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Abstract A separating (M — 2)-curve is a smooth geometrically irreducible real projective
curve X such that X (R) has g — 1 connected components and X (C) \ X (R) is disconnected.
Let T, be a Teichmiiller space of separating (M — 2)-curves of genus g. We consider two
partitions of 7, one by means of a concept of special type, the other one by means of the
separating gonality. We show that those two partitions are very closely related to each other.
As an application, we obtain the existence of real curves having isolated real linear systems
g;_l forall g > 4.

Keywords Real curve - Linear pencil - Separating gonality - Special type -
Teichmiiller space
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1 Introduction

Let X be a smooth real projective curve of genus g. We assume X is complete and geometrically
irreducible; hence, the set X (C) of complex points is in a natural way of a compact Riemann
surface of genus g. Let X (R) be the set of real points and assume it is not empty. Let
C1, -+, Cg bethe connected components of X (R). Itis well known thats < g+ 1 (Harnack’s
inequality). Let f : X — P' be a morphism of degree k. It is known that the parity of the
fibers (counted with multiplicities) of f|c, : C; — PY(R) is constant. In particular, in case
this parity is odd then f(C;) = P'(R). In our paper [6], we considered the following problem.
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962 M. Coppens

Problem Fixk,s' < sands’ components C;,, - - - , Cj, of X (R). Does there exist a morphism
f : X — P! of degree k such that f has odd parity on Cjforjelfiy,---,ig}and f(C;) #
PY(R) for j ¢ {i1, - ,ig}.

Of course, s — s’ = 0 (mod 2) is a necessary condition and in [6, Proposition 1] it is
proved that in case k = g + 1 this condition is also sufficient. However, in case k = g then
this condition is not sufficient because of the following example mentioned in [6, Example
3]. A real curve X of genus 3 with s = 2 and such that X (R) disconnects X (C) is isomorphic
to a smooth plane real curve of degree 4 having two nested ovals (Cy in the inner part of C»).
Taking k = 3, s’ = 1 and i; = 1, then for each morphism f : X — P! of degree 3 having
odd parity on Cp one has f(C>) = ]P’l(R).

A real curve X such that X (R) disconnects X (C) is called separating, and it is shown
in [6, Theorem 1.A] that the condition s — s’ = 0 (mod 2) is sufficient for an affirmative
answer to the problem in case k = g and X is not separating. In [3, Example 5.9] as a second
example, one finds separating curves of genus 4 with s = 3 such that there exist components
Cj and C5 of X (R) such that for each morphism f : X — P! of degree 4 having odd parity
on C; and C, one has f(C3) = P'(R) (C3 is the other component of X (R) different from
Cj and C7). The argument makes use of the description of a canonically embedded curve
of genus 4 in P? as the intersection of a cubic and a quadric surface. In both examples, we
have s = g — 1. Classically, a real curve X satisfying s = g + 1 is called an M-curve, and
in the literature, a real curve satisfying s = g + 1 — a is also called an (M — a)-curve. So
both examples are separating (M — 2)-curves. In Theorem 3.1, we prove that for all g > 3
there exists a separating (M — 2)-curve X having components Cy, - - - , Cg—1 of X (R) such
that, if f : X — P! is a morphism of degree g having odd parity on C5, - - - , C,_1 then
£(C1) = P(R) (in this statement, the numbering of the components of X (R) is important).
We say such a curve is of special type. Theorem 3.1 is a direct consequence of Proposition 3.2.
In Proposition 3.2, we prove a more geometric statement related to this concept: the existence
of a canonically embedded separating (M — 2)-curve X possessing a strong kind of linking
between the connected components of X (R).

We prove a stronger statement. Let T, be the Teichmiiller space parameterizing separating
(M — 2)-curves of genus g. In case t € T, then we write X, to denote the corresponding real
curve. This space T is a real connected manifold of dimension 3g — 3. We say a property
P holds for a general separating (M — 2)-curve if there exists a non-empty open subset U of
T, such that P holds for all curves X, with t € U (roughly speaking: the curves satisfying
property P have the maximal 3g — 3 moduli). From Corollary 4.8, it follows that for g > 4
both properties “being of simple type” and “'not being of simple type” do hold for a general
separating (M — 2)-curve of genus g (in case g = 3 all separating (M — 2)-curves are of
special type). Let T s (resp. T ) be the set of points ¢ € T, such that X, is of special type
(resp. X; is not of special type). So we have a partition Ty = Tg ;U Ty 5. In Lemma 2.6,
we show Ty  is closed, hence Ty ,, is open. This partition turns out to be closely related to
another very natural parition of 7.

In case a real curve X has a morphism f : X — P! with X(R) = f‘1 (P'(R)) then
X is separating. Such morphism is called a separating morphism. In [4], we introduce the
separating gonality sepgon(X) of a separating real curve X: it is the minimal degree such that
there exists a separating morphism f : X — P'. For a separating (M — 2)-curve X trivially
one has sepgon(X) > g — 1. On the other hand, from [7] it follows sepgon(X) < g and in
[4] it is proved that both possibilities g — 1 and g do occur. Let T, ¢ (resp. T, ¢ 1) be the
set of points t € T, such that sepgon(X;) = g (resp. sepgon(X;) = g — 1). So we obtain
a second partition Ty = Ty o U T, 1 and the relation between both partitions is given by
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Pencils on separating (M — 2)-curves 963

the fact that the closure Ty, Of T ns is equal to Ty o1 (see Corollary 4.7). It follows that
To o =Ty \ (Tgs N T, u5) is a non-empty open subset of 7.

The fibers of a separating morphism f : X — P! of degree g — 1 correspond to a linear
system g}f,il on X. Complete linear systems of degree g — 1 and dimension at least one

on X are parameterized by a subscheme W};_] of the Jacobian J(X) and in case X is not

hyperelliptic then all components of Wg]_] (C) have dimension g — 4. Linear systems g;_]
corresponding to separating morphisms of degree g — 1 on a separating (M — 2)-curve X
are parameterized by a dense open subset of some irreducible components of WALI (R). In
case X is a general non-special separating (M — 2)-curve then all such components have
real dimension g — 4. If X is a special separating (M — 2)-curve with sepgon(X) = g — 1
then our results imply X = X, for some ¢ € Tg s N T »s. In Corollary 4.5, we prove this
intersection is non-empty and in Proposition 4.1, we prove such X has finitely many g ;7 I

associated with separated morphisms of degree g — 1. In particular for such curve, WSLI R)
has isolated points (see Corollary 4.9). In case g > 5 this is remarkable when compared with
dim(W;_1 (C)) = g — 4. The finiteness follows from the following remarkable fact proved

in Proposition 4.1. If X is an (M — 2)-curve of special type, then a linear system g;,_l on X

corresponding to a separated morphism f : X — P! is half canonical.

2 Preliminaries and notations

A real curve X is a one-dimensional geometrically connected projective variety defined over
the field R of the real numbers. Using a base extension R C C, we obtain a complex curve
Xc. Its set of closed points is denoted by X (C) and it is called the space of complex points
on X. Complex conjugation related to R C C defines a complex conjugation on X (C), for
P € X(C) we write P to denote the complex conjugated point. On X itself (considered as
a scheme) there are two types of closed points according to the residue field being R or C.
In case the residue field is R then we say it is a real point on X. The set of real points is
denoted by X (R), and there exists a natural inclusion X (R) C X (C). In case the residue field
is C, then the closed point on X corresponds to two conjugated points P, P on X (C) \ X (R).
Such closed point on X is denoted by P + P and it is called a non-real point on X. The real
projective line Proj (R[Xo, X1]) is denoted by P!. A linear system of dimension r and degree
d on a smooth real curve X is denoted by g;. It is a projective space of linearly equivalent
real divisors on X.

In case X is a smooth (resp. stable) complex curve, we call X a smooth (resp. stable) real
curve. The moduli functor of stable curves of genus g is not representable, hence there is no
universal family. Instead, we make use of the so-called suited families of stable curves.

Definition 2.1 Let X be a real stable curve of genus g. A suited family of stable curves of
genus g for X is a projective morphism  : C — S defined over R such that
1. S is smooth, geometrically irreducible and quasi-projective.
2. Each geometric fiber of 7 is a stable curve of genus g.
3. For each s € S(C), the Kodaira—Spencer map 75(S) — EXII(QH—I(S), Op-1(5)) 18
surjective (here €2, -1 is the sheaf of Kihler differentials).
4. There exists so € S(R) such that 7! (sg) = X over R.
In case X is smooth, we also assume 7 is a smooth morphism.
In [4, Lemma 4], it is explained such suited families do exist. Let X be a smooth real
curve and let 7 : C — S be a suited family for X. Let k € Z with k > 2. There exists a
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964 M. Coppens

quasi-projective morphism 7y : Hy () — S representing morphisms of degree k from fibers
of  to P! (see [10, Section 4.c]). Let f : X — P! be a morphism of degree k. It defines
an invertible sheaf L = f*(Opi(1)) of degree k on X. The morphism f induces an exact
sequence 0 — Tx — f*(Tp1) = Ny — 0 (N is defined by this exact sequence) and since
Tp1 = Op1(2) this exact sequence looks like

0—>TX—>L®2—>Nf—>O

The morphism f corresponds to a point [f] on Hy (;r) and from Horikawa’s deformation
theory of holomorphic maps (see [11], see also [14, 3.4.2]), it follows T} 7| (H (7)) is canon-
ically identified with HO(X, Ny) and since H'(X, Ny) = 0 it follows Hy (7r) is smooth of
dimension 2k + 2g — 2. Moreover, T, (S) is isomorphic to H (X, Tx) and the connecting
homomorphism H 0x,N ) — H L(X, Tx) associated with the exact sequence is identified
with the tangent map djs1(mmx) : 1) (Hi () — T, (S). In particular, d[ r1(7x) is surjec-
tive in case H'(X, L®?) = 0. Hence the condition H'(X, L®?) = 0 implies zrk_l (s0) has
dimension 2k — g + 1 and it is smooth at [f]. In [5], we introduced the topological degree
of f. Choose an orientation on p! (R). For each component C of X (R) (this is a smooth real
manifold diffeomorphic to § 1), we consider the restriction flc:C — P!(R) and we fix an
orientation on C such that deg(f|c) > 0. We say fis of topological degree (dy, - - - , ds) with
dy > --->ds > 0 if there is a numbering Cy, - - - , C, of all components of X (R) such that
deg(flc;) = d;. In families of morphisms from smooth real curves to P! this topological
degree is constant, hence it is constant on connected components of Hy () (R).

Let X be a smooth real curve. In case X (R) # ¢ then it is a disjoint union of s = s(X)
connected components diffeomorphic to a circle. In case X (C) \ X (\R) is not connected, it
has two connected components and X is called a separating real curve. For a separating real
curve,onehas 1 <s <g—1lands =g+ 1 (mod 2).Incases = g+ 1 —a then X is called
an (M — a)-curve. The following definitions are already mentioned in the introduction.

Definition 2.2 A separating (M — 2)-curve X is of special type if there exists a component
C of X (R) such that for each morphism f : X — P! of degree g having odd parity on each
connected component C’ # C of X (R) one has f(C) = P'(R). If no such component C
exists then we say X is not of special type.

Definition 2.3 A morphism f : X — P! is called a separating morphism if f~'(P'(R)) =
X(R).

In case X has a separating morphism then X is a separating real curve.

Definition 2.4 The separating gonality sepgon(X) of a separating real curve X is the minimal
degree k such that there exists a separating morphism f : X — P! of degree k.

As already mentioned in the introduction, in case X is a separating (M — 2)-curve then
sepgon(X) is either g or g + 1. As mentioned in the introduction, we write T, to denote a
Teichmiiller space parameterizing separating (M — 2)-curves and we obtain two partitions
Ty = T, UTg g and Ty = T,y o U T, o 1. Remember T, is a smooth real manifold of
dimension 3g — 3, and it has a universal family 7, : X, — T,. For each separating real
(M — 2)-curve Xy, there exists 79 € T, such that tg’l(to) = Xo. Moreover, if 7 : C; — S
is a suited family of curves for X and 59 € S(R) with 7 (s0) = Xy, then there exist
neighborhoods U (resp. V) of #g (resp. sp) in T, (resp. S(R)) and a diffeomorphism U — V
such that, if u € U maps to v € V then tg_l(u) = 7).
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Lemma 2.5 Let X be a separating (M — 2)-curve, let Cy, - - -, Cq_1 be the connected com-
ponents of X (R) and assume f : X — Pl is a covering of degree g having odd par-
ity on Cy,---,Cqg2. Then f(Cy—1) # PY(R) unless flc, ., is an unramified covering
Co 1 —> PHR) of degree 2.

Proof Firstof all, the morphism fhas even parity on C, 1 (because of the necessary condition
involving s and s’ for the problem mentioned in the introduction). Since each fiber above a
point x of P1(R) contains a pointof C; for 1 <i < g—2,itcontains at most 2 points of Cy_|
(counted with multiplicities), and there cannot be a ramification point on C,_ | of index more
than two. If there is a ramification point xo on C,— of index two then close to f(x¢), there
exists x’ € P'(R) such that f~'(x’) contains a non-real point. It follows f~!(x’) cannot
contain a point of C,_ hence f(Cy—1) # P!(R). Hence, f(Cey) = P!(R) implies f has
no ramification point on C,_1, hence f lcys is an unramified covering C;_| — PY(R) of
degree two. O

Remark In the situation of the previous lemma, if f(Cg_y) = PLR) it follows
FHPY(R)) = X (R), hence fis a separating morphism of degree g. In that case fhas topolog-
ical degree (2, 1,---,1). Incase f(Cg_1) # ]P’l(]R) it has topological degree (1, ---, 1, 0).

Lemma 2.6 T, ,; C Ty is open and (hence) Ty  C Ty is closed.

Proof We are going to prove that T, ,; C Tg is open. Let t € Ty ;5 and let X = ly L(#). Let
m : C — S be a suited family for X and s € S(R) such that 771s) = X. Itis enough to
prove there exists a classical open neighborhood U of s in S(R) such that for all s’ € U the
curve 7~ ! (s’) is a separating (M — 2)-curve not of special type. It is well known that points
in S(R) close to s do correspond to separating (M — 2)-curves, so we only have to show they
are also of non-special type.

Choose a component C of X. Since the curve is not of special type, there exists a covering
f:X—pP of degree g such that it has topological degree (1, --- , 1, 0) and f(C) # PH(R).
Consider 7y : Hy() — § with Hg(7r) parameterizing morphisms of degree g from fibers
of 7 to P! and now let H be the connected component of H,(7)(R) containing [f]. From
the deformation theory of Horikawa, we know H is smooth of dimension 4g — 2. Moreover,
f corresponds to an invertible sheaf L of degree g, therefore H l(X , L®2) = 0, hence the
description of the tangent map of 7 at [f] implies this tangent map has maximal rank. So the
image of a neighborhood of [f] on H contains a neighborhood U of s in S. Intersecting those
neighborhoods for all choices of C (again denoted by U), we obtain for each s’ € U and
for each component C’ of 7! (s')(R) the existence of a morphism f’ : 77 !(s’) — P! of
topological degree (1, -- -, 1, 0) having even parity on C’, hence f/(C’) # P!(R) because
of Lemma 2.5. This means 7~ ! (s") is not of special type. O

Lemma 2.7 T, , | C T, is closed and (hence) T, o C T, is open.

Proof Let X be a curve corresponding to a point on the closure of T, ¢ 1. Then Xg is the
limit of a family of separating (M — 2)-curves X, (¢ > 0) having a separating morphism
fi+ X, — Plof degree g — 1. Since X;(R) has g — 1 components such morphism has to
be of topological type (1, - - -, 1). Therefore, the fiber of f; over a real point of P! is of type
Py + --- 4+ P,_ with P; belonging to different components of X,;(R). The limit of such
divisor on X is of the same type and belongs to a complete linear system of dimension at
least 1. So it defines a complete linear system gg,_l for some r > 1 having odd degree on each
component C of Xo(R). In case r > 1 then for Py, Pl’ on the same component C of X((R),
there should exist D € g;_l containing P; 4+ P{. Since D should contain a point of each
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966 M. Coppens

component of Xo(R), this is impossible. So » = 1. In case D would have a base point (say Pj)
then for P| general on the same component, there should exist D € g;_l containing Pj + P|

giving the same contradiction. So g ;_l corresponds to a base point free linear system having

odd degree on each component of X((R), so it defines a separating morphism fy : Xo — P!
of degree g — 1. O

3 Existence of separating (M — 2)-curves of special type

Theorem 3.1 For each g > 3 there exists a separating (M — 2)-curve X of special type.

This theorem is an immediate corollary of the next proposition. This proposition shows
that the components of the real locus of a canonically embedded real curve can be strongly
linked with each other. Therefore, the proposition describes the geometric reason for the
existence of separating (M — 2)-curves of special type. It would be interesting to obtain more
information concerning the way the components of the real locus of a canonically embedded
real curve can be linked.

For a curve X embedded in some projective space [P and an effective divisor E on X, we
denote (E) for the linear span: it is the intersection of hyperplanes H of P such that H.X > E
(and it is P in case such hyperplane does not exist).

Proposition 3.2 For all g > 3 there is a canonically embedded (M — 2)-curve X C P8~!
having real components Cy, - - -, Cg_1 of X (R) such that

1. forall P; € C; (1 <i < g—1)onehasdim((Py, -+, Pg_1)) =g—2
2. forall P; € C; (2 <i < g — 1) and for each real hyperplane H C P8~ containing
(Py, -+, Py_1) onehas HN Cy # 0.

Proof of Theorem 3.1 Let X be as described in Proposition 3.2. Take P, € C; (2 < i <
g — 1) and consider |[Kx — (P, + -+ + Pg_1)|. From (1) in Proposition 3.2 we have
dim({(P,---, Pg—1)) = g — 3 hence dim(|Kx — (P, + -+ Pg—1|) = 1 (|IKx — (P> +
-+ + Pg_1)| is the linear system induced by the pencil of hyperplanes in P ~! containing
(P>, -+, Py_y1),itis denoted by g;,). Since Kx has even degree on each component of X (R)
it follows gi, has odd degree on C; for 2 < i < g and even degree on C;. From (2) in
Proposition 3.2, it follows each divisor D € gg} contains some point of Cp, hence it con-
tains a divisor of degree 2 with support on Cj. This proves each divisor of gg, is of the type
D=P1’+P1”+P2/+---+Pé_1 with P/ € C; for1 <i < g—1land P/ € C;.

Assume P/ is a base point of g;, for some 2 < i < g — 1, then no divisor of g; can contain
another point of C;. This is impossible hence P/ is not a base point for 2 < i < g — 1.
Assume, for example, P{’ is a base point for g;, thendim |P{ + Pj+ -+ Pg"_1| = 1. Then,
the geometric version of the Riemann—Roch theorem (see for example, [8, p. 248]) implies
dim(Py,---, Png) = g — 3 contradicting (1) in Proposition 3.2. So g; is base point free
and it defines a covering f : X — P! having odd degree on C; for2 < i < g — 1 and such
that C; also dominates P! (R). From the description of the divisors of gg, it follows all fibers
of fover P! (R) are totally real, hence X is a separating curve.

Conversely, if f : X — P! is a morphism of degree g having odd parity on C; for
2 <i < g — 1, then for a real fiber E of fone has |[Kx — E| # (J and |Kx — E| has odd

parity on Ca, - -+, Cg_1. Since deg(Kx — E) = g — 2 each divisor of [Kx — E] is of type
Py+-- -+ P, ywithP; € Cifor2 <i < g—1.Sofcorresponds to |Kx — (P2 +- - -+ Py_1)|
and we already proved f(C;) = P!(R). This shows X is of special type. O
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For a curve X satisfying properties (1) and (2) of Proposition 3.2, we found | Ky — (P> +
<o+ Pg_y)| with P; € C; (2 <i < g — 1) defines a covering 7 : X — P! such that C;
dominates P! (R) for 1 <i < g — 1. In particular,  is not ramified at some real point of X.
Since deg(|c,) = 2, it also implies condition (2) of Proposition 3.2 is equivalent to: for all
P, € C; (2 <i < g — 1) and for all real hyperplanes H C P¢~! containing (Ps, - - - , Py_1)
one has H intersects C transversally at 2 points. In the proof, we are going to use this (at
first sight stronger) statement.

Proof of Proposition 3.2 We are going to prove for all g > 3 the existence of a canonically
embedded smooth real curve X C P¢~! of genus g such that X (R) has g — 1 connected

components Cy, - - - , C,_1 and satisfying the following two properties
(P1) Forall P; € C; (1 <i < g — 1)onehasdim ((Py,--, Py_1)) = g — 2.
(P2) Forall P; € C; (2 <i < g—1)eachhyperplane H C ps—! containing (P2, - - - , Py_1)

intersects C; transversally at two points.

In the first part of the proof, we prove the existence of X for the (already known) case
g = 3. The arguments used to prove this case will be generalized in the second part of
the proof in order to obtain a proof by induction on g. In both parts of the proof, we are
going to use the following fact. Let I'g be a canonically embedded non-hyperelliptic real
singular curve having an isolated real node S as its only singularity and such that I'o(R) \ {S}
has n connected components. There exists a real algebraic deformation 7 : X — [ with
I a small neighborhood of 0 in [0, +00o[C R such that 7710) = Iy and for ¢+ > 0 the
curve X; = 7w~ !(¢) is a smooth real complete curve of genus g such that X, (R) has n + 1
connected components (see for example, [13, Section 7], it can be shown directly by using part
of Construction ITin [5]). We can assume for all ¢ € I the curve X; is not hyperelliptic. Using
the relative dualizing sheaf for this deformation we can assume it is a family of canonically
embedded real curves in P21

First part of the proof Let Xq be a real hyperelliptic curve of genus 2. It has a unique real
component Cyp ; and Cp,; dominates PY(R) for the hyperelliptic covering (see [9, Section 6]).
Take Q + Q general on Xq (hence Q € X((C) \ Xo(R)) and consider the real linear system
|Kx, +(Q+ ‘0)| on X. Since all real divisors in g% on X consist of 2 real points we have
Q+0¢zs.

In both parts of the proof, we use the following general fact concerning smooth complex
curves M of genus g > 2. Let P and Q be two different points on M with dim |P + Q| =0
(this is always the case if M is not hyperelliptic) and consider the linear system | K+ P+ Q|.
This is a base point free linear system on M, and it defines a morphism ¢ : M — P& such
that the image I' C P§ of M is the nodal curve of arithmetic genus g + 1 obtained from M by
identifying P and Q to become an ordinary node S = ¢(P) = ¢(Q) of I" and I' is embedded
by the dualizing sheaf wr (this is well known, an argument can be found in [4, Lemma 5]).

Applying this argument using |Kx, + (Q + '0)|, we obtain a canonically embedded real
singular curve I’y C P? of degree 4, birationally equivalent to Xo. The singular point S on
I is an isolated point on I'(R) and projection with center S on a real line P! ¢ P? induces
a real covering Xo — P! corresponding to the g% on Xo. The real locus X (R) corresponds
to the unique connected component Cq | of I'g(R) \ {S}. Since S ¢ Co,; one has

(P1’) Forall P € Cp 1 one has dim(P, S) = 1.
Moreover, if H C P? is a real line containing S, then H induces a divisor on X
belonging to g21 + Q + Q. This divisor is real, hence it contains two different points
of Xo(R). On I'y one has
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(P2’) Each real line H C P? with S € H intersects Cy,; transversally at 2 points.

We obtain a real family # : X — I C [0, +oo[C R of canonically embedded real
curves of genus 3 in P? such that 71_1(0) = Iy and for t > 0 the curve 77 1(r) = X, is
smooth such that X;(R) has 2 connected components. Let C; | be the connected component
of X, (R) specializing to Cp,; and let C; > be the connected component of X; (R) specializing
to {S}. Let C; be the union of those components C;; (including S in case i = 2). For the
classical topology on X(C) those are closed subsets. Consider the fibered product C; x 1 Ca
and its subset Z defined by (P;, P») € Z if and only if dim(P;, P») = 0 (i.e., P = P2).
This is a closed subset in C; x; C> and since the natural map C; x; C; — [ is proper, it
follows the image Z of Z in I is closed. Because of (P1°) one has 0 ¢ Z. Shrinking / we can
assume Z = ¥. Let Gg be the Grassmannian of real lines in P2 and define Z C C» x Gg
by (P, L) € Zifandonly if P € L. Let Z' C Z be defined by (P, L) € Z’ if and only if L
does not intersect Cy(py, transversally. Since Z’' C C2 x G is closed and the induced map
Cy x Gg — I is proper it follows the image Z’ of Z’ in I is closed. Because of (P2’) one has
0 ¢ Z'. Shrinking I we can assume Z' = (.

Take 79 # O and let X = X,, C P2, Itis a canonically embedded real curve of genus 3 and
X (R) has two connected components C; = Cy,; (i = 1,2). Let P, € C; fori = 1,2 then
(P1, Py) ¢ Z =0, hence dim(Py, P») = 1. This implies (P1) for this curve X. Let P, € C;
and let L be a real line in P2 with P, € L. Then (P», L) € Z. Choose a family (Pr,2, Ls)i>0
in Z with (P, L) = (P2, L). Then Py» = S hence L intersects Cp,; transversally at 2
points. Since Z’ = @ it follows all intersections of L; and Cy; (t > 0) are transversal. Since
U;>0{f} X L; and C; are closed in the classical topology of I x P2 it follows L intersects C|
transversally at 2 points. This implies (P2) for this curve X. O

Second part of the proof Repeating the arguments of the first part of the proof, we are going
to finish the proof by induction on the genus. Assume Xo C P8~! is a canonically embedded
smooth real curve of some genus g > 3 satisfying properties (P1) and (P1). Take Q + Q
general on X (by assumption already X is not hyperelliptic hence dim |Q + Q| = 0).
Using |Kx, + (Q + '0)|, which is a real linear system on X, we obtain the canonically
embedded real singular curve I'y C P& having a unique singular point S. This singular point
is an isolated point on I'o(R). Choosing a real hyperplane P$~! C P not containing S then
projection with center S on P¢~! induces a canonical embedding Xo C P2~! defined over
R. Let Cp; (1 <i < g — 1) be the connected component of I'g(R) \ {S} corresponding to
the component C; of X(R). As before assumptions (P1) and (P2) imply

(P1’) Foreach Py; € Cp,; (1 <i < g — 1) one has dim (<P0,17 coe, Pogt, S)) =g—1
(P2’) For each Py; € Cp; (2 < i < g — 1) each real hyperplane H in P¢ containing
(Po2, -+, Pog—1,S) intersects Cp,| transversally at two points.

Consider a real deformation v : X C I x P§ — I C [0, 4+o0o[C R of canonically
embedded real curves of genus g + 1 with 771(0) = 'y C P¢ and for r # O one has
X, = 7~ 4) is a smooth real curve of genus g + 1 such that X,;(R) has g connected
components. For 1 <i < g—1andt # 0let C;; be the component specializing to Co ;
and let C; ¢ be the component specializing to {S}. For 1 < i < g let C; be the union of
those components C;; (including S in case i = g). Let Hig:L ; Ci be the set of g-uples
(P1,---, Py) with P, € C; and w(P;) = m(Pj) fori # jandlet Z C Hf’;l,] C; be defined
by (Py,---, Pg) € Z if and only if dim ((Pl, cee Pg)) <g—1LetZ C ]_[f:“ Ci x GRr
(now Gr is the Grassmannian of real linear subspaces of dimension g — 2 in IP§) be defined
by (P2, -+, Pg,H) € Tif and only if P; € C;, n(P;) = n(Pj) fori # jand P, € H
and let Z' C 7 be defined by (P», - -- , Py, H) € Z’ if and only if H does not intersect C;
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transversally ( = (P;)). From (P1’) and (P2’) it follows, by shrinking /, we can assume
Z and Z’ being empty. Then, taking fo # 0 and X = X,;, C P$, we obtain a canonically
embedded smooth real curve X of genus g such that X (R) has g connected components
C; = Cyy,i. As in the previous case, the arguments imply this curve X satisfies (P1) and (P2).

O

Condition 1 in Proposition 3.2 implies for P; € C; (1 <i < g—1)onehasdim |P+---+
Pg_1| = 0. This implies sepgon(X) # g — 1, hence we proved the existence of separating
(M — 1)-curves of special type of separating gonality g. As mentioned in the introduction,
we are going to prove thatin case t € Ty ; corresponds to a curve X, with separating gonality
g — 1 then ¢ is not an inner point of Ty ;. This indicates that it is natural to include the use
of the separating gonality in the deformation argument used in the proof of Proposition 3.2
(i.e., to use condition 1 to prove Theorem 3.1).

4 The relation between special type and the separating gonality

We start by proving the following remarkable fact concerning separating morphisms of degree
g — 1 on separating (M — 2)-curves of special type.

Proposition 4.1 Let X be a real separating (M — 2)-curve of special type of genus g > 3
satisfying sepgon(X) = g — 1, then each g;l on X having odd degree on each component of

X (R) is half canonical. In particular, X has only finitely many linear systems g ;_1 associated
with separated morphisms of degree g — 1.

Proof We assume X is canonically embedded in P$~! (as a matter of fact, X cannot be
hyperelliptic (see [9, Section 6]) and for an effective divisor E on X we write (E) to denote
its linear span in P8 -l LetCy,---,C ¢—1 be the connected components of X (R) and assume
for each covering f : X — P! of degree g having degree 1 on C; for2 <i < g — 1 one has
f(C1) =P'(R). Leth : X — P! be a separating morphism of degree g — 1 and let E be a real
fiberofi(hence E = Q1+ -- Qg—1for Q; € C;forl <i < g—1). Because of the Riemann—
Roch theorem dim |[Kx — E| > 1 and |Kx — E| has odd parityoneach C; (1 <i < g—1).
Since deg(Kx — E) = g — 1 each real divisor of |Kx — E| is again of type Q1 + -+ Qg1
with Q; € C;for1 <i < g—1.Choose P| € Cy andlet P{ + P>+ --+ P, be areal fiber
ofhand Py + Q2 +---+ Qg1 € |[Kx — E| (here P;, Q; € C;for2 <i < g —1).Incase
Pi+Py+---+ P 1 # P+ Q2+ -+ Qg1 wecan assume without loss of generality that
Py_1 # Q1. Assume X is canonically embedded and assume Q, | € (P| + -+ Py_2).
Since Py € (P + --- Pg_7) it follows dim((P; + --- Pg_1 + Qg—1)) = g — 3, and
therefore dim(| Py + Q2 + - - - + Qg—2|) = 1. Hence, there would exist a gl_2 on X having
odd degree on Cy, - - - , Cg_2. Since [P| + Q2 + - - - + Q2| has odd parity on each C; for
1 <i < g — 2 and because of the existence of one more component C,_ this is impossible.
This proves Qg1 ¢ (P + -+ -+ Pg_>) and therefore dim |Py + -+ P2 + Qg—1| = 0.
Since 2Py + P+ -+ Py_2+ Qg1 € |[Kx —(Q2 4+ -+ + Qg_2 + P,_1)| one obtains
dim 2Py + P, +---+ Pg_2 + Qg—1| = 1 and Pj is not a base point of [2P| + P, +--- +
Py 5>+ Qg_1|. Amorphism f : X — P! associated with the base point free linear system
defined by [2P) + P, + -+ + P;_2 + Qg1 is ramified at P; € C; and there is no other
point of C at that fiber. This implies the existence of a fiber containing no point of C1, hence
f(Cy) # P!(R) and therefore the existence of a divisor D € 2P1+Po+---+ Py 2+ Qg 1]
with Supp(D)NCy = @. In case the linear system [2P + P, +- - -+ Py _>+ Q1| has no base
point the morphism f has degree g and it has odd degree on C3, ---, Cy—1 and therefore
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f(C1) # P'(R) contradicting our assumptions. We are going to show that by deforming
(Q2,-++,0g2,Pg_1)onCy x --- x Cg_2 x Cy_ we obtain such contradiction.
Considerthe closed subset Z € X @ (R)x C X - - -xCqy—1 definedby (D', 0}, - -, Q;_z»
Pé—l) € Zifandonlyif D' € |[Kx — (Q5 +---+ Q;_Z + Pé’,_l)|. Consider the morphisms
p1:Z—>Cyx---xCqyandpy:Z — X (®(R) induced by projection. Since dim(] Q5 +

R Q;,fz + Pé71|) = 0 for all (Q%,---, ;,72, Péﬁil) € Cy x - x Cg_y, it follows
from the Riemann—Roch theorem that pfl Q).+, Q;,_l, Péf )= P!(R), in particular
p1 is a locally trivial P! (R)-bundle. Let dy = (Q2, -, Qg—2, Pg_1), we proved there

exists (do, D) € py'(do) such that D ¢ X(R)®. Since X (R)® is closed in X®(R)
there exists a classical neighborhood V of D in X (¢)(R) such that vnx (R)® = @. Let
S={deCyx---xCqg1: pz(pl_l(d))ﬂ V = (#} and assume dp € S. Take a neighborhood

Uofdyin Cy x - - - x Cy_1, such that pfl (U) is homeomorphic to PY(R) x U and p; |pl—l(U)

is identified with the projection P'(R) x U — U. The closure of p; (SN U) in X® x U
is identified with P! (R) x (S N U) (here S N U is the closure of § N U in U) hence pfl(do)
belongs to the closure of pl_l(S x U). But pz_l(V) is a neighborhood of (D, dp) in Z
hence p, 1(V) N pf' (SN U) # @. Of course this contradicts the definition of S, hence
do ¢ S. Hence, there exists a neighborhood U of dp in C; x --- x Cg_; such that for all
d = (0, -, Q’giz, P;,,l) e U one has pz(pl_](d/)) NV # ¥, hence there exists a
divisor D’ € V with D’ € [Kx — (Q) +---+ Q;,_z + Pé_1)|. In particular, [Kx — (Q5 +
et Q;, o+ Pg’ _4| contain a divisor D’ containing a non-real point in its support. Since
|Kx —(Q5+---+ Q;,72 + P§71)| has odd parity on Cs, - - -, Cy4—1 and even parity on Cj it
follows Supp(D")NCy = @. Incase |Kx — (Q5+-- -+ QLPZ + Pé71)| would contain a base
point for all d’ € U, using terminology from [1], it would imply dim(( ng_l + Wl0 )(R)) >

g — 2. Since W;_l = g — 4 (X is not hyperelliptic, so we can apply Martens’ Theorem,
see [1]) this is impossible. So we can assume |[Ky — (Q) + -+ + Q;,_z + Pé’,_l)l is base
point free. But then it corresponds to a covering f’ : X — P! of degree g having odd degree
onCy, -+, Cy_yand f'(Cy) # P! (R). This contradicts the assumptions on X. This proves
|[Kx — (Pt +---+ Pg_)| =|Pi+---+ Pg_1|and so P| + - -- + P, is a half-canonical
divisor. From parity considerations, we also obtain dim [Py + --- + Py_1| < 2 for such
divisor, implying the finiteness of linear systems g;,_ | associated with separating morphisms
on a real separating (M — 2)-curve of special type. O

In [6, Example 3], it is noted that each separating (M — 2)-curve of genus 3 is of special
type. It follows from the previous proposition this is not the case for genus g > 4.

Corollary 4.2 Let g be an integer at least 4. There exist real separating (M — 2)-curves
of genus g not of special type.

Proof From [5], we know there exists a dividing (M — 2)-curve X such that sepgon(X) =
g — 1. Assume X is of special type. Let 7 : X — S be a suited family for X and 59 € S(R)
with X = 77 1(s0). Let g—1 : ' H — S be the parameter space parameterizing morphisms
of degree g — 1 from fibers of 7 to P!. From deformation theory of Horikawa, it follows
‘H is smooth of dimension 4g — 4. Such morphism corresponds to a linear system g;] , let
H ), (C) be the subset of H(C) corresponding to half canonical linear systems g;_l . Thisis a
closed subset of H(C) of dimension 3g — 1, and it is invariant under complex conjugation,
so Hp(C) are the complex points of a closed subset H; C H defined over R and we find
dim(H,(R)) < 3g — 1, in particular for each f € H;,(R) one has U N H(R) # H; (R). By
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assumption, there exists [ f] € n_jl(so)(R) suchthat f : X — Plisa separating morphism.
From Proposition 4.1, it follows [ f] € H,(R). Hence, f deforms to a separating morphism
[f'] that is not half canonical. By Proposition 4.1, this is defined on a fiber X of 7 not of
special type. O

The previous proof also implies the following fact.
Corollary 4.3 T, ;N Ty o | C Ty ps incase g > 4.
‘We now prove the strong relation between both partitions of 7.

Theorem 4.4 Let X be a real separating (M — 2)-curve of genus g not of special type, then
sepgon(X) = g — 1, hence Tg s C Tg g—1.

Proof Assume X is a separating (M — 2)-curve of genus g not of special type. We can
assume that there exists a separating real morphism f : X — P! of degree g, otherwise
clearly sepgon(X) = g — 1. For each component C; of X (R) one has f|c, : C; — PH(R) is
a covering of some degree d; > 1 and Zf;ll d; = g. It follows d; = 1 except for one value
di =2, wecanassume dy =2 and d = --- = dg_; = 1. The morphism f corresponds to
a linear systems g = gi, and |Kx — gg,| # . Since deg(Kx — gé) =g—2and |Kx — gg,|
has odd degree on C3, - -, Cy— it follows |Kx — gg,l = {02 + -+ + Qg1} for some
Q; € C;. By assumption X is not special, hence there exists Q) € C; for2 < i < g
such that |[Ky — (Q5 + -+ + Q;71)| defines a gél, = g’ on X such that g’ corresponds
to a non-separating morphism f’ : X — P! hence C; for 2 < i < g — 1 dominates
P!(R) but C; does not. This implies g’ contains a real divisor P’ + P’ + P4+ Pé_l
with P’ + P’ a non-real point of X. Take a path y : [0,1] — C3 x --- x Cg_y with
y(0) = (Q2,-++, Qg-D) and y(1) = (Q3, -+, Q). Let y (1) = (Qa2(t), -+, Qg—1(1)
and g;,(t) =|Kx — (Q2(t) +--- + Qg—1(2))|. In case g;,(t) is base point free for all t €
we can find a family of real morphisms f; : X — P! with fo = f and f; = f’. Since
the topological degree of f (resp. f’)is (2, 1,---,1) (resp. (1,---,1,0)) and this discrete
invariant should be constant in this family, we obtain a contradiction. So there exists 7y € /
such that gél,(to) has a base point. Moreover, for ¢t < ) we can assume gél,(t) defines a
separating morphism f; : X — P!. By continuity it follows each divisor on gg, (to) is of type
71+F1/+E+ e +Kwith71,?{ e Crand P; € C;for2 <i < g — 1. Assume P is
a fixed point of gé (t9) then for ?2’ e Cr\ { P>} there is no divisor in gi, (to) containing E’, a

contradiction. So we find P; is not a fixed point for 2 < i < g — 1, hence we can assume P|
is a fixed point. But then we find dim |P; + P, + - - - + Péﬁfl | = 1, hence gé (to) — P| defines
a separating morphism fy : X — P! of degree ¢ — 1. This proves sepgon(X) =g — 1. O

Corollary 4.5 Let g > 3. There exist separating (M — 2)-curves X of special type such that
sepgon(X) =g — 1.

Proof From Lemma 2.6 it follows T , is an open subset of T and it follows from Corol-
lary 4.2 that T; ,; # @. It is already proved in Theorem 3.1 that T, ,; # 7T, (indeed,
Ty ns # 9). Since T, is connected it follows T s is not closed. On the other hand, we
just proved Tg s C Ty -1 and it is proved in Lemma 2.7 that T, . is closed. Hence,
Ty ns # Tg,¢—1 and therefore Ty s N Ty o1 # 0. O

The proof of this corollary implies the following inclusion.
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Corollary 4.6 T, ;s N Ty s C Tg g—1
Together with Corollary 4.3, this implies
Corollary 4.7 T, ;5 = T, o 1.

Corollary 4.8 Let g > 4. There exist general separating (M —2)-curves of genus g of special
type and general separating (M — 2)-curves of non-special type.

Proof From Corollary 4.2, it follows that there exist separating (M — 2)-curves of genus g
of non-special type. Then from Lemma 2.6, we know there exist general separating (M — 2)-
curves of genus g of non-special type. In [4], it is proved that T , 7 ¢ (this is also obtained
from Proposition 3.2). Such curve does not belong to T ,,5 hence Ty \ Tg s C T, s is an open
non-empty subset of T, and it parameterizes general separating (M — 2)-curves of special
type. m}

The previous result also implies the following remarkable corollary.

Corollary 4.9 There exist dividing (M — 2)-curves X of genus g > 4 such that W;—l X)(R)
has an isolated point.

Proof Again let X be a dividing (M — 2)-curve of special type having separable gonality
g — 1. From Corollary 4.5, we know X does exist. A separating morphism f : X — P!
of degree ¢ — 1 corresponds to a complete base point free g él,_l on X, hence it belongs to a

connected component of W&L 1 (X)(R) and each g(’gl | close to g (:,71 is also base point free,

complete and induces a separating morphism. But from Proposition 4.1, it follows gé,[l has
to be half canonical. Since a curve has only finitely many half-canonical linear systems, it
follows g;_ | corresponds to an isolated point of W;_l (X)(R). O

This corollary is in sharp contrast (in case g > 5) to the fact that the dimension of each
component of W;il(X c) is at least g — 4. In the final remark, we explain that it seems to
indicate difficulties in studying the real gonality of real curves.

Remark 1In his paper [2], E. Ballico considers an upper bound for the real gonality of real
curves. In moving families of real curves X, some components of WC} (R) existing on general
curves can vanish at “transition” curves (meaning curves having such components, but not
on all curves of some neighborhood in the moduli space; this terminology is not used in loc.
cit.). In his arguments, the author proves that having such a transition curve using degree
[(g + 3)/2] (this is the gonality of a general complex curve of genus g), then there is a real
pencil of degree at most [g + 3)/2] + 3 that propagates to all nearby real curves of it. How to
finish the argument to conclude that it propagates on a dense set of the moduli space of real
curves is not clear to me (it seems to me there is no argument in loc. cit.). As a matter of fact,
the previous corollary shows that such components of Wdl (R) can vanish in isolated points
at those transition curves. In particular, those transition curves do not need to have a singular
locus of WC} (Xc) of dimension at least 1; the basic tool in loc. cit. is the study of complex
curves having a singular locus of some Wl} of dimension at least one (or more). The previous
corollary is the most extreme case showing what could go wrong in the argument from [2].
On the other hand, it is clear that the arguments coming from [2] had much influence on the
present paper.
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