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Abstract Let � ⊂ RN be an arbitrary open set with boundary ∂�, 1 < p < ∞ and let
f ∈ Lq(�) for some q > N > 1. In the first part of the article, we show that weak solutions
of the quasi-linear elliptic equation −div(|∇u|p−2∇u) + a(x)|u|p−2u = f in � with the
nonlocal Robin type boundary conditions formally given by |∇u|p−2∂u/∂ν+b(x)|u|p−2u+
�p(u) = 0 on ∂� belong to L∞(�). In the second part, assuming that � has a finite mea-
sure, we prove that for every p ∈ (1,∞), a realization of the operator�p in L2(�) with the
above-mentioned nonlocal Robin boundary conditions generates a nonlinear order-preserv-
ing semigroup (S�(t))t≥0 of contraction operators in L2(�) if and only if ∂� is admissible
(in the sense of the relative capacity) with respect to the (N − 1)-dimensional Hausdorff
measure H N−1|∂�. We also show that this semigroup is ultracontractive in the sense that,
for every u0 ∈ Lq(�) (q ≥ 2) one has S�(t)u0 ∈ L∞(�) for every t > 0. Moreover, ‖S�(t)
satisfies the following (Lq − L∞)-Hölder type estimate: there is a constant C ≥ 0 such that
for every t > 0 and u0, v0 ∈ Lq(�) (q ≥ 2),

‖S�(t)u0 − S�(t)v0‖∞,� ≤ C |�|β t−δ‖u0 − v0‖γq,�,

where β, δ, and γ are explicit constants depending on N , p, and q only.
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1 Introduction

Before we present the problems considered in this article, we first clarify the notion of the
normal derivative and the nonlocal boundary conditions on arbitrary open sets. Let � ⊂ RN

be an arbitrary open set with boundary ∂�. Since ∂� may be so bad such that no normal
vector can be defined, we will use the following generalized version of a normal derivative
in the weak sense introduced in [7]. Let μ be a Borel measure on ∂� and let F : � → RN

be a measurable function. If there exists a function f ∈ L1
loc(R

N ) such that
∫

�

F∇ϕ dx =
∫

�

f ϕ dx +
∫

∂�

ϕ dμ (1.1)

for all ϕ ∈ C1
c (�), then we say that μ is the normal measure of F that we denoted by

N�(F) := μ. If N�(F) exists, then it is unique and d N�(ψF) = ψd N�(F) for all ψ ∈
C1(�). If p ∈ (1,∞), u ∈ W 1,1

loc (�) and N�(|∇u|p−2∇u) exists, then we will denote by
Np(u) := N�(|∇u|p−2∇u) the p-generalized normal measure of |∇u|p−2∇u. The derivative
d Np(u)/dσ (where σ denotes the restriction to ∂� of the (N − 1)-dimensional Hausdorff
measure H N−1) will be called the p-generalized normal derivative of u. To justify this
definition, let � ⊂ RN be a bounded domain of class C1, ν the outer normal to ∂� and let
σ be the surface measure on ∂�. If u ∈ C1(�) is such that there are f ∈ L1

loc(R
N ) and

g ∈ L1(∂�, σ) with ∫

�

|∇u|p−2∇u∇ϕ dx =
∫

�

f ϕ dx +
∫

∂�

gϕ dσ (1.2)

for all ϕ ∈ C1(�), then g = |∇u|p−2∂u/∂ν and hence, d Np(u)/dσ = |∇u|p−2∂u/∂ν.
Throughout the remainder of this article, if � ⊂ RN is an arbitrary open set with bound-

ary ∂�, then without any mention, σ = H N−1|∂� (which coincides with the surface mea-
sure if � has a Lipschitz continuous boundary). Moreover, if u ∈ W 1,1

loc (�) is such that
there exist f ∈ L1

loc(R
N ) and g ∈ L1(∂�, σ) satisfying (1.2), then we will simply denote

d Np(u)/dσ = |∇u|p−2∂u/∂ν.
For a measurable function u on ∂� and p ∈ (1,∞), we let

[u]p
1,p :=

∫∫

∂�×∂�

|u(x)− u(y)|p

|x − y|N+p−2 dσx dσy .

We let the Besov type space

Bp(∂�, σ) := {u ∈ L p(�) : [u]p
1,p < ∞}

be equipped with the norm

‖u‖Bp(∂�,σ) :=
(
‖u‖p

p,∂� + [u]p
1,p

)1/p
.

Throughout the remainder of this paper, we let

kp(x, y) := |x − y|N+p−2.

Let (Bp(∂�, σ))∗ denote the dual of the reflexive Banach space Bp(∂�, σ). We define a
(nonlocal) operator �p : Bp(∂�, σ) → (Bp(∂�, σ))∗ as follows: for u, v ∈ Bp(∂�, σ),
we set
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The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets 205

〈�p(u), v〉 :=
∫∫

∂�×∂�

|u(x)− u(y)|p−2

kp(x, y)
(u(x)− u(y))(v(x)− v(y)) dσx dσy, (1.3)

where 〈·, ·〉 denotes the duality between Bp(∂�, σ) and (Bp(∂�, σ))∗.
In the first part of this article, given an arbitrary open set� ⊂ RN with boundary ∂�, p ∈

(1,∞) and f ∈ Lq(�) for some q ∈ [1,∞], we study the existence of bounded weak
solutions (see Definition 3.1 below) of the quasi-linear elliptic equation with the nonlocal
(see Subsection 5.1) Robin type boundary conditions formally given by

{
−div(|∇u|p−2∇u)+ a(x)|u|p−2u = f in �

|∇u|p−2∂u/∂ν + b(x)|u|p−2u +�p(u) = 0 on ∂�.
(1.4)

Here, the nonnegative functions a, b belong to L∞(�) and L∞(∂�), respectively. We show
that for arbitrary open sets, if q > N > 1, then weak solutions of Eq. (1.4) belong to L∞(�)
and we also provide the a priori estimates of the solutions and the difference of solutions.
The local Robin boundary conditions, that is, the second line in Eq. (1.4) without the term
�p(u), have been investigated in [6,7,14] and the references therein. In [6,7], replacing the
measure σ by an upper d-Ahlfors measure (for some d ∈ (0, N )), the authors have shown
that weak solutions of the corresponding local problem are bounded provided that � has
the extension property of Sobolev functions (see Definition 4.5 below). The case of variable
exponents, that is, p = p(x), has been investigated in [5]. The local problem on general
domains is included in [14] where the authors have also obtained that weak solutions are
bounded by using some Moser type iterations. The associated linear problem, that is, p = 2,
without any regularity assumption on � has been considered in [1,2,12,13,35]. In [34], the
authors have considered the nonlocal problem as in Eq. (1.4), but they have also replaced
the measure σ by an upper d-Ahlfors measure μ and have shown that weak solutions of
the corresponding problem are bounded under the restriction that � has the extension prop-
erty of Sobolev functions. In [32,33], it has been said that on a bounded domain with a
Lipschitz continuous boundary, weak solutions of Eq. (1.4) are uniformly continuous on �.
Unfortunately, the proofs of the main results in [32] are incorrect. Some interesting spectral
properties of the linear (p = 2) nonlocal Robin boundary conditions on Lipschitz domains
are included in [20]. In this article, we obtain that weak solutions of Eq. (1.4) are bounded
without any regularity assumption on �. This improves the results obtained in [34] since
we do not assume any regularity assumption on the open set, and for “bad open sets”, the
measure σ is not always an upper d-Ahlfors measure (for any d ∈ (0, N )).

Of concern in the second part of the paper is the following first-order Cauchy problem

⎧⎪⎨
⎪⎩

∂u(t, x)

∂t
=�pu(t, x) t>0, x ∈�

|∇u(t, x)|p−2∂u(t, x)/∂ν+b(x)|u(t, x)|p−2u(t, x)+�p(u(t, x))=0 t>0, x ∈∂�
u(0, x)=u0 x ∈�,

(1.5)

where u0 is a given function in L2(�) and we assume that � has a finite measure. We show
that for every p ∈ (1,∞), (1.5) corresponds to a well-posed Cauchy problem in L2(�) if and
only if the relatively open set �0 ⊆ ∂�, on which the measure σ is locally finite, is Capp,�-
admissible (see Definition 4.3 below) with respect to σ . Then, assuming that the solution of
(1.5) is given by u(t) = S�(t)u0 where (S�(t))t≥0 is a strongly continuous order-preserving
nonlinear (linear if p = 2) semigroup of contraction operators on L2(�). We show that there
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is a constant C ≥ 0 such that for every u0, v0 ∈ Lq(�) (q ≥ 2) and t > 0,

‖S�(t)u0 − S�(t)v0‖∞,� ≤ C |�|β t−δ‖u0 − v0‖γq,�, (1.6)

where

β : = N − 1

N

[
1 −

(
q

q − 2 + p

)N
]
, δ := 1

p − 2

[
1 −

(
q

q − 2 + p

)N
]

and γ :=
(

q

q − 2 + p

)N

.

The estimate (1.6) shows in particular that the semigroup (S�(t))t≥0 is ultracontractive in
the sense that it maps Lq(�) into L∞(�). Similar results for the linear local Robin boundary
conditions on arbitrary domains are obtained in [2,14,35].

We outline the plan of the paper as follows. In Sect. 2, we introduce the Maz’ya space
that plays an important role here. The main results obtained in this paper are based on some
properties of this space. Section 3 concerns the study of the elliptic problem. We show that
weak solutions of (1.4) belong to L∞(�) provided that f ∈ Lq(�)with q > N > 1, and we
also give an a priori estimate of the solutions. In Sect. 4, we introduce the relative p-capacity
and the notion of admissible subsets of ∂�. We also give a large class of admissible sets and
some examples of nonadmissible sets. Finally, in Sect. 5, we characterize the well-posedness
of Eq. (1.5). If it is well posed, we show that its unique solution is given in terms of a strongly
continuous nonlinear semigroup of contraction operators on L2(�) that is order preserving,
nonexpansive on L∞(�), and ultracontractive.

2 The Maz’ya space

Let� ⊂ RN be an open set with boundary ∂� and let p ∈ [1,∞). We recall that the measure
σ = H N−1|∂�. It is well known that σ is a regular Borel measure on ∂� but is not a Radon
measure, that is, compact subsets of ∂� may have infinite σ -measure.

We denote by W 1,p(�) the first-order Sobolev space endowed with the norm

‖u‖W 1,p(�) =
(
‖∇u‖p

p,� + ‖u‖p
p,�

)1/p
.

The following important inequality is due to Maz’ya [25, Section 3.6, p.189].

Theorem 2.1 (Maz’ya) Let � ⊂ RN be an arbitrary open set with N > 1. Then, there is
a constant C = C(N ) > 0 such that for every u ∈ W 1,1(�) ∩ Cc(�),

‖u‖ N
N−1 ,�

≤ C(N )
(‖∇u‖1,� + ‖u‖1,∂�

)
. (2.1)

In the inequality (2.1), the constant C(N ) is exactly the so called isoperimetric constant.
As a corollary of the Maz’ya’ theorem, we have the following two results.

Corollary 2.2 Let� ⊂ RN be an arbitrary open set with N > 1 and let 1 ≤ p < ∞. Then,
there exists a constant C(N , p) > 0 such that for every u ∈ W 1,p(�) ∩ Cc(�),

‖u‖ pN
N−1 ,�

≤ C(N , p)
(
‖∇u‖p

p,� + ‖u‖p
p,� + ‖u‖p

p,∂�

)1/p
. (2.2)
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The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets 207

Proof Let 1 ≤ p < ∞ and let u ∈ W 1,p(�) ∩ Cc(�). Then, u p ∈ W 1,1(�) ∩ Cc(�). It
follows from (2.1) that

‖u‖p
pN

N−1 ,�
= ‖u p‖ N

N−1 ,�
≤ C(N )

(‖∇(u p)‖1 + ‖u p‖1,∂�
)

≤ C(N )
(

p‖u p−1∇u‖1 + ‖u‖p
p,∂�

)

≤ C(N )
(

p‖u p−1‖p′,�‖∇u‖p,� + ‖u‖p
p,∂�

)

≤ C(N )

(
p

p′ ‖u p−1‖p′
p′,� + ‖∇u‖p

p,� + ‖u‖p
p,∂�

)

≤ C(N , p)
(
‖u‖p

p,� + ‖∇u‖p
p,� + ‖u‖p

p,∂�

)
.

We have shown (2.2), and the proof is finished. ��
Corollary 2.3 ([26, Corollary 2.11.2]) Let � ⊂ RN be an open set of finite measure with
N > 1 and let 1 ≤ p < ∞. Then, there is a constant C = C(N , p,�) > 0 such that for
every u ∈ W 1,p(�) ∩ Cc(�),

‖u‖p
pN

N−1 ,�
≤ C

(
‖∇u‖p

p,� + ‖u‖p
p,∂�

)
. (2.3)

Throughout the remainder of this paper, for 1 ≤ p < ∞ and N > 1, we let p� := pN/(N−1).
Now, we let the Maz’ya spaces W 1

p,p(�, ∂�) and W 1
p,p(�, ∂�) to be respectively the

abstract completion of

Wσ :=
⎧⎨
⎩u ∈ W 1,p(�) ∩ Cc(�) :

∫

∂�

|u|p dσ < ∞
⎫⎬
⎭

with respect to the norm

‖u‖W 1
p,p(�,∂�)

=
(
‖∇u‖p

p,� + ‖u‖p
p,� + ‖u‖p

p,∂�

)1/p
,

and to the norm

‖u‖W 1
p,p(�,∂�)

=
(
‖∇u‖p

p,� + ‖u‖p
p,∂�

)1/p
.

It follows from Corollary 2.3 that if � has a finite measure, then the spaces W 1
p,p(�, ∂�)

and W 1
p,p(�, ∂�) coincide with equivalent norms. Moreover, by (2.2) and (2.3),

W 1
p,p(�, ∂�) ↪→ L p� (�) (only continuous embedding) (2.4)

and

W 1
p,p(�, ∂�) ↪→ L p� (�) (only continuous embedding). (2.5)

Note that an example of a domain showing that the exponent p� := pN/(N − 1) in (2.5)
cannot be improved without any regularity assumption on � is contained in [26, Example
2.11, p.123].

To conclude this section, we give the logarithmic Sobolev inequality associated with the
Maz’ya space.
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208 M. Warma

Lemma 2.4 Let � ⊂ RN be an arbitrary open set of finite measure with N > 1 and let
1 ≤ p < ∞. Let f ∈ W 1

p,p(�, ∂�), f ≥ 0 with ‖ f ‖p,∂� = 1. Then, for every ε > 0,

∫

�

f p log( f ) dx ≤ N

p

(
− log(ε)+ εC‖∇ f ‖p

p,� + εC
)
, (2.6)

where C = C(�, N , p) > 0 is the constant appearing in the Maz’ya inequality (2.3).

Proof Let 1 ≤ p < ∞ and let p� := N p/(N − 1), q = p/(N − 1) so that p + q = p�. Let
f ∈ W 1

p,p(�, ∂�), f ≥ 0 with ‖ f ‖p,∂� = 1. Using the well-known Jensen’s inequality, we
get that

∫

�

f p log( f ) dx ≤ 1

q
log

⎛
⎝
∫

�

f p+q dx

⎞
⎠ = 1

q
log

⎛
⎝
∫

�

f p� dx

⎞
⎠

≤ 1

q
log ‖ f ‖p�

p�,� = N

p
log ‖ f ‖p

p�,�.

Since log ‖ f ‖p
p�,� ≤ − log(ε) + ε‖ f ‖p

p�,� for every ε > 0, it follows from the preceding
estimate and (2.5) that for every ε > 0,

∫

�

f p log( f ) dx ≤ N

p

(
− log(ε)+ ε‖ f ‖p

p�,�

)

≤ N

p

(
− log(ε)+ εC‖∇ f ‖p

p,� + εC‖ f ‖p
p,∂�

)

≤ N

p

(
− log(ε)+ εC‖∇ f ‖p

p,� + εC
)

and the proof is finished. ��

We note that in several papers, the logarithmic Sobolev inequality is due to Gross [21,22],
but at our knowledge, it has been first obtained by Federbush [19].

3 The elliptic problem

Let� ⊂ RN be an arbitrary open set with boundary ∂�. For 1 < p < ∞, we let V 1,p
� (�, ∂�)

be the completion of

Wσ,� :=
⎧⎨
⎩u ∈ W 1,p(�) ∩ Cc(�) :

∫

∂�

|u(x)|p dσ +
∫∫

∂�×∂�

|u(x)− u(y)|p

kp(x, y)
dσx dσy < ∞

⎫⎬
⎭

with respect to the norm

‖|u‖|
V

1,p
� (�,∂�)

:=
⎛
⎝
∫

�

|∇u|p dx +
∫

�

|u|p dx +
∫

∂�

|u|p dσ +
∫∫

∂�×∂�

|u(x)− u(y)|p

kp(x, y)
dσx dσy

⎞
⎠

1/p

.
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The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets 209

It follows from the Maz’ya embedding (2.5) that if |�| < ∞, then ‖| · ‖|
V

1,p
� (�,∂�)

is

equivalent to the norm

‖u‖
V

1,p
� (�,∂�)

:=
⎛
⎝
∫

�

|∇u|p dx +
∫

∂�

|u|p dσ +
∫∫

∂�×∂�

|u(x)− u(y)|p

kp(x, y)
dσx dσy

⎞
⎠

1/p

.

It is clear that V
1,p
� (�, ∂�) is a reflexive Banach space for every p ∈ (1,∞) and it is

also continuously embedded into W 1
p,p(�, ∂�). Let (V 1,p

� (�, ∂�))∗ denote its dual and let
〈·, ·〉� be the duality map. We consider the quasi-linear elliptic equation formally given by{

−div(|∇u|p−2∇u)+ a(x)|u|p−2u = f in �

|∇u|p−2∂u/∂ν + b(x)|u|p−2u +�p(u) = 0 on ∂�,
(3.1)

where f is given in (V 1,p
� (�, ∂�))∗ and a, b are nonnegative measure functions that belong

to L∞(�) and L∞(∂�), respectively. We also assume that there is a constant b0 > 0 such
that

b(x) ≥ b0 > 0 for σ − a.e. x ∈ ∂�. (3.2)

Definition 3.1 A function u ∈ V
1,p
� (�, ∂�) is said to be a weak solution of (3.1) if for

every v ∈ V
1,p
� (�, ∂�),

A (u, v) :=
∫

�

|∇u|p−2∇u∇v dx +
∫

�

a(x)|u|p−2uv dx +
∫

∂�

b(x)|u|p−2uv dσ

+
∫

∂�

∫

∂�

|u(x)− u(y)|p−2

kp(x, y)
(u(x)− u(y))(v(x)− v(y)) dσx dσy = 〈 f, v〉�.

(3.3)

If f ∈ Lq(�) for some q ∈ [1,∞], then 〈 f, v〉� = ∫
�

f v dx . Using Brodwer results [17],

it is straightforward to verify that for every p ∈ (1,∞) and for every f ∈ (V 1,p
� (�, ∂�))∗,

Eq. (3.1) has a unique weak solution. In particular, if � is of finite measure, then for every
f ∈ Lq(�) with q ≥ (p�)′, Eq. (3.1) has a unique weak solution.

Before we state the main result of this section, we give the following lemma which is taken
from [29, Lemma 3.13] and will be used in the proofs of the main results of this section.

Lemma 3.2 Let k0 ≥ 0 and let � : [k0,∞) → R be a nonnegative, nonincreasing function
such that there are positive constants c, α, and δ (δ > 1) such that

�(h) ≤ c(h − k)−α�(k)δ ∀ h > k ≥ k0.

Then �(k0 + d) = 0 with d = c1/α�(k0)
(δ−1)/α2δ(δ−1).

The following well-known inequalities will be also useful. For more details, we refer the
reader to [5,6,16] and the references therein.

Lemma 3.3 The following assertions hold true.

(a) Let p ∈ (1, 2] and a, b ∈ RN with a �= b. Then,

〈|a|p−2a − |b|p−2b, a − b〉 [|a|p + |b|p] 2−p
p ≥ (p − 1)|a − b|p. (3.4)
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210 M. Warma

(b) Let p ∈ (1, 2] and ε > 0. Then, for every a, b ∈ RN with |a − b| ≥ ε · min{|a|, |b|},
we have

〈|a|p−2a − |b|p−2b, a − b〉 ≥ (p − 1)(1 + 1/ε)p−2|a − b|p. (3.5)

(c) Let p ∈ [2,∞) and a, b ∈ RN . Then,

〈|a|p−2a − |b|p−2b, a − b〉 ≥ 22−p · |a − b|p. (3.6)

(d) Let p ∈ [2,∞) and a, b ∈ RN . The inequality (3.6) implies that

22−p · |a − b|p−1 ≤ ∣∣|a|p−2a − |b|p−2b
∣∣ . (3.7)

3.1 Case of open sets of finite measure

We have the following result.

Proposition 3.4 Let � ⊂ RN be an arbitrary open set of finite measure and let f ∈ Lq(�)

with q > N > 1. Let 1 < p < ∞, and let u ∈ V
1,p
� (�, ∂�) satisfy (3.3). Then, u ∈ L∞(�)

and there is a constant C > 0 such that

‖u‖p−1
∞,� ≤ C‖ f ‖q,�. (3.8)

Proof Let 1 < p < ∞ and let u ∈ V
1,p
� (�, ∂�) satisfy (3.3). Let k ≥ 0 be a real number

and set uk := (|u| − k)+sgn(u). Then, uk ∈ V
1,p
� (�, ∂�). Let Ak := {x ∈ � : |u(x)| ≥ k}.

Since uk = 0 on � \ Ak and ∇uk = χAk · ∇u, we have that

A (u, uk) =
∫

Ak∩�
|∇uk |p dx +

∫

Ak∩�
a(x)|u|p−2uuk dx (3.9)

+
∫

Ak∩∂�
b(x)|u|p−2uuk dσ +

∫∫

Ak∩∂�)×(Ak∩∂�)

× |u(x)− u(y)|p−2

kp(x, y)
(u(x)− u(y))(uk(x)− uk(y)) dσx dσy

= A (uk, uk)+
∫

Ak∩�
a(x)(|u|p−2uuk − |uk |p) dx

+
∫

Ak∩∂�
b(x)(|u|p−2uuk − |uk |p) dσ +

∫∫

Ak∩∂�)×(Ak∩∂�)

× |u(x)−u(y)|p−2(u(x)−u(y))(uk(x)−uk(y))−|uk(x)− uk(y)|p

kp(x, y)
dσx dσy .

It is easy to check that (|u|p−2uuk − |uk |p) ≥ 0 on Ak . Moreover, |u(x)− u(y)|p−2(u(x)−
u(y))(uk(x) − uk(y)) − |uk(x) − uk(y)|p ≥ 0 on Ak × Ak . We have shown that for every
k ≥ 0,

A (uk, uk) ≤ A (u, uk) =
∫

Ak∩�
f uk dx .
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Let f ∈ Lq(�) with q > p�/(p� − p) = N . Using the classical Hölder inequality, we have
that for every k ≥ 0,

∫

Ak∩�
f uk dx ≤ ‖ f ‖q,�‖uk‖p�,�‖χAk ‖s,

where s ∈ [1,∞] is such that 1/s + 1/q + 1/p� = 1, that is, 1/s = (1 − 1/p� − 1/q) >
(p − 1) /p�. Hence, there is a constant C > 0 such that for every k ≥ 0,

C‖uk‖p
W 1

p,p(�,∂�)
≤ A (uk, uk) ≤ A (u, uk) ≤ ‖ f ‖q,�‖uk‖p�,�‖χAk ‖s .

This estimate, together with the embedding (2.5), show that there is a constant C > 0 such
that for every k ≥ 0,

‖uk‖p−1
p�,� ≤ C‖ f ‖q,�‖χAk ‖s .

Let h > k. Then, Ah ⊂ Ak and on Ah the inequality |uk | ≥ (h − k) holds. Therefore,

‖χAh ‖p−1
p� ≤ C(h − k)−(p−1)‖ f ‖q,�‖χAk ‖s . (3.10)

Let δ := p�/s > p − 1, δ0 := δ/(p − 1) > 1. Then, ‖χAk ‖s = ‖χAk ‖δp� and using (3.10),
we get that for h > k ≥ 0,

‖χAh ‖p−1
p� ≤ C(h − k)−(p−1)‖ f ‖q,�

[
‖χAk ‖p−1

p�

]δ0
. (3.11)

Letting�(h) := ‖χAh ‖p−1
p� in Lemma 3.2, on account of (3.11), we have that ‖χAK ‖p−1

p� = 0

with the constant K given by K := C1/(p−1)ψ(0)δ0−12δ0(δ0−1)‖ f ‖|1/(p−1)
q,� = C̃‖ f ‖|1/(p−1)

q,� .
Hence, |u| ≤ K a.e. on �. We have shown (3.8) and the proof is finished. ��

Next, we consider the difference of weak solutions.

Theorem 3.5 Let � ⊂ RN be an arbitrary open set of finite measure with N > 1 and let
f1, f2 ∈ Lq(�). Let 2(N − 1)/N < p < ∞ and let u, v ∈ V

1,p
� (�, ∂�) be such that for

every ϕ ∈ V
1,p
� (�, ∂�),A (u, ϕ) = ∫

�
f1ϕ dx and A (v, ϕ) = ∫

�
f2ϕ dx, so that,

A (u, ϕ)− A (v, ϕ) =
∫

�

( f1 − f2)ϕ dx . (3.12)

(a) If 2 ≤ p < ∞ and q > N, then u, v ∈ L∞(�) and there is a constant C > 0 such that,

‖u − v‖p−1
∞,� ≤ C‖ f1 − f2‖q,�. (3.13)

(b) If 2(N − 1)/N < p < 2 and q > N p/(N p − 2N + 2) then u, v ∈ L∞(�) and there
is a constant C > 0 such that,

‖u − v‖∞,� ≤ C

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′
⎤
⎦

2−p
p−1

‖ f1 − f2‖q,�. (3.14)

To prove the second part of the theorem, we need the following result.
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Lemma 3.6 Let A, B,C, τ, ρ ∈ [0,+∞), p ∈ [1,+∞) and assume that A ≤ τε−ρ + ε pC
for all ε ∈ (0, 1]. Then,

A ≤ (τ + 1)
[

B p/(p+ρ)Cρ/(p+ρ) + B
]
. (3.15)

Proof Assume first that 0 < B ≤ C and let α := 1/(p + ρ) and ε1 := (B/C)α ∈ (0, 1].
Then,

A ≤ τε
−ρ
1 B + ε

p
1 C = τ(B/C)−ραB + (B/C)pαC = τ B1−ραCρα + B pαC1−pα

= (τ + 1)B pαCρα = (τ + 1)B p/(p+ρ)Cρ/(p+ρ).

If B = 0 then 0 ≤ A ≤ ε pC for all ε ∈ (0, 1]. This shows that A = 0 and hence (3.15)
holds. If B > C , let ε2 := 1. Then, A ≤ τε

−ρ
2 B + ε

p
2 Cτ B + C ≤ (τ + 1)B and (3.15)

holds. ��
Proof of Theorem 3.5: Let 2(N − 1)/N < p < ∞, f1, f2 ∈ Lq(�) and let u, v ∈
V

1,p
� (�, ∂�) satisfy (3.12). Letw := u−v ∈ V

1,p
� (�, ∂�). For every real number k ≥ 0, let

wk := (|w|−k)+ sgn(w) and set A(k) := {x ∈ � : |w(x)| ≥ k}. Then,wk ∈ V
1,p
� (�, ∂�).

Let s ∈ [1,∞] be such that 1/q + 1/s + 1/p� = 1. Taking ϕ = wk as a test function in
(3.12), we get that for every k ≥ 0,

A (u, wk)− A (v,wk) ≤ ‖ f1 − f2‖q,�‖wk‖p�,�‖χA(k)‖s . (3.16)

Throughout the proof, we let U (x, y) := u(x) − u(y), V (x, y) = v(x) − v(y) and
Wk(x, y) := wk(x)− wk(y).

(a) Case 2 ≤ p < ∞ and q > N : As q > N , it follows from Proposition 3.4 that
u, v ∈ L∞(�). Note that

A (u, wk)− A (v,wk) =
∫

�

(|∇u|p−2∇u − |∇v|p−2∇v)∇wk dx + 22−p

×
∫

∂�

a(x)|wk |p dx + 22−p
∫

∂�

b(x)|wk |p dσ + 22−p

×
∫∫

∂�×∂�

|wk(x)− wk(y)|p

kp(x, y)
dσx dσy

+
∫

�

a(x)(|u|p−2uwk − |v|p−2vwk − 22−p|wk |p) dx

+
∫

∂�

b(x)(|u|p−2uwk − |v|p−2vwk − 22−p|wk |p) dσ

+
∫∫

∂�×∂�

F(x, y,U, V,Wk)

kp(x, y)
dσx dσy, (3.17)

with

F(x, y,U, V,Wk) := [|U (x, y)|p−2U (x, y)− |V (x, y)|p−2V (x, y)]
×Wk(x, y)− 22−p|Wk(x, y)|p.
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Since wk = 0 on � \ A(k) and ∇wk = χA(k) · ∇(u − v), it follows from (3.6) that for
every k ≥ 0,

∫

�

(|∇u|p−2∇u − |∇v|p−2∇v)∇wk dx ≥ 22−p
∫

Ak

|∇wk |p dx . (3.18)

Since |u − v| ≥ k on A(k), it follows from (3.7) that on A(k)

||u|p−2u − |v|p−2v| ≥ 22−p|u − v| ≥ 22−p||u − v| − k|p−1 = 22−p|wk |p−1.

Multiplying this inequality by |wk |, we get that

(|u|p−2u − |v|p−2v)wk ≥ 22−p|wk |p. (3.19)

Similarly, we have that on A(k)× A(k),

[|U (x, y)|p−2U (x, y)− |V (x, y)|p−2V (x, y)
] [Wk(x, y)] ≥ 22−p|Wk(x, y)|p.

(3.20)

It follows from (3.18), (3.19), (3.20) and (3.16) that for every k ≥ 0,

min(1, b0)2
2−p‖wk‖p−1

W 1
p,p(�,∂�)

≤ 22−pA (wk, wk) ≤ A (u, wk)− A (v,wk)

≤ ‖ f1 − f2‖q,�‖χA(k)‖s . (3.21)

Using the embedding (2.5), we get that there exists a constant C > 0 such that for every
k ≥ 0,

‖wk‖p−1
p�,� ≤ C‖ f1 − f2‖|q,�‖χA(k)‖s . (3.22)

Now proceeding exactly as at the end of the proof of Proposition 3.4 (after Eq. (3.10)),

we get that ‖χA(K )‖p� = 0 with the constant K = C̃‖ f1 − f2‖
1

p−1
q,� . Hence, |w(x)| ≤ K

a.e. on � and we have shown (3.13).

(b) Case 2(N − 1)/N < p < 2 and q > N p/(N p − 2N + 2): First, note that a simple
calculation shows that q > N p/(N p − 2N + 2) > N and hence, by Proposition 3.4,
u, v ∈ L∞(�). Next, we claim that there is a constant C1 > 0 such that for every k ≥ 0,

‖∇wk‖p
p,� ≤ C1

⎡
⎢⎣

∫

A(k)∩�
(|∇u|p−2∇u − |∇v|p−2∇v)∇wk dx

⎤
⎥⎦

p/2

· [‖∇u‖p,A(k) + ‖∇v‖p,A(k)
]p(1−p/2)

. (3.23)
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For ε ∈ (0, 1], we let Bε := {x ∈ � : |∇u(x) − ∇v(x)| ≥ ε|∇u(x)|}. Using (3.5), we get
that for every k ≥ 0 and ε > 0,

∫

�

(|∇u|p−2∇u − |∇v|p−2∇v)∇wk dx

=
∫

A(k)∩�
(|∇u|p−2∇u − |∇v|p−2∇v)∇(u − v) dx

≥
∫

A(k)∩Bε

(|∇u|p−2∇u − |∇v|p−2∇v)∇(u − v) dx

≥ (p − 1)[1 + 1/ε]p−2
∫

A(k)∩Bε

|∇u − ∇v|p dx

≥ (p − 1)[1 + 1/ε]p−2

⎡
⎢⎣

∫

A(k)∩�
|∇wk |p dx −

∫

A(k)\Bε

|∇wk |p dx

⎤
⎥⎦

≥ (p − 1)[1 + 1/ε]p−2

⎡
⎢⎣

∫

A(k)∩�
|∇wk |p dx − ε p

∫

A(k)∩�
|∇wk |p dx

⎤
⎥⎦ .

Using the fact that [1 + 1/ε]2−p ≤ 22−pε p−2 we get that

‖∇wk‖p
p ≤ 22−p

p − 1
ε p−2

⎡
⎢⎣

∫

A(k)∩�
(|∇u|p−2∇u−|∇v|p−2∇v)∇wk dx

⎤
⎥⎦+ε p‖∇u‖p

p,A(k).

Applying Lemma 3.6 with

A := ‖∇wk‖p
p, τ := 22−p

p − 1
, ρ = 2 − p, C := [‖∇u‖p,A(k) + ‖∇v‖p,A(k)

]p

and

B :=
∫

A(k)

(|∇u|p−2∇u − |∇v|p−2∇v)∇wk dx,

we get that

‖∇wk‖p
p ≤ 22−p + p − 1

p − 1

[
B p/2C1−p/2 + B

]
.

Using the estimate

B ≤
∫

A(k)∩�
|∇u|p−1|∇u − ∇v| dx +

∫

A(k)∩�
|∇v|p−1|∇u − ∇v| dx ≤ 4C,
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we get that there is a constant C1 > 0 such that (3.23) holds. Similarly, we have that there is
a constant C2 > 0 such that for every k ≥ 0,

‖wk‖p
p,∂� ≤ C2

⎡
⎢⎣

∫

A(k)∩∂�
(|u|p−2u − |v|p−2v)wk dσ

⎤
⎥⎦

p/2

· [‖u‖p,∂� + ‖v‖p,∂�
]p(1−p/2)

.

(3.24)

Combining (3.23) and (3.24) and using the fact that for every k ≥ 0,

(|U (x, y|p−2U (x, y)− |V (x, y)|p−2V (x, y))Wk(x, y) ≥ 0 on A(k)× A(k),

we get that there is a constant C > 0 such that for every k ≥ 0,

‖wk‖p
W 1

p,p(�,∂�)
≤C · [A (u, wk − A (v,wk)] p

2 ·
[
‖u‖W 1

p,p(�,∂�)
+‖v‖W 1

p,p(�,∂�)

]p(1− p
2 )

.

(3.25)

Note that, since u satisfies (3.3), letting u as a test function, we get that there is a constant
C3 > 0 such that

‖u‖p
W 1

p,q (�,∂�)
≤ C3‖ f1‖(p�)′,�‖u‖W 1

p,p(�,∂�)
,

and this shows that

‖u‖p−1
W 1

p,p(�,∂�)
≤ C3‖ f1‖(p�)′,�, (3.26)

and similarly for v with f1 replaced by f2. Hence, there is a constant C > 0 such that

‖u‖W 1
p,p(�,∂�)

+ ‖v‖W 1
p,p(�,∂�)

≤ C

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′,�
⎤
⎦

1/(p−1)

. (3.27)

It follows from (3.16), (3.25), (3.27), and the Sobolev embedding (2.5) that for every k ≥ 0,

‖wk‖
p
2
p�,� ≤ C

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′,�
⎤
⎦

p′(1− p
2 )

· ‖ f1 − f2‖
p
2
q,�‖χA(k)‖

p
2
s . (3.28)

Let δ := p�/s. Since q > N p/(N p − 2N + 2), then δ > 1. Let h > k. Then, A(h) ⊂ A(k)
and |wk | ≥ h − k on A(k). Hence, (h − k)p/2‖χA(h)‖p/2

p� ≤ ‖wk‖p/2
p�,�. Letting �(h) =

‖χA(h)‖p/2
p� , it follows from (3.28) and the equality ‖χA(k)‖s = ‖χA(k)‖δp� , that

�(h) ≤ C(h − k)−p/2

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′�
⎤
⎦

1
p−1

· ‖ f1 − f2‖p/2
q,��(k)

δ.

It follows from Lemma 3.2 that �(K ) = 0 with K = C
[∑2

j=1 ‖ f j‖(p�)′,�
]p′( 2

p −1)

‖ f1 − f2‖q,�. We have shown (3.14) and the proof is finished.
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3.2 Case of general open sets (not necessarily of finite measure)

If |�| = ∞, then we also assume that there exists a constant a0 > 0 such that

a(x) ≥ a0 a.e. on �. (3.29)

Proposition 3.7 Let � ⊂ RN be an arbitrary open set. Let 1 < p < ∞, and let u ∈
V

1,p
� (�, ∂�) satisfy (3.3) where f ∈ Lq(�) with q > N > 1. Then, u ∈ L∞(�) and there

is a constant C = C(N , p, q, a0, b0) > 0 such that

‖u‖∞,� ≤ k0 + C

kα0
‖u‖αp�‖ f ‖

1
p−1

q,� , (3.30)

where k0 > 0 is any fixed real number and α = p(q − N )

q(N − 1)(p − 1)
.

Proof Let 1 < p < ∞ and let u ∈ V
1,p
� (�, ∂�) satisfy (3.3). Let k0 > 0 be a fixed

real number and set uk := (|u| − k)+sgn(u) for k ≥ k0. Then, uk ∈ V
1,p
� (�, ∂�). Let

Ak := {x ∈ � : |u(x)| ≥ k}. Since k0 ≤ k ≤ |u(x)| for every x ∈ Ak , we have that

|Ak | =
∫

Ak∩�
dx = 1

k p
0

∫

Ak∩�
k p

0 dx ≤ 1

k p
0

∫

Ak∩�
|u(x)|p dx = 1

k p
0

‖u‖p
p,� < ∞. (3.31)

Hence, the set Ak has finite measure for every k ≥ k0 > 0. Now, proceeding exactly as in
the proof of Proposition 3.4 (by using (3.29) and (2.4) if |�| = ∞), we get that for every
h > k ≥ k0 > 0,

‖χAh ‖p−1
p� ≤ C(h − k)−(p−1)‖ f ‖q,�

[
‖χAk ‖p−1

p�

]δ0
, (3.32)

where we recall that δ0 := (p�q − q − p�)/q(p − 1) > 1. Letting �(h) := ‖χAh ‖p−1
p� in

Lemma 3.2, the estimate (3.32) shows that there is a constant K (independent of f ) such that
�(k0 + K ) := ‖χAk0+K ‖p−1

p� = 0 with K given by K := C‖χAk0
‖δ0−1

p� ‖ f ‖|1/(p−1)
q,� . Hence,

|u| ≤ k0 + K a.e. on �. Using (3.31), we get that

‖χAk0
‖δ0−1

p� =
⎛
⎜⎝

∫

Ak0 ∩�
dx

⎞
⎟⎠

δ0−1
p�

≤ 1

kδ0−1
0

‖u‖δ0−1
p�,� = 1

kα0
‖u‖αp�,�,

with α := δ0 − 1. We have shown (3.30) and the proof is finished. ��
We have the following result as a corollary of Proposition 3.7.

Corollary 3.8 Let�, f, p, q, and u be as in Proposition 3.7. Then, there is a constant C > 0
such that

‖u‖∞,� ≤ ‖u‖p� + C‖ f ‖
1

p−1
q,� . (3.33)

Proof Let u ∈ V
1,p
� (�, ∂�) satisfy (3.3) where f ∈ Lq(�)with q > N > 1. The inequality

(3.33) is trivially satisfied if u = 0 a.e. on�. If u �= 0 a.e. on�, taking k0 = ‖u‖p� in (3.30)
we get (3.33). ��
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To conclude this section, we also consider the difference of weak solutions.

Proposition 3.9 Let � ⊂ RN be an arbitrary open set with N > 1 and let f1, f2 ∈ Lq(�).
Let 2(N − 1)/N < p < ∞ and let u, v ∈ V

1,p
� (�, ∂�) be such that for every ϕ ∈

V
1,p
� (�, ∂�),A (u, ϕ) = ∫

�
f1ϕ dx and A (v, ϕ) = ∫

�
f2ϕ dx, so that,

A (u, ϕ)− A (v, ϕ) =
∫

�

( f1 − f2)ϕ dx . (3.34)

(a) If 2 ≤ p < ∞ and q > N, then u, v ∈ L∞(�) and there is a constant C > 0 such that,

‖u − v‖∞,� ≤ k0 + C

kβ1
0

‖u − v‖β1
p�,�‖ f1 − f2‖

1
p−1

q,� , (3.35)

where k0 > 0 is any fixed real number and β1 := p(q − N )/q(N − 1)(p − 1).
(b) If 2(N − 1)/N < p < 2 and q > N p/(N p − 2N + 2) then u, v ∈ L∞(�) and there

is a constant C > 0 such that,

‖u − v‖∞,� ≤ k0 + C

kβ2
0

‖u − v‖β2
p�,�

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′
⎤
⎦

p′( 2
p −1)

‖ f1 − f2‖q,�,

(3.36)

where k0 > 0 is any fixed real number and β2 := (p�q − 2q − p�)/q.

Proof Let f1, f2 ∈ Lq(�). Let 2(N − 1)/N < p < ∞ and let u, v ∈ V
1,p
� (�, ∂�) satisfy

(3.34). Let w := u − v ∈ V
1,p
� (�, ∂�). Let k0 > 0 be a fixed real number. For every real

number k ≥ k0, let wk := (|w| − k)+ sgn(w) and set A(k) := {x ∈ � : |w(x)| ≥ k}. Then,
wk ∈ V

1,p
� (�, ∂�).

(a) Case 2 ≤ p < ∞ and q > N : It follows from Proposition 3.7 that u, v ∈ L∞(�). Let
δ0 := (p�q −q − p�)/q(p −1). Proceeding exactly as in the proof of Theorem 3.5 part
(a) and noticing that |A(k)| < ∞ for every k ≥ k0 > 0, we get that there is a constant
C > 0 such that �(h) := ‖χA(h)‖p−1

p� satisfies the estimate

�(h) ≤ C(h − k)−(p−1)‖ f1 − f2‖q,��(k)
δ0 , ∀ h > k ≥ k0 > 0.

It follows from Lemma 3.2 that�(k0 + K ) = 0 with K = C‖χA(k0)‖δ0−1
p� ‖ f1 − f2‖

1
p−1

q,� .
Let β1 := δ0 − 1. Since

‖χA(k0)‖δ0−1
p� ≤ 1

kβ1
0

‖u − v‖β1
p�,�,

we have shown (3.35) and the proof of part (a) is complete.
(b) Case 2(N − 1)/N < p < 2 and q > N p/(N p − 2N + 2). Since q > N , it fol-

lows from Proposition 3.7 that u, v ∈ L∞(�). Let �(h) := ‖A(h)‖p/2
p� and let δ :=

(p�q − p − p�)/q > 1. Proceeding as in the proof of Theorem 3.5 part (b), we get that

�(h) ≤ C(h − k)−p/2

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′
⎤
⎦

1
p−1

‖ f1 − f2‖p/2
q,��(k)

δ, ∀ h > k ≥ k0 > 0.
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It follows from Lemma 3.2 that �(k0 + K ) = 0 with K = C‖χA(k0)‖δ−1
p�
[∑2

j=1 ‖
f j‖(p�)′

]p′( 2
p −1)‖ f1 − f2‖q,�. Since

‖χA(k0)‖δ−1
p� ≤ 1

kβ2
0

‖u − v‖β2
p�,�,

with β2 := δ − 1 = (p�q − 2q − p�)/q , we have shown (3.36) and the proof is finished. ��
We have the following result as a corollary of Proposition 3.9.

Corollary 3.10 Let �, f1, f2, p, q, and u, v be as in Proposition 3.9.

(a) If 2 ≤ p < ∞ and q > N, then there is a constant C > 0 such that,

‖u − v‖∞,� ≤ ‖u − v‖p�,� + C‖ f1 − f2‖
1

p−1
q,� .

(b) If 2(N − 1)/N < p < 2 and q > N p/(N p − 2N + 2), then there is a constant C > 0
such that,

‖u − v‖∞,� ≤ ‖u − v‖p�,� + C

⎡
⎣ 2∑

j=1

‖ f j‖(p�)′
⎤
⎦

p′( 2
p −1)

‖ f1 − f2‖q,�.

4 The relative p-capacity and admissible sets

Let � ⊂ RN be an arbitrary open set with boundary ∂� and let p ∈ [1,∞). We let

W 1,p(�) := W 1,p(�) ∩ Cc(�)
W 1,p(�)

.

It is well known that W 1,p(�) is a proper closed subspace of W 1,p(�), but they coincide if
for example � is of class C (see [26, Theorem 1 p. 23]).

4.1 The relative capacity and a remark on the Maz’ya space

In this subsection, we introduce the relative capacity that plays an important role in the
remainder of this article.

Definition 4.1 Let� ⊂ RN be an open set and let p ∈ [1,∞). The relative capacity Capp,�

with respect to � is defined for sets A ⊂ � by

Capp,�(A) := inf

{
‖u‖p

W 1,p(�)
: u ∈ W 1,p(�), ∃ O ⊂ RN open,

A ⊂ O and u ≥ 1 a.e. on � ∩ O

}
.

• A set P ⊂ � is called Capp,�-polar if Capp,�(P) = 0.

• We say that a property holds Capp,�-quasi everywhere (briefly q.e.) on a set A ⊂ �, if
there exists a Capp,�-polar set P such that the property holds for all x ∈ A \ P .

• A function u is called Capp,�-quasi continuous on a set A ⊂ � if for all ε > 0, there

exists an open set O in the metric space � such that Capp,�(O) ≤ ε and u restricted to
A \ O is continuous.
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The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets 219

The relative capacity Cap2,� has been introduced in [1] (see also [2,35]) to study the Laplace
operator with linear Robin boundary conditions on arbitrary open subsets in RN . Biegert [4]
has extended the definition of the relative capacity to every p ∈ [1,∞). Note that if� = RN ,
then Capp,RN = Capp is the classical Wiener capacity.

By [4], for every u ∈ W 1,p(�), there exists a unique (up to a Capp,�-polar set) Capp,�-

quasi continuous function ũ : � → R such that ũ = u a.e. on �. Moreover, if u ∈ W 1,p(�)

and un ∈ W 1,p(�) is a sequence that converges to u in W 1,p(�), then there is a subsequence
of ũn that converges to ũ q.e. on �.

Remark 4.2 We have the following situation regarding the Maz’ya space. Let � ⊂ RN be
an arbitrary open set with boundary ∂� and let

�∞ := {z ∈ ∂� : σ(B(z, r) ∩ ∂�) = ∞ ∀ r > 0}. (4.1)

Then �∞ is a relatively closed subset of ∂� and every function u ∈ Wσ satisfies u|�∞ = 0,
where we recall that

Wσ :=
⎧⎨
⎩u ∈ W 1,p(�) ∩ Cc(�) :

∫

∂�

|u|p dσ < ∞
⎫⎬
⎭ .

Since the closure of the set {u ∈ W 1,p(�) ∩ Cc(�) : u|�∞ = 0} in W 1,p(�) is the space
{u ∈ W 1,p(�) : ũ = 0 q.e. on �∞}, it follows that functions in W 1

p,p(�, ∂�) are zero q.e.
on �∞. The complement of �∞ denoted by

�0 := ∂� \ �∞ = {z ∈ ∂� : ∃ r > 0 : σ(B(z, r) ∩ ∂�) < ∞} (4.2)

is the relatively open subset of ∂� on which the measure σ is locally finite. Note that it
may happen that �∞ = ∂�. In that case, W 1

p,p(�, ∂�) = W 1
p,p(�, ∂�) = W 1,p

0 (�) :=
D(�)

W 1,p(�)
. This is the case for the well-known 2-dimensional open set bounded by the

von Kuch curve (also known as the snowflake) and is also the case for many domains with a
fractal geometry.

Definition 4.3 Let � ⊂ RN be an arbitrary open set with boundary ∂�. We say that a mea-
surable subset � of ∂� is Capp,�-admissible with respect to σ , if Capp,�(A) = 0 implies
σ(A) = 0 for every Borel set A ⊂ �.

The following result shows that the embedding (2.4) is not always injective. This result
has been first proved in [35, Theorem 4.2.1] for p = 2. The case of general p is contained in
[7, Theorem 2.11] where the authors have replaced the measure σ with a Radon measureμ on
∂�. Since for “bad domains”, σ is not always a Radon measure and for seek of completeness,
we include the proof.

Theorem 4.4 Let � ⊂ RN be an open set with boundary ∂� and let p ∈ [1,∞) be fixed.
Then, the following assertions are equivalent.

(i) The operator R : W 1
p,p(�, ∂�) → L p(�), u �→ u|� is injective.

(ii) The set �0 is Capp,�-admissible with respect to σ .

Proof Let p ∈ [1,∞) be fixed.
(ii) ⇒ (i): Assume that the set �0 is Capp,�-admissible with respect to σ . We have to

show that R is injective. Let u ∈ W 1
p,p(�, ∂�) and suppose that Ru = 0. Then, there exists
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a sequence un ∈ W 1,p(�) ∩ Cc(�) such that un → u in W 1
p,p(�, ∂�), and therefore,

Run → Ru = 0 in W 1,p(�). By possibly passing to a subsequence, we have that un con-
verges to zero q.e. on �. Since �0 is Capp,�-admissible with respect to σ , it follows that un

converges to zero σ -a.e. on �0. As un |�0 converges to u|�0 in L p(�0), the uniqueness of the
limit implies that u = 0 σ -a.e. on �0 and therefore u = 0 σ -a.e. on ∂� (since by definition,
every u ∈ W 1

p,p(�, ∂�) is such that u = 0 on �∞ := ∂� \ �0).
(i) ⇒ (ii): Assume that �0 is not Capp,�-admissible with respect to σ . Then, there is

a Borel set K ⊂ �0 such that Capp,�(K ) = 0 and σ(K ) > 0. By the inner regularity
of σ we may assume that K is compact. Since σ is locally finite on �0, one also has that
σ(K ) < ∞. Since Capp,�(K ) = 0, there exists a sequence un ∈ W 1,p(�) ∩ Cc(�) such
that 0 ≤ un ≤ 1, un = 1 on K and ‖un‖W 1,p(�) → 0. For k ∈ N we let

Ok := {x ∈ RN : dist(x, K ) < 1/k}.
Then

K ⊂ Ok+1 ⊂ Ok,
⋂
k≥1

Ok = K and σ(Ok ∩ ∂�) → σ(K ).

Let vk ∈ D(Ok) be such that vk = 1 on K and 0 ≤ vk ≤ 1. It is clear that vk ∈ W 1,p(�) ∩
Cc(�) and ‖unvk‖W 1,p(�) → 0 as n → ∞. Note that unvk ∈ W 1,p(�) ∩ Cc(�), 0 ≤
unvk ≤ 1 and unvk = 1 on K for all n, k. Now, let nk be such that ‖wk‖W 1,p(�) ≤ 2−k

where wk := unkvk . Then, wk → 0 in W 1,p(�), 0 ≤ wk ≤ 1, wk = 1 on K and wk → 1K

everywhere on �. Since wk = 1 on K , it follows that ‖wk‖p
L p(�0)

≥ σ(K ) > 0. This shows

that 1K ∈ W 1
p,p(�, ∂�) \ {0} and R1K = 0; hence, R is not injective. ��

4.2 Admissible sets

In this subsection, we give some examples of admissible and nonadmissible sets.

Definition 4.5 Let p ∈ [1,∞). We say that � has the W 1,p-extension property if for every
u ∈ W 1,p(�) there exists U ∈ W 1,p(RN ) such that U |� = u a.e.

In that case, by [24, Theorem 5], there exists a bounded linear extension operator Ep

from W 1,p(�) into W 1,p(RN ). Moreover, the spaces W 1,p(�) and W 1,p(�) coincide. In
particular, one also obtains that for every p ∈ (1, N ), the space W 1,p(�) is continuously
embedded into L ps (�) with ps = pN/(N − p).

Lemma 4.6 Let p ∈ [1,∞) and let � ⊂ RN be a bounded domain which has the W 1,p-
extension property and let Ep denote the bounded linear extension operator from W 1,p(�)

into W 1,p(RN ). Then, for every A ⊂ ∂� one has,

1

‖Ep‖p
Capp(A) ≤ Capp,�(A) ≤ Capp(A). (4.3)

Proof First, we claim that for every u ∈ W 1,p(�) ∩ C(�), there exists a function U ∈
W 1,p(RN ) ∩ C(RN ) such that U |� = u. Since � has the W 1,p-extension property, by [24,
Theorem 2], it satisfies the measure density condition, that is, there exists a constant c� > 0
such that

|B(x, r) ∩�| ≥ c�r N for all x ∈ � and all 0 < r ≤ 1.
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Moreover, λN (∂�) := |∂�| = 0. For a measurable set G ⊂ RN , we let M1,p(G) be the
Sobolev type space introduced by Hajłasz [23], which is the set of all functions u ∈ L p(G)
with generalized gradient in L p(G). We recall that a measurable function g on � is called a
generalized gradient of u if the inequality

|u(x)− u(y)| ≤ |x − y|(g(x)+ g(y))

holds a.e. on �, that is, there is a set E ⊂ � with |E | = 0 and the inequality holds for every
x, y ∈ � \ E . It follows from [31, Theorem 1.3] that M1,p(RN )|� = M1,p(�) and there
is a linear continuous extension operator Ep : M1,p(�) → M1,p(RN ). Using the fact that
M1,p(RN ) = W 1,p(RN ) as sets with equivalent norms, we get that M1,p(�) = W 1,p(�)

as sets with equivalent norms; hence, the extension operator Ep constructed for M1,p(�) is
also a linear continuous extension operator from W 1,p(�) into W 1,p(RN ).

To verify that the extension operator Ep constructed by Shvartsman [31] maps W 1,p(�)∩
C(�) into W 1,p(RN )∩C(RN ), we describe shortly the construction of this explicit extension
operator. By [31, Theorem 2.4], there exists a countable family of balls W = W (�) such
that RN \� = ⋃

B∈W B, every ball B = B(xB , rB) ∈ W satisfies 3rB ≤ dist(B,�) ≤ 25rB

and further every point of RN \ � is covered by at most C = C(N ) balls from W . Let
(φB) for B ∈ W be a partition of unity associated with this Whitney covering W with prop-
erties 0 ≤ φB ≤ 1, supp(φB) ⊂ B(xB , (9/8)rB),

∑
B∈W φB(x) = 1 on RN \ �, and for

all x, y ∈ RN , |φB(x) − φB(y)| ≤ Cdist(x, y)/rB for some constant C > 0 independent
of B. By [31, Theorem 2.6], there is a family of Borel sets {HB : B ∈ W } such that
HB ⊂ B(xB , γ1rB) ∩ �, λN (B) ≤ γ2λN (HB) for all B ∈ W whenever rB ≤ c�, where
γ1 and γ2 are positive constants. Now, by [31, Theorem 1.3 Equation (1.5)], a continuous
extension operator Ep : M1,p(�) → M1,p(RN ) is given by

(Epu)(x) :=
∑
B∈W

u HBφB(x) for x ∈ RN \�, where u HB := 1

λN (HB)

∫

HB

u dx,

and (Epu)(x) = u(x) if x ∈ �. Now, the claim follows from the construction of Ep .
Next, let A ⊂ ∂� be an arbitrary set. By definition, Capp,�(A) ≤ Capp(A). The proof

of the first inequality in (4.3) follows as the case p = 2 included in [1, Proposition 1.4] (but
in [1], the authors did not know that the previous claim holds for all extension domains). For
seek of completeness, we include the proof for general p. Let ε > 0 be arbitrary.

Step 1: Assume that A ⊂ ∂� is a compact set and let u ∈ W 1,p(�) ∩ C(�) such that
u(x) ≥ 1 for all x ∈ A and ‖u‖p

W 1,p(�)
≤ Capp,�(A) + ε. Let U := Epu. Then,

U ∈ W 1,p(RN )∩ C(RN ) and U = u on �, and hence, u = U on � by continuity.
Thus, U (x) ≥ 1 on A and this implies that

Capp(A) ≤ ‖U‖p
W 1,p(RN )

≤ ‖Ep‖p‖u‖p
W 1,p(�)

≤ ‖Ep‖p(Capp,�(A)+ ε).

Since εwas arbitrary, one obtains Capp(A) ≤ ‖Ep‖p Capp,�(A) for every compact
set A ⊂ ∂�.

Step 2: Assume that A ⊂ ∂� is a relatively open set. Then, there exists an open set O ⊂ RN

such that A = O ∩�. Since Capp,� is a Choquet capacity (see [4]), we get

Capp(A) = sup{Capp(K ) : K ⊂ O ∩� compact}
≤‖Ep‖p sup{Capp,�(K ) : K ⊂ O ∩� compact}≤‖Ep‖p Capp,�(A).
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Step 3: Finally, if A ⊂ ∂� is arbitrary, then,

Capp(A) = inf{Capp(O) : A ⊂ O ⊂ RN open }.
Using the definition of Capp,�, we get that

Capp(A) = inf{Capp(O) : A ⊂ O ⊂ RN open } ≤ ‖Ep‖p inf{Capp,�(O ∩�)
: A ⊂ O ⊂ RN open } ≤ ‖Ep‖p inf{Capp,�(U ) :

A ⊂ U ⊂ �,U relatively open } ≤ ‖Ep‖p Capp,�(A)

and we have shown (4.3) for every A ⊂ ∂� and the proof is finished. ��
Note that it is easy to verify that the inequalities in (4.3) hold for every A ⊂ �. Now, we

are ready to give a large class of admissible sets.

Lemma 4.7 Let p ∈ (1, N ) and let � ⊂ RN be a bounded domain which has the W 1,p-
extension property. Then, ∂� is Capp,�-admissible with respect to σ .

Proof Let p ∈ (1, N ) and assume that � ⊂ RN is a bounded domain which has the W 1,p-
extension property and let A ⊂ ∂�be a Borel set such that Capp,�(A) = 0. Then, Capp(A) =
0 by (4.3). Now, it follows from [18, Theorem 4.7.4, p.156] that H s(A) = 0 for any
s > N − p, where H s denotes the s-dimensional Hausdorff measure. Since σ = H N−1|∂�
and N − 1 > N − p, we have that σ(A) = 0 and the proof is complete. ��

Since bounded Lipschitz domains and the domain bounded by the von Kuch curve (for
example) have the W 1,p-extension property, then their boundaries are Capp,�-admissible
with respect to σ for every p ∈ (1, N ).

To conclude this section, we mention that all the examples of open sets, whose boundaries
are not Cap2,�-admissible with respect to σ , given in [1, Examples 1.5, 1.6, 4.2, 4.3], are
also not Capp,�-admissible with respect to σ , for every p ∈ [1,∞).

5 The parabolic problem

Let � ⊂ RN be an arbitrary open set of finite measure and with boundary ∂�. In this sec-
tion, given p ∈ (1,∞), we want to investigate the well-posedness of the first-order Cauchy
problem formally given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(t, x)

∂t
= �pu(t, x) t > 0, x ∈ �

|∇u(t, x)|p−2∂νu(t, x)+ b(x)|u(t, x)|p−2u(t, x)

+�p(u(t, x)) = 0 t > 0, x ∈ ∂�
u(0, x) = u0 x ∈ �,

(5.1)

where u0 is a given function in L2(�) and the coefficient b ∈ L∞(∂�) and satisfies (3.2).
We define the functional �� : L2(�) → [0,+∞] by

��(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

p

∫

�

|∇u|p dx + 1

p

∫

∂�

b(x)|u|p dσ + 1

p

∫∫

∂�×∂�
|u(x)−u(y)|p

kp(x,y)
dσx dσy, if u ∈ D(��)

+∞ otherwise ,

(5.2)
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where D(��) = V
1,p
� (�, ∂�) ∩ L2(�). As we have mentioned in Remark 4.2, if u ∈

V
1,p
� (�, ∂�) ⊂ W 1

p,p(�, ∂�), one has
∫

∂�

b(x)|u|p dσ =
∫

�0

b(x)|u|p dσ

and ∫∫

∂�×∂�

|u(x)− u(y)|p

kp(x, y)
dσx dσy =

∫∫

�0×�0

|u(x)− u(y)|p

kp(x, y)
dσx dσy

where �0 denotes the relatively open subset of ∂� on which σ is locally finite and is given
in (4.2).

5.1 The nonlocal boundary conditions

In this subsection, we justify the terminology “nonlocal” boundary conditions.

Definition 5.1 We say that a functional ϕ : L2(�) → (−∞,+∞] is local1 if for every
u, v ∈ L2(�)

|u| ∧ |v| = 0 ⇒ ϕ(u + v) = ϕ(u)+ ϕ(v). (5.3)

Here, u ∧ v denotes the (pointwise) infimum of the functions u and v. A functional which is
not local is said to be nonlocal.

Some properties of local functionals are given in [8] and the references therein.
Now, let �� be the functional defined in (5.2). Let u, v ∈ D(��) ∩ Cc(�) be such that

supp[u] ∩ supp[v] = ∅. It is clear that
∫

�

|∇(u + v)|p dx +
∫

∂�

b(x)|u + v|p dσ

=
∫

�

|∇u|p dx +
∫

∂�

b(x)|u|p dσ +
∫

�

|∇v|p dx +
∫

∂�

b(x)|v|p dσ.

On the other hand, it is easy to see that there are functions u, v ∈ D(��) ∩ Cc(�) with
supp[u] ∩ supp[v] = ∅ and

|(u + v)(x)− (u + v)(y)|=|u(x)− u(y)|supp[u] × supp[u]+|v(x)− v(y)|supp[v]× supp[v]
+ |u(x)−v(y)|supp[u]× supp[v]+|v(x)−u(y)|supp[v]×supp[u]

�= |u(x)−u(y)|supp[u]×supp[u] + |v(x)−v(y)|supp[v]× supp[v].

This shows that ��(u + v) �= ��(u) +��(v), and hence, the functional �� is nonlocal.
Since the nonlocality comes from the boundary conditions, more precisely from the opera-
tor �p , we say that we have a nonlocal boundary condition. If �� is lower semicontinuous
(l.s.c.) its subgradient ∂�� is called a realization of the p-Laplace operator with the nonlocal
Robin boundary conditions.

1 In the literature, one can also find the term additive.
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5.2 The lower semicontinuity of the functional

Let �� be the functional defined in (5.2). We have the following result.

Theorem 5.2 Let � ⊂ RN be an open set of finite measure and with boundary ∂� and let
p ∈ (1,∞) be fixed. Then, the following assertions are equivalent.

(i) The functional �� is l.s.c. on L2(�).
(ii) The set �0 is Capp,�-admissible with respect to σ .

Proof Let p ∈ (1,∞) be fixed.
(ii) ⇒ (i): Assume �0 is Capp,�-admissible with respect to σ . We show that �� is

l.s.c. Let un be a sequence in D(��) = V
1,p
� (�, ∂�) ∩ L2(�) that converges to u ∈

L2(�). If lim infn→∞��(un) = +∞, there is nothing to prove. Hence, we assume that
lim infn→∞��(un) < ∞. Take any subsequence of un which we also denote by un , such
that limn→∞��(un) = const. Let the Banach space W 1

p,p(�, ∂�) ∩ L2(�) be endowed
with the norm

‖|u‖| :=
(
‖∇u‖p

p,� + ‖u‖p
p,∂�

)1/p + ‖u‖2,�.

Then un is a bounded sequence in the reflexive Banach space W 1
p,p(�, ∂�)∩ L2(�). Let vn

be a convex combination of un that converges strongly to v in W 1
p,p(�, ∂�) ∩ L2(�) and

hence converges strongly to v in W 1,p(�). The uniqueness of the limit shows that u = v a.e.
on �. We have to show that v|∂� = u|∂� σ -a.e. on ∂�. Since v = u = 0 σ -a.e. on �∞, it
remains to show that v|�0 = u|�0 σ -a.e. on�0. Since vn converges strongly to v on W 1,p(�),
by taking a subsequence if necessary, we may assume that vn converges to v q.e. on �0 and
hence σ -a.e. (since by assumption �0 is Capp,�-admissible with respect to σ ). Now, since
vn |�0 converges to v|�0 in L p(�0), the uniqueness of the limit shows that v|�0 = u|�0 σ -a.e.
on �0. Using the convexity of ��, we obtain that

��(u) = lim inf
n→∞ ��(vn) ≤ lim inf

n→∞ ��(un),

and the proof of (i) is finished.
(i) ⇒ (ii): Assume that �0 is not Capp,�-admissible with respect to σ . Then, there is a

Borel set K ⊂ �0 such that Capp,�(K ) = 0 and σ(K ) > 0. By the inner regularity of the
measure σ , we may assume that K is a compact set. Let wk be the sequence constructed in
the proof of Theorem 4.4 part (i) ⇒ (ii). We recall that wk ∈ W 1,p(�) ∩ Cc(�),wk → 0
in W 1,p(�), 0 ≤ wk ≤ 1, wk = 1 on K , and wk → 1K everywhere on �. Using this
fact, one also has that wk → 0 in L2(�). Without any restriction, we may assume that the
sequence wk is decreasing. Let w̃k := w1 −wk . Since wk → 1K everywhere, it follows that
w̃k → w1|�0\K everywhere. Since 0 ≤ w̃k ≤ w1, it follows that

∫

�0\K

b|w1|p dσ ≤ lim inf
k→∞

∫

�0

b|w̃k |p dσ = lim inf
k→∞

∫

�0\K

b|w̃k |p dσ ≤
∫

�0\K

b|w1|p dσ.

Hence,
∫

�0\K

b|w1|p dσ = lim inf
k→∞

∫

�0

b|w̃k |p dσ. (5.4)
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Since w̃k → w1 in L2(�) and ∇w̃k → ∇w1 in L p(�) and w1 = 1 on K , it follows from
(5.4) and (3.2) that

��(w1) = 1

p

∫

�

|∇w1|p dx + 1

p

∫

�0

b|w1|p dσ + 1

p

∫∫

�0×�0

|w1(x)− w1(y)|p

kp(x, y)
dσx dσy

= 1

p

∫

�

|∇w1|p dx + 1

p

∫

�0\K

b|w1|p dσ + 1

p

∫

K

b|w1|p dσ

+ 1

p

∫∫

�0×�0

|w1(x)− w1(y)|p

kp(x, y)
dσx dσy

≥ 1

p

∫

�

|∇w1|p dx + 1

p

∫

�0\K

b|w1|p dσ + 1

p
b0σ(K )

+ 1

p

∫∫

�0×�0

|w1(x)− w1(y)|p

kp(x, y)
dσx dσy

>
1

p

∫

�

|∇w1|p dx + 1

p

∫

�0\K

b|w1|p dσ

+ 1

p

∫∫

�0×�0

|w1(x)− w1(y)|p

kp(x, y)
dσx dσy = lim inf

k→∞ ��(w̃k).

This shows that�� is not l.s.c. on L2(�) and the proof is finished. ��
Next, let � ⊂ RN be an open set of finite measure with boundary ∂�. Let p ∈ (1,∞)

and assume that �0 is Capp,�-admissible with respect to σ . By Theorem 5.2, �� is proper,
convex, and l.s.c. Let ∂�� be its subgradient (which is trivially single value). Using the
definition of the normal derivative given in (1.1) and the nonlocal operator in (1.3), it is
straightforward to show that if f ∈ L2(�) and u ∈ D(��), then f ∈ ∂��(u) if and only if
u is a weak solution of (3.1). Moreover, D(∂��) ⊂ D(��) = V

1,p
� (�, ∂�) ∩ L2(�) and

for every u ∈ D(∂��) and v ∈ D(��),

∂��(u)(v) =
∫

�

|∇u|p−2∇u∇v dx +
∫

∂�

b(x)|u|p−2uv dσ (5.5)

+
∫∫

∂�×∂�

|u(x)− u(y)|p−2

kp(x, y)
(u(x)− u(y))(v(x)− v(y)) dσx dσy .

That is, ∂�� is the realization of the operator �p with the nonlocal Robin boundary condi-
tions

|∇u|p−2∂u/∂ν + b(x)|u|p−2u +�p(u) = 0 weakly on ∂�.

As a corollary of Theorem 5.2, we have the following result.

Corollary 5.3 Let p ∈ (1,∞) be fixed and let � ⊂ RN be an arbitrary open set with finite
measure and assume that �0 is Capp,�-admissible with respect to σ . Then, the subgradient

−∂�� generates a strongly continuous semigroup (S�(t))t≥0 of contractions on L2(�).
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In particular, for every u0 ∈ L2(�), the orbit u(·) = S�(·)u0 is the unique strong solution
of the first-order Cauchy problem⎧⎨

⎩
u ∈ C([0,∞); L2(�)) ∩ W 1,∞

loc ((0,∞); L2(�)) and u(t, ·) ∈ D(∂��) a.e.
∂u(t, x)

∂t
+ ∂��(u(t, x)) = 0, t > 0, x ∈ �; u(0, x) = u0(x).

(5.6)

Moreover, the semigroup (S�(t))t≥0 is order preserving in the sense that S�(t)v ≤ S�(t)w
for all t ≥ 0 whenever v,w ∈ L2(�)with v ≤ w and is nonexpansive on L∞(�) in the sense
that ‖S�(t)v − S�(t)w‖∞,� ≤ ‖v − w‖∞,� for every t ≥ 0 and v,w ∈ L∞(�) ∩ L2(�).

Proof Let p ∈ (1,∞) be fixed and assume that �0 is Capp,�-admissible with respect to σ .
Since�� is proper, convex, and l.s.c. (by Theorem 5.2) on the Hilbert space L2(�), It follows
from the well-known generation theorem by Minty [27,28] that −∂�� generates a strongly

continuous semigroup (S�(t))t≥0 of contraction operators on D(��)
L2(�) = L2(�). By

the theory of evolution equations governed by subgradient of l.s.c. functionals (see [30]), for
every u0 ∈ L2(�), the orbit u(·) = S�(·)u0 is the unique strong solution of the first-order
Cauchy problem (5.6). Now, since ��(u ∧ v) + ��(u ∨ v) ≤ ��(u) + ��(v) for every
u, v ∈ L2(�), it follows from [3, Théorème 2.1] (see also [11, Theorems 3.6 and 3.8])
that S�(t) is order preserving. Finally, proceeding exactly as in the proof of [34, Theorem
3.4] by using [11, Theorem 3.6 and Corollary 3.9]), we can easily verify that S�(t) is also
nonexpansive on L∞(�). ��

In the literature, a semigroup that is order preserving and nonexpansive on L∞(�) is
called submarkovian. For more details, we refer the reader to the paper [11] and the refer-
ences therein.

5.3 The ultracontractivity

Now, we formulate and prove the ultracontractivity property and the (Lq − L∞)-Hölder type
continuity.

Theorem 5.4 Let � ⊂ RN be an arbitrary open set of finite measure with N > 1 and let
p ∈ [2,∞). Assume that �0 is Capp,�-admissible with respect to σ and let (S�(t))t≥0 be the

strongly continuous (nonlinear) semigroup on L2(�) generated by −∂��. Let q ∈ [2,∞]
and let

β := N − 1

N

[
1 −

(
q

q + p − 2

)N
]
, δ := 1

p − 2

[
1 −

(
q

q + p − 2

)N
]

and

γ :=
(

q

q + p − 2

)N

.

Then, there is a constant C = C(N , p, q,�) > 0 such that for every u0, v0 ∈ Lq(�) and
t > 0,

‖S�(t)u0 − S�(t)v0‖∞ ≤ C |�|β t−δ‖u0 − v0‖γq . (5.7)

Proof Let p ∈ [2,∞) be fixed. Let u0, v0 ∈ L∞(�), u(s) := S�(s)u0 and v(s) := S�(s)v0,
where s > 0. Let r ≥ 2 and consider the function Gr : (0,∞) → [0,∞) defined by
Gr (s) := ‖u(s)− v(s)‖r

r . First, notice that Gr is well-defined because u and v are bounded
in�× (0,∞) and because� has finite measure. We show that Gr is differentiable a.e. Since

123



The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets 227

by Corollary 5.3, (S�(t))t≥0 is the strongly continuous semigroup of contractions generated
by the subdifferential −∂�� of the proper, convex, and l.s.c. functional��, and D(∂��) is
dense in L2(�), it follows from a result of Brezis (see [30, Proposition IV.3.2 and Corollary
IV.3.2] or Corollary 5.3 above), that, for every u0, v0 ∈ L∞(�) ⊂ L2(�) = D(∂��), the
function u(s) and v(s) belong to D(∂��) for every s > 0, and u, v (as functions of s) are con-
tinuous from [0,∞) → L2(�) and Lipschitz on [a,∞) for every a > 0. Hence, u, v (as func-
tions of s) are differentiable a.e. Therefore, Gr is differentiable a.e. Throughout the remain-
der of the proof, we let U (s) := u(s) − v(s), Ũ (s, x, y) = u(s, x) − u(s, y), Ṽ (s, x, y) =
v(s, x)− v(s, y) and in our notation, we sometime omit the dependence of u, v in x . Since
Gr (s) = ∫

�
|U (s)|r dx , by Leibniz rule, and using the fact that u(s), v(s) are solutions of

the Cauchy problem (5.6) with initial data u0, v0, we get that for a.e. s > 0,

d

ds
‖U (s)‖r

r =r
∫

�

|U (s)|r−1 sgn(U (s))U ′(s) dx

= − r
∫

�

|U (s)|r−1 sgn(U (s)) [∂��(u(s))− ∂��(v(s))] dx

= − r
∫

�

|u(s)− v(s)|r−1 sgn(u(s)− v(s))∂��(u(s)) dx

+ r
∫

�

|u(s)− v(s)|r−1 sgn(u(s)− v(s))∂��(v(s)) dx . (5.8)

Using (5.5), we get from (5.8) that

d

ds
‖U (s)‖r

r =−r(r −1)
∫

�

|u(s)− v(s)|r−2|∇u(s)|p−2∇u(s)∇(u(s)− v(s)) dx

− r
∫

∂�

b(x)|u(s)|p−2u(s)|u(s)− v(s)|r−1 sgn(u(s)− v(s)) dσ − r
∫∫

∂�×∂�

|Ũ (x, y)|p−2

kp(x, y)

Ũ (x, y)(|U (s, x)|r−1 sgn(U (s, x))− |U (s, y)|r−1 sgn(U (s, y))) dσx dσy

+ r(r − 1)
∫

�

|u(s)− v(s)|r−2|∇v(s)|p−2∇v(s)∇(u(s)− v(s)) dx

+ r
∫

∂�

b(x)|v(s)|p−2v(s)|u(s)− v(s)|r−1 sgn(u(s)−v(s)) dσ+r
∫∫

∂�×∂�

|Ṽ (s, x, y)|p−2

kp(x, y)

Ṽ (s, x, y)(|U (s, x)|r−1 sgn(U (s, x))− |U (s, y)|r−1 sgn(U (s, y))) dσx dσy

= −r(r − 1)
∫

�

|u(s)− v(s)|r−2 [|∇u(s)|p−2∇u(s)− |∇v(s)|p−2∇v(s)]∇(u(s)

− v(s)) dx − r
∫

∂�

b(x)|u(s)− v(s)|r−2 [|u(s)|p−2u(s)− |v(s)|p−2v(s)
]
(u(s)

− v(s)) dσ − r
∫∫

∂�×∂�

|Ũ (x, y)|p−2Ũ (x, y)− |Ṽ (x, y|p−2Ṽ (x, y)

kp(x, y)
(|U (x)|r−2U (x)

− |U (y)|r−2U (y)) dσx dσy . (5.9)
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Using (3.6) and (3.7), we get from (5.9), that there is a constant C1 > 0 such that

d

ds
‖U (s)‖r

r ≤ −C1r(r − 1)
∫

�

|u(s)− v(s)|r−2|∇(u(s)− v(s))|p dx

− C1r
∫

∂�

b(x)|u(s)− v(s)|r−2+p dσ − C1r
∫∫

∂�×∂�

|(u(x)− v(x))− (u(y)− v(y))|p−1

kp(x, y)

|(u(x)− v(x))− (u(y)− v(y))|r−1 dσx dσy

= −C1r(r − 1)
∫

�

|U (s)|r−2|∇U (s)|p dx − C1r
∫

∂�

b(x)|U (s)|r−2+p dσ

− C1r
∫∫

∂�×∂�

|U (s, x)− U (s, y)|r−2+p

kp(x, y)
dσx dσy . (5.10)

Note that the integrals in the right hand side of (5.10) exist, since u(s), v(s) ∈ V
1,p
� (�, ∂�)

and u(s), v(s) (as functions of x) are bounded.
Next, let r : [0,∞) → [2,∞) be an increasing differentiable function. Using the above

argument, one has that the function s �→ ‖U (s)‖r(s)
r(s) is differentiable a.e. Since

d

ds
‖U (s)‖r(s)

r(s) = r ′(s) ∂
∂r

‖U (s)‖r
r

∣∣∣∣
r=r(s)

+ ∂

∂s
‖U (s)‖r

r

∣∣∣∣
r=r(s)

,

it follows from (5.10) that

d

ds
‖U (s)‖r(s)

r(s) ≤r ′(s)
∫

�

|U (s)|r(s) log |U (s)| dx − C1r(s)
∫

∂�

b(x)|U (s)|r(s)−2+p dσ

− C1r(s)
∫∫

∂�×∂�

|U (s, x)− U (s, y)|r(s)−2+p

kp(x, y)
dσx dσy

− C1r(s)(r(s)− 1)
∫

�

|U (s)|r(s)−2|∇U (s)|p dx . (5.11)

Using (5.11), we obtain the following estimates:

d

ds
log ‖U (s)‖r(s) = − r ′(s)

r(s)
log ‖U (s)‖r(s) + 1

r(s)

1

‖U (s)‖r(s)
r(s)

d

ds
‖U (s)‖r(s)

r(s)

≤ − r ′(s)
r(s)

log ‖U (s)‖r(s) − C1(r(s)− 1)

‖U (s)‖r(s)
r(s)

∫

�

|U (s)|r(s)−2|∇U (s)|p dx

− C1

‖U (s)‖r(s)
r(s)

∫

∂�

b(x)|U (s)|r(s)−2+p dσ

− C1

‖U (s)‖r(s)
r(s)

∫∫

∂�×∂�

|U (s, x)− U (s, y)|r(s)−2+p

kp(x, y)
dσx dσy

+ r ′(s)
r(s)‖U (s)‖r(s)

r(s)

∫

�

|U (s)|r(s) log |U (s)| dx
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≤r ′(s)
r(s)

∫

�

|U (s)|r(s)
‖U (s)‖r(s)

r(s)

log

( |U (s)|
‖U (s)‖r(s)

)
dx

− C1(r(s)− 1)

‖U (s)‖r(s)
r(s)

∫

�

|U (s)|r(s)−2|∇U (s)|p dx

− C1

‖U (s)‖r(s)
r(s)

∫

∂�

b(x)|U (s)|r(s)−2+p dσ

− C1

‖U (s)‖r(s)
r(s)

∫∫

∂�×∂�

|U (s, x)− U (s, y)|r(s)−2+p

kp(x, y)
dσx dσy

≤r ′(s)
r(s)

∫

�

|U (s)|r(s)
‖U (s)‖r(s)

r(s)

log

( |U (s)|
‖U (s)‖r(s)

)
dx

− C1

‖U (s)‖r(s)
r(s)

∫

∂�

b(x)|U (s)|r(s)−2+p dσ

− C1

‖U (s)‖r(s)
r(s)

∫∫

∂�×∂�

|U (x)− U (y)|r(s)−2+p

kp(x, y)
dσx dσy

− C1 p p(r(s)− 1)

(r(s)− 2 + p)p

1

‖U (s)‖r(s)
r(s)

∫

�

|∇|U (s)| r(s)−2+p
p |p dx . (5.12)

Let F := |U (s)| r(s)−2+p
p

‖U (s)‖
r(s)−2+p

p

r(s)−2+p

. It is clear that F ∈ V
1,p
� (�, ∂�), F ≥ 0 and ‖F‖p,∂� = 1.

It follows from (3.2) and the logarithmic Sobolev inequality (2.6) (applied to V
1,p
� (�, ∂�))

that there is a constant C2 > 0 such that for every ε > 0,

−
∫

�

|∇F |p dx −
∫

∂�

b(x)|F |p dσ −
∫∫

∂�×∂�

|F(x)− F(y)|p

kp(x, y)
dσx dσy

≤ −
∫

�

|∇F |p dx − α −
∫∫

∂�×∂�

|F(x)− F(y)|p

kp(x, y)
dσx dσy

≤ − 1

‖U (s)‖r(s)−2+p
r(s)−2+p

∫

�

|∇|U (s)| r(s)−2+p
p |p dx − α −

∫∫

∂�×∂�

|F(x)− F(y)|p

kp(x, y)
dσx dσy

≤ − p

NC2ε

∫

�

|U (s)|r(s)−2+p

‖U (s)‖r(s)−2+p
r(s)−2+p

log

⎛
⎜⎝ |U (s)| r(s)−2+p

p

‖U (s)‖
r(s)−2+p

p

r(s)−2+p

⎞
⎟⎠ dx − log(ε)

C2ε
. (5.13)

It follows from (5.13) and (5.12) that there is a constant C3 > 0 such that for every
ε > 0,
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d

ds
log ‖U (s)‖r(s) ≤ r ′(s)

r(s)

∫

�

|U (s)|r(s)
‖U (s)‖r(s)

r(s)

log

( |U (s)|
‖U (s)‖r(s)

)
dx

−
(

p

r(s)− 2 + p

)p−1 p(r(s)− 1)

NC3ε

‖U (s)‖r(s)−2+p
r(s)−2+p

‖U (s)‖r(s)
r(s)

×
∫

�

|U |r(s)−2+p

‖U‖r(s)−2+p
r(s)−2+p

log

( |U (s)|
‖U (s)‖r(s)−2+p

)
dx

−
(

p

r(s)− 2 + p

)p r(s)− 1

C3

‖U (s)‖r(s)−2+p
r(s)−2+p

‖U (s)‖r(s)
r(s)

log(ε)

ε
. (5.14)

Let

K (r(s),U (s)) :=
∫

�

|U (s)|r(s)
‖U (s)‖r(s)

r(s)

log

( |U (s)|
‖U (s)‖r(s)

)
dx .

By (5.14) we have that for every ε > 0,

d

ds
log ‖U (s)‖r(s) ≤ r ′(s)

r(s)
K (r(s),U (s))−

(
p

r(s)− 2 + p

)p−1

p(r(s)− 1)

NC3ε

‖U (s)‖r(s)−2+p
r(s)−2+p

‖U (s)‖r(s)
r(s)

K (r(s)− 2 + p,U (s))

−
(

p

r(s)− 2 + p

)p r(s)− 1

C3

‖U (s)‖r(s)−2+p
r(s)−2+p

‖U (s)‖r(s)
r(s)

log(ε)

ε
. (5.15)

Let

ε := pr(s)(r(s)− 1)

NC3r ′(s)

(
p

r(s)− 2 + p

)p−1 ‖U (s)‖r(s)−2+p
r(s)−2+p

‖U (s)‖r(s)
r(s)

.

Then it follows from (5.15) that

d

ds
log ‖U (s)‖r(s) ≤r ′(s)

r(s)
[K (r(s),U (s))− K (r(s)− 2 + p,U (s))]

− Nr ′(s)
(r(s)− 2 + p)r(s)

log

⎡
⎣
(

p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)
‖U (s)‖r(s)−2+p

r(s)−2+p

‖U (s)‖r(s)
r(s)

⎤
⎦ .
(5.16)

Since for every V , the mapping q �→ log ‖V ‖q
q is convex and for a.e. q, d

dq log ‖V ‖q
q =

K (q, V )+ log ‖V ‖q , then the mapping q �→ d
dq log ‖V ‖q

q is nondecreasing. Therefore, for
every q2 ≥ q1 ≥ 1,

K (q1, V )− K (q2, V ) ≤ log
‖V ‖q2

‖V ‖q1

. (5.17)
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Applying (5.17) with q1 = r(s) and q2 = r(s) − 2 + p, we get from (5.16) the following
estimates:

d

ds
log ‖U (s)‖r(s) ≤r ′(s)

r(s)
log

(‖U (s)‖r(s)−2+p

‖U (s)‖r(s)

)
− Nr ′(s)
(r(s)− 2 + p)r(s)

log

⎡
⎣‖U (s)‖r(s)−2+p

r(s)−2+p

‖U (s)‖r(s)
r(s)

⎤
⎦− Nr ′(s)

(r(s)− 2 + p)r(s)
log

[(
p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)

]
. (5.18)

It follows from (5.18) that

d

ds
log ‖U (s)‖r(s) ≤r ′(s)

r(s)

[
log ‖U (s)‖r(s)−2+p − log ‖U (s)‖r(s)

]

− Nr ′(s)
r(s)

log ‖U (s)‖r(s)−2+p + Nr ′(s)
r(s)− 2 + p

log ‖U (s)‖r(s)

− Nr ′(s)
(r(s)− 2 + p)r(s)

log

[(
p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)

]
.

Hence,

d

ds
log ‖U (s)‖r(s) ≤

r ′(s)
r(s)

[
(1 − N ) log ‖U (s)‖r(s)−2+p +

(
Nr(s)

r(s)− 2 + p
− 1

)
log ‖U (s)‖r(s)

]

− Nr ′(s)
(r(s)− 2 + p)r(s)

log

[(
p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)

]
. (5.19)

Since |�| < ∞, it follows from the classical Hölder inequality that,

‖U (s)‖r(s) ≤ |�| p−2
r(s)(r(s)−2+p) ‖U (s)‖r(s)−2+p,

and this implies that

log ‖U (s)‖r(s) ≤ p − 2

r(s)(r(s)− 2 + p)
log |�| + log ‖U (s)‖r(s)−2+p.

Since (1 − N ) < 0, it follows from the preceding estimate that

(1 − N ) log ‖U (s)‖r(s)−2+p ≤ (1 − N ) log ‖U (s)‖r(s) + (N − 1)(p − 2)

r(s)(r(s)− 2 + p)
log |�|.

Using this, we get from (5.19) the following estimates:

d

ds
log ‖U (s)‖r(s) ≤ − N (p − 2)r ′(s)

(r(s)− 2 + p)r(s)
log ‖U‖r(s) − (1 − N )(p − 2)r ′(s)

r(s)(r(s)− 2 + p)
log |�|

− Nr ′(s)
(r(s)− 2 + p)r(s)

log

[(
p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)

]
.

(5.20)
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We set

A(s) := N (p − 2)r ′(s)
(r(s)− 2 + p)r(s)

, Y (s) := log ‖U (s)‖r(s),

and

B(s) := Nr ′(s)
(r(s)− 2 + p)r(s)

log

[(
p

r(s)− 2 + p

)p−1 pr(s)(r(s)− 1)

NC3r ′(s)

]

+ (1 − N )(p − 2)r ′(s)
r(s)(r(s)− 2 + p)

log |�|.

It follows from (5.20) that Y (s) satisfies the differential inequality

d

ds
Y (s)+ A(s)Y (s)+ B(s) ≤ 0, for all s > 0.

Hence,

Y (s) ≤ X (s) := exp

⎡
⎣−

s∫

0

A(τ ) dτ

⎤
⎦
⎡
⎣Y (0)−

s∫

0

B(τ ) exp

⎛
⎝

τ∫

0

A(z) dz

⎞
⎠ dτ

⎤
⎦ .

(5.21)

Let r(s) := qt
t−s with q ≥ 2 and 0 ≤ s < t . A simple calculation gives

A(s) = N (p − 2)

(q − 2 + p)t + (2 − p)s
.

Hence,

s∫

0

A(τ ) dτ = −N log
(q − 2 + p)t + (2 − p)s

(q − 2 + p)t
,

and

lim
s→t−

exp

⎡
⎣−

s∫

0

A(τ ) dτ

⎤
⎦ =

(
q

q − 2 + p

)N

.

A similar simple calculation gives

lim
s→t−

⎡
⎣Y (0)−

s∫

0

B(τ ) exp

⎛
⎝

τ∫

0

A(z) dz

⎞
⎠ dτ

⎤
⎦

= Y (0)− 1

p − 2

[(
q + p − 2

q

)N

− 1

]
log(t)

+ N − 1

N

[(
q + p − 2

q

)N

− 1

]
log |�| + C1,
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where C1 is a constant depending on p, q, N and can be computed explicitly. Therefore,

lim
s→t−

X (s) =
(

q

q − 2 + p

)N

Y (0)− 1

p − 2

[
1 −

(
q

q − 2 + p

)N
]

log(t)

+ N − 1

N

[(
1 − q

q + p − 2

)N
]

log |�| + C1

(
q

q − 2 + p

)N

.

Using the submarkovian property (see Corollary 5.3) and (5.21), we get that for all 0 < s < t ,

‖U (t)‖r(s) = ‖u(t)− v(t)‖r(s) ≤ ‖u(s)− v(s)‖r(s) = eY (s) ≤ eX (s). (5.22)

Since lims→t r(s) = ∞ and

Y (0) := log ‖u(0)− v(0)‖r(0) = log ‖u0 − v0‖q ,

taking the limit as s → t− of the inequality in (5.22), we get that

‖u(t)− v(t)‖∞ = lim
s→t−

‖u(t)− v(t)‖r(s) ≤ lim
s→t−

eX (s).

Calculating and using the fact that r(0) = q , we get that there is a constant C > 0 such that
for every t > 0,

‖u(t)− v(t)‖∞ ≤ C |�|β t−δ‖u0 − v0‖γq , (5.23)

where

β := N − 1

N

[(
1 − q + p − 2

q

)N
]
, δ := 1

p − 2

[
1 −

(
q

q − 2 + p

)N
]

and γ :=
(

q

q − 2 + p

)N

.

Finally, to remove the requirement that u0, v0 ∈ L∞(�), let u0, v0 ∈ Lq(�) and un,0, vn,0 ∈
L∞(�) be sequences which converge, respectively, to u0 and v0 in Lq(�). Let un(t) :=
S�(t)un,0, u(t) := S�(t)u0, vn(t) := S�(t)un,0 and v(t) := S�(t)v0. Using (5.23) with first
vn,0 = 0 and then un,0 = 0, we obtain that for every t > 0, un(t) and vn(t) converge, respec-
tively, to u(t) and v(t) in L∞(�). Therefore, for every t > 0, the sequence (un(t)− vn(t))
converges in L∞(�). By uniqueness of the limit, lim

n→∞(un(t)−vn(t)) = u(t)−v(t). Hence,

for every u0, v0 ∈ Lq(�) and t > 0, we have

‖u(t)− v(t)‖∞ = ‖S�(t)u0 − S�(t)v0‖∞ ≤ C |�|β t−δ‖u0 − v0‖γq .
We have shown (5.7) and the proof is finished. ��

Note that a simple calculation shows that

lim
p→2

β = 0, lim
p→2

δ = N

q
and lim

p→2
γ = 1

so that if p = 2 (that is the linear case), the estimate (5.7) reads

‖S�(t)u0‖∞ ≤ Ct−N/q‖u0‖q .

This last estimate has been obtained in [1, Theorem 5.1] for the linear (p = 2) local Robin
boundary conditions. The case of the Laplace operator with nonlinear local Robin type
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boundary conditions is contained in [6], where the authors have assumed that � has the
W 1,2-extension property.

The proof of Theorem 5.4 giving here follows the lines of the proof of the abstract ultra-
contractivity result in the linear case contained in [15, Section 2.2], but the main ideas are
similar to the ones contained in the works by Cipriani and Grillo [9,10] who have consid-
ered the p-Laplace operator (or more general quasi-linear operators) with Dirichlet boundary
conditions.
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