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Abstract Our purpose is to study the rigidity of complete hypersurfaces immersed into
a Riemannian space form. In this setting, first we use a classical characterization of the
Euclidean sphere S

n+1 due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove
that a closed orientable hypersurface �n immersed with null second-order mean curvature
in S

n+1 must be isometric to a totally geodesic sphere S
n , provided that its Gauss mapping

is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum
principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana
Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic
hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the
index of minimum relative nullity concerning complete noncompact hypersurfaces immersed
in such ambient spaces.
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690 A. Barros et al.

1 Introduction

The study of the behavior of the Gauss mapping plays an important role in order to obtain
rigidity results concerning complete hypersurfaces immersed into a space form; for instance,
it was proved, independently, by De Giorgi in [13] and Simons in [20] that if the image of
the Gauss mapping of a compact minimal hypersurface Mn in the Euclidean sphere S

n+1

lies in an open hemisphere, then Mn must be a great hypersphere of S
n+1. A few years late,

Nomizu and Smyth [16] have shown a similar result for a closed orientable hypersurface
x : Mn � S

n+1 with constant mean curvature. We observe that such results are natural
extensions of the classical Bernstein’s theorem established in [6] for a complete minimal
surface M2 into the 3-dimensional Euclidean space R

3. The same question was treated by
Alencar et al. [3] for the case of null high-order mean curvature Hr , with the additional
hypothesis that Hr−1 does not change sign.

On the other hand, on the middle of the last century, many geometers tried to prove that
a compact Riemannian manifold with constant scalar curvature is isometric to a standard
sphere provided that it carries a nontrivial conformal vector field. But this result is not true
according to a counterexample exhibited by Ejiri [11]. Meanwhile, some characterizations
of the Euclidean sphere were obtained related to this problem. Among them, we point out a
classical one due to Obata [17], which proves that a complete Riemannian manifold (Mn, g)

is isometric to a standard sphere S
n(r), provided that there exists a nontrivial solution for the

PDE ∇2ρ = −ρg, where ∇2ρ stands for the Hessian of ρ.
In this paper, by using such Obata’s theorem jointly with some suitable formulas related to

the height and support functions of a hypersurface, we extend the above-mentioned results of
De Giorgi and Simons for the context of compact orientable hypersurfaces x : Mn � S

n+1

with null second-order mean curvature. More precisely, we obtain the following theorem:

Theorem 1 Let x : �n � S
n+1 be a closed orientable hypersurface such that H2 = 0. If the

image of the Gauss mapping of �n is contained into a closed hemisphere of the Euclidean
sphere S

n+1, then �n is a totally geodesic sphere of S
n+1.

Afterward, we deal with hypersurfaces of the hyperbolic space H
n+1. First, we recall the

following extension of Hopf’s theorem on a complete noncompact Riemannian manifold �n

due to Yau [21]: a subharmonic (or superharmonic) function whose gradient has integrable
norm on �n must actually be harmonic. More recently, Camargo et al. [9] extended Yau’s
result concerning a complete noncompact oriented hypersurface �n immersed in a space
form, with bounded second fundamental form. In this setting, they showed that if a smooth
function f defined on �n is such that ∇ f has integrable norm and Lr f does not change sign
on �n , then Lr f = 0 on �n (for the details about the Lr operators, see Sect. 2).

Here, we use such analytical machinery in order to obtain a rigidity theorem for hyper-
surfaces immersed in the hyperbolic space H

n+1. For this, we consider the Lorentz model
of H

n+1 obtained by furnishing the hyperquadric {p ∈ L
n+2; 〈p, p〉 = −1, pn+2 > 0}

with the Riemannian metric induced by the Lorentz metric of the Minkowski space L
n+2.

Moreover, we denote by a� the tangential component of a vector a ∈ L
n+2 with respect to

an immersion x : �n � H
n+1 ↪→ L

n+2, and along this paper, L1(�) stands for the space
of Lebesgue integrable functions on �n . In this setting, we get the following result:

Theorem 2 Let x : �n � H
n+1 be a complete hypersurface immersed in H

n+1 with bounded
nonnegative mean curvature H and such that H2 = 0. Suppose that �n lies between two
hyperspheres of H

n+1 determined by a spacelike vector a ∈ L
n+2. If |a�| ∈ L1(�), then �n

is a totally geodesic hypersphere of H
n+1.
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On the rigidity of hypersurfaces 691

The proofs of Theorems 1 and 2 are presented in Sect. 3. Furthermore, in Sect. 4, we
establish rigidity results in the Euclidean space (cf. Theorems 3 and 4; see also Corollaries 1
and 2) and, in Sect. 5, we obtain a lower estimate to the index of minimum relative nullity
concerning complete noncompact hypersurfaces �n immersed either in R

n+1 or in H
n+1

(cf. Theorems 5 and 6).

2 Preliminaries

In this section, we present some known results that we use in order to prove our theorems.
Throughout this paper, we denote by Qn+1

c a Riemannian space form of constant sectional
curvature c ∈ {−1, 0, 1}, and x : �n � Qn+1

c stands for an immersed hypersurface in Qn+1
c .

If we let A denote the corresponding shape operator, then, at each p ∈ �n, A restricts
to a self-adjoint linear map Ap : Tp� → Tp�. For 0 ≤ r ≤ n, let Sr (p) denotes the r th
elementary symmetric function on the eigenvalues of Ap; in this way, one gets n smooth
functions Sr : �n → R, such that

det(t I − A) =
n∑

k=0

(−1)k Sktn−k,

where S0 = 1 by convention. If p ∈ �n and {ek} are a basis of Tp� formed by eigenvectors
of Ap , with corresponding eigenvalues {λk}, one immediately sees that

Sr = σr (λ1, . . . , λn),

whereσr ∈ R[X1, . . . , Xn] is the r th elementary symmetric polynomial on the indeterminates
X1, . . . , Xn .

Also, we define the r th mean curvature Hr of �n, 0 ≤ r ≤ n, by
(

n

r

)
Hr = Sr .

We observe that H0 = 1, while H1 is the usual mean curvature H of �n .
For 0 ≤ r ≤ n, one defines the r th Newton transformation Pr on �n by setting P0 = I

(the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

Pr = Sr I − APr−1. (2.1)

On the other hand, given f ∈ C∞(�), for each 0 ≤ r ≤ n, the second-order differential
operator Lr is defined as follows

Lr f = tr(Pr∇2 f ).

It is important to note that this operator is divergence type provided that we have a hyper-
surface �n � Qn+1

c , where Qn+1
c is a space form. This fact was proved by Rosenberg [18]

and it reads as follows

Lr f = div(Pr∇ f ).

Moreover, for a smooth function ϕ : R → R and f ∈ C∞(�), it follows from the
properties of the Hessian that

Lr (ϕ ◦ f ) = ϕ′( f )Lr f + ϕ′′( f )〈Pr∇ f,∇ f 〉. (2.2)
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692 A. Barros et al.

When we are dealing with the Euclidean space R
n+1 or the Euclidean sphere S

n+1, we
may fix a Euclidean vector a; whereas for the hyperbolic space H

n+1, we may fix a vector a
of the Minkowski space L

n+2. We recall that the height function la and the support function
fa of an immersion x : �n � Qn+1

c are defined, respectively, according to

la = 〈x, a〉 and fa = 〈N , a〉,
where N stands for the Gauss mapping of x. In this setting, we have the following split

a = a� + fa N + c la x, (2.3)

where a� is the orthogonal projection of a over the tangent bundle T �.
Moreover, based on the paper due to Reilly [19], Rosenberg [18] showed the following

identities related with the action of Lr on these functions:

Lr la = (r + 1)Sr+1 fa − c(n − r)Sr la (2.4)

and

Lr fa = − (S1Sr+1 − (r + 2)Sr+2) fa + c(r + 1)Sr+1la − 〈∇Sr+1, a�〉. (2.5)

In particular, letting r = 0, we deduce the following well-known relations:

�la = nH fa − cnla (2.6)

and

� fa = −|A|2 fa + cnHla − n〈∇ H, a�〉. (2.7)

To close this section, we point out the next inequality that can be found in [2] or [7], which
is valid for an immersion x : �n � Qn+1

c with S2 constant:

S2
1 (|∇ A|2 − |∇S1|2) ≥ 2S2|∇ A|2. (2.8)

In particular, if S2 ≥ 0, then |∇ A|2 − |∇S1|2 ≥ 0.

3 Proofs of Theorems 1 and 2

Let us begin with the proof of Theorem 1.

Proof First, one notices the existence of an unit vector a ∈ R
n+2 such that the associated

support function fa = 〈N , a〉 does not change sign, where N is an unit normal vector field
globally defined on �n . On the other hand, since S2 = 0, we use Gauss equation

n(n − 1)(R − 1) = n2 H2 − |A|2 = 2S2

to conclude that the scalar curvature of �n is identically one. Now, we use formula (2.5)
to infer

L1 fa = 3S3 fa .

If S1 = 0, we have |A| ≡ 0, which gives the desired result. Otherwise, we deduce from
previous equation that

S1L1( fa) = 3S1S3 fa . (3.1)
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On the rigidity of hypersurfaces 693

On the other hand, using Proposition 3.1 of [7], we get

L1S1 = (|∇ A|2 − |∇S1|2
) + 3S1S3 + (n − 1)S2

1 .

If fa is identically null, we can apply Theorem 1 of [16], due to Nomizu and Smyth, to
deduce that �n is totally geodesic. Otherwise, we can multiply the last identity by fa to
obtain

fa L1S1 = (|∇ A|2 − |∇S1|2
)

fa + 3S1S3 fa + (n − 1)S2
1 fa

Now, we use the symmetry of L1 to infer
∫

�

S1L1 fad� =
∫

�

fa L1S1d�.

Therefore, we deduce

3
∫

�

S1S3 fad� =
∫

�

(|∇ A|2 − |∇S1|2
)

fad� + 3
∫

�

S1S3 fad� + (n − 1)

∫

�

S2
1 fad�.

From where we conclude
∫

�

(|∇ A|2 − |∇S1|2
)

fad� + (n − 1)

∫

�

S2
1 fad� = 0.

By using (2.8), we have
(|∇ A|2 − |∇S1|2

)
fa = 0 (3.2)

and

H2 fa = 0. (3.3)

On the other hand, since H2 = 0, we have that |A|2 = n2 H2. Consequently, from (3.3),
we get

| fa A|2 = n2 H2 f 2
a = 0. (3.4)

At this point, we recall the next relation involving la and fa , which can be found in Alías [4]:

∇2la = −la g + fa A, (3.5)

where g stands for the Riemannian metric of �n .
Hence, combining (3.4) and (3.5), one obtains the following:

∇2la = −la g. (3.6)

Now, one observes that if la is constant, then �n is totally umbilical. But, S2 = 0 gives
that it must be, in fact, totally geodesic. Otherwise, we may apply Obata’s theorem [17] in
order to conclude that �n is isometric to a standard sphere. Once more, S2 = 0 gives that
�n is totally geodesic, which completes the proof of Theorem 1. ��

Before to start the proof of Theorem 2, we recall that hyperspheres of the hyperbolic space
H

n+1 can be realized in Minkowski’s model as the following level sets:

Lτ = {p ∈ H
n+1; 〈p, a〉 = τ },

for some spacelike vector a ∈ L
n+2, where τ 2 > 〈a, a〉 (see e.g. [5], Sect. 3).
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694 A. Barros et al.

Proof Initially, we observe that, since we are supposing that �n lies between two hyper-
spheres Lτ and Lτ of H

n+1 determined by a spacelike vector a ∈ L
n+2, the height function

la = 〈x, a〉 is bounded on �n . Moreover, the hypothesis under the second-order mean cur-
vature of �n assures us that S2 = 0 on �n . Consequently, since H ≥ 0 on �n , from Lemma
1.1 and equation (1.3) in [14] we have that P1 is a positive semi-definite operator. Thus, using
(2.2) and (2.4), we deduce

L1l2
a = 2(n − 1)S1l2

a + 2〈P1∇la ,∇la〉 ≥ 0. (3.7)

On the other hand, we note that the second fundamental form A of �n is bounded and

|∇l2
a | = 2|la ||a�| ∈ L1(�).

Thus, we are in position to apply Corollary 1 of [9], to get that L1l2
a = 0 on �n . Consequently,

from equation (3.7), S1la = 0 on �n . Now, from (2.6), we obtain

�l2
a = 2nl2

a + 2|∇la |2. (3.8)

Reasoning as before, we see that la vanishes identically on �n , and therefore, this allows us
to conclude that �n is a totally geodesic hypersphere of H

n+1. ��

4 Rigidity theorems in the Euclidean space

Initially, we observe that a paraboloid has positive Gaussian curvature, it is contained in
a semispace, and its Gauss mapping covers only an open hemisphere of S

2 determined by
such semispace. We also observe that a cylinder over a plane curve inside of a slice, has null
Gaussian curvature, lies between two parallel planes orthogonal to a fixed vector a ∈ R

3,
but its Gauss mapping is not contained in a closed hemisphere determined by a. However,
by applying a classical result due to Huber [15] concerning parabolic surfaces, we obtain
the following rigidity result in the three-dimensional Euclidean space R

3 related to complete
surfaces with nonnegative Gaussian curvature:

Theorem 3 Let x : �2 � R
3 be a complete surface with nonnegative Gaussian curvature

K� and such that its mean curvature H does not change sign. Suppose that �2 lies between
two parallel planes of R

3 which are orthogonal to an unit vector a ∈ R
3 and that the image

of its Gauss mapping lies in a closed hemisphere of S
2 determined by a. Then, �2 is a plane

of R
3 orthogonal to a.

Proof Since we are supposing that the mean curvature H does not change sign, we can
choose an orientation for �2 in such away that H ≥ 0. We note that the hypothesis under
the Gauss mapping of �2 also guarantees that fa does not change sign. On the other hand,
since �2 lies between two parallel planes determined by a, there exists constants α and β

such that α ≤ la ≤ β. Thus, if fa ≤ 0, we have that la − α is a nonnegative function on �2

and, from (2.6), we obtain

�(la − α) = 2H fa ≤ 0.

However, the quoted result of Huber [15] assures that complete surfaces of nonnegative
Gaussian curvature must be parabolic. Therefore, la is constant on �2, and hence, �2 is a
plane orthogonal to a.

123



On the rigidity of hypersurfaces 695

Now, if fa ≥ 0, we see that β−la is a nonnegative function on �2, and taking into account
once more formula (2.6), we get

�(β − la) = −2H fa ≤ 0.

Therefore, reasoning as before, we also conclude that �2 is a plane orthogonal to a. ��
Corollary 1 Let �2(u) = {(x, y, u(x, y)) : (x, y) ∈ R

2} ⊂ R
3 be a complete graph of a

smooth function u : R
2 → R with nonnegative Gaussian curvature and such that its mean

curvature does not change sign. If u is bounded, then �2(u) is a plane of R
3.

Proof Since the support function fe3 has strict sign on �2(u), the image of the Gauss mapping
of �2(u) lies in an open hemisphere of S

2 determined by e3. Therefore, the result follows
from Theorem 3. ��

Now, we observe that the examples presented in the beginning of this section also satisfy
the same conditions of the next theorem, up to |a�| ∈ L1(�). But, using Yau’s result [21]
mentioned in the introduction, we prove the following rigidity result in the (n+1)-dimensional
Euclidean space:

Theorem 4 Let x : �n � R
n+1 be a complete hypersurface such that its mean curvature H

does not change sign. Suppose that there exists an unit vector a ∈ R
n+1 such that one of the

following conditions is satisfied:

(a) �n has scalar curvature R bounded from below and the image of its Gauss mapping lies
in an open hemisphere of S

n determined by a;
(b) �n lies between two hyperplanes which are orthogonal to a and the image of its Gauss

mapping lies in a closed hemisphere of S
n determined by a.

If |a�| ∈ L1(�), then �n is a hyperplane of R
n+1 orthogonal to a.

Proof First, let us suppose that �n has scalar curvature R bounded from below and that the
image of the Gauss mapping of �n lies in an open hemisphere of S

n determined by a. In this
case, the support function fa has strict sign on �n . Moreover, from (2.6), we deduce

�la = nH fa .

Consequently, �la does not change sign on �n .
On the other hand, taking into account that |∇la | = |a�| ∈ L1(�), we may apply the result

due to Yau [21], which was described in the introduction, to deduce that la is harmonic. Hence,
H vanishes identically on �n . In particular, we have |A|2 = −n(n − 1)R and consequently,
|A| is bounded on �n . This allows us to conclude that |∇ fa | ∈ L1(�). Indeed,

|∇ fa | =
∣∣∣A

(
a�)∣∣∣ ≤ |A||a�| ∈ L1(�).

Furthermore, from (2.7), we get

� fa = −|A|2 fa .

Then, � fa also does not change sign on �n . Thus, by applying again Yau’s result, we
conclude that fa is harmonic. Hence, A vanishes identically on �n , that is, �n is totally
geodesic. Therefore, �n is a hyperplane of R

n+1 orthogonal to a; otherwise |a�| does not
belong to L1(�), which finishes the proof of the first assertion.

Now, let us suppose that �n lies between two hyperplanes which are orthogonal to a and
that the image of the Gauss mapping of �n lies in a closed hemisphere of S

n determined by
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696 A. Barros et al.

a. In such situation, analogously to the previous one, we also conclude that la is harmonic.
From where, since

1

2
�l2

a = la�la + |∇la |2,

we verify that �l2
a ≥ 0 on �n .

On the other hand, since �n lies between two hyperplanes which are orthogonal to a, we
have that |la | ≤ C1. This gives

|∇l2
a | = 2|la ||a�| ≤ C2|a�| ∈ L1(�).

Hence, we deduce that l2
a is also harmonic and consequently, ∇la vanishes identically on

�n . Therefore, �n is a hyperplane of R
n+1 orthogonal to a and we complete the proof of

Theorem 4. ��
Corollary 2 Let �n(u) = {(x, u(x)) : x ∈ R

n} ⊂ R
n+1 be a complete graph of a smooth

function u : R
n → R such that its mean curvature does not change sign. Suppose that

either the scalar curvature R of �n(u) or u is bounded. If |∇u| ∈ L1(Rn), then �n(u) is a
hyperplane of R

n+1.

Proof It is well known that the unit normal vector field

N = 1√
1 + |∇u|2 (−∇u, 1)

defines a Gauss mapping for �n(u). Letting a = en+1, we have |a�|2 = 1 − f 2
a . Hence, we

obtain

|a�|2 = |∇u|2
1 + |∇u|2 .

Therefore, |∇u| ∈ L1(Rn) assures that |a�| ∈ L1(�n(u)), and hence, the result follows from
Theorem 4. ��

5 Lower estimates for the index of relative nullity

Let x : �n � Qn+1
c be a hypersurface immersed in a space form Qn+1

c , with second
fundamental form A. According to [10], for p ∈ �n , we define the space of relative nullity
�(p) of �n at p by

�(p) = {v ∈ Tp�; v ∈ ker(Ap)},
where ker(Ap) denotes the kernel of Ap . The index of relative nullity ν(p) of �n at p is the
dimension of �(p), that is,

ν(p) = dim (�(p)) ,

and the index of minimum relative nullity ν0 of �n is defined by

ν0 = min
p∈�

ν(p).

Now, we are in position to prove the following extension of Theorem 3 to the case of the
r th mean curvatures:
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Theorem 5 Let x : �n � R
n+1 be a complete hypersurface with bounded second fun-

damental form A and such that, for some 0 ≤ r ≤ n − 2, Hr+1 and Hr+2 do not change
sign. Suppose that the image of the Gauss mapping of �n lies in an open hemisphere of S

n

determined by an unit vector a ∈ R
n+1. If |a�| ∈ L1(�), then the index of minimum relative

nullity ν0 of �n is at least n − r . Moreover, if Hr does not vanish on �n, then through every
point of �n, there passes an (n − r)-hyperplane of R

n+1 totally contained in �n.

Proof From (2.4) we have

Lr la = (r + 1)

(
n

r + 1

)
Hr+1 fa .

Thus, the hypothesis that Hr+1 does not change sign on �n and that the image of the Gauss
mapping of �n lies in an open hemisphere of S

n determined by a assure that Lr la also
does not change sign on �n . Consequently, since we are supposing that A is bounded and
|a�| ∈ L1(�), from Corollary 1 of [9], we conclude that Hr+1 = 0 on �n . With analogous
arguments, from the calculus of Lr+1la , we also get that Hr+2 = 0 on �n . Thus, from
Proposition 2.3(c) of [8], we see that Hj = 0 for all j ≥ r + 1, and hence, ν0 ≥ n − r .

Now, suppose that Hr does not vanish on �n . By Theorem 5.3 of [10] (see also [12]),
the distribution p �→ �(p) of minimal relative nullity of �n is smooth and integrable with
complete leaves, totally geodesic in �n and in R

n+1. Therefore, the result follows from
the characterization of complete totally geodesic submanifolds of R

n+1 as hyperplanes of
suitable dimension. ��

In what follows, let a ∈ L
n+2 be an unit timelike vector. The level set given by

L0 = {p ∈ S
n+1
1 ; 〈p, a〉 = 0}

defines a round sphere of radius one which is a totally geodesic hypersurface of the de Sitter
space S

n+1
1 . According to the terminology established in [1], we will refer to that sphere as the

equator of S
n+1
1 determined by a. This equator divides S

n+1
1 into two connected components,

the chronological future which is given by

{p ∈ S
n+1
1 ; 〈p, a〉 < 0},

and the chronological past, given by

{p ∈ S
n+1
1 ; 〈p, a〉 > 0}.

In order to establish our last result, we also recall that a hypersurface �n immersed in a
space form is said to be r-minimal if Hr+1 vanishes identically on �n . In this setting, we
can reason as in the proof of Theorem 5 (working with the support function fa instead of the
height function la , and taking into account the characterization of complete totally geodesic
submanifolds of H

n+1) to get the following

Theorem 6 Let x : �n � H
n+1 be a r-minimal complete noncompact hypersurface with

bounded second fundamental form A and such that Hr+2 does not change sign. Suppose that
the image of the Gauss mapping of �n lies in the chronological future (or past) of the equator
of S

n+1
1 determined by an unit timelike vector a ∈ L

n+2. If |a�| ∈ L1(�), then the index
of minimum relative nullity ν0 of �n is at least n − r . Moreover, if Hr does not vanish on
�n, then through every point of �n, there passes an (n − r)-dimensional hyperbolic space
H

n−r ↪→ H
n+1 totally contained in �n.
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