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664 P. Budzyński et al.

1 Introduction

Composition operators (in L2-spaces over σ -finite spaces), which play an essential role in
Ergodic Theory, turn out to be interesting objects of Operator Theory. The questions of
boundedness, normality, quasinormality, subnormality, hyponormality etc. of such operators
have been answered (cf. [8–10,16,17,19,20,23,30–32,34,42–44,54,56]; see also [15,18,33,
45,47] for particular classes of composition operators). This means that the theory of bounded
composition operators on L2-spaces is well-developed.

The literature on unbounded composition operators in L2-spaces is meager. So far, only the
questions of seminormality, k-expansivity, and complete hyperexpansivity have been studied
(cf. [11,24]). Very little is known about other properties of unbounded composition opera-
tors. To the best of our knowledge, there is no paper concerning the issue of subnormality of
such operators. It is a difficult question mainly because Lambert’s criterion for subnormality
of bounded operators (cf. [29]) is no longer valid for unbounded ones. In the present paper,
we show that the unbounded counterparts of the celebrated Lambert’s characterizations of
subnormality of bounded composition operators given in [31] fail to hold. This is achieved by
proving that a composition operator satisfies the requirements of Lambert’s characterizations
if and only if it generates Stieltjes moment sequences (see Definition 2.3, Theorem 10.4).
Thus, knowing that there exists a non-subnormal composition operator which generates Stielt-
jes moment sequences (see [25, Theorem 4.3.3]), we obtain the above-mentioned result (see
Sect. 11). We point out that there exists a non-subnormal formally normal operator which gen-
erates Stieltjes moment sequences (for details see [7, Section 3.2]). This is never the case for
composition operators because, as shown in Theorem 9.4, each formally normal composition
operator is normal, and as such subnormal. We refer the reader to [48–51] for the foundations
of the theory of unbounded subnormal operators (for the bounded case see [14,21]).

The above discussion makes plain the importance of the question of when C∞-vectors of a
composition operator form a dense subset of the underlying L2-space. This and related topics
are studied in Sect. 4. In Sect. 3, we collect some necessary facts on composition operators.
Illustrative examples are gathered in Sect. 5. In Sect. 6, we address the question of injectivity
of composition operators. In Sect. 7, we describe the polar decomposition of a composition
operator. Next, in Sects. 8 and 9, we characterize normal, quasinormal and formally normal
composition operators. Finally, in Sect. 10, we investigate composition operators which gen-
erate Stieltjes moment sequences. We conclude the paper with two appendices. In “Appendix
A,” we gather particular properties of L2-spaces exploited throughout the paper. “Appendix
B” is mostly devoted to the operator of conditional expectation which plays an essential role
in our investigations.

Caution. All measure spaces being considered in this paper, except for “Appendices A
and B”, are assumed to be σ -finite.

2 Preliminaries

Denote by C,R and R+ the sets of complex numbers, real numbers and nonnegative real
numbers, respectively. We write Z+ for the set of all nonnegative integers and N for the set
of all positive integers. The characteristic function of a subset Δ of a set X will be denoted
by χΔ. We writeΔ � Δ′ =(Δ\Δ′)∪ (Δ′ \Δ) for subsetsΔ andΔ′ of X . Given a sequence
{Δn}∞n=1 of subsets of X and a subset Δ of X such that Δn ⊆ Δn+1 for every n ∈ N, and
Δ=⋃∞

n=1Δn , we write Δn ↗ Δ (as n → ∞). Denote by card(X) the cardinal number of
X . If X is a topological space, then B(X) stands for the σ -algebra of Borel subsets of X .
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On unbounded composition operators 665

Let A be an operator in a complex Hilbert space H (all operators considered in this
paper are linear). Denote by D(A),N(A),R(A), Ā and A∗ the domain, the kernel, the range,
the closure and the adjoint of A (in case they exist). If A is closed and densely defined,
then A has a (unique) polar decomposition A = U |A|, where U is a partial isometry on
H such that N(U ) = N(A) and |A| is the square root of A∗ A (cf. [3, Section 8.1]). Set
D∞(A) = ⋂∞

n=0 D(An). Members of D∞(A) are called C∞-vectors of A. Denote by ‖ · ‖A

the graph norm of A, that is,

‖ f ‖2
A := ‖ f ‖2 + ‖A f ‖2, f ∈ D(A).

Given n ∈ Z+, we define the norm ‖ · ‖A,n on D(An) by

‖ f ‖2
A,n :=

n∑

j=0

‖A j f ‖2, f ∈ D(An).

Clearly, for every n ∈ N, (D(An), ‖ · ‖An ) and (D(An), ‖ · ‖A,n) are inner product spaces
(with standard inner products). A vector subspace E of D(A) is called a core for A if E is
dense in D(A) with respect to the graph norm of A. Denote by I the identity operator on H.

By applying Propositions 2.1 and 3.2, one may obtain a criterion for closedness of a linear
combination of composition operators.

Proposition 2.1 Let A1, . . . , An be closed operators in H (n ∈ N). Then
∑n

j=1 A j is closed
if and only if there exists c ∈ R+ such that

n∑

j=1

‖A j f ‖2 � c

(

‖ f ‖2 +
∥
∥
∥
∥
∥
∥

n∑

j=1

A j f

∥
∥
∥
∥
∥
∥

2 )

, f ∈
n⋂

j=1

D(A j ). (2.1)

Proof Define the vector space X = ⋂n
j=1 D(A j ) and the norm ‖ · ‖∗ on X by ‖ f ‖2∗ =

‖ f ‖2 + ∑n
j=1 ‖A j f ‖2 for f ∈ X . Since the operators A1, . . . , An are closed, we deduce

that (X , ‖·‖∗) is a Hilbert space. Recall that A := ∑n
j=1 A j is closed if and only if (X , ‖·‖A)

is a Hilbert space. Since the identity map from (X , ‖ · ‖∗) to (X , ‖ · ‖A) is continuous, we
conclude from the inverse mapping theorem that (X , ‖ · ‖A) is a Hilbert space if and only if
(2.1) holds for some c ∈ R+. ��

A densely defined operator N in H is said to be normal if N is closed and N∗N = N N∗
(or equivalently if and only if D(N ) = D(N∗) and ‖N f ‖ = ‖N∗ f ‖ for all f ∈ D(N ),
see [55, Proposition, p. 125]). We say that a densely defined operator A in H is formally
normal if D(A) ⊆ D(A∗) and ‖A f ‖ = ‖A∗ f ‖ for all f ∈ D(A) (cf. [2,12]). A densely
defined operator A in H is called hyponormal if D(A) ⊆ D(A∗) and ‖A∗ f ‖ � ‖A f ‖ for
all f ∈ D(A) (cf. [27,35,53]). Clearly, a closed densely defined operator A in H is normal
if and only if both operators A and A∗ are hyponormal. Obviously normality implies formal
normality and formal normality implies hyponormality. It is well-known that none of these
implications can be reversed in general. We say that a densely defined operator S in H is
subnormal if there exist a complex Hilbert space K and a normal operator N in K such that
H ⊆ K (isometric embedding), D(S) ⊆ D(N ) and S f = N f for all f ∈ D(S).

The members of the next class are related to subnormal operators. A closed densely defined
operator A in H is said to be quasinormal if A commutes with the spectral measure E|A| of |A|,
that is, E|A|(Δ)A ⊆ AE|A|(Δ) for all Δ ∈ B(R+) (cf. [4,49]). In view of [49, Proposition
1], a closed densely defined operator A in H is quasinormal if and only if U |A| ⊆ |A|U ,
where A = U |A| is the polar decomposition of A. This combined with [3, Theorem 8.1.5]
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666 P. Budzyński et al.

shows that if A is a normal operator, then A is quasinormal and N(A) = N(A∗). In turn,
quasinormality together with the inclusion N(A∗) ⊆ N(A) characterizes normality. This
result can be found in [52]. For the reader’s convenience, we include its proof.

Theorem 2.2 An operator A in H is normal if and only if A is quasinormal and N(A∗) ⊆
N(A). Moreover, if A is normal, then N(A) = N(A∗).

Proof In view of the above discussion, it is enough to prove the sufficiency. First, we show that
if A is quasinormal and A = U |A| is its polar decomposition, then U |A| = |A|U . Indeed, by
[49, Proposition 1], U |A| ⊆ |A|U . Taking adjoints, we get U∗|A| ⊆ |A|U∗, which implies
that U∗(D(|A|)) ⊆ D(|A|). Hence, if f ∈ D(|A|U ), then U∗U f ∈ D(|A|). Since I − U∗U
is the orthogonal projection of H onto N(|A|), we conclude that f = U∗U f +(I −U∗U ) f ∈
D(|A|). This shows that D(|A|U ) ⊂ D(U |A|), which implies that U |A| = |A|U .

Now suppose that A is quasinormal and N(A∗) ⊆ N(A). Since the operators P := UU∗
and P⊥ := (I − P) are the orthogonal projections of H onto R(A) and N(A∗), respectively,
we infer from the inclusion N(A∗) ⊂ N(A) that

R(P⊥) ⊂ N(A) = N(|A|) ⊂ D(|A|2). (2.2)

It follows from U |A| = |A|U and A∗ = |A|U∗ that

AA∗ = U |A|2U∗ = |A|2 P. (2.3)

We will show that

|A|2 P = |A|2. (2.4)

Indeed, if f ∈ H, then, by (2.2) and the equality f = P f + P⊥ f , we see that P f ∈ D(|A|2)
if and only if f ∈ D(|A|2). This implies that D(|A|2 P) = D(|A|2). Using (2.2) again, we see
that |A|2 f = |A|2 P f for every f ∈ D(|A|2). Hence, the equality (2.4) is valid. Combining
(2.3) with (2.4), we get AA∗ = A∗ A.

The “moreover” part is well-known and easy to prove. ��
Recall that quasinormal operators are subnormal (see [4, Theorem 1] and [49, Theorem

2]). The reverse implication does not hold in general. Clearly, subnormal operators are hypo-
normal, but not reversely. It is worth pointing out that formally normal operators may not be
subnormal (cf. [13,40,46]).

A finite complex matrix [ci, j ]n
i, j=0 is said to be nonnegative if

n∑

i, j=0

ci, jαi ᾱ j � 0, α0, . . . , αn ∈ C.

If this is the case, then we write [ci, j ]n
i, j=0 � 0. A sequence {γn}∞n=0 of real numbers is said

to be a Stieltjes moment sequence if there exists a positive Borel measure ρ on R+ such that

γn =
∫

R+

sndρ(s), n ∈ Z+.

A sequence {γn}∞n=0 ⊆ R is said to be positive definite if for every n ∈ Z+, [γi+ j ]n
i, j=0�0.

By the Stieltjes theorem (see [1, Theorem 6.2.5]), we have

a sequence {γn}∞n=0 ⊆ R is a Stieltjes moment sequence if and only if

the sequences {γn}∞n=0 and {γn+1}∞n=0 are positive definite. (2.5)
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On unbounded composition operators 667

Definition 2.3 We say that an operator S in H generates Stieltjes moment sequences if
D∞(S) is dense in H and {‖Sn f ‖2}∞n=0 is a Stieltjes moment sequence for every f ∈ D∞(S).

It is well-known that if S is subnormal, then {‖Sn f ‖2}∞n=0 is a Stieltjes moment sequence
for every f ∈ D∞(S) (see [7, Proposition 3.2.1]; see also Proposition 2.4 below). Hence, if
D∞(S) is dense in H and S is subnormal, then S generates Stieltjes moment sequences. It
turns out that the converse implication does not hold in general (see [7, Section 3.2]).

The following can be proved analogously to [7, Proposition 3.2.1] by using (2.5).

Proposition 2.4 If S is a subnormal operator in H, then the following two assertions hold:

(i)
[‖Si+ j f ‖2

]n
i, j=0�0 for all f ∈ D(S2n) and n ∈ Z+,

(ii)
[‖Si+ j+1 f ‖2

]n
i, j=0�0 for all f ∈ D(S2n+1) and n ∈ Z+.

For the reader’s convenience, we state a theorem which is occasionally called the Mittag-
Leffler theorem (cf. [41, Lemma 1.1.2]).

Theorem 2.5 Let {En}∞n=0 be a sequence of Banach spaces such that for every n ∈ Z+, En+1

is a vector subspace of En, En+1 is dense in En and the embedding map of En+1 into En is
continuous. Then,

⋂∞
n=0 En is dense in each space Ek , k ∈ Z+.

3 Basic properties of composition operators

From now on, except for “Appendices A and B”, (X,A , μ) always stands for a σ -finite
measure space. We shall abbreviate the expressions “almost everywhere with respect to
μ” and “for μ-almost every x” to “a.e. [μ]” and “for μ-a.e. x”, respectively. As usual,
L2(μ) = L2(X,A , μ) denotes the Hilbert space of all square integrable complex functions
on X . The norm and the inner product of L2(μ) are denoted by ‖ · ‖ and 〈·, -〉, respectively.
Let φ be an A -measurable transformation1 of X , that is, φ−1(Δ) ∈ A for allΔ ∈ A . Denote
by μ ◦ φ−1 the positive measure on A given by μ ◦ φ−1(Δ) = μ(φ−1(Δ)) for all Δ ∈ A .
We say that φ is nonsingular ifμ◦φ−1 is absolutely continuous with respect toμ. It is easily
seen that if φ is nonsingular, then the mapping Cφ : L2(μ) ⊇ D(Cφ) → L2(μ) given by

D(Cφ) = { f ∈ L2(μ) : f ◦ φ ∈ L2(μ)} and Cφ f = f ◦ φ for f ∈ D(Cφ), (3.1)

is well-defined and linear. Such an operator is called a composition operator induced by φ;
the transformation φ will be referred to as a symbol of Cφ . Note that if the operator Cφ given
by (3.1) is well-defined, then the transformation φ is nonsingular.

Convention. For the remainder of this paper, whenever Cφ is mentioned the transformation
φ is assumed to be nonsingular.

If φ is nonsingular, then by the Radon-Nikodym theorem there exists a unique (up to sets
of measure zero) A -measurable function hφ : X → [0,∞] such that

μ ◦ φ−1(Δ) =
∫

Δ

hφdμ, Δ ∈ A . (3.2)

Here and later on φn stands for the n-fold composition of φ with itself if n�1 and φ0 for the
identity transformation of X . We also write φ−n(Δ) := (φn)−1(Δ) for Δ ∈ A and n ∈ Z+.

1 By a transformation of X we understand a map from X to X .
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668 P. Budzyński et al.

Note that hφ0 = 1 a.e. [μ]. It is clear that the composition φ1 ◦ . . . ◦ φn of finitely many
nonsingular transformations φ1, . . . , φn of X is a nonsingular transformation and

Cφn . . .Cφ1 ⊆ Cφ1◦...◦φn , n ∈ N. (3.3)

Now we construct an A -measurable transformation φ of X such that φ is not nonsingular
while φ2 is nonsingular.

Example 3.1 Set X = {0} ∪ {1} ∪ [2, 3]. Let A = {Δ ∩ X : Δ ∈ B(R+)}. Define the finite
Borel measure μ on X by

μ(Δ) = χΔ(0)+ χΔ(1)+ m(Δ ∩ [2, 3]), Δ ∈ A ,

where m stands for the Lebesgue measure on R. Let φ be an A -measurable transformation
of X given by φ(0) = 2, φ(1) = 1 and φ(x) = 1 for x ∈ [2, 3]. Since μ({2}) = 0 and
(μ ◦ φ−1)({2}) = 1, we see that φ is not nonsingular. However, φ2 is nonsingular because
φ2(x) = 1 for all x ∈ X and μ({1}) > 0.

Suppose that φ is a nonsingular transformation of X . In view of the measure transport
theorem ([22, Theorem C, p. 163]), we have

∫

X

| f ◦ φ|2dμ =
∫

X

| f |2hφdμ for every A -measurable function f : X → C. (3.4)

This implies that

D(Cφ) = L2((1 + hφ)dμ), ‖ f ‖2
Cφ =

∫

X

| f |2(1 + hφ)dμ, (3.5)

D(Cn
φ) = L2

(( n∑

j=0

hφ j

)
dμ

)
, ‖ f ‖2

Cφ,n =
∫

X

| f |2
( n∑

j=0

hφ j

)
dμ, n ∈ Z+. (3.6)

Moreover, if φ1, . . . , φn are nonsingular transformations of X (n ∈ N), then

D(Cφn . . .Cφ1) = L2((1 +
n∑

j=1

hφ1◦···◦φ j )dμ). (3.7)

The following proposition is somewhat related to [17, p. 664] and [11, Lemma 6.1].

Proposition 3.2 Let φ be a nonsingular transformation of X. Then Cφ is a closed operator
and

D(Cφ) = χFφ L2(μ) with Fφ = {
x ∈ X : hφ(x) < ∞}

. (3.8)

Moreover, the following conditions are equivalent:

(i) Cφ is densely defined,
(ii) hφ < ∞ a.e. [μ],

(iii) the measure μ ◦ φ−1 is σ -finite.

Proof Applying (3.5), we get Cφ = Cφ and D(Cφ) ⊆ χFφ L2(μ). To prove the opposite

inclusion χFφ L2(μ) ⊆ D(Cφ), take f ∈ L2(μ) such that f |X\Fφ = 0 a.e. [μ], and set
Xn = {x ∈ X : hφ(x) � n} for n ∈ N. Noting that Xn ↗ Fφ as n → ∞, we see that∫

X |χXn f |2(1 + hφ)dμ < ∞ for all n ∈ N, and limn→∞
∫

X | f − χXn f |2dμ = 0, which
completes the proof of (3.8).
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On unbounded composition operators 669

(i)⇔(ii) Employ (3.8).
(ii)⇔(iii) Apply (3.2) and the assumption that μ is σ -finite. ��
Corollary 3.3 Suppose thatφ1, . . . , φn are nonsingular transformations of X andλ1, . . . , λn

are nonzero complex numbers (n ∈ N). Then,
∑n

j=1 λ j Cφ j is densely defined if and only if
Cφk is densely defined for every k = 1, . . . , n.

Proof By (3.5), D(
∑n

j=1 λ j Cφ j ) = L2((1 + ∑n
j=1 hφ j )dμ), and thus the “if” part follows

from Proposition 3.2 and Lemma 12.1. The “only if” part is obvious. ��

4 Products of composition operators

First we give necessary and sufficient conditions for a product of composition operators to
be densely defined.

Proposition 4.1 Let φ1, . . . , φn be nonsingular transformations of X (2 � n < ∞). Then,
the following assertions hold:

(i) Cφn . . .Cφ1 is a closable operator,
(ii) Cφn . . .Cφ1 is densely defined if and only if Cφ1◦...◦φk is densely defined for every

k = 1, . . . , n,
(iii) if Cφn−1 . . .Cφ1 is densely defined, then

Cφ1◦...◦φk = Cφk . . .Cφ1 , k = 1, . . . , n, (4.1)

(iv) if Cφ1◦...◦φn is densely defined, then so is the operator Cφn ,
(v) if Cφn . . .Cφ1 is densely defined, then so are the operators Cφ1 , …, Cφn .

Proof (i) Apply (3.3) and Proposition 3.2.
(ii) To prove the “if” part, assume that Cφ1◦...◦φk is densely defined for k = 1, . . . , n.

It follows from Proposition 3.2 that hφ1◦...◦φk < ∞ a.e. [μ] for k = 1, . . . , n.
Applying (3.7) and Lemma 12.1 to ρ1 ≡ 1 and ρ2 = 1 + ∑n

j=1 hφ1◦...◦φ j we get

D(Cφn . . .Cφ1) = L2(μ). The “only if” part follows from (3.3) and the fact that the
operators Cφk . . .Cφ1 , k = 1, . . . , n, are densely defined.

(iii) It follows from (ii) and Proposition 3.2 that h := ∑n−1
j=1 hφ1◦...◦φ j < ∞ a.e. [μ]. Set

Y = {x ∈ X : hφ1◦...◦φn (x) < ∞} and AY = {Δ ∈ A : Δ ⊆ Y }. Equip D(Cφ1◦...◦φn )

with the graph norm of Cφ1◦...◦φn and note that the mapping

Θ : D(Cφ1◦...◦φn ) � f �−→ f |Y ∈ L2(Y,AY , (1 + hφ1◦...◦φn )dμ
)

is a well-defined unitary isomorphism (use (3.5)). It follows from Lemma 12.1 that
L2

(
Y,AY , (1 + h + hφ1◦...◦φn )dμ

)
is dense in L2

(
Y,AY , (1 + hφ1◦...◦φn )dμ

)
. Since,

by (3.3) and (3.7), Θ(D(Cφn . . .Cφ1)) = L2
(
Y,AY , (1 + h + hφ1◦...◦φn )dμ

)
, we

deduce that Cφn . . .Cφ1 = Cφ1◦...◦φn . Applying the previous argument to the systems
(Cφ1 , . . . ,Cφk ), k ∈ {1, . . . , n − 1}, we obtain (4.1).

(iv) It is sufficient to discuss the case of n = 2. Suppose that Cφ1◦φ2 is densely defined. In
view of Proposition 3.2, the measureμ◦(φ1 ◦φ2)

−1 is σ -finite. Sinceμ◦(φ1 ◦φ2)
−1 =

(μ◦φ−1
2 )◦φ−1

1 , we see that the measureμ◦φ−1
2 is σ -finite as well. Applying Proposition

3.2 again, we conclude that Cφ2 is densely defined.
(v) Apply (ii) and (iv). ��
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670 P. Budzyński et al.

Corollary 4.2 If Cn−1
φ is densely defined for some n ∈ N, then Cn

φ = Cφn .

The following is an immediate consequence of (3.7) and Corollary 12.4.

Proposition 4.3 If φ1, . . . , φm and ψ1, . . . , ψn are nonsingular transformations of X,
then D(Cφn . . .Cφ1) ⊆ D(Cψm . . .Cψ1) if and only if there exists c ∈ R+ such that∑m

j=1 hψ1◦...◦ψ j � c
(
1 + ∑n

j=1 hφ1◦...◦φ j

)
a.e. [μ].

Now we give necessary and sufficient conditions for a product of composition operators
to be closed.

Proposition 4.4 Let φ1, . . . , φn be nonsingular transformations of X (2 � n < ∞). Then,
the following three conditions are equivalent:

(i) Cφn . . .Cφ1 = Cφ1◦...◦φn ,
(ii) D(Cφ1◦...◦φn ) ⊆ D(Cφn . . .Cφ1),

(iii) there exists c ∈ R+ such that
∑n−1

j=1 hφ1◦...◦φ j � c(1 + hφ1◦...◦φn ) a.e. [μ].
Moreover, any of the conditions (i) to (iii) implies that

(iv) Cφn . . .Cφ1 is closed.

If Cφn−1 . . .Cφ1 is densely defined, then all the conditions (i) to (iv) are equivalent.

Proof The equivalence of (i) and (ii) is a direct consequence of (3.3). The equivalence of
(ii) and (iii) follows from Proposition 4.3. That (i) implies (iv) follows from Proposition 3.2.
Finally, if the product Cφn−1 . . .Cφ1 is densely defined, then (iv) implies (i) due to Proposition
4.1 (iii). ��
Corollary 4.5 If φ is a nonsingular transformation of X, then the following assertions hold
for all n ∈ N:

(i) Cφn is densely defined if and only if hφn < ∞ a.e. [μ],
(ii) Cn

φ is densely defined if and only if
∑n

j=1 hφ j < ∞ a.e. [μ],
(iii) Cn

φ = Cφn if and only if there exists c ∈ R+ such that hφk � c(1 + hφn ) a.e. [μ] for
k = 1, . . . , n.

Proof Use Propositions 3.2, 4.1 (ii) and 4.4 (for (ii) see also [24, p. 515]). ��
Corollary 4.6 If φ is a nonsingular transformation of X and D(Cm

φ ) = L2(μ) for some
m ∈ N, then there exists a sequence {Xn}∞n=1 ⊆ A such that

(i) Xn ↗ X as n → ∞,
(ii) μ(Xn) < ∞ for all n ∈ N,

(iii)
∑m

j=1 hφ j (x) � n for μ-a.e. x ∈ Xn and n ∈ N.

The question of when C∞-vectors of an operator A in a Hilbert space H form a dense
subspace of H is of independent interest (cf. [28,39]). If every power of A is densely defined,
then one could expect that D∞(A) is dense in H. This is the case for any closed densely
defined operator (even in a Banach space), the resolvent set of which is nonempty2. As shown
below, this is also the case for composition operators. However, this seems to be not true in

2 This can be deduced from the fact that the intersection of ranges of all powers of a bounded operator which
has dense range is dense in the underlying space.
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general. Dropping the assumption of closedness, we can provide a simple counterexample.
Indeed, take an infinite dimensional separable Hilbert space H. Then, there exists a dense
subset {en : n ∈ Z+} of H which consists of linearly independent vectors. Let A be the
operator in H whose domain is the linear span of {en : n ∈ N} and Ae j = e j−1 for every
j ∈ N. Since {en : n�k} is dense in H for every k ∈ Z+, we deduce that the operator An is
densely defined for every n ∈ Z+. However, D∞(A) = {0}.

Theorem 4.7 If φ is a nonsingular transformation of X, then the following conditions are
equivalent:

(i) D(Cn
φ) is dense in L2(μ) for every n ∈ N,

(ii) D∞(Cφ) is dense in L2(μ),
(iii) D∞(Cφ) is a core for Cn

φ for every n ∈ Z+,
(iv) D∞(Cφ) is dense in (D(Cn

φ), ‖ · ‖Cφ,n) for every n ∈ Z+.

Proof The implications (iv)⇒(iii), (iii)⇒(ii) and (ii)⇒(i) are obvious.
(i)⇒(iv) In view of Corollary 4.5 (ii), 0 � hφn < ∞ a.e. [μ] for all n ∈ N. Given n ∈ Z+

we denote by Hn , the inner product space (D(Cn
φ), ‖ · ‖Cφ,n). It follows from (3.6) that Hn

is a Hilbert space which coincides with L2((
∑n

j=0 hφ j )dμ). Hence, in view of Lemma 12.1,
Hn+1 is a dense subspace of Hn . Clearly, the embedding map of Hn+1 into Hn is continuous.
Applying Theorem 2.5 to the sequence {Hn}∞n=0, we conclude that D∞(Cφ) = ⋂∞

i=0 Hi is
dense in D(Cn

φ) with respect to the norm ‖ · ‖Cφ,n for every n ∈ Z+. This completes the
proof. ��

Regarding Theorem 4.7, we mention the following surprising fact which can be deduced
from [39, Theorem 4.5] by using Theorem 2.5 and [39, Corollaries 1.2 and 1.4].

Theorem 4.8 Let A be an unbounded selfadjoint operator in a complex Hilbert space H
and let N be a (possibly empty) subset of N \ {1} such that N \N is infinite. Then, there exists
a closed symmetric operator T in H such that T ⊆ A,D∞(T ) is dense in H and for every
k ∈ N,D∞(T ) is a core for T k if and only if k ∈ N \ N.

5 Examples

We begin by showing that Corollary 4.2 is no longer true if the assumption that Cn−1
φ is

densely defined is dropped.

Example 5.1 We will demonstrate that there is a nonsingular transformationφ such that Cφ is

densely defined, Cφ j and C j
φ are not densely defined for every j ∈ {2, 3, . . .}, and C3

φ � Cφ3

(however, by Corollary 4.2, C2
φ = Cφ2 ). For this, we will re-examine Example 4.2 given in

[24]. Suppose that {ai }∞i=0, {bi }∞i=0 and {ci, j }∞i, j=0 are disjoint sets of distinct elements. Set

X = {ai }∞i=0 ∪ {bi }∞i=0 ∪ {ci, j }∞i, j=0 and A = 2X . Let μ be a unique σ -finite measure on A
determined by

μ
({x}) =

⎧
⎪⎨

⎪⎩

1 if x = ai for some i ∈ Z+,
1

2i+1 if x = bi for some i ∈ Z+,
1

2 j+1 if x = ci, j for some i, j ∈ Z+.
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Define a nonsingular transformation φ of X by

φ(x) =

⎧
⎪⎨

⎪⎩

ai+1 if x = ai for some i ∈ Z+,
a0 if x = bi for some i ∈ Z+,
bi if x = ci, j for some i, j ∈ Z+.

Then hφ < ∞ a.e. [μ], and thus by Proposition 3.2, the operator Cφ is densely defined.
Since hφ2(a0) = ∞, we infer from Proposition 3.2 that Cφ2 is not densely defined. It follows
from (3.7) that D(C3

φ) = L2((1 + hφ + hφ2 + hφ3)dμ). This and hφ2(a0) = ∞ imply

that f (a0) = 0 for every f ∈ D(C3
φ). Since the convergence in the graph norm is stronger

than the pointwise convergence, we deduce that f (a0) = 0 for every f ∈ D(C3
φ). As

D(Cφ3) = L2((1 + hφ3)dμ) (cf. (3.5)) and hφ3(a0) = 0 (because φ−3({a0}) = ∅), we see

thatχ{a0} ∈ D(Cφ3)\D(C3
φ). Finally, arguing as above and using the fact that hφ j+2(a j ) = ∞

for every j ∈ Z+, we conclude that Cφ j is not densely defined for every j ∈ {2, 3, . . .}. As

a consequence, C j
φ is not densely defined for every j ∈ {2, 3, . . .}.

The composition operator Cφ constructed in Example 5.1 is densely defined, and its square
is not densely defined; however, dim D(Cn

φ) = ∞ for all n ∈ N (because χ{ai } ∈ D(Cn
φ) for

all i�n − 1). In fact, there are more pathological examples.

Example 5.2 It was proved in [26, Theorem 4.2] that there exists a hyponormal weighted
shift S on a rootless and leafless directed tree with positive weights whose square has trivial
domain. By [25, Lemma 4.3.1], S is unitarily equivalent to a composition operator C . As a
consequence, C is injective and hyponormal, and D(C2) = D∞(C) = {0} (see also [6] for
a recent construction).

Regarding Proposition 4.1, we note that it may happen that the operators Cφ1 and Cφ2 are
densely defined, while the operators Cφ1◦φ2 and Cφ2 Cφ1 are not (even ifφ1 = φ2, see Example
5.1). Below, we will show that for some φ1 and φ2 the composition operator Cφ1◦φ2 is densely
defined (even bounded), while Cφ1 is not.

Example 5.3 Set X = Z+ and A = 2X . Let μ be the counting measure on X and let φ1

and φ2 be the nonsingular transformations of X given by φ1(2n) = n, φ1(2n + 1) = 0 and
φ2(n) = 2n for n ∈ Z+. Then, φ1 ◦φ2 is the identity transformation of X , and hence, Cφ1◦φ2

is the identity operator on L2(μ). However, since μ(φ−1
1 ({0})) = ∞, the measure μ ◦ φ−1

1
is not σ -finite, and thus by Proposition 3.2, the operator Cφ1 is not densely defined.

Our next aim is to provide examples showing that the equality Cn
φ = Cφn which appears

in Corollary 4.5 (iii) does not hold in general even if D∞(Cφ) is dense in L2(μ) (which is
not the case for the operator given in Example 5.1).

Example 5.4 Set X = N and A = 2X . Let μ be a counting measure on X and let {Jn}∞n=1 be
a partition of X . Define a nonsingular transformation φ of X by φ(x) = min Jn2 for x ∈ Jn

and n ∈ N. Set Ns = {n2 : n ∈ N} and note that

X = {1} �
⊔

q∈N\Ns

{
q2n : n ∈ Z+

}
, (5.1)

where all terms in (5.1) are pairwise disjoint (they are equivalence classes under the equiv-
alence relation ∼ given by: p ∼ q if and only if p2m = q2n

for some m, n ∈ Z+). Since
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hφ j (x) = card(φ− j ({x})) for x ∈ X and j ∈ N, we infer from (5.1) that for all j ∈ N and
x ∈ X (m appearing below varies over the set of integers)

hφ j (x) =

⎧
⎪⎨

⎪⎩

card(J1) if x = min J1,

card(J
q2m− j ) if x = min Jq2m with q ∈ N \ Ns and m� j,

0 otherwise.

(5.2)

By (5.1), (5.2), Proposition 3.2 and Theorem 4.7, the following are equivalent:

• card(Jk) < ℵ0 for every k ∈ N,
• Cφ is densely defined,
• Cn

φ is densely defined for some n ∈ N,
• Cn

φ is densely defined for every n ∈ N,

• D∞(Cφ) is dense in L2(μ).

The above, combined with (5.2) and Proposition 4.4, implies that if Cφ is densely defined,
then for every integer n�2,Cn

φ is closed if and only if there exists c ∈ R+ such that

card(Jq2s ) � c, s = 0, . . . , n − 2, q ∈ N\Ns,

card(J
q2s+1 ) � c

(
1 + card(Jq2s )

)
, s ∈ Z+, q ∈ N\Ns.

Using this and an induction argument, one can prove that if Cφ is densely defined, then either
Cn
φ is closed for every integer n�1, or Cn

φ is not closed for every integer n�2. Summarizing, if
we choose a partition {Ji }∞i=1 of X such that Jn is finite for every n ∈ N, and sup{card(Jq) : q ∈
N\Ns} = ℵ0 (which is possible), then D∞(Cφ) is dense in L2(μ) and Cn

φ is not closed for
every integer n�2. On the other hand, if κ�2 is any fixed integer and a partition {Ji }∞i=1 of
X is selected so that J1 is finite and card(Jq2n ) = κn for all n ∈ Z+ and q ∈ N \ Ns (which

is also possible), then D∞(Cφ) is dense in L2(μ) and Cn
φ is closed and unbounded for every

n ∈ N.

6 Injectivity of Cφ

In this section, we provide necessary and sufficient conditions for a composition operator to
be injective. The following set plays an important role in our considerations.

Nφ = {x ∈ X : hφ(x) = 0}.
The following description of the kernel of Cφ follows immediately from (3.4).

Proposition 6.1 If φ : X → X is nonsingular, then N(Cφ) = χNφ L2(μ).

Proposition 6.2 Let φ be a nonsingular transformation of X. Consider the following four
conditions:

(i) N(Cφ) = {0},
(ii) μ(Nφ) = 0,

(iii) χNφ ◦ φ = χNφ a.e. [μ],
(iv) N(Cφ) ⊆ N(C∗

φ).

Then the conditions (i), (ii) and (iii) are equivalent. Moreover, if Cφ is densely defined, then
the conditions (i) to (iv) are equivalent.

123



674 P. Budzyński et al.

Proof (i)⇔(ii) Apply Proposition 6.1 and the σ -finiteness of μ.
(ii)⇒(iii) Since φ is nonsingular, we have μ(Nφ) = 0 and μ(φ−1(Nφ)) = 0, which implies
that μ(Nφ � φ−1(Nφ)) = 0. The latter is equivalent to (iii).
(iii)⇒(ii) By the measure transport theorem, we have

μ(Nφ) =
∫

X

χNφdμ =
∫

X

χNφ ◦ φdμ =
∫

X

χNφhφdμ = 0.

Now suppose that Cφ is densely defined.
(i)⇒(iv) Obvious.
(iv)⇒(ii) Let {Xn}∞n=1 be as in Corollary 4.6 (with m = 1).
Then, by (3.4), we see that χXn , χNφ∩Xn ∈ D(Cφ) and ‖Cφ(χNφ∩Xn )‖2 = ∫

Nφ∩Xn
hφdμ = 0

for all n ∈ N, which together with our assumption that N(Cφ) ⊆ N(C∗
φ) yields

0 = 〈χNφ∩Xn ,CφχXn 〉 =
∫

Nφ∩Xn

χXn ◦ φdμ = μ(Nφ ∩ Xn ∩ φ−1(Xn))

for all n ∈ N. Since Nφ∩ Xn ∩φ−1(Xn) ↗ Nφ as n → ∞, the continuity of measure implies
that μ(Nφ) = 0. This completes the proof. ��
Corollary 6.3 If Cφ is hyponormal, then N(Cφ) = {0}.
Proof It follows from the definition of hyponormality that N(Cφ) ⊆ N(C∗

φ). This and Propo-
sition 6.2 complete the proof. ��
Corollary 6.4 If Cφ is formally normal, then

D(Cφ) ∩ N(C∗
φ) = {0}.

Proof If f ∈ D(Cφ) ∩ N(C∗
φ), then ‖Cφ f ‖ = ‖C∗

φ f ‖ = 0, which means that f ∈ N(Cφ).
Applying Corollary 6.3 completes the proof. ��
It turns out that composition of hφ with φ is positive a.e. [μ] (see also the proof of [23,
Corollary 5]).

Proposition 6.5 If φ : X → X is nonsingular, then hφ ◦ φ > 0 a.e. [μ].
Proof Note that μ(φ−1(Nφ)) = ∫

X χNφ ◦ φdμ = ∫
X χNφhφdμ = 0. This combined with

φ−1(Nφ) = {x ∈ X : hφ(φ(x)) = 0} completes the proof. ��
Corollary 6.6 If φ is a nonsingular transformation of X and hφ ◦ φ = hφ a.e. [μ], then
N(Cφ) = {0}.
Proof Apply Propositions 6.1 and 6.5. ��

7 The polar decomposition

Given an A -measurable function u : X → C, we denote by Mu the operator of multiplication
by u in L2(μ) defined by

D(Mu) = { f ∈ L2(μ) : u · f ∈ L2(μ)},
Mu f = u · f, f ∈ D(Mu).

The operator Mu is a normal operator (cf. [3, Section 7.2].
The polar decomposition of Cφ can be explicitly described as follows.
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Proposition 7.1 Suppose that the composition operator Cφ is densely defined and
Cφ = U |Cφ | is its polar decomposition. Then,

(i) |Cφ | = Mh1/2
φ

,

(ii) the initial space of U is given by 3

R(|Cφ |) =
{
h1/2
φ f : f ∈ L2(hφdμ)

}
, (7.1)

(iii) the final space of U is given by

R(Cφ) = {
f ◦ φ : f ∈ L2(hφdμ)

}
, (7.2)

(iv) the partial isometry U is given by 4

Ug = g ◦ φ
(hφ ◦ φ)1/2 , g ∈ L2(μ), (7.3)

(v) the adjoint U∗ of U is given by

U∗g = h1/2
φ · V −1 Pg, g ∈ L2(μ),

where V : L2(hφdμ) → R(Cφ) is a unitary operator defined by V f = f ◦ φ for
f ∈ L2(hφdμ) and P is the orthogonal projection of L2(μ) onto R(Cφ).

Proof (i) We will show that C∗
φCφ ⊆ Mhφ . Let {Xn}∞n=1 be as in Corollary 4.6 (with

m = 1). Take f ∈ D(C∗
φCφ) and fix n ∈ N. By (3.5), χΔ ∈ D(Cφ) whenever Δ ∈ A

and Δ ⊆ Xn . Thus, for every such Δ, we have
∫

Δ

C∗
φCφ f dμ = 〈C∗

φCφ f, χΔ〉 = 〈Cφ f,CφχΔ〉 (3.2)=
∫

Δ

f hφdμ.

Since both functions (C∗
φCφ f )χXn and ( f hφ)χXn are in L1(μ), we deduce that

C∗
φCφ f = f hφ a.e. [μ] on Xn . This and Xn ↗ X give C∗

φCφ f = f hφ a.e. [μ].
As a consequence, we have C∗

φCφ ⊆ Mhφ . Since both are selfadjoint operators, they

are equal. Thus |Cφ | = M1/2
hφ

= Mh1/2
φ

.

(ii) By [3, Section 8.1] and Proposition 6.1, we have

R(|Cφ |) = N(|Cφ |)⊥ = N(Cφ)
⊥ = χX\Nφ L2(μ), (7.4)

which as easily seen gives (7.1).
(iii) By (3.4) and (ii), the mapping W : R(|Cφ |) → L2(μ) given by

W (h1/2
φ f ) = f ◦ φ, f ∈ L2(hφdμ), (7.5)

is a well-defined isometry. Using (i), we verify that W |R(|Cφ |) = U |R(|Cφ |), which

implies that R(Cφ) = R(U ) = R(W ). Hence, (iii) holds and, by (7.5), we have

U∗( f ◦ φ) = h1/2
φ f, f ∈ L2(hφdμ). (7.6)

3 Note that the mapping L2(hφdμ) � f �→ h1/2
φ f ∈ L2(μ) is an isometry.

4 Recall that hφ ◦ φ > 0 a.e. [μ] (cf. Proposition 6.5).
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(iv) Applying the measure transport theorem to the restriction of φ to the full μ-measure
set on which hφ ◦ φ is positive (cf. Proposition 6.5), we get

∫

X

|g ◦ φ|2
hφ ◦ φ dμ =

∫

X\Nφ

|g|2dμ, g ∈ L2(μ). (7.7)

This and Proposition 6.1 imply that the mapping Ũ : L2(μ) � g �→ g◦φ
(hφ◦φ)1/2 ∈ L2(μ)

is a contraction such that N(Ũ ) = χNφ L2(μ) = N(|Cφ |). Hence, by (7.4) and (7.7), Ũ

is an isometry on R(|Cφ |). Clearly, by (i), Ũ |Cφ |g = Cφg for g ∈ D(Cφ) = D(|Cφ |),
which implies that U = Ũ .

(v) By (3.4) and (7.2), V is a well-defined unitary operator. If g ∈ L2(μ), then by (iii),
Pg = f ◦ φ a.e. [μ] for some f ∈ L2(hφdμ). Thus, by N(U∗) = R(I − P) and (7.6),
we have

U∗g = U∗ Pg = U∗( f ◦ φ) = h1/2
φ f = h1/2

φ · V −1 Pg.

This completes the proof.
��

Regarding Proposition 7.1, we note that the formulas for |Cφ | and R(Cφ) are well-known
in the case of bounded composition operators (cf. [23, Lemma 1]). The formula (7.3) has
appeared in [10, p. 387] in the context of bounded operators without proof.

Corollary 7.2 Suppose that Cφ is densely defined and g ∈ L2(μ). Then g belongs to R(Cφ)
if and only if one of the following equivalent conditions holds5:

(i) there is an A -measurable function f : X → C such that g = f ◦ φ a.e. [μ],
(ii) there is a φ−1(A )-measurable function f : X → C such that g = f a.e. [μ],

(iii) g is (φ−1(A ))μ-measurable,
(iv) for every Borel set Δ in C there exists Δ′ ∈ A such that

μ
(
g−1(Δ) � φ−1(Δ′)

) = 0.

In particular, R(Cφ) = L2(μ|(φ−1(A ))μ).

Proof Apply (3.4), (7.2), (13.1), (13.2) and Lemma 13.3. ��
Corollary 7.3 If Cφ is densely defined, then the map V : L2(hφdμ) → R(Cφ) given by
V f = f ◦ φ for f ∈ L2(hφdμ) is a well-defined unitary operator such that

D(C∗
φ) = {

g ∈ L2(μ) : hφ · V −1 Pg ∈ L2(μ)
}
,

C∗
φg = hφ · V −1 Pg, g ∈ D(C∗

φ), (7.8)

where P is the orthogonal projection of L2(μ) onto R(Cφ) = L2(μ|(φ−1(A ))μ).

Proof If Cφ = U |Cφ | is the polar decomposition of Cφ , then C∗
φ = |Cφ |U∗. This, Proposition

7.1 and Corollary 7.2 complete the proof. ��
Remark 7.4 Concerning Corollary 7.3, we observe that, in view of (13.3), E(g) :=
E(g|φ−1(A )) = Pg a.e. [μ] and thus C∗

φg = hφ · (E(g) ◦ φ−1) for every g ∈ D(C∗
φ),

where E(g) ◦ φ−1 is understood as in [11, Lemma 6.4].

5 See “Appendix B” for definitions and notation.
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8 Normality and quasinormality

It turns out that the characterizations of quasinormality and normality of unbounded compo-
sition operators take the same forms as those for bounded ones.

Proposition 8.1 If Cφ is densely defined, then Cφ is quasinormal if and only if hφ = hφ ◦ φ
a.e. [μ].
Proof Let Cφ = U |Cφ | be the polar decomposition of Cφ . Suppose that Cφ is quasinormal.
Then, by [49, Proposition 1], U |Cφ | ⊆ |Cφ |U . Let {Xn}∞n=1 be as in Corollary 4.6 (with
m = 1). Then, by (3.5), {χXn }∞n=1 ⊆ D(Cφ), which together with Proposition 7.1 implies
that for every n ∈ N,

χXn ◦ φ = U |Cφ |χXn = |Cφ |UχXn =
( hφ

hφ ◦ φ
)1/2

χXn ◦ φ a.e. [μ].

Since Xn ↗ X as n → ∞, we conclude that hφ = hφ ◦ φ a.e. [μ].
For the converse, take f ∈ D(|Cφ |). By (7.3) and D(|Cφ |) = D(Cφ), we have

h1/2
φ U f =

( hφ
hφ ◦ φ

)1/2
f ◦ φ = f ◦ φ ∈ L2(μ).

Hence, by Proposition 7.1 (i), f ∈ D(|Cφ |U ) and |Cφ |U f = Cφ f = U |Cφ | f . Therefore,
U |Cφ | ⊆ |Cφ |U . Applying [49, Proposition 1] completes the proof. ��
Proposition 8.2 If D(Cφ) = L2(μ), then the following are equivalent:

(i) Cφ is normal,
(ii) hφ = hφ ◦ φ a.e. [μ] and N(C∗

φ) ⊆ N(Cφ),
(iii) hφ = hφ ◦ φ a.e. [μ] and N(C∗

φ) = {0},
(iv) hφ = hφ ◦ φ a.e. [μ] and for every Δ ∈ A there exists Δ′ ∈ A such that μ(Δ �

φ−1(Δ′)) = 0.

Moreover, if Cφ is normal, then N(Cφ) = {0} and hφ > 0 a.e. [μ].
Proof (i) ⇒(iii) Since normal operators are always quasinormal, we infer from Proposition
8.1 that hφ = hφ ◦ φ a.e. [μ]. Clearly, N(Cφ) = N(C∗

φ). That N(C∗
φ) = {0} follows from

Corollary 6.6.
(iii)⇒(ii) Evident.
(ii)⇒(i) This is a direct consequence of Proposition 8.1 and Theorem 2.2.
(iii)⇔(iv) Since N(C∗

φ) = {0} if and only if R(Cφ) is dense in L2(μ), it suffices to apply
Corollary 7.2, Lemma 13.2 and (13.1).

The ”moreover” part follows from the above and Proposition 6.5. ��

9 Formal normality

In this section, we show that formally normal composition operators are normal. The proof
of this result relies on a characterization of composition operators for which hφ2 = h2

φ a.e.
[μ]. We also provide an alternative proof which depends heavily on the fact that quasinormal
formally normal operators are normal.

We begin by proving a result which is of measure-theoretic nature. We refer the reader to
“Appendix B” for the definition and basic properties of E(·|φ−1(A )) (which makes sense if
hφ < ∞ a.e. [μ]). For brevity, we write E(·) = E(·|φ−1(A )).

123



678 P. Budzyński et al.

Lemma 9.1 If φ is a nonsingular transformation of X such that hφ < ∞ a.e. [μ], then the
following two conditions are equivalent for every n ∈ N:

(i) hφn+1 = hφn · hφ a.e. [μ],
(ii) E(hφn ) = hφn ◦ φ a.e. [μ|φ−1(A )].
Proof (i)⇒(ii) Note that

∫

φ−1(Δ)

E(hφn )dμ =
∫

φ−1(Δ)

hφn dμ = μ((φ−n(φ−1(Δ))))

= μ((φ−(n+1)(Δ))) =
∫

Δ

hφn+1 dμ =
∫

Δ

hφn · hφdμ

=
∫

X
(χΔ ◦ φ)(hφn ◦ φ)dμ =

∫

φ−1(Δ)

hφn ◦ φdμ, Δ ∈ A ,

which, by the uniqueness assertion in the Radon-Nikodym theorem, implies (ii).
Arguing as above, we can prove the reverse implication. ��
The next two lemmas are key ingredients of the proof of Theorem 9.4. The first lemma

shows that hφ2 = h2
φ a.e. [μ] if and only if Cφ is “formally normal” on its range. This result

is of some independent interest.

Lemma 9.2 Suppose that Cφ is densely defined. Then, the following two conditions are
equivalent:

(i) C2
φ is densely defined, D(C2

φ) ⊆ D(C∗
φCφ) and ‖C2

φ f ‖ = ‖C∗
φCφ f ‖ for every

f ∈ D(C2
φ),

(ii) hφ2 = h2
φ a.e. [μ].

Proof (i)⇒(ii) Take f ∈ D(C2
φ). Then, by Proposition 7.1(i), we have

∫

X

| f |2h2
φdμ = ‖Mhφ f ‖2 = ‖C∗

φCφ f ‖2 = ‖Cφ2 f ‖2 =
∫

X

| f |2hφ2 dμ. (9.1)

Let {Xn}∞n=1 be as in Corollary 4.6 (with m = 2). Then, {χXn }∞n=1 ⊆ D(C2
φ) and

∫

Δ

h2
φdμ

(9.1)=
∫

Δ

hφ2 dμ < ∞, Δ ∈ A , Δ ⊆ Xn, n ∈ N,

which implies that h2
φ = hφ2 a.e. [μ] on Xn for every n ∈ N. Hence, (ii) holds.

(ii)⇒(i) Since, by Proposition 3.2, hφ < ∞ a.e. [μ], we infer from (ii) and Corollary
4.5 that C2

φ is densely defined. Now we take f ∈ D(C2
φ). Then, by (3.6),

∫
X | f hφ |2dμ =

∫
X | f |2hφ2 dμ < ∞, which means that f ∈ D(Mhφ ) = D(C∗

φCφ). Arguing as in (9.1), we
obtain (i). ��

It is worth pointing out that implication (i)⇒(ii) of Lemma 9.2 is no longer true if we drop
the assumption that C2

φ is densely defined. To see this, it is enough to consider a nonzero
densely defined composition operator whose square has trivial domain and to apply Corollary
4.5. For examples of such operators, we refer the reader to recent articles [26] and [6].
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Lemma 9.3 If φ is nonsingular transformation of X, then the following conditions are
equivalent:

(i) Cφ is normal,

(ii) Cφ is formally normal and D(C2
φ) = L2(μ).

Proof (i)⇒(ii) Evident (since powers of normal operators are normal, cf. [3]).
(ii)⇒(i) First we will show that

D(Cφ) ∩ R(Cφ) = D(C∗
φ) ∩ R(Cφ). (9.2)

Indeed, if g ∈ D(C∗
φ)∩R(Cφ), then by (7.2) there exists f ∈ L2(hφdμ) such that g = f ◦φ

a.e. [μ]. It follows from Corollary 7.3 that hφ f = hφV −1g ∈ L2(μ). This combined with
the fact that (ii) implies condition (i) of Lemma 9.2 leads to

∫

X

|g ◦ φ|2dμ =
∫

X

| f ◦ φ2|2dμ =
∫

X

| f |2hφ2 dμ =
∫

X

| f hφ |2dμ < ∞,

which means that g ∈ D(Cφ). This yields (9.2).
Let P be the orthogonal projection of L2(μ) onto R(Cφ). We will prove that

PD(Cφ) ⊆ D(Cφ). (9.3)

Indeed, take f ∈ D(Cφ). Since (I − P) f ∈ N(C∗
φ) and D(Cφ) ⊆ D(C∗

φ), we get

P f ∈ D(C∗
φ) ∩ R(Cφ). Hence, by (9.2), P f ∈ D(Cφ), which proves (9.3).

It follows from (9.3) and Corollary 6.4 that

D(Cφ) ⊆ (
D(Cφ) ∩ N(C∗

φ)
) ⊕ (

D(Cφ) ∩ R(Cφ)
) = D(Cφ) ∩ R(Cφ),

which together with D(Cφ) = L2(μ) imply that R(Cφ) = L2(μ). Therefore, by (9.2),
D(Cφ) = D(C∗

φ), which completes the proof. ��

Now we show that the assumption D(C2
φ) = L2(μ) can be dropped without affecting the

conclusion of Lemma 9.3.

Theorem 9.4 Let φ be a nonsingular transformation of X. Then, Cφ is normal if and only
if Cφ is formally normal.

Proof It suffices to prove the “if” part. Suppose Cφ is formally normal. Let {Xn}∞n=1 ⊆ A
be as in Corollary 4.6 (with m = 1). TakeΔ ∈ A . Since {χXn∩Δ}∞n=1 ⊆ D(Cφ), we get (see
also Remark 7.4)

∫

Xn∩Δ
hφdμ

(3.4)= ‖Cφ(χXn∩Δ)‖2 = ‖C∗
φ(χXn∩Δ)‖2

(7.8)= ∫

X
h2
φ · |V −1E(χXn∩Δ)|2dμ

= ∫

X
(hφ ◦ φ)(E(χXn∩Δ))2dμ, n ∈ N.

Using (13.6) and Lebesgue’s monotone convergence theorem, we obtain
∫

Δ

hφdμ =
∫

X

(hφ ◦ φ)(E(χΔ))2dμ, Δ ∈ A ,
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680 P. Budzyński et al.

which yields
∫

φ−1(Δ)

hφdμ =
∫

φ−1(Δ)

hφ ◦ φdμ, Δ ∈ A .

This in turn implies that E(hφ) = hφ ◦ φ a.e. [μ|φ−1(A )]. By Lemma 9.1, hφ2 = h2
φ a.e. [μ].

Since hφ < ∞ a.e. [μ], we see that hφ + hφ2 < ∞ a.e. [μ]. Using Corollary 4.5 (ii), we get

D(C2
φ) = L2(μ). Applying Lemma 9.3 completes the proof. ��

Remark 9.5 The “if” part of Theorem 9.4 can be proved using a different more advanced
way. Indeed, assume that Cφ is formally normal. Then, by the polarization formula, we have

∫

X

f ḡhφdμ = 〈Cφ f,Cφg〉 = 〈C∗
φ f,C∗

φg〉

(7.8)=
∫

X
h2
φ

(
V −1E( f )

)(
V −1E(g)

)
dμ

=
∫

X
(hφ ◦ φ)E( f )E(g)dμ, f, g ∈ D(Cφ). (9.4)

By Propositions 3.2 and 6.1, and Corollary 6.3, we can assume that 0 < hφ(x) < ∞ for all
x ∈ X . Let {Xn}∞n=1 ⊆ A be as in Corollary 4.6 (with m = 1). Set Yn = {x ∈
Xn : hφ(x)�1/n} for n ∈ N. Clearly, Yn ↗ X as n → ∞. Take Δ ∈ A . Since

{χYn }∞n=1,
{
h−1
φ · χYn∩Δ

}∞
n=1

⊆ D(Cφ), we can substitute f = h−1
φ · χYn∩Δ and g = χYn

into (9.4). What we get is

μ(Yn ∩Δ) = ∫
X (hφ ◦ φ)E(h−1

φ · χYn∩Δ)E(χYn )dμ

(13.5)= ∫
Yn∩Δ

hφ◦φ
hφ

E(χYn )dμ, n ∈ N.
Using (13.6) and Lebesgue’s monotone convergence theorem, we obtain

μ(Δ) =
∫

Δ

hφ ◦ φ
hφ

dμ, Δ ∈ A ,

which implies that hφ ◦ φ = hφ a.e. [μ]. By Proposition 8.1, Cφ is quasinormal. Since
quasinormal formally normal operators are normal (cf. [49, Corollary 4]; see also [52]), the
proof is complete.

10 Generating Stieltjes moment sequences

We begin by proving two lemmas which are main tools in the proof of Theorem 10.4 below.

Lemma 10.1 Suppose φ is a nonsingular transformation of X and {En}∞n=1 is a sequence of
subsets of L2(μ) satisfying the following three conditions:

(i) En fulfills (12.5), En ⊆ D(Cn
φ) and En = L2(μ) for all n ∈ N,

(ii)
[‖Ci+ j

φ f ‖2
]n

i, j=0�0 for all f ∈ E2n and n ∈ N,

(iii)
[‖Ci+ j+1

φ f ‖2
]n

i, j=0�0 for all f ∈ E2n+1 and n ∈ N.

Then the following three assertions hold:

123



On unbounded composition operators 681

(a)
{
hφn (x)

}∞
n=0 is a Stieltjes moment sequence for μ-a.e. x ∈ X,

(b) Cn
φ = Cφn for every n ∈ N,

(c) D∞(Cφ) is a core for Cn
φ for every n ∈ Z+.

Proof (a) By (i) and Corollary 4.5 (ii), there is no loss of generality in assuming that 0 �
hφn (x) < ∞ for all x ∈ X and n ∈ Z+. Using (3.4), we obtain

∫

X

∣
∣
∣

n∑

i, j=0

αi ᾱ j hφi+ j

∣
∣
∣| f |2dμ < ∞, f ∈ D(C2n

φ ), {αi }n
i=0 ⊆ C, n ∈ Z+. (10.1)

If {αi }n
i=0 ⊆ C, then by (i) and (ii) we have

0 �
n∑

i, j=0

‖Ci+ j
φ f ‖2αi ᾱ j =

∫

X

⎛

⎝
n∑

i, j=0

αi ᾱ j hφi+ j

⎞

⎠ | f |2dμ, f ∈ E2n, n ∈ N.

Combining (i), (10.1) and Corollary 12.6 (with E = E2n), we see that

n∑

i, j=0

αi ᾱ j hφi+ j �0 a.e. [μ] for all n ∈ N and {αi }n
i=0 ⊆ C.

Let Q be a countable dense subset ofC. Then, there exists a setΔ0 ∈ A such thatμ(X\Δ0) =
0 and

∑n
i, j=0 αi ᾱ j hφi+ j (x)�0 for all n ∈ N, {αi }n

i=0 ⊆ Q and x ∈ Δ0. As Q is dense in
C, we conclude that [hφi+ j (x)]n

i, j=0�0 for all n ∈ N and x ∈ Δ0. Using (iii) and applying a
similar reasoning as above, we infer that there exists a setΔ1 ∈ A such that μ(X \Δ1) = 0
and [hφi+ j+1(x)]n

i, j=0�0 for all n ∈ N and x ∈ Δ1. Employing (2.5) yields (a).

(b) By (a), there exists Δ ∈ A such that μ(X \Δ) = 0,hφ0(x) = 1 and
{
hφn (x)

}∞
n=0 is

a Stieltjes moment sequence for every x ∈ Δ. Hence, for every x ∈ Δ there exists a Borel
probability measure μx on R+ such that hφn (x) = ∫

R+ sndμx (s) for all n ∈ Z+. This yields

( n∑

j=0

hφ j

)

(x) =
∫

R+

( n∑

j=0

s j
)

dμx (s)

=
∫

[0,1)

( n∑

j=0

s j
)

dμx (s)+
∫

[1,∞)

( n∑

j=0

s j
)

dμx (s)

� (n + 1)
∫

[0,1)
1dμx (s)+ (n + 1)

∫

[1,∞)

sndμx (s)

� (n + 1)(1 + hφn )(x), x ∈ Δ, n ∈ N.
Hence, the domains of Cn

φ and Cφn coincide for all n ∈ N. By (3.3), this gives (b).
(c) Apply (i) and Theorem 4.7. This completes the proof. ��

Lemma 10.2 Suppose that φ is a nonsingular transformation of X satisfying the following
two conditions:

(i) D(Cn
φ) is dense in L2(μ) for every n ∈ N,

(ii)
[‖Ci+ j

φ f ‖2
]n

i, j=0�0 for all f ∈ D(C2n
φ ) and n ∈ N.

Then the assertions (a), (b) and (c) of Lemma 10.1 hold.
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Proof Set En = D(Cn
φ) for n ∈ N. According to (3.6), each En satisfies (12.5). Substituting

Cφ f for f in (ii) implies that the hypothesis (iii) of Lemma 10.1 is satisfied. Applying Lemma
10.1 completes the proof. ��
Corollary 10.3 If Cφ is subnormal and D(Cn

φ) = L2(μ) for all n ∈ N, then the assertions
(a), (b) and (c) of Lemma 10.1 hold.

Proof Apply Proposition 2.4 and Lemma 10.2. ��
The following theorem completely characterizes composition operators that generate

Stieltjes moment sequences. It should be compared with Lambert’s characterizations of
bounded subnormal composition operators (cf. [31]). In particular, condition (ii) of The-
orem 10.4 is the Lambert condition, which in the bounded case is equivalent to subnormality.

Theorem 10.4 If φ is a nonsingular transformation of X, then the following conditions are
equivalent:

(i) Cφ generates Stieltjes moment sequences,
(ii)

{
hφn (x)

}∞
n=0 is a Stieltjes moment sequence for μ-a.e. x ∈ X,

(iii) D(Ck
φ) = L2(μ) for all k ∈ N, and {μ(φ−n(Δ))}∞n=0 is a Stieltjes moment sequence

for every Δ ∈ A such that μ(φ−k(Δ)) < ∞ for all k ∈ Z+,
(iv) hφn < ∞ a.e. [μ] for all n ∈ N and L(p)�0 a.e. [μ] whenever p(t)�0 for all t ∈ R+,

where L : C[t] → M is a linear mapping determined by6

L(tn) = hφn , n ∈ Z+;
here C[t] is the set of all complex polynomials in one real variable t and M is the set of
all A -measurable complex functions on X.

Moreover, if (i) holds, then Cn
φ = Cφn and D∞(Cφ) is a core for Cn

φ for all n ∈ Z+.

Proof (i)⇒(ii) Set En = D∞(Cφ) for n ∈ N. By (2.5), (3.6) and Lemma 10.1, we see that
the condition (ii) and the “moreover” part hold.

(ii)⇒(i) Take f ∈ D∞(Cφ), n ∈ Z+ and {αi }n
i=0 ⊆ C. Then, by (2.5), we have

n∑

i, j=0

αiα j‖Ci+ j
φ f ‖2 (3.4)=

∫

X

( n∑

i, j=0

αiα j hφi+ j (x)

)

| f (x)|2dμ(x)�0.

Applying the above to Cφ f in place of f , we deduce that the sequences {‖Ck
φ f ‖2}∞k=0 and

{‖Ck+1
φ f ‖2}∞k=0 are positive definite. Therefore, by (2.5), {‖Ck

φ f ‖2}∞k=0 is a Stieltjes moment

sequence. It follows from Corollary 4.5(ii) and Theorem 4.7 that D∞(Cφ) is dense in L2(μ).
(i)⇒(iii) Evident (because χΔ ∈ D∞(Cφ) for every Δ as in (iii)).
(iii)⇒(i) By Theorem 4.7, the set D∞(Cφ) is dense in L2(μ). Consider a simple

A -measurable function u = ∑k
i=1 αiχΔi , where {αi }k

i=1 are positive real numbers and
{Δi }k

i=1 are pairwise disjoint sets in A . Suppose that u is in D∞(Cφ). Then, by the measure

transport theorem,
{
χΔi

}k
i=1 ⊆ D∞(Cφ) and

‖Cn
φu‖2 =

k∑

i, j=1

αiα j

∫

Δi ∩Δ j

hφn dμ =
k∑

i=1

α2
i

∫

Δi

hφn dμ
(3.4)=

k∑

i=1

α2
i μ(φ

−n(Δi ))

6 To make the definition of L correct we have to modify hφn so that 0 � hφn (x) < ∞ for all x ∈ X and
n ∈ Z+.
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for all n ∈ Z+. Hence, by (iii), we have

{‖Cn
φu‖2}∞n=0 is a Stieltjes moment sequence for every simple

nonnegative A -measurable function u ∈ D∞(Cφ). (10.2)

Now take f ∈ D∞(Cφ). Then, there exists a sequence {un}∞n=1 of simple A -measurable
functions un : X → R+ such that un(x) � un+1(x) � | f (x)| and limk→∞ uk(x) = | f (x)|
for all n ∈ N and x ∈ X . This implies that {un}∞n=1 ⊆ D∞(Cφ) and, by Lebesgue’s monotone
convergence theorem,

‖Cn
φ f ‖2 =

∫

X

| f |2hφn dμ = lim
k→∞

∫

X

u2
khφn dμ = lim

k→∞ ‖Cn
φuk‖2, n ∈ Z+.

Since the class of Stieltjes moment sequences is closed under the operation of taking pointwise
limits (cf. (2.5)), we infer from (10.2) that {‖Cn

φ f ‖2}∞n=0 is a Stieltjes moment sequence.
(ii)⇒(iv) If p ∈ C[t] is such that p(t)�0 for all t ∈ R+, then there exist q1, q2 ∈ C[t]

such that p(t) = t |q1(t)|2 + |q2(t)|2 for all t ∈ R (see [36, Problem 45, p. 78]). This fact
combined with (2.5) implies that L(p)�0 a.e. [μ].

(iv)⇒(ii) Let Q be a countable dense subset of C. If q ∈ C[t] is a polynomial with
coefficients in Q, then the polynomials p1 := |q|2 and p2 := t |q|2 are nonnegative on R+.
Hence, L(pi )�0 a.e. [μ] for i = 1, 2. Since Q is countable, this implies that there exists
Δ ∈ A such that μ(X \Δ) = 0,

0 ≤ hφn (x) < ∞,

n∑

i, j=0

αiα j hφi+ j (x)�0 and
n∑

i, j=0

αiα j hφi+ j+1(x)�0 (10.3)

for all n ∈ Z+, {αi }n
i=0 ⊆ Q and x ∈ Δ. As Q is dense in C, we see that (10.3) holds for all

n ∈ Z+, {αi }n
i=0 ⊆ C and x ∈ Δ. This and (2.5) complete the proof. ��

11 Conclusion

We close the paper by pointing out that there exists a composition operator generating Stieltjes
moment sequences which is not subnormal and even not hyponormal. Such an operator can be
constructed on the basis of a weighted shift on a directed tree with one branching vertex (cf.
[25, Section 4.3]). In view of Theorem 10.4, any composition operator Cφ which generates
Stieltjes moment sequences, in particular the aforementioned, satisfies the conditions (ii),
(iii) and (iv) of this theorem as well as its “moreover” part (specifically, D∞(Cφ) is a core
for Cn

φ for every n ∈ Z+, which is considerably more than is required in Definition 2.3).
Therefore, none of the Lambert characterizations of subnormality of bounded composition
operators (cf. [31]) is valid in the unbounded case. It is worth mentioning that the above
example is built over the discrete measure space. However, it can be immediately adapted to
the context of measures which are equivalent to the Lebesgue measure on [0,∞) by applying
[24, Theorem 2.7].
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12 Appendix A

Here we gather some useful properties of L2-spaces. The first two lemmas seem to be folklore.
For the reader’s convenience, we include their proofs.

Lemma 12.1 Let (X,A , μ) be a measure space and let ρ1, ρ2 be A -measurable scalar
functions on X such that 0 < ρi < ∞ a.e. [μ] for i = 1, 2. Then, L2(ρ1dμ) ∩ L2(ρ2dμ) is
dense7 in L2(ρi dμ) for i = 1, 2.

Proof Since L2(ρ1dμ) ∩ L2(ρ2dμ) = L2((ρ1 + ρ2)dμ), we can assume that 0 < ρ2(x) �
ρ1(x) < ∞ for all x ∈ X . Take Δ ∈ A such that χΔ ∈ L2(ρ2dμ). Set Δn = {

x ∈
Δ : ρ1(x) � n and 1

n � ρ2(x)
}

for n ∈ N. Note that {χΔn }∞n=1 ⊆ L2(ρ1dμ). Since Δn ↗ Δ

as n → ∞, we see that {χΔn }∞n=1 converges to χΔ in L2(ρ2dμ). Applying [38, Theorem
3.13] completes the proof. ��

Note that Lemma 12.1 is no longer true if one of the density functions ρ1 and ρ2 takes the
value ∞ on a set of positive measure μ (even if ρ2 � ρ1). Employing Lemma 12.1 and the
Radon-Nikodym theorem, we get the following.

Corollary 12.2 Let (X,A , μ1) and (X,A , μ2) be σ -finite measure spaces. If the measures
μ1 and μ2 are mutually absolutely continuous, then L2(μ1)∩ L2(μ2) is dense in L2(μi ) for
i = 1, 2.

Corollary 12.2 is no longer true if one of the measures μ1 and μ2 is not σ -finite.

Lemma 12.3 Let (X,A , μ) be a σ -finite measure space and ρ1, ρ2 be A -measurable scalar
functions on X such that 0 < ρ1 � ∞ a.e. [μ] and 0 � ρ2 � ∞ a.e. [μ]. Then, the following
two conditions are equivalent:

(i)
∫

X | f |2ρ2dμ < ∞ for every A -measurable function f : X → C such that∫
X | f |2ρ1dμ < ∞,

(ii) there exists c ∈ R+ such that ρ2 � cρ1 a.e. [μ].
Proof (i)⇒(ii) Without loss of generality we can assume that ρ1 < ∞ a.e. [μ]. We can also
assume that ρ2 < ∞ a.e. [μ] (indeed, otherwise, since ρ1 < ∞ a.e. [μ] and μ is σ -finite,
there exist Ω ∈ A and k ∈ N such that ρ1(x) � k and ρ2(x) = ∞ for all x ∈ Ω , and
0 < μ(Ω) < ∞; hence

∫
Ω
ρ1dμ < ∞ and

∫
Ω
ρ2dμ = ∞, which is a contradiction).

Finally, replacing ρ2 by ρ2
ρ1

if necessary, we can assume that ρ1(x) = 1 for all x ∈ X . Now
applying the Landau-Riesz summability theorem (cf. [5, Problem G, p. 398]), we obtain (ii).
The implication (ii)⇒(i) is obvious. ��
Corollary 12.4 Let (X,A , μ) be a σ -finite measure space and ρ1, ρ2 be A -measurable
scalar functions on X such that 0 < ρi � ∞ a.e. [μ] for i = 1, 2. Then, L2(ρ1dμ) ⊆
L2(ρ2dμ) if and only if there exists c ∈ R+ such that ρ2 � cρ1 a.e. [μ].

Implication (i)⇒(ii) of Lemma 12.3 is not true if we drop the assumption that ρ1 > 0 a.e.
[μ]. Corollary 12.4 is no longer true if μ is not σ -finite (e.g., X = N,A = 2X , μ({1}) = 1,
μ({i}) = ∞ for i�2, ρ1 ≡ 1 and ρ2(n) = n for n ∈ X ).

The following lemma generalizes [24, Lemma 2.1].

7 This makes sense because the measures ρ1dμ and ρ2dμ are mutually absolutely continuous.
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Lemma 12.5 Let (X,A , μ) be a σ -finite measure space, E be a dense subset of L2(μ) and
h : X → C be an A -measurable function such that

∫
Δ

|h|| f |2dμ < ∞ and
∫
Δ

h| f |2dμ�0 for all f ∈ E and Δ ∈ A∗, (12.1)

where A∗ = {Δ ∈ A : μ(Δ) < ∞}. Then, h�0 a.e. [μ].
Proof Set Ξ f = {x ∈ X : | f (x)| > 0} for f ∈ E . First, we will show that

h(x)�0 for μ-a.e. x ∈ Ξ f and for every f ∈ E . (12.2)

Indeed, fix f ∈ E and setΞ f,k = {
x ∈ X : | f (x)|� 1

k

}
for k ∈ N. It follows from Chebyshev’s

inequality that Ξ f,k ∈ A∗ for k ∈ N. Applying (12.1), we deduce that
∫

Ξ f,k

|h|| f |2dμ < ∞ and
∫

Ξ f,k∩Δ
h| f |2dμ�0 for all Δ ∈ A and k ∈ N.

This implies that h�0 a.e. [μ] on Ξ f,k for every k ∈ N. Since Ξ f,k ↗ Ξ f as k → ∞, we
conclude that h�0 a.e. [μ] on Ξ f .

Set Σ = {x ∈ X : h(x)�0}. Suppose that, contrary to our claim, μ(X \Σ) > 0. As μ is
σ -finite, there exists a set Ω ∈ A such that Ω ⊆ X \Σ and 0 < μ(Ω) < ∞. This means
that χΩ ∈ L2(μ). Since E is dense in L2(μ), there exists a sequence { fn}∞n=1 ⊆ E which
converges to χΩ in L2(μ). Passing to a subsequence if necessary, we can assume that the
sequence { fn}∞n=1 converges a.e. [μ] to χΩ , and thus

limn→∞ fn(x) = χΩ(x) = 1 for μ-a.e. x ∈ Ω . (12.3)

It follows from (12.2) that μ(Ω ∩ Ξ f ) = 0 for every f ∈ E . Applying this property to

f = fn (n ∈ N), we see that μ
(
Ω ∩ ⋃∞

n=1Ξ fn

) = 0, which means that

fn(x) = 0 for all n ∈ N and for μ-a.e. x ∈ Ω . (12.4)

Combining (12.3) with (12.4), we conclude that μ(Ω) = 0, a contradiction. ��
Applying Lemma 12.5 to h and −h, we see that this lemma remains valid if “�” is replaced

by “=”.

Corollary 12.6 Let (X,A , μ) be a σ -finite measure space and E be a dense subset of L2(μ)

such that

f χΔ ∈ E for all f ∈ E and Δ ∈ A∗. (12.5)

If h : X → C is an A -measurable function such that
∫

X |h|| f |2dμ < ∞ and
∫

X h| f |2dμ�0
for all f ∈ E , then h�0 a.e. [μ].

13 Appendix B

In this appendix, we describe (mostly without proofs) some results from measure theory
which play an important role in our analysis of composition operators. Let (X,A , μ) be a
fixed measure space and let B ⊆ A be a σ -algebra. We say that B is relatively μ-complete
if A0 ⊆ B, where A0 = {Δ ∈ A : μ(Δ) = 0} (cf. [23]). It is easily seen that the smallest
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relativelyμ-complete σ -algebra containing B, denoted by Bμ, coincides with the σ -algebra
generated by B ∪ A0, and that

Bμ = {Δ ∈ A | ∃Δ′ ∈ B : μ(Δ � Δ′) = 0}. (13.1)

The Bμ-measurable functions are described below (cf. [38, Lemma 1, p. 169]).

Lemma 13.1 A function f : X → C is Bμ-measurable if and only if there exists a
B-measurable function g : X → C such that f = g a.e. [μ].

By the above lemma L2(μ|B) is a subset of L2(μ) if and only if B = Bμ. The question
of when L2(μ|B) = L2(μ) has a simple answer (σ -finiteness is essential!).

Lemma 13.2 If μ is σ -finite and B is relatively μ-complete, then L2(μ|B) = L2(μ) if and
only if B = A .

Proof Suppose that L2(μ|B) = L2(μ) andΔ ∈ A \B. Since μ is σ -finite, we may assume
that μ(Δ) < ∞. Then, χΔ ∈ L2(μ)\L2(μ|B), a contradiction. ��
Given a transformation φ of X , we set φ−1(A ) = {φ−1(Δ) : Δ ∈ A }.
Lemma 13.3 Suppose that φ : X → X is an A -measurable transformation and f : X → C

is an arbitrary function. Then f is (φ−1(A ))μ-measurable if and only if there exists an
A -measurable function u : X → C such that f = u ◦ φ a.e [μ].
Proof Applying the following well-known fact

a function g : X → C is φ−1(A )-measurable if and only if there

exists an A -measurable function u : X → C such that g = u ◦ φ, (13.2)

and Lemma 13.1 completes the proof. ��
Let PB be the orthogonal projection of L2(μ) onto its closed subspace L2(μ|Bμ). Set

B∗ = {Δ ∈ B : μ(Δ) < ∞}. It follows from Lemma 13.1 that

for every f ∈ L2(μ) there exists a unique (up to sets of measure zero)

B-measurable function E( f |B) : X → C such that PB f = E( f |B) a.e. [μ]. (13.3)

This and the fact that 〈χΔ, f 〉 = 〈χΔ, PB f 〉 for all f ∈ L2(μ) and Δ ∈ B∗ yield
∫

Δ

f dμ =
∫

Δ

E( f |B)dμ, f ∈ L2(μ), Δ ∈ B∗. (13.4)

Now suppose that μ|B is σ -finite. It follows from (13.4) that E( f |B)�0 a.e. [μ] whenever
f �0 a.e. [μ]. By applying the standard approximation procedure, we see that for every
A -measurable function f : X → [0,∞] there exists a unique (up to sets of measure zero)
B-measurable function E( f |B) : X → [0,∞] such that the equality in (13.4) holds for every
Δ ∈ B. Thus for every A -measurable function f : X → [0,∞] and for every B-measurable
function g : X → [0,∞] we have

∫

X

g f dμ =
∫

X

gE( f |B)dμ. (13.5)
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We call E( f |B) the conditional expectation of f with respect to B (cf. [37]). Clearly,

if 0 � fn ↗ f and f, fn are A -measurable, then E( fn |B) ↗ E( f |B), (13.6)

where gn ↗ g means that for μ-a.e. x ∈ X , the sequence {gn(x)}∞n=1 is monotonically
increasing and convergent to g(x).

Concluding “Appendix B”, we note that if μ is σ -finite and φ : X → X is a nonsingular
transformation such that hφ < ∞ a.e. [μ] (equivalently, Cφ is densely defined), then the
measure μ|φ−1(A ) is σ -finite (cf. Proposition 3.2). Thus we may consider the conditional
expectation E(·|φ−1(A )) with respect to φ−1(A ).

References

1. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Berlin (1984)
2. Biriuk, G., Coddington, E.A.: Normal extensions of unbounded formally normal operators. J. Math. Mech.

12, 617–638 (1964)
3. Birman, M.Sh., Solomjak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space. D. Reidel

Publishing Co., Dordrecht (1987)
4. Brown, A.: On a class of operators. Proc. Am. Math. Soc. 4, 723–728 (1953)
5. Brown, A., Pearcy, C.: Introduction to operator theory. I. Elements of functional analysis. Graduate texts

in mathematics, No. 55. Springer, New York (1977)
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