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Abstract In one complex variable, the existence of a compactly supported solution to the
Cauchy–Riemann equation is related to the vanishing of certain integrals of the data; trying
to generalize this approach, we find an explicit construction, via convolution, for a compactly
supported solution in C

n , which allows us to estimate the L p norm of the solution. We also
investigate the possible generalizations of this method to domains of the form P \ Z , where
P is a polydisc and Z is the zero locus of some holomorphic function.
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1 Introduction

In this paper, we investigate the inhomogeneous Cauchy–Riemann equation

∂u = g

when g has compact support and belongs to some Lr space. The question is whether it is
possible to find a solution u with the same properties, namely compactly supported and in
Lr , expressed in terms of a linear bounded integral operator applied to g.

The Lr solvability of the Cauchy–Riemann equation has been discussed by Kerzman
for smoothly bounded strongly pseudoconvex domains (see [9]), by Fornaess and Sibony
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1000 E. Amar, S. Mongodi

in C with weights and in Runge domains in C
2 (see [6]). Other works on the subject are

[1,4,5,8,10,11] and [15]. The problem of controlling the support of the solution is also
widely discussed. In one complex variable, the existence of a compactly supported solution
in C is related to the vanishing of some integrals, resemblant of the moment conditions which
appear in CR geometry: ∫

C

g(z)zkdm1(z),

where dm1 is the Lebesgue measure on C. If these integrals vanish for every k ∈ N, then
there exists a function u such that ∂u/∂ z̄ = g and suppu � {|z| < R} for some R.

It is not hard to generalize this result to domains like punctured discs, as we do in
Lemma 3.2.

In higher dimension, it is well known that the existence of a compactly supported solution
depends on the vanishing of the cohomology with compact supports; H p,q

c (�) vanishes, for
� ⊆ C

n Stein, if q < n. For smooth forms, the existence of a solution compactly supported
in a sublevel of some strictly plurisubharmonic exhausting function has also been widely
studied, beginning with the work of Andreotti and Grauert ([3], but see also [12] and [13]).

We recall that, for (0, 1)-forms, we have the following well-known result: let � ⊆ C
n be

a bounded Stein domain for n ≥ 2 and ω a (0, 1)-form with coefficients in Lr
c(�) such that

∂ω = 0. Then there exists a unique f ∈ Lr
c(�) such that ∂ f = ω, with ‖ f ‖r ≤ C‖ω‖r ,

where C depends only on �.
This result leaves the question open for q > 1.
We tackle the problem for a very special class of domains, which generalize the punctured

disc: we consider the Stein open domain obtained by removing a complex hypersurface from
a polydisc D

n . Given f ∈ O(Dn) with Z = { f = 0}, we consider the domain D
n \ Z : the

particular structure of these open sets allows us to give a constructive proof of our results.
We will state our results in terms of (0, q)-forms, the extension to the (p, q)-forms being
obvious.

After fixing the notation and choosing suitable coordinates, we analyse the behaviour of
the support of the Cauchy transform with respect to a fixed variable, pointing out the link
with the moment conditions in Lemma 3.2.

In Sect. 4, the main tool of this note is defined; the coronas construction consists in
applying to a given function a collection of linear convolution operators K (i)

m (see Definition
4.1) which produce a decomposition

ϕ = ϕ1 + · · · + ϕn−1 + ϕn

where each ϕ j , j < n, satisfies the moment conditions in the variable z j (see Corollary 4.7).
The last function ϕn is obtained as a remainder of the coronas construction; therefore,

we do not have a priori any information about the vanishing of the moment integrals for
it; this is the goal of Sect. 5, where we introduce some quantities J (i)μ,l(ϕ) whose vanishing
ensures that ϕn satisfies the moment conditions with respect to the variable zn , as it is shown
in Theorem 5.1.

Sections 6, 7 and 8 are devoted to the study of the solutions with compact support in a
polydisc; while the (0, n) case follows quite naturally from the previous construction, we
need to apply some inductive arguments to treat the case of (0, q)-forms, so we make some
additional assumptions on the summability of the derivatives of the datum.

We remark that, in the case of the polydisc, the operators constructed in Sect. 4 are linear
and continuous, that is, bounded, from Lr

c to Lr
c and preserve any additional regularity or
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On Lr hypoellipticity of solutions 1001

summability. Therefore, we obtain estimates on the Lr norm of the solution for (0, n)-forms;
for (0, q)-forms we can estimate the sum of the norm of the solution and the norms of some
derivatives, with a partial gain of regularity.

More precisely, let ω be a generic (0, q)-form, and let us write

ω =
∑

|J |=n−q

ωJ d ˆ̄z J ,

where d ˆ̄z J = ∧
k �∈J dz̄k . Let us denote by ∂ j the derivative with respect to the variable z̄ j ;

we denote by Wq(Dn) the space of (0, q)-forms ω with Lr
c(D

n) coefficients such that

(∗) ∂ jn−q · · · ∂ jkωJ ∈ Lr (Cn) k = 1, . . . , n − q, ∀ |J | = n − q.

The space Wq(Dn) can be made into a Banach space with the norm

‖ω‖W =
∑

J

‖ωJ ‖r +
∑

J

n−q∑
k=1

‖∂ jn−q · · · ∂ jkωJ ‖r .

In Theorems 6.2, 7.4 and 8.1, we show that, given ω a (0, q)-form compactly supported
in C

n , with ∂ω = 0, with Lr coefficients and satisfying (∗), we can find a (0, q − 1)-form
β ∈ Lr

c(C
n) such that ∂β = ω, with β satisfying condition (∗). The operator associating β

with ω is linear and bounded from Wq(Dn) to Wq−1(Dn).
This result in C

n easily gives the corollary

Corollary 8.4 Letω be a ∂-closed (0, q)-form with compact support in D
n \ Z and satisfying

conditions (∗), and then, for any k ∈ N, we can find a (0, q − 1)-form β ∈ Lr
c(D

n) such that
∂( f kβ) = ω. Equivalently, we can find a (0, q − 1)-form η = f kβ such that η ∈ Lr

c(D
n), η

is 0 on Z up to order k and ∂η = ω.

The starting point of this work was an incisive question asked by G. Tomassini and the
second author to the first author.

2 Notations

We denote by D the unit disc in C and by D
n its n-fold product, the unit polydisc in C

n . The
projection from C

n onto the j th coordinate will be denoted by π j .
The standard Lebesgue measure on C

n will be dmn , and we will denote by g ∗k h the
partial convolution in the kth variable:

(g ∗k h)(z1, . . . , zn) :=
∫

C

g(· · · ,zk−1, ζ, zk+1, · · · )h(· · · , zk−1, zk − ζ, zk+1, · · · )dm1(ζ ).

If T is a distribution in C
n, we set ∂ j T = ∂T

∂z j
, j = 1, . . . , n.

Let J = ( j1, . . . , jq), jk = 1, . . . , n, then we define ẑ J ∈ C
n−q with coordinates in J

deleted. For instance, ẑk = (· · · , zk−1, zk+1, · · · ) ∈ C
n−1.

3 On the Cauchy transform

Given ϕ ∈ D(Cn) a smooth function with compact support, the functions

ζ → ϕ(· · · , zk−1, ζ, zk+1, · · · ),
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1002 E. Amar, S. Mongodi

for k = 1, . . . , n, are still smooth and with compact support, contained in πk(suppϕ). The
Cauchy transform of ϕ in the kth variable is

Gk(ϕ)(z) = ϕ ∗k
1

π zk
:=

∫

C

ϕ(· · ·, zk−1, ζk, zk+1, · · · )
π(ζk − zk)

dm1(ζk)

and we know that [2]

Lemma 3.1 We have, with the above notations,

∂k Gk(ϕ)(z) = ϕ(z) ∀z ∈ C
n

and

‖Gk(ϕ)‖Lr ≤
∥∥∥∥ 1

πζ1

∥∥∥∥
L1(D)

×‖ϕ‖Lr .

So the Cauchy transform extends as a bounded linear operator on ϕ ∈ Lr
c(D

n).Moreover,
Gk(ϕ) is holomorphic in zk outside of the support of ϕ considered as a function of zk, ẑk

being fixed.
Throughout this note, f will be a given function holomorphic in a neighbourhood of Dn ,

and Z = Z( f ) will denote its zero locus.
The set of directions for which there is a complex line with that direction contained in

Z is an analytic subset of CP
n−1 of dimension n − 2; therefore, we can find n linearly

independent complex directions not lying in it. So, after a linear change of coordinates,
for every 1 ≤ k ≤ n, we can find a number Nk such that, given n − 1 complex numbers
a j , j ∈ {1, . . . , n}\{k}, with | a j |< 1, the number of solutions of

f (· · · , ak−1, zk, ak+1, · · · ) = 0

as an equation in zk, is less than Nk + 1.
Because these solutions are those of an analytic function, there is always a parametrization

of them by measurable functions: it is an easy application of [17, Theorem 7.34]; let us denote
these solutions by {c1,k(a), . . . , cNk ,k(a)} where the functions c j,k = c j,k(a) are measurable
from C

n−1 to C.
Let ϕ ∈ Lr

c(D
n\Z) and fix ẑk ∈ D

n−1 ; denote by Sϕ(ẑk) its support as a function of
zk which depends on ẑk . Then, by compactness, there exist numbers δ1, . . . , δn such that
Sϕ(ẑk) has distance at least δk from c j,k(a), j = 1, . . . , Nk , for every a ∈ C

n−1, so there
are numbers r j,k = r j,k(ẑk) ≥ δk > 0 such that the disc D(c j,k, r j,k) in the zk variable is
not in Sϕ(ẑk).

However, these discs could intersect without coinciding; suppose that the discs

D(c j1,k, r j1,k), . . . , D(c jh ,k, r jh ,k)

form a connected component of the union of all the discs for the variable zk , then we can
suppose that r ji ,k = δk for i = 1, . . . , h. If the discs

D(c j1,k, δk/3Nk), . . . , D(c jh ,k, δk/3Nk)

are disjoint, then we are done; otherwise, let us consider a connected component of their union,
and let us suppose, without loss of generality, that it coincides with the union. Obviously, the
diameter of such a connected component is less than δk ; therefore, a disc centred in one of the
centres with radius δk will enclose the whole connected components and, by the definition
of δk , will still be in the complement of Sϕ .
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On Lr hypoellipticity of solutions 1003

Therefore, we can set all the centres equal to one of them (it is not relevant which one)
and take δk as a radius. The functions c j,k will still be measurable. The discs will be then
either disjoint or coinciding, and their radii will be bounded from below by δk/3Nk ; we set
δ = min{δ1/3N1, . . . , δn/3Nn}.

As we already said, ϕ∗k(π zk)
−1 = Gk(ϕ) is holomorphic for zk /∈ D and for zk ∈

D(c j,k, r j,k).
This will be precised in the next section with the help of the following definitions.
Let ϕ ∈ Lr

c(D
n), we define

[ϕ]k(l) = 1

π

∫

C

ϕ(· · ·, zk−1, ζk, zk+1, · · ·)ζ l
kdm1(ζk);

let ϕ ∈ Lr
c(D

n\Z), we define

[ϕ, j]k(l) = 1

π

∫

C

ϕ(· · · , zk−1, ζk, zk+1, · · · )
(ζk − c j,k)l+1 dm1(ζk).

We have the following lemma linking this with ∂ equation.

Lemma 3.2 Let ϕ ∈ Lr
c(D

n\Z), then the following are equivalent:

(i) [ϕ]k(l) = [ϕ, j]k(l) = 0 for every l ∈ N and 1 ≤ j ≤ Nk

(ii) Gk(ϕ) ∈ Lr
c(D

n\Z) (⇒ ∂k Gk(ϕ) = ϕ).

Proof Without loss of generality, we can set k = 1; we notice that, by Lemma 3.1, G1(ϕ) is
in Lr (Cn), so (i i) is equivalent to the compactness of its support. Moreover, we remark that
G1(ϕ) has compact support in D

n \ Z if and only if for almost every a = (a2, . . . , an) ∈ C
n−1

the function z �→ G1(ϕ)(z, a2, . . . , an) has compact support in

(Dn \ Z) ∩ {z2 = a2, . . . , zn = an} = D \ {c1,1(a), . . . , c1,N1(a)}.
On the other hand, [ϕ]1(l) and [ϕ, j]1(l)vanish if and only if the integrals that define them van-
ish for almost every z2, . . . , zn . So, we are reduced to the 1 variable case: let then c1, . . . , cN

be points in D ⊂ C and φ ∈ Lr
c(D \ {c1, . . . , cN }); we set G(z) = G1(ϕ)(z).

If (i i) holds, for any h ∈ O(D \ {c1, . . . , cN }) we have
∫

C

ϕ(z)h(z)dm1(z) =
∫

C

∂G(z)

∂ z̄
h(z)dm1(z) = −

∫

C

G(z)
∂h(z)

∂ z̄
dm1(z) = 0

where we have used Stokes’ theorem, as G(z) has compact support. The last integral vanishes
because h is holomorphic.

On the other hand, suppose that (i) holds and let K = suppϕ. Consider r < 1 such that
K � Dr = {|z| < r} and take z with |z| > r ; then

G(z) = − 1

zπ

∫

K

ϕ(ζ )
1

1 − ζ
z

dm1(z) = − 1

π z

∫

K

ϕ(ζ )
∑
l≥0

ζ l

zl
dm1(ζ )

= − 1

π z

∑
l≥0

z−l
∫

K

ϕ(ζ )ζ ldm1(ζ ) = − 1

π

∑
l≥0

z−l−1[ϕ]1(l).

So, G(z) = 0 if |z| > r , therefore suppG(z) � D.
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1004 E. Amar, S. Mongodi

Moreover, fix j, 1 ≤ j ≤ N ; there exists r j > 0 such that the closure of D(c j , r j ) =
{|z − c j | < r j } does not meet suppϕ(z). So, if |z − c j | < r j , we have

G(z) = 1

π

∫

K

ϕ(ζ )
1

(ζ−c j )−(z−c j )
dm1(ζ )= 1

π

∫

K

ϕ(ζ )
1

ζ−c j

1

1−(z−c j )/(ζ−c j )
dm1(ζ )

= 1

π

∫

K

ϕ(ζ )
1

ζ − c j

∑
l≥0

(z − c j )
l

(ζ − c j )l
dm1(ζ ) = 1

π

∑
l≥0

(z − c j )
l [ϕ, j]1(l).

Therefore, by hypothesis, G(z) = 0 if |z − c j | < r j , so suppG(z) � D \ {c1, . . . , cN }. ��
Moreover, we have the following relations between the Cauchy transform and the quan-

tities defined above.

Lemma 3.3 If g and h are Lr functions, compactly supported in D
n, and g �1

1
z1

= h �1
1
z1

for z1 �∈ D, then [g]1(k) = [h]1(k) for every k.

Proof If z1 �∈ D, we have

g �1
1

z1
=

∫

D

g(ζ1, ẑ1)
1

z1 − ζ1
dm1(ζ1) = 1

z1

∫

D

g(ζ1, ẑ1)
1

1 − ζ1
z1

dm1(ζ1)

= 1

z1

∑
k≥0

z−k
1

∫

D

g(ζ1, ẑ1)ζ
k
1 dm1(ζ1) =

∑
k≥0

[g]1(k)z
−k−1
1 .

A similar expansion holds for h, so that

h �1
1

z1
=

∑
k≥0

[h]1(k)z
−k−1
1 .

Therefore, given that (g − h) �1
1
z1

= 0 for z1 �∈ D, we have [g]1(k) = [h]1(k) for every k.
��

Lemma 3.4 If g and h are Lr functions, compactly supported in D
n, and there exists j ≥ 1

such that g �1
1
z1

= h �1
1
z1

for every z1 ∈ D(c j,1(ẑ1), r j,1(ẑ1)), then [g, j]1(k) = [h, j]1(k)
for every k.

We omit the proof as it can be easily obtained from the previous one.
Finally, we recall a result about the solution with compact support of the equation ∂ f = ω

when ω is a (0, 1)-form with compact support.

Proposition 3.5 Let � ⊆ C
n, n ≥ 2, be a bounded Stein domain and ω a (0, 1)-form with

coefficients in Lr
c(�) such that ∂ω = 0. Then there exists a unique f ∈ Lr

c(�) such that
∂ f = ω, with ‖ f ‖r ≤ C‖ω‖r , where C depends only on �.

Proof We notice that if f1 and f2 are two compactly supported (distributional) solutions,
then the difference f1 − f2 is ∂−closed, that is, a holomorphic function, but then f1 = f2.
Moreover, by Serre [16], H0,1

c (�) = 0, so there exists at least one distributional solution to
∂T = ω, compactly supported in �; on the other hand, we know that there is f ∈ Lr

c(C
n),

solving ∂ f = ω, given, as described in [14, Theorem 4.1, p. 71], by convolution with the
Bochner–Martinelli–Koppelman kernel (the desired estimate of the Lr norm follows by the
usual inequalities on convolution).

Therefore, we have T = f and the desired estimate follows. ��
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On Lr hypoellipticity of solutions 1005

4 The coronas construction

Let ϕ be a function in Lr
c(D

n\Z) and consider the Cauchy transform G1(ϕ)(z) ; for almost
every ẑ1, G1(z) is holomorphic in z1 in the complement of S(ẑ1).

Because π1(suppϕ) is compact in D, there exists D(0, r) containing S(ẑ1) ; let δ =
(1 − r)/3 and define the corona

C0 = {z1 ∈ D : r + δ <| z1 |< r + 2δ} � D

and let A0 = m1(C0).
In the same way, set δ j (ẑ1) = r j,1(ẑ1)/3 and define

C j (ẑ1) = {z1 ∈ D : δ j (ẑ1) ≤| z1 − c j,1 |≤ 2δ j (ẑ1)} � D

and set A j (ẑ1) = 1/m1(C j (ẑ1)).

Definition 4.1 The outer corona component of ϕ is the function

K (1)
0 (ϕ)(z) = A01C0(z1)z1G1(ϕ)(z)

and the inner coronas components of ϕ are the functions

K (1)
j (ϕ)(z) = A j (ẑ1)1C j (ẑ1)(z1)(z1 − c j,1)G1(ϕ)(z).

Remark 4.2 The outer and inner coronas components of ϕ are well defined for almost every
ẑ1 , because ϕ(·, ẑ1) is in Lr (C) and has compact support for almost every ẑ1. We define
exactly the same way the quantities K (k)

j (ϕ)(z) with respect to the variables zk .

Lemma 4.3 The operators K (1)
m , m = 0, . . . , N1, are linear and well defined from Lr

c(C
n)

to Lr
c(C

n).

Proof As noted before, K (1)
m (ϕ) is well defined almost everywhere, and it is obviously lin-

ear; moreover, it has compact support in D by definition. We know that, by Lemma 3.1,
‖G1(ϕ)‖Lr (Cn) ≤ M ‖ϕ‖Lr (Cn); hence, we have

‖K (1)
0 (ϕ) ‖r≤ A0

∥∥1C0 G1(ϕ)
∥∥

Lr ≤ A0 M ‖ϕ‖Lr ,

where M :=
∥∥∥ 1
π z1

∥∥∥
L1(D)

.

For j ≥ 1, A j (ẑ1) = 1/m1(C j (ẑ1)), but m1(C j (ẑ1) ≥ δ > 0 uniformly in ẑ1 ∈ D
n−1

hence A j (ẑ1) ≤ δ−1 < ∞, uniformly in ẑ1 ∈ D
n−1. So we get

‖ K (1)
m (ϕ) ‖r≤ ‖Am(·)‖L∞(Dn−1) ×

∥∥1C0 G1(ϕ)
∥∥

Lr ≤ δ−1 M ‖ϕ‖Lr .

So for fixed ẑ1 ∈ D
n−1 K (1)

m (ϕ) has compact support in z1, and because it operates only
in z1 and ϕ has compact support in C

n, then K (1)
m (ϕ) has compact support in C

n . ��
Remark 4.4 The operator K (1)

0 is also bounded from Lr
c to Lr

c, therefore continuous. The

operators K (1)
m for m ≥ 1 are not.

The following results link the quantities [ϕ]1(k) and [ϕ, c j,1]1(k) with the corresponding

ones for K (1)
0 (ϕ) and K (1)

j (ϕ).
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1006 E. Amar, S. Mongodi

Lemma 4.5 We have

K (1)
0 (ϕ)(z) = A01C0(z1)

∑
k≥0

[ϕ]1(k)z
−k
1 ,

K (1)
j (ϕ)(z) = A j1C j (ẑ1)(z1)

∑
k≥0

[ϕ, j]1(k)(z1 − c j,1(ẑ1))
k+1,

the convergence of the series being uniform in C0 or C j .

Proof If |z1| > r + δ and (ζ1, ẑ1) ∈ suppϕ, then

|ζ1|
|z1| ≤ r

r + δ
< 1.

so, in particular, if z1 ∈ C0, then |z1| > |ζ1|. Therefore, if z1 ∈ C0, we have

G1(z) = 1

π

∫

C

ϕ(ζ1, ẑ1)
1

z1 − ζ1
dm1(ζ1) = 1

π z1

∫

C

ϕ(ζ1, ẑ1)
1

1 − ζ1
z1

dm1(ζ1)

= 1

π z1

∫

C

ϕ(ζ1, ẑ1)
∑
k≥0

ζ k
1

zk
1

dm1(ζ1) = 1

z1

∑
[ϕ]1(k)z

−k
1 =

∑
k≥0

[ϕ1](k)z−k−1
1

So K (1)
0 (ϕ) = A01C0(z1)

∑
k≥0[ϕ1](k)z−k

1 , and the convergence is obviously uniform
on C0.

On the other hand, if z1 ∈ C j (ẑ1) and (ζ1, ẑ1) ∈ suppϕ, then

|z1 − c j,1(ẑ1)|
|ζ1 − c j,1(ẑ1)| ≤ 2

3
< 1,

so we have that, for z1 ∈ C j (ẑ1),

G1(z) = 1

π

∫

C

ϕ

z1 − ζ1
dm1(ζ ) = 1

π

∫

C

ϕ

(z1 − c j,1(ẑ1))+ (c j,1(ẑ1)− ζ1)
dm1(ζ1)

= 1

π

∫

C

ϕ

ζ1 − c j,1(ẑ1)

1

1 − z1−c j,1(ẑ1)

ζ1−c j,1(ẑ1)

dm1(ζ1)

= 1

π

∫

C

ϕ

ζ1−c j,1(ẑ1)

∑
k≥0

(z1 − c j,1(ẑ1))
k

(ζ1 − c j,1(ẑ1))k
dm1(ζ1)=

∑
k≥0

[ϕ, j]1(k)(z1 − c j,1(ẑ1))
k .

So K (1)
j (ϕ) = A j (ẑ1)1C j (ẑ1)(z1)

∑
k≥0[ϕ, j]1(k)(z1 − c j,1(ẑ1))

k+1, and the convergence is

obviously uniform on C j . ��
We set

K (1)(ϕ) =
N1∑

m=0

K (1)
m (ϕ).
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On Lr hypoellipticity of solutions 1007

Proposition 4.6 We have [K (1)(ϕ)]1 = [ϕ]1 and [K (1)(ϕ), j]1 = [ϕ, j]1.

Proof We divide the proof into several steps.

1. [K (1)
0 (ϕ)]1(k) = [ϕ]1(k)—we calculate

H(z) = K (1)
0 (ϕ) �1

1

z1
=

⎛
⎝A01C0(z1)

∑
k≥0

[ϕ]1(k)z
−k
1

⎞
⎠ �1

1

z1

= A0

∑
k≥0

[ϕ]1(k)

(
1C0(z1)z

−k
1 �1

1

z1

)
= A0

∑
k≥0

[ϕ]1(k)
∫

C0

ζ−k
1

z1 − ζ1
dm1(ζ1).

If z1 �∈ D, we know that
∫

C0

ζ−k
1

z1 − ζ1
dm1(ζ1) = A−1

0 z−k−1
1

so

H(z) = A0

∑
k≥0

[ϕ]1(k)(A
−1
0 z−k−1

1 ) =
∑
k≥0

[ϕ]1(k)z
−k−1
1 .

Then we have that, if z1 �∈ D,

H(z) = G1(z)

so, by Lemma 3.3, [ϕ]1(k) = [K (1)
0 (ϕ)]1(k).

2. [K (1)
j (ϕ)]1(k) = 0 for j > 0—We calculate

Hj (z) = K (1)
j (ϕ) �1

1

z1
=

⎛
⎝A j (ẑ1)1C j (ẑ1)(z1)

∑
k≥0

[ϕ, j]1(k)(z1 − c j,1(ẑ1))
k+1

⎞
⎠ �

1

z1

= A j (ẑ1)
∑
k≥0

[ϕ, j]1(k)

(
1C j (ẑ1)(z1 − c j,1(ẑ1))

k+1 �1
1

z1

)

= A j (ẑ1)
∑
k≥0

[ϕ, j]1(k)
∫

C j

(ζ1 − c j,1(ẑ1))
k+1

z1 − ζ1
dm1(ζ1).

If |z1 − c j,1(ẑ1)| > r j,1(ẑ1), then
∫

C j

(ζ1 − c j,1(ẑ1))
k+1

z1 − ζ1
dm1(ζ1) = 0

for every k ≥ 0. Therefore, Hj (z) = 0, so by Lemma 3.3 0 = [K (1)
j (ϕ)]1(k).

3. [K (1)
j (ϕ), j]1(k) = [ϕ, j]1(k) for j > 0—by direct computation, using Lemma 4.5, we

have

[K (1)
j ϕ, j]1(l) = A j (ẑ1)

∑
k≥0

[ϕ, j]1(k)
∫

C j (ẑ1)

(ζ1−c j,1(ẑ1)
k+1(ζ1−c j,1(ẑ1))

−l−1dm1(ζ1)

=
∑
k≥0

[ϕ, j]1(k)δk,l = [ϕ, j]1(l).
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4. [K (1)
m ϕ, j]1(k) = 0 if m �= j—by step 2, Hm(z) = 0 if |z1 − cm,1(ẑ1)| > rm,1(ẑ1), so in

particular if z1 ∈ D(c j,1(ẑ1), r j,1(ẑ1)) with j �= m, we have H(z) = 0. By Lemma 3.4,
it follows that

[K (1)
m (ϕ), j]1(k) = 0

if m �= j and m �= 0.
If m = 0, we notice that, if |z1| < r ,

H(z) = A0

∑
k≥0

[ϕ]1(k)
∫

C0

ζ−k
1

z1 − ζ1
dm1(ζ1)

and ∫

C0

ζ−k
1

z1 − ζ1
dm1(ζ1) = 0

for every k, as |z1| < r < |ζ1|. So H(z) = 0 and by Lemma 3.3 we have that
[K (1)

0 (ϕ), j]1(k) = 0 for every k.

��
Corollary 4.7 Let ϕ ∈ Lr

c(D
n\Z), there are ϕ1, . . . , ϕn, all in Lr

c(D
n\Z) and such that

ϕ = ϕ1 + · · · + ϕn, ∀i < n, ∀ j = 1, . . . , Ni , [ϕi ]i = [ϕi , j]i = 0.

Proof We set ϕ1 := ϕ − K (1)ϕ, and we notice that [ϕ1]1 = 0, [ϕ1, j]1 = 0 for every
j = 1, . . . , N1.

Now, we can repeat this procedure replacing z1 by z2 and ϕ by K (1)(ϕ) ; we will apply
then the operators K (2)

m , defined with respect to the variable z2, with the relative coronas.
We set ϕ2 := K (1)ϕ − K (2)K (1)ϕ with the property that [ϕ2]2 = 0, [ϕ2, j]2 = 0 for

every j = 1, · · · , N2.
Iterating the algorithm we set ϕn−1 := K (n−2) · · · K (1)ϕ − K (n−1) · · · K (1)ϕ and

ϕn := ϕ − ϕ1 − · · · − ϕn−1.

By an easy recursion we have

ϕn = K (n−1) · · · K (1)ϕ

with, of course ϕ = ϕ1 + · · · + ϕn .
So finally, we find a decomposition ϕ = ϕ1 + · · · + ϕn such that for i < n, we have

[ϕi ]i = 0, [ϕi , j]i = 0 for every j = 1, . . . , Ni . ��

5 Obstructions to a solution with compact support

Let us define the two quantities which tell us when the last term in the decomposition from
Corollary 4.7 verifies also

∀ j = 1, . . . , Nn, [ϕn]n = 0, [ϕn, j]n = 0.

We note that

ϕn = K (n−1) · · · K (1)ϕ
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On Lr hypoellipticity of solutions 1009

and, more precisely, we have

ϕn =
Nn−1∑

mn−1=0

· · ·
N1∑

m1=0

K (n−1)
mn−1

· · · K (1)
m1
(ϕ).

We set

Mn−1 := {(m1, . . . , mn−1) :: m j ≤ N j } ⊂ N
n−1;

μ = (m1, . . . ,mn−1)∈ Mn−1, I (μ) :={k ≤n−1 :: mk =0}, l =(l1, . . . , ln−1)∈N
n−1

and

J (0)μ,l (ϕ)(k) := 1

πn

∫

Cn

ϕ(ζ )ζ k
n

∏
i∈I (μ)

ζ
li
i

∏
j /∈I (μ)

1
C( j)

m j (z,ζ )
(z j )

(z j − cm j , j (z, ζ ))l j +1

(ζ j − cm j , j (z, ζ ))−l j −1 dmn(ζ )

J ( j)
μ,l (ϕ)(k) := 1

πn

∫

Cn

ϕ(ζ )(ζn − c j,n)
−k−1

∏
i∈I (μ)

ζ
li
i

∏
s /∈I (μ)

1
C(s)ms (z,ζ )

(zs)

× (zs − cms ,s(z, ζ ))
ls+1

(ζs − cms ,s(z, ζ ))
−ls−1 dmn(ζ );

where

ch,k(z, ζ ) = ch,k(z1, . . . , zk−1, ζk+1, . . . , ζn) 1 < k < n

ch,1(z, ζ ) = ch,1(ζ2, . . . , ζn)

ch,n(z, ζ ) = ch,n(z1, . . . , zn−1).

and the same notation is used for 1
C( j)

k (z,ζ )
(z j ). We have the link:

Theorem 5.1 Consider ϕ ∈ Lr
c(D

n\Z). If J (0)μ,l (ϕ) = 0 for every μ ∈ Mn−1 and l ∈ N
n,

then [ϕn]n = 0; given also j = 1, . . . , Nn, if J ( j)
μ,l (ϕ) = 0 for every μ ∈ Mn−1 and l ∈ N

n,

then [ϕn, j]n = 0.

Proof By direct calculation, using the series expansions given by Lemma 4.5, we have that

[K (h)
0 (ϕ)]h+1(k) = 1

π
A(h)0 1

C(h)0
(zh)

∑
l≥0

z−l
h

∫

C

[ϕ]h(l)ζ
k
h+1dm1(ζh+1)

[K (h)
0 (ϕ),m]h+1(k) = 1

π
A(h)0 1

C(h)0
(zh)

∑
l≥0

z−l
h

∫

C

[ϕ]h(l)

(ζh+1 − cm,h+1)k+1 dm1(ζh+1)

[K (h)
j (ϕ)]h+1(k) = 1

π
A(h)j 1

C(h)j
(zh)

∑
l≥0

(zh − c j,h)
l+1

∫

C

[ϕ, j]h(l)ζ
k
h+1dm1(ζh+1)

[K (h)
j (ϕ),m]h+1(k) = 1

π
A(h)j 1

C(h)j
(zh)

∑
l≥0

(zh −c j,h)
l+1

∫

C

[ϕ, j]h(l)

(ζh+1−cm,h+1)k+1 dm1(ζh+1).

Therefore, by induction, we obtain that

[K (n−1)
μn−1

· · · K (1)
μ1
ϕ]n(ln)

=
n−1∏
i=1

A(i)μi

∏
i∈I (μ)

1
C(i)μi
(zi )

∑
l ′∈Nn−1

∏
i∈I (μ)

z−li
i J (0)

μ,l ′∪{ln}(ϕ)
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1010 E. Amar, S. Mongodi

and

[K (n−1)
μn−1

· · · K (1)
μ1
ϕ, j]n(ln)

=
n−1∏
i=1

A(i)μi

∏
i∈I (μ)

1
C(i)μi
(zi )

∑
l ′∈Nn−1

∏
i∈I (μ)

z−li
i J ( j)

μ,l ′∪{ln}(ϕ).

So, if J (0)μ,l (ϕ) = J ( j)
μ,l (ϕ) = 0, all the coefficients vanish, then

[ϕn]n(k) = 0 [ϕn, j]n(k) = 0

as we wanted. ��
Definition 5.2 We shall say that ϕ ∈ Lr

c(D
n\Z) verifies the structure conditions if J (0)μ,l (ϕ) =

0 for every μ ∈ Mn−1 and l ∈ N
n, and if J ( j)

μ,l (ϕ) = 0 for every μ ∈ Mn−1 and l ∈ N
n .

6 (0, n)-forms on the polydisc

As for now, we do not have a way to deal with the integrals J (m)μ,l (k) on the domain D
n \ Z ,

so we turn to the much easier case of the polydisc itself. We look first at the problem for
(0, n)-forms.

Let ω be a (0, n)-form with Lr
c(D

n) coefficients; we can find a function ϕ ∈ Lr
c(D

n) such
that

ω = ϕdz̄1 ∧ · · · ∧ dz̄n .

In this case, the operators K (m) coincide with the outer corona components K (m)
0 , so the

obstructions to a solution of compact support are given by the integrals J (0)0,l (k), where the
subscript 0 stands for a multi-index of the appropriate length containing only 0s. We have
the following result.

Lemma 6.1 If there is a current T with compact support in D
n such that ∂T = ω, then we

have

∀l ∈ N
n−1, ∀ j = 1, . . . , Nn, J (0)0,l (ϕ)( j) = 0,

that is, ϕ verifies the structure conditions for the polydisc.

Proof Let {ρε} ⊂ D(Cn) be a family of functions such that ρε → δ0, when ε → 0, in the
sense of distributions, with suppρε ⊂ {|z| < ε} and ‖ρε‖1 = 1.

We write

T = T1d ˆ̄z1 + · · · + Tnd ˆ̄zn

so we have

ϕ = ∂1T1 + · · · + ∂nTn = t1 + · · · + tn

where, obviously, every th is compactly supported in D
n .

We set T εh = Th � ρε ∈ D(Cn); by standard theorems on convolution,

supp(T εh ) ⊆ {z | dist(z, suppTh) ≤ ε}
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On Lr hypoellipticity of solutions 1011

so, for ε small enough, all the regularized functions are compactly supported in D
n and

∂h T εh = th � ρε = tεh .

By Lemma 3.2, we have that

[tεh ]h(k) = 0

for every k ∈ N and h = 1, . . . , n.
Moreover, we have that

ϕε = ϕ � ρε = tε1 + . . .+ tεn

and ϕε → ϕ in Lr as ε → 0.
As ϕ and ϕε are compactly supported in D

n , for ε small enough, we can see them as
continuous functionals on Lq

loc(D
n) (where q−1 +r−1 = 1). The convergence ϕε → ϕ holds

also in this sense.
The functions ζ k

n
∏n

i=1 ζ
li
i are in Lq

loc(D
n) for every l ∈ N

n−1, k ∈ N; therefore,

J (0)0,l (ϕ
ε)(k) −−→

ε→0
J (0)0,l (ϕ)(k).

Now, consider tεh , with h ≤ n − 1; we know that [tεh ]h(l) = 0 for every l so we can apply
Fubini and get

J (0)0,l (t
ε
h )(k) = 1

πn

∫

Cn

tεh (ζ )ζ
k
n

n∏
i=1

ζ
li
i dmn(ζ )

= 1

πn

∫

Cn−1

ζ k
n

n∏
i=1
i �=h

ζ
li
i

∫

C

tεh (ζ )ζ
lh
h dm1(ζh)dmn−1(ζ̂h)

= 1

πn

∫

Cn−1

ζ k
n

n∏
i=1
i �=h

ζ
li
i [tεh ]h(lh)dmn−1(ζ̂h) = 0;

If h = n, it is again an application of Fubini’s theorem to show that J (0)0,l (t
ε
n )(k) = 0.

By additivity of the integral, it follows that J (0)0,l (ϕ
ε)(k) = 0, so letting ε → 0 we obtain

the thesis. ��
Theorem 6.2 If ω is a (0, n)-form in Lr

c(D
n) such that there is a (0, n − 1) current T,

compactly supported in D
n, such that ∂T = ω, then we can find a (0, n−1)-form η ∈ Lr

c(D
n)

such that ∂η = ω and the operator associating η with ω is linear and bounded in the Lr

norm.

Proof Again, we can find a function ϕ ∈ Lr
c(D

n) such that

ω = ϕdz̄1 ∧ · · · ∧ dz̄n .

By Corollary 4.7 we can write ϕ = ϕ1 + · · · + ϕn , and by Lemma 3.2, the convolutions

f1 = ϕ1 �1
1

π z1
, . . . , fn−1 = ϕn−1 �n−1

1

π zn−1

are compactly supported and

∂1 f1 + · · · + ∂n−1 fn−1 = ϕ1 + · · · + ϕn−1 = ϕ − ϕn .
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Moreover, by Lemma 6.1, ϕ satisfies the structure conditions, and then, by Theorem 5.1,
[φn]n(k) = 0 for every k ∈ N. So, also

fn = ϕn �n
1

π zn

is compactly supported, always by Lemma 3.2.
We set

η =
n∑

j=1

(−1) j−1 f j d ˆ̄z j

so that

∂η = ϕdz̄

and the coefficients of η belong to Lr
c(D

n).
The dependence of η on ω is clearly linear; moreover, we have that ‖ f j‖r ≤ γ ‖ϕ j‖r ,

where γ depends only on the dimension n and on the radii of D
n . We recall that ‖K (m)

0 ϕ‖r ≤
A0 M‖ϕ‖r , so ‖ f j‖r ≤ (A0 M + 1) jγ ‖ϕ‖r . ��
Remark 6.3 We note that

η =
n∑

j=1

(−1) j−1 f j d ˆ̄z j =
∑

η j d ˆ̄z j

is such that ∂ jη j ∈ Lr
c(D

n) for every j and actually
∑

j

‖∂ jη j‖r ≤ C‖ω‖r .

7 (0, n − 1)-forms on the polydisc

We turn our attention to (0, n − 1)-forms. Firstly, we give a refined version of Lemma 6.1.

Proposition 7.1 Suppose ϕ ∈ Lr (Cn) and T1, . . . , Tn−1 are distributions, compactly sup-
ported in D

n, such that

ϕ = ∂1T1 + · · · + ∂n−1Tn−1.

Then we can find ϕ1, . . . , ϕn−1 ∈ Lr (Cn), compactly supported in D
n such that ϕ = ϕ1 +

· · · + ϕn−1 and [ϕi ]i (k) = 0, for every k ∈ N.

Proof After performing the same regularization as in the proof of Lemma 6.1, we have

1

πn

∫

Cn

tεh (ζ )a(ζn)

n−1∏
i=1

ζ
li
i dmn(ζ ) = 0

for every a(ζn) for which the integral is well defined (e.g. a ∈ L1). This is because h ranges
from 1 to n − 1, so we can isolate the terms [tεh ]h(l) employing only the functions which
appear in the product.
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On Lr hypoellipticity of solutions 1013

Therefore, the function

1

πn

∫

Cn−1

tεh (ζ )
n−1∏
i=1

ζ
li
i dmn(ζ̂n)

vanishes for almost every zn , and the same is true for the function

1

πn

∫

Cn−1

ϕε(ζ )

n−1∏
i=1

ζ
li
i dmn(ζ̂n)

and, letting ε → 0, also for

1

πn

∫

Cn−1

ϕ(ζ )

n−1∏
i=1

ζ
li
i dmn(ζ̂n).

By the analogue of Theorem 5.1 in the first n − 1 coordinates,

[K (n−2) · · · K (1)ϕ]n−1(k) = 0,

so defining ϕ1, . . . , ϕn−2 as in Corollary 4.7 and setting ϕn−1 = ϕ − ϕ1 − · · · − ϕn−2, we
have that [ϕi ]i (k) = 0, as requested. ��

The following corollary is immediate.

Corollary 7.2 Let ω be a (0, n)-form with Lr
c(D

n) coefficients, and let T be a current,
compactly supported in D

n such that ∂T = ω, with

T = T1d ˆ̄z1 + · · · + Tn−1d ˆ̄zn−1,

that is, T = S ∧ dz̄n , for some (0, n − 2)-current S. Then we can find η with Lr (Cn)

coefficients, compactly supported in D
n, such that ∂η = ω and with

η = η1d ˆ̄z1 + · · · + ηn−1d ˆ̄zn−1.

Remark 7.3 Obviously, we can suppose that the coefficient of d ˆ̄zk in T is zero and obtain
that there exists a solution with coefficients in Lr (Cn)with compact support in D

n where the
coefficient of d ˆ̄zk is zero.

By induction, we can show that if there exists a solution with the coefficients of
d ˆ̄zk1 , . . . , d ˆ̄zkr equal to zero, then we can produce a solution in Lr with the same vanishing
coefficients.

We note that the construction of ϕ1, . . . , ϕn−1 does not involve the n-th coordinate, so
∂nϕ and ∂nϕ j share the same regularity, whatever it is.

We denote by Wq(Dn) the space of (0, q)-forms ω with Lr
c(D

n) coefficients such that

ω =
∑

|J |=n−q

ωJ d ˆ̄z J

and

(∗) ∂ jn−q · · · ∂ jkωJ ∈ Lr (Cn) k = 1, . . . , n − q, ∀ |J | = n − q. (7.1)

The space Wq(Dn) can be made into a Banach space with the norm

‖ω‖W =
∑

J

‖ωJ ‖r +
∑

J

n−q∑
k=1

‖∂ jn−q · · · ∂ jkωJ ‖r .
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Theorem 7.4 If ω is a (0, n − 1)-form in Lr
c(D

n), ∂ω = 0, such that ω ∈ Wn−1(Dn), then
we can find a (0, n − 2)-form β ∈ Wn−2(Dn) such that ∂β = ω. The operator associating
η with ω is linear and bounded from Wn−1(Dn) to Wn−2(Dn).

Proof We proceed by induction on n; the case n = 2 is true. If there exists a distribution T
with compact support such that ∂T = ω, then by Corollary 7.2, we have

ωn =
n−1∑
j=1

ωnj

with ωnj ∈ Lr and [ωnj ] j (k) = 0.
We consider the following family of compactly supported (0, n − 2)-forms in C

n−1,
depending on the parameter zn :

ψzn =
n−1∑
j=1

(
ω j + (−1)n+ j ∂ωnj

∂ z̄n
� j

1

π z j

)
d ˆ̄z j .

Note that as ψzn is thought as a form in C
n−1, the notation d ˆ̄z j has to be understood as the

exterior product of the differentials dz̄1, . . . , dz̄n−1, with dz̄ j missing.
Now, we have that

(∂
′
ψzn ) ∧ dz̄n = ∂ω = 0

where ∂
′

operates in the first n − 1 coordinates. We note that

∂

∂ z̄ j

(
ω j + (−1)n+ j ∂ωnj

∂ z̄n
� j

1

π z j

)
= ∂ jω j + (−1)n+ j∂nωnj

belongs to Lr (Cn−1) for almost all zn . By inductive hypothesis, we can solve ∂
′
ξzn = ψzn

with compact support (and the result will be in Wn−2(Dn−1) for almost all zn).
We have ∂(ξzn ∧ dz̄n) = ψzn ∧ dz̄n ; we define a (0, n − 2)-form in C

n with

γ =
n−1∑
j=1

(−1) j−1ωnj � j
1

π z j
d ˆ̄z jn .

So we have

∂γ = ωnd ˆ̄zn +
n−1∑
j=1

(−1)n+ j−3 ∂ωnj

∂ z̄n
� j

1

π z j
d ˆ̄z j ;

therefore

∂(γ + ξzn ∧ dz̄n) = ω.

The form γ + ξzn ∧ dz̄n has compact support and belongs to Lr (Cn).
Moreover, by inductive hypothesis, for almost every zn ,

‖ξzn ‖r
W ≤ C‖ψzn ‖r

W .

Integrating with respect to zn we get

‖ξzn ∧ dz̄n‖W ≤ C

(∫
‖ψzn ‖r

W dm1(zn)

)1/r

≤ (C + (n − 1)‖(π z1)
−1‖1)‖ω‖W .
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On the other side,

‖γ jn‖ ≤ C1‖ω‖W

‖∂ jγ jn‖ ≤ C2‖ωn‖r

‖∂nγ jn‖ ≤ C3‖∂nωn‖r

‖∂ j∂nγ jn‖ ≤ C4‖∂nωn‖r

so

‖γ ‖W ≤ C ′‖ω‖W .

Summing up we get

‖γ + ξzn ∧ dz̄n‖W ≤ C̃‖ω‖W .

All the constants depend only on n and on the radii of the polydisc. ��
Remark 7.5 Looking with some attention to the construction of the solution we performed in
the proof of the previous theorem, we can notice that where ω depends on some parameters
with a given regularity or summability, the constructed solution η would depend on the same
parameter, with the same regularity or summability.

8 The general case on the polydisc

Let ω be a generic (0, q)-form, and let us write

ω =
∑

|J |=n−q

ωJ d ˆ̄z J .

In the previous two sections, we treated the existence of compactly supported solutions with
Lr estimates for the Cauchy–Riemann equation with datum ω when q = n or q = n − 1.
Moreover, by Proposition 3.5, we know the answer also when q = 1. Therefore, we have
a complete answer for n = 1, 2, 3. We now proceed to state and prove the general result,
covering also the case 2 ≤ q ≤ n − 2.

Theorem 8.1 If ω is a (0, q)-form, with 1 ≤ q ≤ n − 1, in Lr
c(D

n), ∂ω = 0, such that
ω ∈ Wq(Dn), then we can find a (0, q − 1)-form β ∈ Wq−1(Dn) such that ∂β = ω. The
operator associating β with ω is linear and bounded from Wq(Dn) to Wq−1(Dn).

Proof Again, we note that we already know the result when q = 1 or q = n − 1, so we will
prove it for 2 ≤ q ≤ n − 2. Following Hörmander [7, Chapter 2], we can write

ω = g ∧ dz̄n + h

where g, h do not contain dz̄n .
We can look at h as a family of (0, q)-forms in C

n−1, depending on the complex parameter
zn ; similarly, g can be understood as a family of (0, q − 1)-forms.

We denote by ∂Cn−1 the ∂ operator in the first n − 1 variables, that is,

∂Cn−1ψ =
∑
n �∈I

∑
k �∈I∪{n}

∂kψI dz̄k ∧ dz̄ I .

If ψ does not contain dz̄n , then ∂
′
ψ = ∂Cn−1ψ .
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We proceed by induction on the dimension, and we prove the following:
In .1 The statement of the theorem holds in C

n , and the estimates on the Wq norms depend
only on the dimension and the radii of the polydisc;

In .2 if the coefficients of ω depend on a parameter zn+1 ∈ D in such a way that ω ∈
Wq(Dn+1), then also β ∈ Wq−1(Dn+1) and ‖β‖W ≤ C‖ω‖W , with C depending only on
the radii of the polydisc and the dimension.

We note that the case q = 1 of In .1 holds by Proposition 3.5; also, the case q = 1 of
In .2 holds as well, because the solution can be constructed by convolution with the Bochner–
Martinelli–Koppelman kernel, so we can apply the usual results concerning the derivatives
of a convolution and Young inequality to obtain the desired estimates. In particular, given
that for n = 2 the only case is q = 1, we have proved that I2.1 and I2.2 hold true.

We also know from Theorem 7.4 that In .1 holds in the case q = n − 1, and in Remark
7.5 we note that In .2 holds in that case as well.

We assume In−1.1 and In−1.2 to hold for 1 ≤ q ≤ n − 1. As we just noted, we need only
to show In .1 and In .2 for 2 ≤ q ≤ n − 2.

Reduction. We note that ∂Cn−1 h = 0; therefore, h is a family of ∂−closed (0, q)-forms in
C

n−1 depending on the parameter zn . Moreover, by assumption, ∂nh I ∈ Lr
c(C

n). We denote
by Ut the (n −1)−dimensional open set D

n ∩{zn = t}, and we note that Ut is still a polydisc,
hence Stein, for every t for which it is non-empty.

As a well-known consequence of Serre’s duality (see [16]), we have Hq
c (Ut ,O) = 0, if

2 ≤ q ≤ n − 2; therefore, we can find a family T of (0, q − 1)−currents in C
n−1 such that

∂Cn−1 T = h for almost every zn . Then, by In−1.2, we can find a family H with H ∈ Lr
c(D

n)

(and therefore Hzn ∈ Lr
c(Uzn ) for almost every zn) and with H ∈ Wq−1(Dn).

Moreover, as Hzn depends linearly on h by In−1.1, if hzn = 0, then also Hzn = 0.
Therefore, H is compactly supported in D

n .
Now,

∂H = ∂Cn−1 H +
∑

I

∂n HI dz̄n ∧ dz̄ I = h +
∑

I

∂n HI dz̄n ∧ dz̄ I

so

ω − ∂H = g′ ∧ dz̄n

where g′ does not contain dz̄n . Moreover, as ω and ∂H are in Lr
c(D

n), also g′ is. Further, we
observe that

(∂Cn−1 g′) ∧ dz̄n = ∂(ω − ∂H) = ∂ω = 0

and finally, for zn fixed, g′ is a (0, q − 1)-form in C
n−1, belonging to Wq−1(Dn−1).

Solution. We have reduced ourselves to solve ∂G = g′ ∧ dz̄n , but as ∂Cn−1 g′ = 0, we can,
by the same argument used in the reduction, obtain a family G ′ of (0, q − 2) forms in C

n−1

such that ∂Cn−1 G ′ = g′, by In−1.2.
Again, by the same reasoning, G ′ ∈ Lr

c(D
n), and if we set G = G ′ ∧ dz̄n , we obtain a

(0, q − 1)-form G ∈ Wq−1(Dn) such that ∂G = g′ ∧ dz̄n .
So, β = G + H is the solution we looked for. Moreover, the norms ‖H‖W and ‖G‖W are

controlled, respectively, by ‖h‖W and ‖ω‖W + ‖∂H‖W , which is controlled by

‖ω‖W + ‖H‖W ≤ ‖ω‖W + ‖h‖W ≤ 2‖ω‖W .

This shows In .1.
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To show In .2 it is enough to notice that all our operations are constructive and preserve
the regularity (or summability) of an extra parameter; the case q = n −1 of In .2 was already
noted in Remark 7.5. ��
Remark 8.2 We have to separate the proof for (0, n−1)-forms from the general case because
in the former Serre’s duality tells us only that Hn−1

c (Ut ,O) is equal to the topological dual
of H0(Ut ,�

n−1) (we recall that Ut is an open set in C
n−1), in general not vanishing, so the

induction does not work there.

Remark 8.3 We note that, in the proof of Theorem 8.1, we never actually used the fact that
our domain is the polydisc. Indeed, if we had the analogues of Theorems 6.2 and 7.4 for the
domain D

n \ Z in every dimension, then we could apply the same proof to get Theorem 8.1
for D

n \ Z , with exactly the same statement.

As a corollary of the previous results, we obtain the following.

Corollary 8.4 Letω be a ∂-closed (0, q)-form with compact support in D
n \ Z and satisfying

conditions 7.1; then, for any k ∈ N, we can find a (0, q − 1)-form β ∈ Lr
c(D

n) such that
∂( f kβ) = ω. Equivalently, we can find a (0, q − 1)-form η = f kβ such that η ∈ Lr

c(D
n), η

is 0 on Z up to order k and ∂η = ω.

Proof The (0, q)-form φ := ω/ f k is still ∂−closed and satisfies 7.1; hence, we have a
(0, q − 1)-form β ∈ Lr

c(D
n) such that ∂β = φ. So η = f kβ verifies all the requirements. ��

Remark 8.5 We note that the solution operators we constructed are defined from Wq(Dn)

to Wq−1(Dn) which means that we have a partial gain of regularity: every coefficient of the
datum is supposed to have derivatives in n − q variables in Lr , while the solution we find
has derivatives in Lr for n − q + 1 variables.
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