\left\langle A_{N} X, Y\right\rangle \xi \tag{9}\\
\nabla_{X} \xi & =\phi A_{N} X ; \quad \nabla_{X}^{\perp} N=\operatorname{Ch}(X, \xi) \tag{10}\\
h(X, \phi Y) & =-\left\langle\phi A_{N} X, Y\right\rangle N-\eta(Y) \operatorname{Ch}(X, \xi)+\operatorname{Ch}(X, Y) \tag{11}\\
\left(\nabla_{X} C\right) \sigma & =-\langle h(X, \xi), \sigma\rangle N+\langle\sigma, N\rangle h(X, \xi) \tag{12}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$.
The equations of Codazzi and Ricci can also be reduced to

$$
\begin{align*}
\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z) & =c\{\eta(X)\langle\phi Y, Z\rangle-\eta(Y)\langle\phi X, Z\rangle-2 \eta(Z)\langle\phi X, Y\rangle\} N \tag{13}\\
R^{\perp}(X, Y) \sigma & =-2 c\langle\phi X, Y\rangle C \sigma+h\left(X, A_{\sigma} Y\right)-h\left(Y, A_{\sigma} X\right) \tag{14}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$. We define the covariant derivative of the shape operator as

$$
\begin{equation*}
\left(\nabla_{X} A\right)_{\sigma} Y=\nabla_{X}\left\{A_{\sigma} Y\right\}-A_{\sigma} \nabla_{X} Y-A_{\nabla_{\frac{1}{X}} \sigma} Y \tag{15}
\end{equation*}
$$

Then, we have

$$
\left\langle\left(\nabla_{X} A\right)_{\sigma} Y, Z\right\rangle=\left\langle\left(\nabla_{X} h\right)(Y, Z), \sigma\right\rangle
$$

and the Codazzi equation (13) can be rephrased as

$$
\begin{equation*}
\left(\nabla_{X} A\right)_{\sigma} Y-\left(\nabla_{Y} A\right)_{\sigma} X=c\langle\sigma, N\rangle\{\eta(X) \phi Y-\eta(Y) \phi X-2\langle\phi X, Y\rangle \xi\} \tag{16}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$ and $\sigma \in \Gamma\left(T M^{\perp}\right)$.
The following lemma can be obtained immediately from Lemma 1.
Lemma 3 Let M be a CR-submanifold of maximal CR-dimension in a Kaehler manifold \hat{M}. Then, $\operatorname{Ch}(\xi, \xi)=C H$.

4 Examples

In this section, we discuss certain examples of cyclic parallel CR-submanifolds of maximal CR-dimension in a non-flat complex space form. From (7), it is equivalent to said that M satisfies the following condition.

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=-c\{\eta(Y)\langle\phi X, Z\rangle+\eta(Z)\langle\phi X, Y\rangle\} N \tag{17}
\end{equation*}
$$

for any X, Y, and $Z \in \Gamma(T M)$.

Let \mathbb{C}_{n+1}^{1} be the complex Lorentzian space with Hermitian inner product

$$
G(z, w)=-z_{0} \bar{w}_{0}+\sum_{j=1}^{n} z_{j} \bar{w}_{j}
$$

where $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right), w=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{C}_{n+1}^{1}$. Then, the anti-De Sitter space of radius 1 is given by

$$
H_{1}^{2 n+1}:=H_{1}^{2 n+1}(-1)=\left\{z \in \mathbb{C}_{n+1}^{1}:\langle z, z\rangle=-1\right\}
$$

where $\langle z, w\rangle:=\mathfrak{R} G(z, w)$. We denote by $\psi: H_{1}^{2 n+1} \rightarrow \mathbb{C} H_{n}$ the principal S^{1}-bundle over $\mathbb{C} H_{n}$. Here, $\mathbb{C} H_{n}$ denotes the complex hyperbolic space with constant holomorphic sectional curvature -4.

Example 1 (Horospheres in $\mathbb{C} H_{n}$) Let M^{\prime} be a Lorentzian hypersurface in $H_{1}^{2 n+1}$ given by

$$
\left|z_{0}-z_{1}\right|=1 ; \quad-\left|z_{0}\right|+\sum_{j=1}^{n}\left|z_{j}\right|^{2}=-1
$$

Then, $M^{*}=\psi\left(M^{\prime}\right)$ is a real hypersurface in $\mathbb{C} H_{n}$, so-called a horosphere (a self-tube).
Example 2 (Tubes over $\mathbb{C} H_{k}$ in $\mathbb{C} H_{n}, 0 \leq k \leq n-1$) Let $k, l \geq 0$ be integers with $k+l=n-1, r>0$. We consider a Lorentzian hypersurface $M_{k}^{\prime}(r)$ in $H_{1}^{2 n+1}$ defined by

$$
-\left|z_{0}\right|^{2}+\sum_{j=1}^{k}\left|z_{j}\right|^{2}=-\cosh ^{2} r, \quad-\left|z_{0}\right|+\sum_{j=1}^{n}\left|z_{j}\right|^{2}=-1 .
$$

Then, $M_{k}^{\prime}(r)$ is the standard product $H_{1}^{2 k+1}(-\cosh r) \times S^{2 l+1}(\sinh r) . M_{k}(r)=\psi\left(M_{k}^{\prime}(r)\right)$ is a real hypersurface in $\mathbb{C} H_{n}$, which is a tube of radius r over a totally geodesic holomorphic submanifold $\mathbb{C} H_{k}$ in $\mathbb{C} H_{n}$. In particular, $M_{k}(r)$ is a geodesic hypersphere in $\mathbb{C} H_{n}$ when $k=0$.

Now, we consider the complex Euclidean space \mathbb{C}_{n+1} with Hermitian inner product

$$
G(z, w)=\sum_{j=0}^{n} z_{j} \bar{w}_{j}
$$

where $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$, $w=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{C}_{n+1}$. Then, the sphere of radius 1 centered at the origin is given by

$$
S^{2 n+1}:=S^{2 n+1}(1)=\left\{z \in \mathbb{C}_{n+1}:\langle z, z\rangle=1\right\}
$$

where $\langle z, w\rangle:=\Re G(z, w)$. We denote by $\psi: S^{2 n+1} \rightarrow \mathbb{C} P_{n}$ the principal S^{1}-bundle over $\mathbb{C} P_{n}$. Here, $\mathbb{C} P_{n}$ denotes the complex projective space with constant holomorphic sectional curvature 4.

Example 3 (Tubes over $\mathbb{C} P_{k}$ in $\mathbb{C} P_{n}, 0 \leq k \leq n-1$) Let $k, l \geq 0$ be integers with $k+l=$ $n-1, r \in] 0, \pi / 2\left[\right.$. We consider a hypersurface $M_{k}^{\prime}(r)$ in $S^{2 n+1}$ defined by

$$
\sum_{j=0}^{k}\left|z_{j}\right|^{2}=\cos ^{2} r, \quad \sum_{j=0}^{n}\left|z_{j}\right|^{2}=1
$$

Then, $M_{k}^{\prime}(r)$ is the standard product $S^{2 k+1}(\cos r) \times S^{2 l+1}(\sin r) . M_{k}(r)=\psi\left(M_{k}^{\prime}(r)\right)$ is a real hypersurface in $\mathbb{C} P_{n}$, which is a tube of radius r over a totally geodesic holomorphic
submanifold $\mathbb{C} P_{k}$ in $\mathbb{C} P_{n}$. In particular, when $k=0, M_{k}(r)$ is a geodesic hypersphere in $\mathbb{C} P_{n}$.

Theorem $4[5,22]$ Let M be a real hypersurface in $\hat{M}_{n}(c), c \neq 0, n \geq 2$. Then, M satisfies

$$
\left(\nabla_{X} A\right) Y=-c\{\eta(Y) \phi X+\langle\phi X, Y\rangle \xi\}
$$

for any $X, Y \in \Gamma(T M)$, if and only if M is an open part of one of the following spaces.
(a) For $c<0$
(i) a horosphere,
(ii) a geodesic hypersphere or a tube over $\mathbb{C} H_{n-1}$,
(iii) a tube over $\mathbb{C} H_{k}$, where $1 \leq k \leq n-2$.
(b) For $c>0$
(i) a geodesic hypersphere,
(ii) a tube over $\mathbb{C} P_{k}$, where $1 \leq k \leq n-2$.

Remark 3 A real hypersurface in a Kaehler manifold is said to be Hopf if it is mixed totally geodesic. The real hypersurfaces stated in Theorem 4 are categorized as Hopf hypersurfaces of type A in the Takagi's list (for $c>0$) and Montiel's list (for $c<0$) of Hopf hypersurfaces of constant principal curvatures in $\hat{M}_{n}(c), c \neq 0$ (cf. [23,26]). These real hypersurfaces in the Takagi's list and Montiel's list are in fact the only Hopf hypersurfaces with constant principal curvatures in $\hat{M}_{n}(c), c \neq 0$ (cf. [2,16]).

The spaces M stated in Theorem 4 can be naturally immersed into $\hat{M}_{n+p}(c)$ with higher codimension via the standard holomorphic immersion of $\hat{M}_{n}(c)$ into $\hat{M}_{n+p}(c)$ as follows

$$
M \longrightarrow \hat{M}_{n}(c) \longrightarrow \hat{M}_{n+p}(c)
$$

Clearly, such an immersion is not full. Next, we shall discuss an example of CR-submanifolds with maximal $\mathbb{C R}$-dimension in $\mathbb{C} P_{q}$, which are irreducible to real hypersurfaces in a totally geodesic holomorphic submanifold of $\mathbb{C} P_{q}$.

We denote by $\left(z_{0}: z_{1}: \cdots: z_{n}\right)$ the homogeneous coordinates of $\mathbb{C} P_{n}$. Then, the Segre embedding $S_{m, l}: \mathbb{C} P_{m} \times \mathbb{C} P_{l} \rightarrow \mathbb{C} P_{m+l+m l}$ is given by

$$
S_{m, l}(z, w)=\left(z_{0} w_{0}: \cdots: z_{0} w_{l}: z_{1} w_{0}: \cdots: z_{1} w_{l}: \cdots: z_{m} w_{0}: \cdots z_{m} w_{l}\right)
$$

where $\left(z_{0}: z_{1}: \cdots: z_{m}\right) \in \mathbb{C} P_{m}$ and $\left(w_{0}: w_{1}: \cdots: w_{l}\right) \in \mathbb{C} P_{l}$.
Example 4 (The standard CR-products $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$) We consider $\mathbb{R} P^{l}$ as a totally geodesic, totally real submanifold in $\mathbb{C} P_{l}$, and $\mathbb{C} P_{m+l+m l}$ as a totally geodesic, holomorphic submanifold in $\mathbb{C} P_{q}, m+l+m l \leq q$. The standard CR-product $\mathbb{C} P_{m} \times \mathbb{R} P^{l}$ can be immersed into $\mathbb{C} P_{q}$ via $S_{m, l}$ as follows: (cf. [3])

$$
\begin{equation*}
\mathbb{C} P_{m} \times \mathbb{R} P^{l} \longrightarrow \mathbb{C} P_{m} \times \mathbb{C} P_{l} \xrightarrow{S_{m, l}} \mathbb{C} P_{m+l+m l} \longrightarrow \mathbb{C} P_{q} . \tag{18}
\end{equation*}
$$

In particular, $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$ is a CR-submanifold of maximal CR-dimension in $\mathbb{C} P_{q}$, $2 n-1 \leq q$.
Theorem 5 ([3]) Let M be a CR-product in $\mathbb{C} P_{q}$, $\operatorname{dim}_{\mathbb{C}} \mathscr{D}=m$ and $\operatorname{dim}_{\mathbb{R}} \mathscr{D}^{\perp}=l$. Then, we have

$$
\|h\|^{2} \geq 4 m l
$$

and equality holds if and only if M is given by the immersion (18).

Theorem 6 Let $M=\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$. Then, M is a cyclic parallel $C R$-submanifold of maximal CR-dimension in $\mathbb{C} P_{q}$.
Proof Since $\mathbb{C} P_{n-1}$ and $\mathbb{R} P^{1}$ are leaves of \mathscr{D} and \mathscr{D}^{\perp}, respectively, and they are totally geodesic in $\mathbb{C} P_{q}$, by the Gauss formula, we see that

$$
h(\mathscr{D}, \mathscr{D})=0 ; \quad h(\xi, \xi)=0 .
$$

Further, as M is a Riemannian product $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$, both distributions \mathscr{D} and \mathscr{D}^{\perp} are auto-parallel, that is,

$$
\nabla: \Gamma(\mathscr{D}) \rightarrow \Omega^{1}(M)_{\Omega^{0}(M)} \otimes \Gamma(\mathscr{D}) ; \quad \nabla: \Gamma\left(\mathscr{D}^{\perp}\right) \rightarrow \Omega^{1}(M)_{\Omega^{0}(M)} \otimes \Gamma\left(\mathscr{D}^{\perp}\right) .
$$

Therefore, we have

$$
\begin{aligned}
\left(\nabla_{X} h\right)(Y, Z) & =\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)=0 \\
\left(\nabla_{X} h\right)(\xi, \xi) & =\nabla_{X}^{\perp} h(\xi, \xi)-2 h\left(\nabla_{X} \xi, \xi\right)=0
\end{aligned}
$$

for any $X \in \Gamma(T M)$ and $Y, Z \in \Gamma(\mathscr{D})$. By using the above two equations and the Codazzi equation, we have

$$
\begin{aligned}
\left(\nabla_{\xi} h\right)(Y, \xi) & =\left(\nabla_{Y} h\right)(\xi, \xi)=0 \\
\left(\nabla_{X} h\right)(Y, \xi) & =\left(\nabla_{\xi} h\right)(X, Y)-c\langle\phi X, Y\rangle N=-c\langle\phi X, Y\rangle N
\end{aligned}
$$

for any $X, Y \in \Gamma(\mathscr{D})$. Hence, M satisfies (17) and so it is cyclic parallel.
Remark 4 By using a similar manner as in the above proof, we may verify that such standard CR-products with higher CR-codimension are also cyclic parallel.

5 Lemmas

Throughout this section, suppose M is a $(2 n-1)$-dimensional CR-submanifold of maximal CR-dimension in $\hat{M}_{n+p}(c), c \neq 0, n \geq 2$ and M is cyclic parallel or equivalent, it satisfies (17), that is,

$$
\left(\nabla_{X} h\right)(Y, Z)=-c\{\eta(Y)\langle\phi X, Z\rangle+\eta(Z)\langle\phi X, Y\rangle\} N
$$

for any X, Y, and $Z \in \Gamma(T M)$. By (15), we can see that the condition (17) is equivalent to

$$
\begin{equation*}
\left(\nabla_{X} A\right)_{\sigma} Y=-c\langle\sigma, N\rangle\{\eta(Y) \phi X+\langle\phi X, Y\rangle \xi\} \tag{19}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $\sigma \in \Gamma(\nu)$.
Lemma 4 (a) $C H=0$;
(b) $\langle H, N\rangle C h=0$.

Proof Note that the Eq. (17) implies that $\nabla^{\perp} H=0$, and by the Ricci equation (14), we have

$$
-2 c\langle\phi Y, Z\rangle C H+h\left(Y, A_{H} Z\right)-h\left(Z, A_{H} Y\right)=0
$$

for any $Y, Z \in \Gamma(T M)$. By differentiating this equation covariantly in the direction of $X \in \Gamma(T M)$, we have

$$
\begin{aligned}
& -2 c\left\langle\left(\nabla_{X} \phi\right) Y, Z\right\rangle C H-2 c\langle\phi Y, Z\rangle\left(\nabla_{X} C\right) H+\left(\nabla_{X} h\right)\left(Y, A_{H} Z\right)+h\left(Y,\left(\nabla_{X} A\right)_{H} Z\right) \\
& -\left(\nabla_{X} h\right)\left(Z, A_{H} Y\right)-h\left(Z,\left(\nabla_{X} A\right)_{H} Y\right)=0 .
\end{aligned}
$$

By using (9)-(12) and (17), we have

$$
\begin{align*}
& 2\left\{-\eta(Y)\left\langle A_{N} X, Z\right\rangle+\eta(Z)\left\langle A_{N} X, Y\right\rangle\right\} C H+2\langle\phi Y, Z\rangle\left\{\eta\left(A_{H} X\right) N\right. \\
& -\langle H, N\rangle h(X, \xi)\}+\left\{\eta(Z)\left\langle\phi X, A_{H} Y\right\rangle+\eta\left(A_{H} Y\right)\langle\phi X, Z\rangle\right. \\
& \left.-\eta(Y)\left\langle\phi X, A_{H} Z\right\rangle-\eta\left(A_{H} Z\right)\langle\phi X, Y\rangle\right\} N+\langle H, N\rangle\{\eta(Y) h(Z, \phi X) \\
& +\langle\phi X, Y\rangle h(Z, \xi)-\eta(Z) h(Y, \phi X)-\langle\phi X, Z\rangle h(Y, \xi)\}=0 . \tag{20}
\end{align*}
$$

If we substitute $X=\xi, Y \in \Gamma(\mathscr{D})$ and $Z=\phi Y$ in the above equation, then $\langle h(\xi, \xi), H\rangle N-$ $\langle H, N\rangle h(\xi, \xi)=0$ and hence $C H=0$.

Furthermore, after putting $Y=X \in \Gamma(\mathscr{D})$ and $Z=\phi X$ in (20), we get

$$
\langle H, N\rangle C h(X, \xi)=0
$$

for any $X \in \Gamma(\mathscr{D})$. Next, by putting $Z=\xi$ in (20) and making use of the above equation, we obtain

$$
\langle H, N\rangle \operatorname{Ch}(Y, \phi X)=0
$$

for any $X, Y \in \Gamma(T M)$. By these two equations and the fact that $C h(\xi, \xi)=0(=C H)$, we obtain Statement (b).

Lemma 5 For any $X \in \Gamma(T M)$,
(a) $\left\langle\phi A_{N} \xi, X\right\rangle N=-h(\xi, \phi X)+C h(\xi, X)$;
(b) $d \alpha(X)=2 \eta\left(A_{N} \phi A_{N} X\right)$;
(c) $2 \operatorname{Ch}\left(A_{N} X, \xi\right)=\alpha \operatorname{Ch}(X, \xi)$.

Proof Statement (a) can be obtained easily from $X=\xi$ in (11) and Lemma 4.
Taking into account that $C H=0$ again, we see that $h(\xi, \xi)=\alpha N$. It follows from (17), (10), and Statement (a) that

$$
0=\left(\nabla_{X} h\right)(\xi, \xi)=d \alpha(X) N+\alpha \operatorname{Ch}(X, \xi)+2\left\langle\phi A_{N} \xi, A_{N} X\right\rangle N-2 \operatorname{Ch}\left(\xi, A_{N} X\right)
$$

for any $X \in \Gamma(T M)$. Statements (b) and (c) are the $J \mathscr{D}^{\perp}$ - and v-component of this equation, respectively.

Lemma 6 For any X, Y, Z, and $W \in \Gamma(T M)$,

$$
\begin{align*}
& c-\langle\phi Y, \phi Z\rangle\left\langle A_{N} X, W\right\rangle+\langle\phi X, \phi Z\rangle\left\langle A_{N} Y, W\right\rangle \\
&-\langle\phi Y, \phi W\rangle\left\langle A_{N} X, Z\right\rangle+\langle\phi X, \phi W\rangle\left\langle A_{N} Y, Z\right\rangle \\
&+\langle\phi Y, Z\rangle\left\langle\left(\phi A_{N}-A_{N} \phi\right) X, W\right\rangle-\langle\phi X, Z\rangle\left\langle\left(\phi A_{N}-A_{N} \phi\right) Y, W\right\rangle \\
&+\langle\phi Y, W\rangle\left\langle\left(\phi A_{N}-A_{N} \phi\right) X, Z\right\rangle-\langle\phi X, W\rangle\left\langle\left(\phi A_{N}-A_{N} \phi\right) Y, Z\right\rangle \\
&\left.-2\langle\phi X, Y\rangle\left\langle\left(\phi A_{N}-A_{N} \phi\right) Z, W\right\rangle\right\} \\
&-\left\langle h(Y, Z), h\left(X, A_{N} W\right)\right\rangle+\left\langle h(X, Z), h\left(Y, A_{N} W\right)\right\rangle \\
&-\left\langle h(Y, W), h\left(X, A_{N} Z\right)\right\rangle+\left\langle h(X, W), h\left(Y, A_{N} Z\right)\right\rangle \\
&-\left\langle h(Z, W), h\left(X, A_{N} Y\right)\right\rangle+\left\langle h(Z, W), h\left(Y, A_{N} X\right)\right\rangle=0, \tag{21}\\
& c\left\{-\langle Y, Z\rangle\left\langle A_{\sigma} X, W\right\rangle+\langle X, Z\rangle\left\langle A_{\sigma} Y, W\right\rangle\right. \\
&-\langle Y, W\rangle\left\langle A_{\sigma} X, Z\right\rangle+\langle X, W\rangle\left\langle A_{\sigma} Y, Z\right\rangle \\
&-\langle\phi Y, Z\rangle\left\langle\phi A_{\sigma} \phi X, \phi W\right\rangle+\langle\phi X, Z\rangle\left\langle\phi A_{\sigma} \phi Y, \phi W\right\rangle \\
&-\langle\phi Y, W\rangle\left\langle\phi A_{\sigma} \phi X, \phi Z\right\rangle+\langle\phi X, W\rangle\left\langle\phi A_{\sigma} \phi Y, \phi Z\right\rangle \\
&\left.-2\langle\phi X, Y\rangle\left\{\eta(Z)\left\langle A_{\sigma} \xi, \phi W\right\rangle+\eta(W)\left\langle A_{\sigma} \xi, \phi Z\right\rangle+\left\langle A_{C \sigma} Z, W\right\rangle\right\}\right\}
\end{align*}
$$

$$
\begin{align*}
& -\left\langle h(Y, Z), h\left(X, A_{\sigma} W\right)\right\rangle+\left\langle h(X, Z), h\left(Y, A_{\sigma} W\right)\right\rangle \\
& -\left\langle h(Y, W), h\left(X, A_{\sigma} Z\right)\right\rangle+\left\langle h(X, W), h\left(Y, A_{\sigma} Z\right)\right\rangle \\
& -\left\langle h(Z, W), h\left(X, A_{\sigma} Y\right)\right\rangle+\left\langle h(Z, W), h\left(Y, A_{\sigma} X\right)\right\rangle=0 . \tag{22}
\end{align*}
$$

Proof Differentiating the following equation

$$
\left(\nabla_{Y} h\right)(Z, W)=-c\{\eta(Z)\langle\phi Y, W\rangle+\eta(W)\langle\phi Y, Z\rangle\} N
$$

covariantly in the direction of $X \in \Gamma(T M)$, with the help of (9) and (10), we have

$$
\begin{aligned}
\left(\nabla_{X Y}^{2} h\right)(Z, W)= & -c\left\{\left\langle\phi A_{N} X, Z\right\rangle\langle\phi Y, W\rangle+\eta(Z) \eta(Y)\left\langle A_{N} X, W\right\rangle\right. \\
& +\left\langle\phi A_{N} X, W\right\rangle\langle\phi Y, Z\rangle+\eta(W) \eta(Y)\left\langle A_{N} X, Z\right\rangle \\
& \left.-2 \eta(Z) \eta(W)\left\langle A_{N} X, Y\right\rangle\right\} N \\
& -c\{\eta(Z)\langle\phi Y, W\rangle+\eta(W)\langle\phi Y, Z\rangle\} \operatorname{Ch}(X, \xi) .
\end{aligned}
$$

It follows from (8), (6), (14), and this equation that

$$
\begin{align*}
c\{ & \left\{-\left\langle\phi A_{N} X, Z\right\rangle\langle\phi Y, W\rangle-\eta(Z) \eta(Y)\left\langle A_{N} X, W\right\rangle\right. \\
& -\left\langle\phi A_{N} X, W\right\rangle\langle\phi Y, Z\rangle-\eta(W) \eta(Y)\left\langle A_{N} X, Z\right\rangle \\
& +\left\langle\phi A_{N} Y, Z\right\rangle\langle\phi X, W\rangle+\eta(Z) \eta(X)\left\langle A_{N} Y, W\right\rangle \\
& \left.+\left\langle\phi A_{N} Y, W\right\rangle\langle\phi X, Z\rangle+\eta(W) \eta(X)\left\langle A_{N} Y, Z\right\rangle\right\} N \\
& -\{\eta(Z)\langle\phi Y, W\rangle+\eta(W)\langle\phi Y, Z\rangle\} C h(X, \xi) \\
& +\{\eta(Z)\langle\phi X, W\rangle+\eta(W)\langle\phi X, Z\rangle\} C h(Y, \xi)\} \\
& =c\{-\langle Y, Z\rangle h(X, W)+\langle X, Z\rangle h(Y, W) \\
& -\langle\phi Y, Z\rangle h(\phi X, W)+\langle\phi X, Z\rangle h(\phi Y, W) \\
& -\langle Y, W\rangle h(X, Z)+\langle X, W\rangle h(Y, Z) \\
& -\langle\phi Y, W\rangle h(\phi X, Z)+\langle\phi X, W\rangle h(\phi Y, Z) \\
& +2\langle\phi X, Y\rangle\{h(\phi Z, W)+h(\phi W, Z)-C h(Z, W)\}\} \\
& -h\left(A_{h(Y, Z)} X, W\right)+h\left(A_{h(X, Z)} Y, W\right) \\
& -h\left(A_{h(Y, W)} X, Z\right)+h\left(A_{h(X, W)} Y, Z\right) \\
& -h\left(A_{h(Z, W)} X, Y\right)+h\left(A_{h(Z, W)} Y, X\right) . \tag{23}
\end{align*}
$$

The Eq. (21) is the $J \mathscr{D}^{\perp}$-component of this equation. Next, it follows from Lemma 5(a) that

$$
\langle h(Z, \phi Y)-\eta(Z) C h(\xi, Y), \sigma\rangle=-\left\langle h\left(\phi^{2} Z, \phi Y\right), \sigma\right\rangle=\left\langle\phi A_{\sigma} \phi Y, \phi Z\right\rangle
$$

for any $Y, Z \in \Gamma(T M)$ and $\sigma \in \Gamma(v)$. With the help of this equation, after taking inner product of both sides of (23) with $\sigma \in \Gamma(\nu)$, we obtain (22).

Lemma $7 A_{N} \xi=\alpha \xi$.
Proof Suppose that $\beta=\left\|\phi A_{N} \xi\right\|>0$ at some point $x \in M$. Then, we can write

$$
\begin{equation*}
A_{N} \xi=\alpha \xi+\beta U \tag{24}
\end{equation*}
$$

where $U=-\beta^{-1} \phi^{2} A_{N} \xi$ and hence from Lemma 5(c), we have

$$
\begin{equation*}
\operatorname{Ch}(\xi, U)=0 . \tag{25}
\end{equation*}
$$

Next, by substituting $Z=W=\xi$ in (21), we obtain

$$
\begin{equation*}
\langle h(X, U), h(Y, \xi)\rangle-\langle h(Y, U), h(X, \xi)\rangle=0 \tag{26}
\end{equation*}
$$

for any $X, Y \in T_{x} M$. By putting $Y=\xi$ in this equation, with the help of (25), we obtain $\alpha A_{N} U-\beta A_{N} \xi=0$ and so

$$
\begin{equation*}
A_{N} U=\beta \xi+\gamma U, \quad\left(\alpha \gamma=\beta^{2}\right) \tag{27}
\end{equation*}
$$

Hence, from (24) and (27), we have

$$
\begin{array}{r}
A_{N}^{2} \xi=\left(\alpha^{2}+\beta^{2}\right) \xi+\beta(\alpha+\gamma) U \\
A_{N}^{2} U=\beta(\alpha+\gamma) \xi+\left(\beta^{2}+\gamma^{2}\right) U . \tag{29}
\end{array}
$$

On the other hand, by putting $X=U$ in (26) and using (25) and (27), we have $A_{h(U, U)} \xi-$ $\beta A_{N} U=0$ or

$$
\begin{equation*}
A_{C^{2} h(U, U)} \xi=0 \tag{30}
\end{equation*}
$$

Finally, with the help of (24), (25), (27)-(30), Lemma 5(c) and the fact that $h(\xi, \xi)=\alpha N$, after substituting $X=W=U, Y=Z=\xi$ in (21), gives

$$
0=c \alpha-\alpha\left\langle A_{N} U, A_{N} U\right\rangle+\gamma\left\langle A_{N} \xi, A_{N} \xi\right\rangle=c \alpha
$$

But from (27), $\alpha \gamma=\beta^{2}>0$. This is a contradiction. Accordingly, $A_{N} \xi=\alpha \xi$ at each point of M.

Lemma 8 (a) α is a constant;
(b) $\left(A_{N} \phi A_{N}-\alpha \phi A_{N}-c \phi\right) X+A_{h(\phi X, \xi)} \xi=0$, for any $X \in \Gamma(T M)$;
(c) $\alpha\left(\phi A_{N}-A_{N} \phi\right)=0$.

Proof Statement (a) is directly from Lemma 5(b) and Lemma 7. Next, from Lemma 7, we have

$$
\langle h(Y, \xi), N\rangle=\alpha \eta(Y)
$$

for any $Y \in \Gamma(T M)$. It follows from this equation that

$$
\left\langle\left(\nabla_{X} h\right)(Y, \xi)+h\left(Y, \nabla_{X} \xi\right), N\right\rangle+\left\langle h(Y, \xi), \nabla_{X}^{\perp} N\right\rangle=d \alpha(X) \eta(Y)+\alpha\left\langle\nabla_{X} \xi, Y\right\rangle
$$

By applying (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

$$
\begin{equation*}
\left\langle\left(A_{N} \phi A_{N}-\alpha \phi A_{N}-c \phi\right) X, Y\right\rangle+\langle h(\phi X, \xi), h(Y, \xi)\rangle=0 \tag{31}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and so we obtain Statement (b). Finally, by letting $X=Y$ in (31), we have $\alpha\left\langle\phi A_{N} X, X\right\rangle=0$, for any $X \in \Gamma(T M)$, this deduces Statement (c).

Lemma 9 For any $X, Y \in \Gamma(\mathscr{D})$ and $\sigma \in \Gamma(v)$,

$$
2\left\langle h(\phi X, \xi), h\left(Y, A_{\sigma} \xi\right)\right\rangle+\left\langle 2 A_{N} Y-\alpha Y, A_{\sigma} \phi A_{N} X\right\rangle=0 .
$$

Proof By using Lemma 5(c) and Lemma 7, we have

$$
2 h\left(A_{N} Y, \xi\right)=2\left\langle h\left(A_{N} Y, \xi\right), N\right\rangle N-2 C^{2} h\left(A_{N} Y, \xi\right)=\alpha^{2} \eta(Y) N+\alpha h(Y, \xi)
$$

for any $Y \in \Gamma(T M)$. By differentiating this equation covariantly in the direction of $X \in$ $\Gamma(T M)$, we have

$$
\begin{aligned}
& 2\left\{\left(\nabla_{X} h\right)\left(A_{N} Y, \xi\right)+h\left(\left(\nabla_{X} A\right)_{N} Y+A_{\nabla_{X} N} Y, \xi\right)+h\left(A_{N} Y, \nabla_{X} \xi\right)\right\} \\
& =\alpha^{2}\left\{\left\langle\nabla_{X} \xi, Y\right\rangle N+\eta(Y) \nabla_{X}^{\perp} N\right\}+\alpha\left\{\left(\nabla_{X} h\right)(Y, \xi)+h\left(Y, \nabla_{X} \xi\right)\right\} .
\end{aligned}
$$

By using (10), (17), Lemma 5(a), and Lemma 8(a), this equation becomes

$$
\begin{aligned}
& -2 c\left\{\left\langle\phi X, A_{N} Y\right\rangle N+\eta(Y) h(\phi X, \xi)+\alpha\langle\phi X, Y\rangle N\right\}+2\left\{h\left(A_{h(\phi X, \xi)} Y, \xi\right)+h\left(A_{N} Y, \phi A_{N} X\right)\right\} \\
& =\alpha^{2}\left\{\left\langle\phi A_{N} X, Y\right\rangle N+\eta(Y) h(\phi X, \xi)\right\}+\alpha\left\{-c\langle\phi X, Y\rangle N+h\left(Y, \phi A_{N} X\right)\right\} .
\end{aligned}
$$

By first, putting $X, Y \in \Gamma(\mathscr{D})$ and then taking inner product of both sides of this equation with $\sigma \in \Gamma(\nu)$, we obtain the lemma.

6 Proof of Theorem 1

We shall consider two cases: (I) M is mixed totally geodesic and (II) M is non-mixed totally geodesic.

Case (I) M is mixed totally geodesic.
By Lemma 4(a) and Lemma 7, we have

$$
\begin{equation*}
h(Y, \xi)=\eta(Y) h(\xi, \xi)=\alpha \eta(Y) N \tag{32}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$. It follows from (10) that $\nabla^{\perp} N=0$. Moreover, by applying (10), (17), and (32), we obtain

$$
\begin{aligned}
0 & =\left\langle\left(\nabla_{X} h\right)(Y, \xi), \sigma\right\rangle=\left\langle\nabla_{X}^{1} h(Y, \xi), \sigma\right\rangle-\left\langle h\left(Y, \nabla_{X} \xi\right), \sigma\right\rangle \\
& =\left\langle h\left(Y, \phi A_{N} X\right), \sigma\right\rangle
\end{aligned}
$$

for any $X, Y \in \Gamma(T M)$ and $\sigma \in \Gamma(\nu)$. This means that

$$
\begin{equation*}
A_{\sigma} \phi A_{N}=0 \tag{33}
\end{equation*}
$$

for any $\sigma \in \Gamma(\nu)$. On the other hand, by Lemma 8(b), we have

$$
A_{N} \phi A_{N}-\alpha \phi A_{N}-c \phi=0 .
$$

As $c \neq 0$, we can observe from the above equation that $\left.A_{N}\right|_{\mathscr{D}}$ is a vector bundle automorphism on \mathscr{D}. Hence, for any $\sigma \in \Gamma(\nu)$, we have $\left.A_{\sigma}\right|_{\mathscr{D}}=0$ by (33). Also, we have $A_{\sigma} \xi=0$ by using Lemma 4(a). We conclude that $A_{\sigma}=0$ for any $\sigma \in \Gamma(v)$. Further, since $A_{N} \neq 0, v_{x}$ is the J-invariant orthogonal complementary subspace of the first normal space in $T_{x} M^{\perp}$, at each $x \in M$. Also, since $\nabla^{\perp} N=0, v$ is a parallel normal subbundle of $T M^{\perp}$. By applying Theorem 3, M is contained in a totally geodesic holomorphic submanifold $\hat{M}_{n}(c)$ of $\hat{M}_{n+p}(c)$ as a real hypersurface.
We denote by N^{\prime} a unit normal vector field, ∇^{\prime}, the Levi-Civita connection, A^{\prime} the shape operator of M, immersed in $\hat{M}_{n}(c)$. Further, let $\left(\phi^{\prime}, \xi^{\prime}, \eta^{\prime}\right)$ denote the almost contact structure on M induced by complex structure of $\hat{M}_{n}(c)$.
Since $\hat{M}_{n}(c)$ is totally geodesic in $\hat{M}_{n+p}(c)$ and $C h=0$, we can see that $\nabla_{X}^{\prime} Y=$ $\nabla_{X} Y, A^{\prime}=A_{N}, \phi^{\prime}=\phi, \eta^{\prime}=\eta, \xi^{\prime}=\xi$, and $N^{\prime}=N$. Then, by (19), we have

$$
\begin{aligned}
\left(\nabla_{X}^{\prime} A^{\prime}\right) Y & \left.=\left(\nabla_{X} A\right)_{N} Y=-c\{\eta(Y)) \phi X+\langle\phi X, Y\rangle \xi\right\} \\
& \left.=-c\left\{\eta^{\prime}(Y)\right) \phi^{\prime} X+\left\langle\phi^{\prime} X, Y\right\rangle \xi^{\prime}\right\}
\end{aligned}
$$

for any vectors X, Y tangent M. By using Theorem 4, we obtain Case (a) and Case (b)(i) and (ii) in Theorem 1.

Case (II) M is non-mixed totally geodesic.
Let $x \in M$, and $X \in \mathscr{D}_{x}$ be a unit vector with $A_{N} X=\lambda X$. If $h(X, \xi)=0$, then we also have $h(\phi X, \xi)=C h(X, \xi)=0$ and

$$
\left.\lambda A_{N} \phi X-(\alpha \lambda+c) \phi X=0, \quad \text { (by Lemma } 8(\mathrm{~b})\right)
$$

If $\alpha=0$, then $\lambda \neq 0$ and $A_{N} \phi X=c \lambda^{-1} \phi X$. On the other hand, if $\alpha \neq 0$, then by Lemma 8(c), $A_{N} \phi X=\lambda X$. From these observations, there is an integer $m \geq 1$ and we may choose an orthonormal basis of \mathscr{D}_{x} formed by eigenvectors $E_{1}, E_{2}=\phi E_{1}, \ldots, E_{2 n-1}, E_{2 n-2}=\phi E_{2 n-1}$ of A_{N} such that

$$
\begin{align*}
& h\left(E_{i}, \xi\right) \neq 0, \quad(1 \leq i \leq 2 m) \tag{34}\\
& h\left(E_{a}, \xi\right)=0, \quad(2 m+1 \leq a \leq 2 n-2) \tag{35}
\end{align*}
$$

In the rest of this section, we use the following convention of indices:

$$
\begin{gathered}
i, j, \ldots \quad \in\{1,2, \ldots, 2 m\} \\
a, b, \ldots \in\{2 m+1, \ldots, 2 n-2\} .
\end{gathered}
$$

For simplicity, we write $\sigma_{i}=h\left(E_{i}, \xi\right)$ and $A_{i}=A_{\sigma_{i}}$.
It follows from Lemma 5(c) and Lemma 8(b) that

$$
\begin{align*}
A_{N} E_{i} & =\frac{\alpha}{2} E_{i} \tag{36}\\
A_{i} \xi & =\frac{\alpha^{2}+4 c}{4} E_{i} \tag{37}\\
\left\langle\sigma_{i}, h(X, \xi)\right\rangle & =\frac{\alpha^{2}+4 c}{4}\left\langle E_{i}, X\right\rangle \tag{38}
\end{align*}
$$

for any $X \in T_{x} M$. We can further observe from (38) that

$$
\begin{equation*}
\left\|\sigma_{i}\right\|^{2}=\frac{\alpha^{2}+4 c}{4}>0 \tag{39}
\end{equation*}
$$

By using (36)-(39), after putting $X=\phi E_{i}, Y=E_{j}$, and $\sigma=\sigma_{k}$ in Lemma 9, we obtain $\left(\alpha^{2}+4 c\right)\left\langle\sigma_{i}, h\left(E_{j}, E_{k}\right)\right\rangle=0$, and so

$$
\begin{equation*}
\left\langle A_{i} E_{j}, E_{k}\right\rangle=0 \tag{40}
\end{equation*}
$$

Now, we wish to prove that

$$
\begin{equation*}
A_{i} E_{j}=\frac{\alpha^{2}+4 c}{4} \delta_{i j} \xi \tag{41}
\end{equation*}
$$

If $m=n-1$, then (37) and (40) imply (41). Next, suppose $m<n-1$. Then, by letting $Y=Z=\xi, X=E_{j}, W=E_{a}$, and $\sigma=\sigma_{i}$ in (22), with the help of (35)-(37), we have $c\left\langle A_{i} E_{j}, E_{a}\right\rangle=0$, that is,

$$
\left\langle A_{i} E_{j}, E_{a}\right\rangle=0
$$

From the above equation, (37) and (40), we also obtain (41).
By putting $X=\xi, Y=E_{i}, Z=E_{j}, W=E_{k}$, and $\sigma=\sigma_{l}$ in (22), we have

$$
\begin{equation*}
\frac{\alpha^{2}}{4}\left\{\delta_{j k} \delta_{i l}+\delta_{j i} \delta_{k l}+\delta_{k i} \delta_{j l}\right\}=\left\langle C h\left(E_{j}, E_{k}\right), C h\left(E_{i}, E_{l}\right)\right\rangle \tag{42}
\end{equation*}
$$

If we first put $E_{i}=E_{j}=E_{k}=E_{l}$, and next follow by $E_{j}=E_{i}, E_{k}=E_{l}=\phi E_{i}$ in the above equation, then

$$
\begin{aligned}
\frac{3 \alpha^{2}}{4} & =\left\langle\operatorname{Ch}\left(E_{i}, E_{i}\right), \operatorname{Ch}\left(E_{i}, E_{i}\right)\right\rangle \\
\frac{\alpha^{2}}{4} & =\left\langle\operatorname{Ch}\left(E_{i}, \phi E_{i}\right), \operatorname{Ch}\left(E_{i}, \phi E_{i}\right)\right\rangle=\left\langle\operatorname{Ch}\left(E_{i}, E_{i}\right), \operatorname{Ch}\left(E_{i}, E_{i}\right)\right\rangle
\end{aligned}
$$

These three equations, together with (36) and (39), give

$$
\begin{align*}
& \alpha=0 \tag{43}\\
& c>0 ; \quad \text { (without loss of generality, we assume } c=1 \text {) } \tag{44}\\
& h\left(E_{i}, E_{j}\right)=0 . \tag{45}
\end{align*}
$$

Lemma 10 Suppose $m<n-1$ and let $A_{N} E_{a}=\lambda_{a} E_{a}$. Then,
(a) $\operatorname{Ch}\left(E_{a}, E_{b}\right)=0$,
(b) $\lambda_{a} \in\{1,-1\}$,
(c) $\phi A_{N}-A_{N} \phi=0$.

Proof From (31), (35), (43), and (44), we have $\lambda_{a} \neq 0$ and $A_{N} \phi E_{a}=\lambda_{a}^{-1} \phi E_{a}$. Hence, after putting $X=\phi E_{a}$ and $Y=E_{b}$ in Lemma 9, we obtain Statement (a). Furthermore, by putting $X=W=E_{i}$ and $Y=Z=E_{a}$, and $X=E_{i}, Y=E_{a}, Z=\phi E_{a}$, and $W=\phi E_{i}$, respectively, in (21), we have

$$
\begin{aligned}
0 & =-\lambda_{a}+2 \lambda_{a}\left\langle h\left(E_{i}, E_{a}\right), h\left(E_{i}, E_{a}\right)\right\rangle \\
0 & =\lambda_{a}-\lambda_{a}^{-1}+\lambda_{a}^{-1}\left\langle h\left(E_{i}, \phi E_{a}\right), h\left(\phi E_{i}, E_{a}\right)\right\rangle+\lambda_{a}\left\langle h\left(E_{i}, E_{a}\right), h\left(\phi E_{i}, \phi E_{a}\right)\right\rangle \\
& =\left\{\lambda_{a}-\lambda_{a}^{-1}\right\}\left\{1-\left\langle h\left(E_{i}, E_{a}\right), h\left(E_{i}, E_{a}\right)\right\} .\right.
\end{aligned}
$$

These two equations imply that $\lambda_{a}=\lambda_{a}^{-1}$. Hence, we obtain Statement (b) and (c) as $A E_{i}=A \phi E_{i}=0$.

Now, we consider two subcases: $\left\|A_{N}\right\|=0$ and $\left\|A_{N}\right\| \neq 0$.
Subcase (II-a) $\left\|A_{N}\right\|=0$.
In this case, we have $m=n-1$ at each $x \in M$ by (36), (43), and Lemma 10(b). From Lemma 7 and (45), we see that $\langle h(X, Y), N\rangle=0$, for any $X \in \Gamma(\mathscr{D})$ and $Y \in$ $\Gamma(T M)$. Hence, M is a CR-product by Lemma 2. Furthermore, it follows from (38), (45), and $h(\xi, \xi)=0$ that $\|h\|^{2}=2(2 n-2)$. According to Theorem 5, M is an open part of the standard CR-product $\mathbb{C} P_{n-1} \times \mathbb{R} P^{1}$, and we obtain Case (b)(iii) in Theorem 1.

Subcase (II-b) $\left\|A_{N}\right\| \neq 0$.
From Lemma 4(b), we have $\operatorname{Trace}\left(A_{N} \mid \mathscr{\mathscr { D }}_{x}\right)=\langle H, N\rangle=0$. By using (36), (43), Lemma 10(b), and the continuity of the eigenvalue functions, we can see that $m<n-1$ and A_{N} has three distinct constant eigenvalues 0,1 , and -1 with multiplicities $2 m, n-m-1$, and $n-m-1$, respectively, at each $x \in M$.

For $\lambda \in\{0,1,-1\}$, we denote by \mathscr{T}_{λ} the subbundle of \mathscr{D} foliated by eigenspace of $A_{N} \mid \mathscr{D}$ corresponding to λ. From Lemma 10(c), we see that each \mathscr{T}_{λ} is ϕ-invariant. We shall show that \mathscr{T}_{0} is auto-parallel, that is,

$$
\Gamma(\mathscr{T}) \xrightarrow{\nabla} \Omega^{1}(M) \otimes \Gamma(\mathscr{T}) .
$$

For any $X \in \Gamma(T M)$ and $Y \in \Gamma\left(\mathscr{T}_{0}\right)$, we have

$$
\left\langle\nabla_{X} Y, \xi\right\rangle=-\left\langle Y, \phi A_{N} X\right\rangle=0 .
$$

Next, from (17), we have

$$
-\langle\phi X, Y\rangle \xi=\left(\nabla_{X} A\right)_{N} Y=-A_{N} \nabla_{X} Y-A_{C h(X, \xi)} Y=-A_{N} \nabla_{X} Y-A_{h(\phi X, \xi)} Y .
$$

If $X \in \Gamma\left(\mathscr{T}_{1} \oplus \mathscr{T}_{-1} \oplus \operatorname{Span}\{\xi\}\right)$, it clearly that $A_{N} \nabla_{X} Y=0$; if $X \in \Gamma\left(\mathscr{T}_{0}\right)$, then by (37) and the above equation, we have $A_{N} \nabla_{X} Y=0$ too. From these observations, we have $\nabla_{X} Y \in \Gamma\left(\mathscr{T}_{0}\right)$, for any $X \in \Gamma(T M)$ and $Y \in \Gamma\left(\mathscr{T}_{0}\right)$.

For any $X \in \Gamma\left(\mathscr{T}_{0}\right)$ and $Y, Z \in \Gamma\left(\mathscr{T}_{1} \oplus \mathscr{T}_{-1} \oplus \operatorname{Span}\{\xi\}\right)$, from Lemma 10(a), we see that $h(Y, Z)=\left\langle A_{N} Y, Z\right\rangle N$. It follows that

$$
\begin{aligned}
\left(\nabla_{X} h\right)(Y, Z)= & \nabla_{X}^{\frac{1}{X}} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \\
= & \left\{X\left\langle A_{N} Y, Z\right\rangle-\left\langle A_{N} \nabla_{X} Y, Z\right\rangle-\left\langle A_{N} Y, \nabla_{X} Z\right\rangle\right\} N \\
& -\left\langle A_{N} Y, Z\right\rangle \operatorname{Ch}(X, \xi)
\end{aligned}
$$

In particular, if we choose $Y=Z \in \Gamma\left(\mathscr{T}_{1}\right)$ with $\|Y\|=1$, then

$$
C\left(\nabla_{X} h\right)(Y, Z)=h(X, \xi) \neq 0
$$

This is a contradiction, so this case cannot occur.
Conversely, all these submanifolds satisfy the condition (17) as we have discussed in Sect. 4. This completes the proof.

7 Proof Theorem 2

Suppose M is a $(2 n-1)$-dimensional CR-submanifold of maximal CR-dimension in $\hat{M}_{n+p}(c), c \neq 0, n \geq 2$. We define a tensor field T on M by

$$
T(X, Y, Z)=\left(\nabla_{X} h\right)(Y, Z)+c\{\eta(Y)\langle\phi X, Z\rangle+\eta(Z)\langle\phi X, Y\rangle\} N
$$

for any X, Y, and $Z \in \Gamma(T M)$. Let $e_{1}, e_{2}, \ldots, e_{2 n-1}$ be a local field of orthonormal vectors in $\Gamma(T M)$. Then,

$$
\|T\|^{2}=\|\nabla h\|^{2}+4(n-1) c^{2}+4 c \sum_{j=1}^{2 n-1}\left\langle\left(\nabla_{e_{j}} h\right)\left(\xi, \phi e_{j}\right), N\right\rangle .
$$

On the other hand, by the Codazzi equation, we have

$$
\sum_{j=1}^{2 n-1}\left\langle\left(\nabla_{e_{j}} h\right)\left(\xi, \phi e_{j}\right), N\right\rangle=\sum_{j=1}^{2 n-1}\left\langle\left(\nabla_{\xi} h\right)\left(e_{j}, \phi e_{j}\right), N\right\rangle-2(n-1) c=-2(n-1) c .
$$

Combining these two equations, we have

$$
0 \leq\|T\|^{2}=\|\nabla h\|^{2}-4(n-1) c^{2}
$$

and equality holds if and only if M satisfies (17). By Theorem 1, we obtain the theorem.

References

1. Bejancu, A.: CR-submanifolds of a Kaehler manifold I. Proc. Am. Math. Soc. 69, 135-142 (1978)
2. Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395, 132-141 (1989)
3. Chen B.Y.: CR-submanifolds of a Kaehler manifold, I, II. J. Diff. Geom. 16, 305-322 (1981) 16, 493-509 (1981)
4. Chen, B.Y.: Differential geometry of real submanifolds in a Kähler manifold. Monatsh. Math. 91, 257-274 (1981)
5. Chen, B.Y., Ludden, G.D., Montiel, S.: Real submanifolds of a Kaehler manifold. Algebras Groups Geom. 1, 176-212 (1984)
6. Chen, B.Y., Montiel, S.: Real hypersurfaces in nonflat complex space forms are irreducible. Osaka J. Math. 40, 121-138 (2003)
7. Djorić, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex Euclidean space. Ann. Glob. Anal. Geom. 30, 383-396 (2006)
8. Djorić, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex hyperbolic space. Ann. Glob. Anal. Geom. 39, 1-12 (2011)
9. Djorić, M., Okumura, M.: Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex projective space. Isr. J. Math. 169, 47-59 (2009)
10. Djorić, M., Okumura, M.: Certain CR submanifolds of maximal CR dimension of complex space forms. Differ. Geom. Appl. 26, 208-217 (2008)
11. Djorić, M., Okumura, M.: CR-Submanifolds of Complex Projective Space. Developments in Mathematics, vol. 19. Springer, Berlin (2009)
12. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds:Progress in Mathematics, vol. 246. Birkhäuser, Boston (2006)
13. Hamada, T.: On real hypersurfaces of a complex projective space with η-recurrent second fundamental tensor. Nihonkai Math. J. 6, 153-163 (1995)
14. Hamada, T.: On real hypersurfaces of a complex projective space with recurrent second fundamental tensor. J. Ramanujan Math. Soc. 11, 103-107 (1996)
15. Kawamoto, S.I.: Codimension reduction for real submanifolds of complex hyperbolic space. Revista Matematica de la Universidad Complutense de Madrid 7, 119-128 (1994)
16. Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 296, 137-149 (1986)
17. Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202, 299-311 (1989)
18. Kon, S.H., Loo, T.H.: On characterizations of real hypersurfaces in a complex space form with η-parallel shape operator. Can. Math. Bull. 55, 114-126 (2012)
19. Kon, S.H., Loo, T.H.: Real hypersurfaces in a complex space form with η-parallel shape operator. Math. Z. 269, 47-58 (2011)
20. Loo T.H.: On classification of real hypersurfaces in a complex space form with η-recurrent shape operator (preprint)
21. Lyu, S.M., Suh, Y.J.: Real hypersurfaces in complex hyperbolic space with η-recurrent second fundamental tensor. Nihonkai Math. J. 8, 19-27 (1997)
22. Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28, 529-540 (1976)
23. Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 37, 515-535 (1985)
24. Nirenberg, R., Wells Jr, R.O.: Approximation theorems on differentiable submanifolds of a complex manifold. Trans. Am. Math. Soc. 142, 15-35 (1969)
25. Okumura, M.: Codimension reduction problem for real submanifolds of complex projective space. Colloq. Math. Soc. János Bolyai 56, 574-585 (1989)
26. Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495506 (1973)
27. Yano, K., Kon, M.: CR-submanifolds of Kaehlerian and Sasakian manifolds. Progress in Mathematics vol. 30. Birkhäuser, Boston (1983)

[^0]: This work was supported in part by the UMRG research grant (Grant No. RG190-11AFR).

