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Abstract A separating (M −2)-curve is a smooth geometrically irreducible real projective
curve X such that X (R) has g − 1 connected components and X (C) \ X (R) is disconnected.
Let Tg be a Teichmüller space of separating (M − 2)-curves of genus g. We consider two
partitions of Tg , one by means of a concept of special type, the other one by means of the
separating gonality. We show that those two partitions are very closely related to each other.
As an application, we obtain the existence of real curves having isolated real linear systems
g1

g−1 for all g ≥ 4.

Keywords Real curve · Linear pencil · Separating gonality · Special type ·
Teichmüller space

Mathematics Subject Classification (2000) 14H05 · 14H51 · 14P99

1 Introduction

Let X be a smooth real projective curve of genus g. We assume X is complete and geometrically
irreducible; hence, the set X (C) of complex points is in a natural way of a compact Riemann
surface of genus g. Let X (R) be the set of real points and assume it is not empty. Let
C1, · · · , Cs be the connected components of X (R). It is well known that s ≤ g+1 (Harnack’s
inequality). Let f : X → P

1 be a morphism of degree k. It is known that the parity of the
fibers (counted with multiplicities) of f |Ci : Ci → P

1(R) is constant. In particular, in case
this parity is odd then f (Ci ) = P

1(R). In our paper [6], we considered the following problem.
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962 M. Coppens

Problem Fix k, s′ ≤ s and s′ components Ci1 , · · · , Cis′ of X (R). Does there exist a morphism
f : X → P

1 of degree k such that f has odd parity on C j for j ∈ {i1, · · · , is′ } and f (C j ) �=
P

1(R) for j /∈ {i1, · · · , is′ }.
Of course, s − s′ ≡ 0 (mod 2) is a necessary condition and in [6, Proposition 1] it is

proved that in case k = g + 1 this condition is also sufficient. However, in case k = g then
this condition is not sufficient because of the following example mentioned in [6, Example
3]. A real curve X of genus 3 with s = 2 and such that X (R) disconnects X (C) is isomorphic
to a smooth plane real curve of degree 4 having two nested ovals (C1 in the inner part of C2).
Taking k = 3, s′ = 1 and i1 = 1, then for each morphism f : X → P

1 of degree 3 having
odd parity on C1 one has f (C2) = P

1(R).
A real curve X such that X (R) disconnects X (C) is called separating, and it is shown

in [6, Theorem 1.A] that the condition s − s′ ≡ 0 (mod 2) is sufficient for an affirmative
answer to the problem in case k = g and X is not separating. In [3, Example 5.9] as a second
example, one finds separating curves of genus 4 with s = 3 such that there exist components
C1 and C2 of X (R) such that for each morphism f : X → P

1 of degree 4 having odd parity
on C1 and C2 one has f (C3) = P

1(R) (C3 is the other component of X (R) different from
C1 and C2). The argument makes use of the description of a canonically embedded curve
of genus 4 in P

3 as the intersection of a cubic and a quadric surface. In both examples, we
have s = g − 1. Classically, a real curve X satisfying s = g + 1 is called an M-curve, and
in the literature, a real curve satisfying s = g + 1 − a is also called an (M − a)-curve. So
both examples are separating (M − 2)-curves. In Theorem 3.1, we prove that for all g ≥ 3
there exists a separating (M − 2)-curve X having components C1, · · · , Cg−1 of X (R) such
that, if f : X → P

1 is a morphism of degree g having odd parity on C2, · · · , Cg−1 then
f (C1) = P

1(R) (in this statement, the numbering of the components of X (R) is important).
We say such a curve is of special type. Theorem 3.1 is a direct consequence of Proposition 3.2.
In Proposition 3.2, we prove a more geometric statement related to this concept: the existence
of a canonically embedded separating (M − 2)-curve X possessing a strong kind of linking
between the connected components of X (R).

We prove a stronger statement. Let Tg be the Teichmüller space parameterizing separating
(M − 2)-curves of genus g. In case t ∈ Tg then we write Xt to denote the corresponding real
curve. This space Tg is a real connected manifold of dimension 3g − 3. We say a property
P holds for a general separating (M − 2)-curve if there exists a non-empty open subset U of
Tg such that P holds for all curves Xt with t ∈ U (roughly speaking: the curves satisfying
property P have the maximal 3g − 3 moduli). From Corollary 4.8, it follows that for g ≥ 4
both properties ”being of simple type” and ”not being of simple type” do hold for a general
separating (M − 2)-curve of genus g (in case g = 3 all separating (M − 2)-curves are of
special type). Let Tg,s (resp. Tg,ns) be the set of points t ∈ Tg such that Xt is of special type
(resp. Xt is not of special type). So we have a partition Tg = Tg,s ∪ Tg,ns . In Lemma 2.6,
we show Tg,s is closed, hence Tg,ns is open. This partition turns out to be closely related to
another very natural parition of Tg .

In case a real curve X has a morphism f : X → P
1 with X (R) = f −1(P1(R)) then

X is separating. Such morphism is called a separating morphism. In [4], we introduce the
separating gonality sepgon(X) of a separating real curve X: it is the minimal degree such that
there exists a separating morphism f : X → P

1. For a separating (M − 2)-curve X trivially
one has sepgon(X) ≥ g − 1. On the other hand, from [7] it follows sepgon(X) ≤ g and in
[4] it is proved that both possibilities g − 1 and g do occur. Let Tg,g (resp. Tg,g−1) be the
set of points t ∈ Tg such that sepgon(Xt ) = g (resp. sepgon(Xt ) = g − 1). So we obtain
a second partition Tg = Tg,g ∪ Tg,g−1 and the relation between both partitions is given by
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Pencils on separating (M − 2)-curves 963

the fact that the closure Tg,ns of Tg,ns is equal to Tg,g−1 (see Corollary 4.7). It follows that
Tg,g = Tg,s \ (Tg,s ∩ Tg,ns) is a non-empty open subset of Tg .

The fibers of a separating morphism f : X → P
1 of degree g − 1 correspond to a linear

system g1
g−1 on X. Complete linear systems of degree g − 1 and dimension at least one

on X are parameterized by a subscheme W 1
g−1 of the Jacobian J (X) and in case X is not

hyperelliptic then all components of W 1
g−1(C) have dimension g − 4. Linear systems g1

g−1
corresponding to separating morphisms of degree g − 1 on a separating (M − 2)-curve X
are parameterized by a dense open subset of some irreducible components of W 1

g−1(R). In
case X is a general non-special separating (M − 2)-curve then all such components have
real dimension g − 4. If X is a special separating (M − 2)-curve with sepgon(X) = g − 1
then our results imply X = Xt for some t ∈ Tg,s ∩ Tg,ns . In Corollary 4.5, we prove this
intersection is non-empty and in Proposition 4.1, we prove such X has finitely many g1

g−1

associated with separated morphisms of degree g − 1. In particular for such curve, W 1
g−1(R)

has isolated points (see Corollary 4.9). In case g ≥ 5 this is remarkable when compared with
dim(W 1

g−1(C)) = g − 4. The finiteness follows from the following remarkable fact proved

in Proposition 4.1. If X is an (M − 2)-curve of special type, then a linear system g1
g−1 on X

corresponding to a separated morphism f : X → P
1 is half canonical.

2 Preliminaries and notations

A real curve X is a one-dimensional geometrically connected projective variety defined over
the field R of the real numbers. Using a base extension R ⊂ C, we obtain a complex curve
XC. Its set of closed points is denoted by X (C) and it is called the space of complex points
on X. Complex conjugation related to R ⊂ C defines a complex conjugation on X (C), for
P ∈ X (C) we write P to denote the complex conjugated point. On X itself (considered as
a scheme) there are two types of closed points according to the residue field being R or C.
In case the residue field is R then we say it is a real point on X. The set of real points is
denoted by X (R), and there exists a natural inclusion X (R) ⊂ X (C). In case the residue field
is C, then the closed point on X corresponds to two conjugated points P, P on X (C) \ X (R).
Such closed point on X is denoted by P + P and it is called a non-real point on X. The real
projective line Proj (R[X0, X1]) is denoted by P

1. A linear system of dimension r and degree
d on a smooth real curve X is denoted by gr

d . It is a projective space of linearly equivalent
real divisors on X.

In case XC is a smooth (resp. stable) complex curve, we call X a smooth (resp. stable) real
curve. The moduli functor of stable curves of genus g is not representable, hence there is no
universal family. Instead, we make use of the so-called suited families of stable curves.

Definition 2.1 Let X be a real stable curve of genus g. A suited family of stable curves of
genus g for X is a projective morphism π : C → S defined over R such that

1. S is smooth, geometrically irreducible and quasi-projective.
2. Each geometric fiber of π is a stable curve of genus g.
3. For each s ∈ S(C), the Kodaira–Spencer map Ts(S) → Ext1(�π−1(s), Oπ−1(s)) is

surjective (here �π−1(s) is the sheaf of Kähler differentials).
4. There exists s0 ∈ S(R) such that π−1(s0) ∼= X over R.

In case X is smooth, we also assume π is a smooth morphism.

In [4, Lemma 4], it is explained such suited families do exist. Let X be a smooth real
curve and let π : C → S be a suited family for X. Let k ∈ Z with k ≥ 2. There exists a
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964 M. Coppens

quasi-projective morphism πk : Hk(π) → S representing morphisms of degree k from fibers
of π to P

1 (see [10, Section 4.c]). Let f : X → P
1 be a morphism of degree k. It defines

an invertible sheaf L = f ∗(OP1(1)) of degree k on X. The morphism f induces an exact
sequence 0 → TX → f ∗(TP1) → N f → 0 (N f is defined by this exact sequence) and since
TP1 ∼= OP1(2) this exact sequence looks like

0 → TX → L⊗2 → N f → 0

The morphism f corresponds to a point [f] on Hk(π) and from Horikawa’s deformation
theory of holomorphic maps (see [11], see also [14, 3.4.2]), it follows T[ f ](Hk(π)) is canon-
ically identified with H0(X, N f ) and since H1(X, N f ) = 0 it follows Hk(π) is smooth of
dimension 2k + 2g − 2. Moreover, Ts0(S) is isomorphic to H1(X, TX ) and the connecting
homomorphism H0(X, N f ) → H1(X, TX ) associated with the exact sequence is identified
with the tangent map d[ f ](πk) : T[ f ](Hk(π)) → Ts0(S). In particular, d[ f ](πk) is surjec-
tive in case H1(X, L⊗2) = 0. Hence the condition H1(X, L⊗2) = 0 implies π−1

k (s0) has
dimension 2k − g + 1 and it is smooth at [f]. In [5], we introduced the topological degree
of f. Choose an orientation on P

1(R). For each component C of X (R) (this is a smooth real
manifold diffeomorphic to S1), we consider the restriction f |C : C → P

1(R) and we fix an
orientation on C such that deg( f |C ) ≥ 0. We say f is of topological degree (d1, · · · , ds) with
d1 ≥ · · · ≥ ds ≥ 0 if there is a numbering C1, · · · , Cs of all components of X (R) such that
deg( f |Ci ) = di . In families of morphisms from smooth real curves to P

1 this topological
degree is constant, hence it is constant on connected components of Hk(π)(R).

Let X be a smooth real curve. In case X (R) �= ∅ then it is a disjoint union of s = s(X)

connected components diffeomorphic to a circle. In case X (C) \ X (\R) is not connected, it
has two connected components and X is called a separating real curve. For a separating real
curve, one has 1 ≤ s ≤ g − 1 and s ≡ g + 1 (mod 2). In case s = g + 1 − a then X is called
an (M − a)-curve. The following definitions are already mentioned in the introduction.

Definition 2.2 A separating (M − 2)-curve X is of special type if there exists a component
C of X (R) such that for each morphism f : X → P

1 of degree g having odd parity on each
connected component C ′ �= C of X (R) one has f (C) = P

1(R). If no such component C
exists then we say X is not of special type.

Definition 2.3 A morphism f : X → P
1 is called a separating morphism if f −1(P1(R)) =

X (R).

In case X has a separating morphism then X is a separating real curve.

Definition 2.4 The separating gonality sepgon(X) of a separating real curve X is the minimal
degree k such that there exists a separating morphism f : X → P

1 of degree k.

As already mentioned in the introduction, in case X is a separating (M − 2)-curve then
sepgon(X) is either g or g + 1. As mentioned in the introduction, we write Tg to denote a
Teichmüller space parameterizing separating (M − 2)-curves and we obtain two partitions
Tg = Tg,s ∪ Tg,ns and Tg = Tg,g ∪ Tg,g−1. Remember Tg is a smooth real manifold of
dimension 3g − 3, and it has a universal family tg : Xg → Tg . For each separating real
(M − 2)-curve X0, there exists t0 ∈ Tg such that t−1

g (t0) ∼= X0. Moreover, if π : Cg → S

is a suited family of curves for X0 and s0 ∈ S(R) with π−1(s0) ∼= X0, then there exist
neighborhoods U (resp. V) of t0 (resp. s0) in Tg (resp. S(R)) and a diffeomorphism U → V
such that, if u ∈ U maps to v ∈ V then t−1

g (u) ∼= π−1(v).
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Pencils on separating (M − 2)-curves 965

Lemma 2.5 Let X be a separating (M − 2)-curve, let C1, · · · , Cg−1 be the connected com-
ponents of X (R) and assume f : X → P

1 is a covering of degree g having odd par-
ity on C1, · · · , Cg−2. Then f (Cg−1) �= P

1(R) unless f |Cg−1 is an unramified covering
Cg−1 → P

1(R) of degree 2.

Proof First of all, the morphism f has even parity on Cg−1 (because of the necessary condition
involving s and s′ for the problem mentioned in the introduction). Since each fiber above a
point x of P

1(R) contains a point of Ci for 1 ≤ i ≤ g −2, it contains at most 2 points of Cg−1

(counted with multiplicities), and there cannot be a ramification point on Cg−1 of index more
than two. If there is a ramification point x0 on Cg−1 of index two then close to f (x0), there
exists x ′ ∈ P

1(R) such that f −1(x ′) contains a non-real point. It follows f −1(x ′) cannot
contain a point of Cg−1 hence f (Cg−1) �= P

1(R). Hence, f (Cg−1) = P
1(R) implies f has

no ramification point on Cg−1, hence f |Cg−1 is an unramified covering Cg−1 → P
1(R) of

degree two. ��
Remark In the situation of the previous lemma, if f (Cg−1) = P

1(R) it follows
f −1(P1(R)) = X (R), hence f is a separating morphism of degree g. In that case f has topolog-
ical degree (2, 1, · · · , 1). In case f (Cg−1) �= P

1(R) it has topological degree (1, · · · , 1, 0).

Lemma 2.6 Tg,ns ⊂ Tg is open and (hence) Tg,s ⊂ Tg is closed.

Proof We are going to prove that Tg,ns ⊂ Tg is open. Let t ∈ Tg,ns and let X = t−1
g (t). Let

π : C → S be a suited family for X and s ∈ S(R) such that π−1(s) ∼= X . It is enough to
prove there exists a classical open neighborhood U of s in S(R) such that for all s′ ∈ U the
curve π−1(s′) is a separating (M − 2)-curve not of special type. It is well known that points
in S(R) close to s do correspond to separating (M − 2)-curves, so we only have to show they
are also of non-special type.

Choose a component C of X. Since the curve is not of special type, there exists a covering
f : X → P

1 of degree g such that it has topological degree (1, · · · , 1, 0) and f (C) �= P
1(R).

Consider πg : Hg(π) → S with Hg(π) parameterizing morphisms of degree g from fibers
of π to P

1 and now let H be the connected component of Hg(π)(R) containing [f]. From
the deformation theory of Horikawa, we know H is smooth of dimension 4g − 2. Moreover,
f corresponds to an invertible sheaf L of degree g, therefore H1(X, L⊗2) = 0, hence the
description of the tangent map of πg at [f] implies this tangent map has maximal rank. So the
image of a neighborhood of [f] on H contains a neighborhood U of s in S. Intersecting those
neighborhoods for all choices of C (again denoted by U), we obtain for each s′ ∈ U and
for each component C ′ of π−1(s′)(R) the existence of a morphism f ′ : π−1(s′) → P

1 of
topological degree (1, · · · , 1, 0) having even parity on C ′, hence f ′(C ′) �= P

1(R) because
of Lemma 2.5. This means π−1(s′) is not of special type. ��
Lemma 2.7 Tg,g−1 ⊂ Tg is closed and (hence) Tg,g ⊂ Tg is open.

Proof Let X0 be a curve corresponding to a point on the closure of Tg,g−1. Then X0 is the
limit of a family of separating (M − 2)-curves Xt (t > 0) having a separating morphism
ft : Xt → P

1 of degree g − 1. Since Xt (R) has g − 1 components such morphism has to
be of topological type (1, · · · , 1). Therefore, the fiber of ft over a real point of P

1 is of type
P1 + · · · + Pg−1 with Pi belonging to different components of Xt (R). The limit of such
divisor on X0 is of the same type and belongs to a complete linear system of dimension at
least 1. So it defines a complete linear system gr

g−1 for some r ≥ 1 having odd degree on each
component C of X0(R). In case r > 1 then for P1, P ′

1 on the same component C of X0(R),
there should exist D ∈ gr

g−1 containing P1 + P ′
1. Since D should contain a point of each

123



966 M. Coppens

component of X0(R), this is impossible. So r = 1. In case D would have a base point (say P1)
then for P ′

1 general on the same component, there should exist D ∈ g1
g−1 containing P1 + P ′

1

giving the same contradiction. So g1
g−1 corresponds to a base point free linear system having

odd degree on each component of X0(R), so it defines a separating morphism f0 : X0 → P
1

of degree g − 1. ��

3 Existence of separating (M − 2)-curves of special type

Theorem 3.1 For each g ≥ 3 there exists a separating (M − 2)-curve X of special type.

This theorem is an immediate corollary of the next proposition. This proposition shows
that the components of the real locus of a canonically embedded real curve can be strongly
linked with each other. Therefore, the proposition describes the geometric reason for the
existence of separating (M −2)-curves of special type. It would be interesting to obtain more
information concerning the way the components of the real locus of a canonically embedded
real curve can be linked.

For a curve X embedded in some projective space P and an effective divisor E on X, we
denote 〈E〉 for the linear span: it is the intersection of hyperplanes H of P such that H.X ≥ E
(and it is P in case such hyperplane does not exist).

Proposition 3.2 For all g ≥ 3 there is a canonically embedded (M − 2)-curve X ⊂ P
g−1

having real components C1, · · · , Cg−1 of X (R) such that

1. for all Pi ∈ Ci (1 ≤ i ≤ g − 1) one has dim(〈P1, · · · , Pg−1〉) = g − 2
2. for all Pi ∈ Ci (2 ≤ i ≤ g − 1) and for each real hyperplane H ⊂ P

g−1 containing
〈P2, · · · , Pg−1〉 one has H ∩ C1 �= ∅.

Proof of Theorem 3.1 Let X be as described in Proposition 3.2. Take Pi ∈ Ci (2 ≤ i ≤
g − 1) and consider |K X − (P2 + · · · + Pg−1)|. From (1) in Proposition 3.2 we have
dim(〈P2, · · · , Pg−1〉) = g − 3 hence dim(|K X − (P2 + · · · + Pg−1|) = 1 (|K X − (P2 +
· · · + Pg−1)| is the linear system induced by the pencil of hyperplanes in P

g−1 containing
〈P2, · · · , Pg−1〉, it is denoted by g1

g). Since K X has even degree on each component of X (R)

it follows g1
g has odd degree on Ci for 2 ≤ i ≤ g and even degree on C1. From (2) in

Proposition 3.2, it follows each divisor D ∈ g1
g contains some point of C1, hence it con-

tains a divisor of degree 2 with support on C1. This proves each divisor of g1
g is of the type

D = P ′
1 + P ′′

1 + P ′
2 + · · · + P ′

g−1 with P ′
i ∈ Ci for 1 ≤ i ≤ g − 1 and P ′′

1 ∈ C1.

Assume P ′
i is a base point of g1

g for some 2 ≤ i ≤ g −1, then no divisor of g1
g can contain

another point of Ci . This is impossible hence P ′
i is not a base point for 2 ≤ i ≤ g − 1.

Assume, for example, P ′′
1 is a base point for g1

g then dim |P ′
1 + P ′

2 + · · · + P ′
g−1| = 1. Then,

the geometric version of the Riemann–Roch theorem (see for example, [8, p. 248]) implies
dim〈P ′

1, · · · , P ′
g−1〉 = g − 3 contradicting (1) in Proposition 3.2. So g1

g is base point free

and it defines a covering f : X → P
1 having odd degree on Ci for 2 ≤ i ≤ g − 1 and such

that C1 also dominates P
1(R). From the description of the divisors of g1

g it follows all fibers
of f over P

1(R) are totally real, hence X is a separating curve.
Conversely, if f : X → P

1 is a morphism of degree g having odd parity on Ci for
2 ≤ i ≤ g − 1, then for a real fiber E of f one has |K X − E | �= ∅ and |K X − E | has odd
parity on C2, · · · , Cg−1. Since deg(K X − E) = g − 2 each divisor of |K X − E | is of type
P2 +· · ·+ Pg−1 with Pi ∈ Ci for 2 ≤ i ≤ g−1. So f corresponds to |K X −(P2 +· · ·+ Pg−1)|
and we already proved f (C1) = P

1(R). This shows X is of special type. ��
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For a curve X satisfying properties (1) and (2) of Proposition 3.2, we found |K X − (P2 +
· · · + Pg−1)| with Pi ∈ Ci (2 ≤ i ≤ g − 1) defines a covering π : X → P

1 such that Ci

dominates P
1(R) for 1 ≤ i ≤ g − 1. In particular, π is not ramified at some real point of X.

Since deg(π |C1) = 2, it also implies condition (2) of Proposition 3.2 is equivalent to: for all
Pi ∈ Ci (2 ≤ i ≤ g − 1) and for all real hyperplanes H ⊂ P

g−1 containing 〈P2, · · · , Pg−1〉
one has H intersects C1 transversally at 2 points. In the proof, we are going to use this (at
first sight stronger) statement.

Proof of Proposition 3.2 We are going to prove for all g ≥ 3 the existence of a canonically
embedded smooth real curve X ⊂ P

g−1 of genus g such that X (R) has g − 1 connected
components C1, · · · , Cg−1 and satisfying the following two properties

(P1) For all Pi ∈ Ci (1 ≤ i ≤ g − 1) one has dim
(〈P1, · · · , Pg−1〉

) = g − 2.
(P2) For all Pi ∈ Ci (2 ≤ i ≤ g−1) each hyperplane H ⊂ P

g−1 containing 〈P2, · · · , Pg−1〉
intersects C1 transversally at two points.

In the first part of the proof, we prove the existence of X for the (already known) case
g = 3. The arguments used to prove this case will be generalized in the second part of
the proof in order to obtain a proof by induction on g. In both parts of the proof, we are
going to use the following fact. Let �0 be a canonically embedded non-hyperelliptic real
singular curve having an isolated real node S as its only singularity and such that �0(R)\ {S}
has n connected components. There exists a real algebraic deformation π : X → I with
I a small neighborhood of 0 in [0,+∞[⊂ R such that π−1(0) = �0 and for t > 0 the
curve Xt = π−1(t) is a smooth real complete curve of genus g such that Xt (R) has n + 1
connected components (see for example, [13, Section 7], it can be shown directly by using part
of Construction II in [5]). We can assume for all t ∈ I the curve Xt is not hyperelliptic. Using
the relative dualizing sheaf for this deformation we can assume it is a family of canonically
embedded real curves in P

g−1.

First part of the proof Let X0 be a real hyperelliptic curve of genus 2. It has a unique real
component C0,1 and C0,1 dominates P

1(R) for the hyperelliptic covering (see [9, Section 6]).
Take Q + Q general on X0 (hence Q ∈ X0(C) \ X0(R)) and consider the real linear system
|K X0 + (Q + Q)| on X0. Since all real divisors in g1

2 on X0 consist of 2 real points we have
Q + Q /∈ g1

2.
In both parts of the proof, we use the following general fact concerning smooth complex

curves M of genus g ≥ 2. Let P and Q be two different points on M with dim |P + Q| = 0
(this is always the case if M is not hyperelliptic) and consider the linear system |KM + P +Q|.
This is a base point free linear system on M, and it defines a morphism φ : M → P

g such
that the image � ⊂ P

g of M is the nodal curve of arithmetic genus g + 1 obtained from M by
identifying P and Q to become an ordinary node S = φ(P) = φ(Q) of � and � is embedded
by the dualizing sheaf ω� (this is well known, an argument can be found in [4, Lemma 5]).

Applying this argument using |K X0 + (Q + Q)|, we obtain a canonically embedded real
singular curve �0 ⊂ P

2 of degree 4, birationally equivalent to X0. The singular point S on
�0 is an isolated point on �0(R) and projection with center S on a real line P

1 ⊂ P
2 induces

a real covering X0 → P
1 corresponding to the g1

2 on X0. The real locus X0(R) corresponds
to the unique connected component C0,1 of �0(R) \ {S}. Since S /∈ C0,1 one has

(P1’) For all P ∈ C0,1 one has dim〈P, S〉 = 1.
Moreover, if H ⊂ P

2 is a real line containing S, then H induces a divisor on X0

belonging to g1
2 + Q + Q. This divisor is real, hence it contains two different points

of X0(R). On �0 one has
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968 M. Coppens

(P2’) Each real line H ⊂ P
2 with S ∈ H intersects C0,1 transversally at 2 points.

We obtain a real family π : X → I ⊂ [0,+∞[⊂ R of canonically embedded real
curves of genus 3 in P

2 such that π−1(0) = �0 and for t > 0 the curve π−1(t) = Xt is
smooth such that Xt (R) has 2 connected components. Let Ct,1 be the connected component
of Xt (R) specializing to C0,1 and let Ct,2 be the connected component of Xt (R) specializing
to {S}. Let Ci be the union of those components Ct,i (including S in case i = 2). For the
classical topology on X(C) those are closed subsets. Consider the fibered product C1 ×I C2

and its subset Z defined by (P1, P2) ∈ Z if and only if dim〈P1, P2〉 = 0 (i.e., P1 = P2).
This is a closed subset in C1 ×I C2 and since the natural map C1 ×I C2 → I is proper, it
follows the image Z of Z in I is closed. Because of (P1’) one has 0 /∈ Z . Shrinking I we can
assume Z = ∅. Let GR be the Grassmannian of real lines in P

2 and define I ⊂ C2 × GR

by (P, L) ∈ I if and only if P ∈ L . Let Z ′ ⊂ I be defined by (P, L) ∈ Z ′ if and only if L
does not intersect Cπ(P),1 transversally. Since Z ′ ⊂ C2 × GR is closed and the induced map
C2 × GR → I is proper it follows the image Z ′ of Z ′ in I is closed. Because of (P2’) one has
0 /∈ Z ′. Shrinking I we can assume Z ′ = ∅.

Take t0 �= 0 and let X = Xt0 ⊂ P
2. It is a canonically embedded real curve of genus 3 and

X (R) has two connected components Ci = Ct0,i (i = 1, 2). Let Pi ∈ Ci for i = 1, 2 then
(P1, P2) /∈ Z = ∅, hence dim〈P1, P2〉 = 1. This implies (P1) for this curve X. Let P2 ∈ C2

and let L be a real line in P
2 with P2 ∈ L . Then (P2, L) ∈ I. Choose a family (Pt,2, Lt )t≥0

in I with (Pt0 , Lt0) = (P2, L). Then P0,2 = S hence L0 intersects C0,1 transversally at 2
points. Since Z ′ = ∅ it follows all intersections of Lt and C1,t (t ≥ 0) are transversal. Since⋃

t≥0{t} × Lt and C1 are closed in the classical topology of I × P
2 it follows L intersects C1

transversally at 2 points. This implies (P2) for this curve X. ��
Second part of the proof Repeating the arguments of the first part of the proof, we are going
to finish the proof by induction on the genus. Assume X0 ⊂ P

g−1 is a canonically embedded
smooth real curve of some genus g ≥ 3 satisfying properties (P1) and (P1). Take Q + Q
general on X0 (by assumption already X0 is not hyperelliptic hence dim |Q + Q| = 0).
Using |K X0 + (Q + Q)|, which is a real linear system on X0, we obtain the canonically
embedded real singular curve �0 ⊂ P

g having a unique singular point S. This singular point
is an isolated point on �0(R). Choosing a real hyperplane P

g−1 ⊂ P
g not containing S then

projection with center S on P
g−1 induces a canonical embedding X0 ⊂ P

g−1 defined over
R. Let C0,i (1 ≤ i ≤ g − 1) be the connected component of �0(R) \ {S} corresponding to
the component Ci of X0(R). As before assumptions (P1) and (P2) imply

(P1’) For each P0,i ∈ C0,i (1 ≤ i ≤ g − 1) one has dim
(〈P0,1, · · · , P0,g−1, S〉) = g − 1.

(P2’) For each P0,i ∈ C0,i (2 ≤ i ≤ g − 1) each real hyperplane H in P
g containing

〈P0,2, · · · , P0,g−1, S〉 intersects C0,1 transversally at two points.

Consider a real deformation π : X ⊂ I × P
g → I ⊂ [0,+∞[⊂ R of canonically

embedded real curves of genus g + 1 with π−1(0) = �0 ⊂ P
g and for t �= 0 one has

Xt = π−1(t) is a smooth real curve of genus g + 1 such that Xt (R) has g connected
components. For 1 ≤ i ≤ g − 1 and t �= 0 let Ct,i be the component specializing to C0,i

and let Ct,g be the component specializing to {S}. For 1 ≤ i ≤ g let Ci be the union of
those components Ct,i (including S in case i = g). Let

∏g
i=1,I Ci be the set of g-uples

(P1, · · · , Pg) with Pi ∈ Ci and π(Pi ) = π(Pj ) for i �= j and let Z ⊂ ∏g
i=1,I Ci be defined

by (P1, · · · , Pg) ∈ Z if and only if dim
(〈P1, · · · , Pg〉

)
< g − 1. Let I ⊂ ∏g

i=2,I Ci × GR

(now GR is the Grassmannian of real linear subspaces of dimension g − 2 in P
g) be defined

by (P2, · · · , Pg, H) ∈ I if and only if Pi ∈ Ci , π(Pi ) = π(Pj ) for i �= j and Pi ∈ H
and let Z ′ ⊂ I be defined by (P2, · · · , Pg, H) ∈ Z ′ if and only if H does not intersect Ct,1
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Pencils on separating (M − 2)-curves 969

transversally (t = π(Pi )). From (P1’) and (P2’) it follows, by shrinking I, we can assume
Z and Z ′ being empty. Then, taking t0 �= 0 and X = Xt0 ⊂ P

g , we obtain a canonically
embedded smooth real curve X of genus g such that X (R) has g connected components
Ci = Ct0,i . As in the previous case, the arguments imply this curve X satisfies (P1) and (P2).

��
Condition 1 in Proposition 3.2 implies for Pi ∈ Ci (1 ≤ i ≤ g−1) one has dim |P1+· · ·+

Pg−1| = 0. This implies sepgon(X) �= g − 1, hence we proved the existence of separating
(M − 1)-curves of special type of separating gonality g. As mentioned in the introduction,
we are going to prove that in case t ∈ Tg,s corresponds to a curve Xt with separating gonality
g − 1 then t is not an inner point of Tg,s . This indicates that it is natural to include the use
of the separating gonality in the deformation argument used in the proof of Proposition 3.2
(i.e., to use condition 1 to prove Theorem 3.1).

4 The relation between special type and the separating gonality

We start by proving the following remarkable fact concerning separating morphisms of degree
g − 1 on separating (M − 2)-curves of special type.

Proposition 4.1 Let X be a real separating (M − 2)-curve of special type of genus g ≥ 3
satisfying sepgon(X) = g −1, then each g1

g−1 on X having odd degree on each component of

X (R) is half canonical. In particular, X has only finitely many linear systems g1
g−1 associated

with separated morphisms of degree g − 1.

Proof We assume X is canonically embedded in P
g−1 (as a matter of fact, X cannot be

hyperelliptic (see [9, Section 6]) and for an effective divisor E on X we write 〈E〉 to denote
its linear span in P

g−1. Let C1, · · · , Cg−1 be the connected components of X (R) and assume
for each covering f : X → P

1 of degree g having degree 1 on Ci for 2 ≤ i ≤ g − 1 one has
f (C1) = P

1(R). Let h : X → P
1 be a separating morphism of degree g−1 and let E be a real

fiber of h (hence E = Q1+· · · Qg−1 for Qi ∈ Ci for 1 ≤ i ≤ g−1). Because of the Riemann–
Roch theorem dim |K X − E | ≥ 1 and |K X − E | has odd parity on each Ci (1 ≤ i ≤ g − 1).
Since deg(K X − E) = g − 1 each real divisor of |K X − E | is again of type Q1 + · · · Qg−1

with Qi ∈ Ci for 1 ≤ i ≤ g −1. Choose P1 ∈ C1 and let P1 + P2 +· · ·+ Pg−1 be a real fiber
of h and P1 + Q2 + · · · + Qg−1 ∈ |K X − E | (here Pi , Qi ∈ Ci for 2 ≤ i ≤ g − 1). In case
P1 + P2 +· · ·+ Pg−1 �= P1 + Q2 +· · ·+ Qg−1 we can assume without loss of generality that
Pg−1 �= Qg−1. Assume X is canonically embedded and assume Qg−1 ∈ 〈P1 + · · · Pg−2〉.
Since Pg−1 ∈ 〈P1 + · · · Pg−2〉 it follows dim(〈P1 + · · · Pg−1 + Qg−1〉) = g − 3, and
therefore dim(|P1 + Q2 + · · · + Qg−2|) = 1. Hence, there would exist a g1

g−2 on X having
odd degree on C1, · · · , Cg−2. Since |P1 + Q2 + · · · + Qg−2| has odd parity on each Ci for
1 ≤ i ≤ g − 2 and because of the existence of one more component Cg−1 this is impossible.
This proves Qg−1 /∈ 〈P1 + · · · + Pg−2〉 and therefore dim |P1 + · · · + Pg−2 + Qg−1| = 0.
Since 2P1 + P2 + · · · + Pg−2 + Qg−1 ∈ |K X − (Q2 + · · · + Qg−2 + Pg−1)| one obtains
dim |2P1 + P2 + · · · + Pg−2 + Qg−1| = 1 and P1 is not a base point of |2P1 + P2 + · · · +
Pg−2 + Qg−1|. A morphism f : X → P

1 associated with the base point free linear system
defined by |2P1 + P2 + · · · + Pg−2 + Qg−1| is ramified at P1 ∈ C1 and there is no other
point of C1 at that fiber. This implies the existence of a fiber containing no point of C1, hence
f (C1) �= P

1(R) and therefore the existence of a divisor D ∈ |2P1 + P2 +· · ·+ Pg−2 + Qg−1|
with Supp(D)∩C1 = ∅. In case the linear system |2P1+ P2+· · ·+ Pg−2+Qg−1| has no base
point the morphism f has degree g and it has odd degree on C2, · · · , Cg−1 and therefore
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f (C1) �= P
1(R) contradicting our assumptions. We are going to show that by deforming

(Q2, · · · , Qg−2, Pg−1) on C2 × · · · × Cg−2 × Cg−1 we obtain such contradiction.
Consider the closed subset Z ⊂ X (g)(R)×C2×· · ·×Cg−1 defined by (D′, Q′

2, · · · , Q′
g−2,

P ′
g−1) ∈ Z if and only if D′ ∈ |K X − (Q′

2 + · · · + Q′
g−2 + P ′

g−1)|. Consider the morphisms

p1 : Z → C2 ×· · ·× Cg−1 and p2 : Z → X (g)(R) induced by projection. Since dim(|Q′
2 +

· · · + Q′
g−2 + P ′

g−1|) = 0 for all (Q′
2, · · · , Q′

g−2, P ′
g−1) ∈ C2 × · · · × Cg−1, it follows

from the Riemann–Roch theorem that p−1
1 (Q′

1, · · · , Q′
g−1, P ′

g−1)
∼= P

1(R), in particular

p1 is a locally trivial P
1(R)-bundle. Let d0 = (Q2, · · · , Qg−2, Pg−1), we proved there

exists (d0, D) ∈ p−1
1 (d0) such that D /∈ X (R)(g). Since X (R)(g) is closed in X (g)(R)

there exists a classical neighborhood V of D in X (g)(R) such that V ∩ X (R)(g) = ∅. Let
S = {d ∈ C2 ×· · ·×Cg−1 : p2(p−1

1 (d))∩V = ∅} and assume d0 ∈ S. Take a neighborhood
U of d0 in C2 ×· · ·×Cg−1, such that p−1

1 (U ) is homeomorphic to P
1(R)×U and p1|p−1

1 (U )

is identified with the projection P
1(R) × U → U . The closure of p−1

1 (S ∩ U ) in X (g) × U
is identified with P

1(R) × (S ∩ U ) (here S ∩ U is the closure of S ∩ U in U) hence p−1
1 (d0)

belongs to the closure of p−1
1 (S × U ). But p−1

2 (V ) is a neighborhood of (D, d0) in Z
hence p−1

2 (V ) ∩ p−1
1 (S ∩ U ) �= ∅. Of course this contradicts the definition of S, hence

d0 /∈ S. Hence, there exists a neighborhood U of d0 in C2 × · · · × Cg−1 such that for all
d ′ = (Q′

2, · · · , Q′
g−2, P ′

g−1) ∈ U one has p2(p−1
1 (d ′)) ∩ V �= ∅, hence there exists a

divisor D′ ∈ V with D′ ∈ |K X − (Q′
2 + · · · + Q′

g−2 + P ′
g−1)|. In particular, |K X − (Q′

2 +
· · · + Q′

g−2 + P ′
g−1| contain a divisor D′ containing a non-real point in its support. Since

|K X − (Q′
2 +· · ·+ Q′

g−2 + P ′
g−1)| has odd parity on C2, · · · , Cg−1 and even parity on C1 it

follows Supp(D′)∩C1 = ∅. In case |K X − (Q′
2 +· · ·+ Q′

g−2 + P ′
g−1)| would contain a base

point for all d ′ ∈ U , using terminology from [1], it would imply dim((W 1
g−1 + W 0

1 )(R)) ≥
g − 2. Since W 1

g−1 = g − 4 (X is not hyperelliptic, so we can apply Martens’ Theorem,
see [1]) this is impossible. So we can assume |K X − (Q′

2 + · · · + Q′
g−2 + P ′

g−1)| is base

point free. But then it corresponds to a covering f ′ : X → P
1 of degree g having odd degree

on C2, · · · , Cg−1 and f ′(C1) �= P
1(R). This contradicts the assumptions on X. This proves

|K X − (P1 + · · · + Pg−1)| = |P1 + · · · + Pg−1| and so P1 + · · · + Pg−1 is a half-canonical
divisor. From parity considerations, we also obtain dim |P1 + · · · + Pg−1| < 2 for such
divisor, implying the finiteness of linear systems g1

g−1 associated with separating morphisms
on a real separating (M − 2)-curve of special type. ��

In [6, Example 3], it is noted that each separating (M − 2)-curve of genus 3 is of special
type. It follows from the previous proposition this is not the case for genus g ≥ 4.

Corollary 4.2 Let g be an integer at least 4. There exist real separating (M − 2)-curves
of genus g not of special type.

Proof From [5], we know there exists a dividing (M − 2)-curve X such that sepgon(X) =
g − 1. Assume X is of special type. Let π : X → S be a suited family for X and s0 ∈ S(R)

with X = π−1(s0). Let πg−1 : H → S be the parameter space parameterizing morphisms
of degree g − 1 from fibers of π to P

1. From deformation theory of Horikawa, it follows
H is smooth of dimension 4g − 4. Such morphism corresponds to a linear system g1

g−1, let

Hh(C) be the subset of H(C) corresponding to half canonical linear systems g1
g−1. This is a

closed subset of H(C) of dimension 3g − 1, and it is invariant under complex conjugation,
so Hh(C) are the complex points of a closed subset Hh ⊂ H defined over R and we find
dim(Hh(R)) ≤ 3g − 1, in particular for each f ∈ Hh(R) one has U ∩ H(R) �= Hh(R). By
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assumption, there exists [ f ] ∈ π−1
g−1(s0)(R) such that f : X → P

1 is a separating morphism.
From Proposition 4.1, it follows [ f ] ∈ Hh(R). Hence, f deforms to a separating morphism
[ f ′] that is not half canonical. By Proposition 4.1, this is defined on a fiber X ′ of π not of
special type. ��

The previous proof also implies the following fact.

Corollary 4.3 Tg,s ∩ Tg,g−1 ⊂ Tg,ns in case g ≥ 4.

We now prove the strong relation between both partitions of Tg .

Theorem 4.4 Let X be a real separating (M − 2)-curve of genus g not of special type, then
sepgon(X) = g − 1, hence Tg,ns ⊂ Tg,g−1.

Proof Assume X is a separating (M − 2)-curve of genus g not of special type. We can
assume that there exists a separating real morphism f : X → P

1 of degree g, otherwise
clearly sepgon(X) = g − 1. For each component Ci of X (R) one has f |Ci : Ci → P

1(R) is

a covering of some degree di ≥ 1 and
∑g−1

i=1 di = g. It follows di = 1 except for one value
di = 2, we can assume d1 = 2 and d2 = · · · = dg−1 = 1. The morphism f corresponds to
a linear systems g = g1

g and |K X − g1
g| �= ∅. Since deg(K X − g1

g) = g − 2 and |K X − g1
g|

has odd degree on C2, · · · , Cg−1 it follows |K X − g1
g| = {Q2 + · · · + Qg−1} for some

Qi ∈ Ci . By assumption X is not special, hence there exists Q′
i ∈ Ci for 2 ≤ i ≤ g

such that |K X − (Q′
2 + · · · + Q′

g−1)| defines a g1
g = g′ on X such that g′ corresponds

to a non-separating morphism f ′ : X → P
1, hence Ci for 2 ≤ i ≤ g − 1 dominates

P
1(R) but C1 does not. This implies g′ contains a real divisor P ′ + P ′ + P ′

2 + · · · + P ′
g−1

with P ′ + P ′ a non-real point of X. Take a path γ : [0, 1] → C2 × · · · × Cg−1 with
γ (0) = (Q2, · · · , Qg−1) and γ (1) = (Q′

2, · · · , Q′
g−1). Let γ (t) = (Q2(t), · · · , Qg−1(t)

and g1
g(t) = |K X − (Q2(t) + · · · + Qg−1(t))|. In case g1

g(t) is base point free for all t ∈ I

we can find a family of real morphisms ft : X → P
1 with f0 = f and f1 = f ′. Since

the topological degree of f (resp. f ′) is (2, 1, · · · , 1) (resp. (1, · · · , 1, 0)) and this discrete
invariant should be constant in this family, we obtain a contradiction. So there exists t0 ∈ I
such that g1

g(t0) has a base point. Moreover, for t < t0 we can assume g1
g(t) defines a

separating morphism ft : X → P
1. By continuity it follows each divisor on g1

g(t0) is of type

P1 + P ′
1 + P2 + · · · + Pg−1 with P1, P ′

1 ∈ C1 and Pi ∈ Ci for 2 ≤ i ≤ g − 1. Assume P2 is

a fixed point of g1
g(t0) then for P ′

2 ∈ C2 \ {P2} there is no divisor in g1
g(t0) containing P ′

2, a

contradiction. So we find Pi is not a fixed point for 2 ≤ i ≤ g − 1, hence we can assume P ′
1

is a fixed point. But then we find dim |P1 + P2 +· · ·+ P ′
g−1| = 1, hence g1

g(t0)− P ′
1 defines

a separating morphism f0 : X → P
1 of degree g − 1. This proves sepgon(X) = g − 1. ��

Corollary 4.5 Let g ≥ 3. There exist separating (M − 2)-curves X of special type such that
sepgon(X) = g − 1.

Proof From Lemma 2.6 it follows Tg,ns is an open subset of Tg and it follows from Corol-
lary 4.2 that Tg,ns �= ∅. It is already proved in Theorem 3.1 that Tg,ns �= Tg (indeed,
Tg,ns �= ∅). Since Tg is connected it follows Tg,ns is not closed. On the other hand, we
just proved Tg,ns ⊂ Tg,g−1 and it is proved in Lemma 2.7 that Tg,g−1 is closed. Hence,
Tg,ns �= Tg,g−1 and therefore Tg,s ∩ Tg,g−1 �= ∅. ��

The proof of this corollary implies the following inclusion.
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Corollary 4.6 Tg,ns ∩ Tg,s ⊂ Tg,g−1

Together with Corollary 4.3, this implies

Corollary 4.7 Tg,ns = Tg,g−1.

Corollary 4.8 Let g ≥ 4. There exist general separating (M−2)-curves of genus g of special
type and general separating (M − 2)-curves of non-special type.

Proof From Corollary 4.2, it follows that there exist separating (M − 2)-curves of genus g
of non-special type. Then from Lemma 2.6, we know there exist general separating (M −2)-
curves of genus g of non-special type. In [4], it is proved that Tg,g �= ∅ (this is also obtained
from Proposition 3.2). Such curve does not belong to Tg,ns hence Tg \Tg,ns ⊂ Tg,s is an open
non-empty subset of Tg , and it parameterizes general separating (M − 2)-curves of special
type. ��

The previous result also implies the following remarkable corollary.

Corollary 4.9 There exist dividing (M −2)-curves X of genus g ≥ 4 such that W 1
g−1(X)(R)

has an isolated point.

Proof Again let X be a dividing (M − 2)-curve of special type having separable gonality
g − 1. From Corollary 4.5, we know X does exist. A separating morphism f : X → P

1

of degree g − 1 corresponds to a complete base point free g1
g−1 on X, hence it belongs to a

connected component of W 1
g−1(X)(R) and each g′1

g−1 close to g1
g−1 is also base point free,

complete and induces a separating morphism. But from Proposition 4.1, it follows g′1
g−1 has

to be half canonical. Since a curve has only finitely many half-canonical linear systems, it
follows g1

g−1 corresponds to an isolated point of W 1
g−1(X)(R). ��

This corollary is in sharp contrast (in case g ≥ 5) to the fact that the dimension of each
component of W 1

g−1(XC) is at least g − 4. In the final remark, we explain that it seems to
indicate difficulties in studying the real gonality of real curves.

Remark In his paper [2], E. Ballico considers an upper bound for the real gonality of real
curves. In moving families of real curves X, some components of W 1

d (R) existing on general
curves can vanish at ”transition” curves (meaning curves having such components, but not
on all curves of some neighborhood in the moduli space; this terminology is not used in loc.
cit.). In his arguments, the author proves that having such a transition curve using degree
[(g + 3)/2] (this is the gonality of a general complex curve of genus g), then there is a real
pencil of degree at most [g + 3)/2]+ 3 that propagates to all nearby real curves of it. How to
finish the argument to conclude that it propagates on a dense set of the moduli space of real
curves is not clear to me (it seems to me there is no argument in loc. cit.). As a matter of fact,
the previous corollary shows that such components of W 1

d (R) can vanish in isolated points
at those transition curves. In particular, those transition curves do not need to have a singular
locus of W 1

d (XC) of dimension at least 1; the basic tool in loc. cit. is the study of complex
curves having a singular locus of some W 1

d of dimension at least one (or more). The previous
corollary is the most extreme case showing what could go wrong in the argument from [2].
On the other hand, it is clear that the arguments coming from [2] had much influence on the
present paper.
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