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Abstract We study the structure of entire radial solutions of a biharmonic equation with
exponential nonlinearity:

�2u = λeu in R
N , N ≥ 5 (0.1)

with λ = 8(N − 2)(N − 4). It is known from a recent interesting paper by Arioli et al.
that (0.1) admits a singular solution Us(r) = ln r−4. We show that for 5 ≤ N ≤ 12, any
regular entire radial solution u with u(r) − ln r−4 → 0 as r → ∞ of (0.1) intersects with
Us(r) infinitely many times. On the other hand, if N ≥ 13, then u(r) < Us(r) for all r > 0,
and the solutions are strictly ordered with respect to the initial value a = u(0). Moreover,
the asymptotic expansions of the entire radial solutions near ∞ are also obtained. Our main
results give a positive answer to a conjecture in Arioli et al. (J Differ Equ 230:743–770, 2006)
[see lines −11 to −9, p. 747 of Arioli et al. (J Differ Equ 230:743–770, 2006)].
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1 Introduction

We are interested in structure and asymptotic behaviors of entire radial solutions of the
semilinear biharmonic equation
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188 Z. Guo

�2u = λeu in R
N , N ≥ 5, λ = 8(N − 2)(N − 4), (1.1)

that is, in solutions u = u(r), which exist for all r = |x | > 0.
It is known from [1] that (1.1) admits a singular radial solution:

Us(r) = ln r−4.

For all a, b ∈ R we denote by ua,b the unique solution of the initial value problem

{
�2u(r) = λeu(r), for r ∈ [0,∞)

u(0) = a, �u(0) = b, u′(0) = (�u)′(0) = 0.
(1.2)

It is known from (ii) of Theorem 2 of [1] that for any a ∈ R, there is a unique b0 = b0(a) < 0
such that the unique solution ua,b0 ∈ C4(0,∞) of (1.2) satisfies

lim
r→∞[ua,b0(r)− ln r−4] = 0. (1.3)

This implies that for any a > −∞, there is a unique radial solution ua(r) ∈ C4([0,∞)) of
(1.1) such that

lim
r→∞[ua(r)− ln r−4] = 0. (1.4)

In this paper, we will use the main idea as in [9] to characterize the structure of {ua}a>−∞,
which gives a positive answer to a conjecture in [1]. Meanwhile, the asymptotic expansions
of {ua}a>−∞ near r = ∞ are also obtained. The main result of this paper is the following
theorem.

Theorem 1.1 Let N ≥ 5. Then, for any a > −∞, the Eq. (1.1) admits a unique solution
u = u(r) such that u(0) = a, u′(r) < 0,�u(r) < 0 for r ∈ (0,∞) and u(r)− ln r−4 → 0
as r → ∞. Moreover, if 5 ≤ N ≤ 12, then u(r)− ln r−4 changes sign infinitely many times.
If N ≥ 13, then u(r) < ln r−4 and �u(r) > �(ln r−4) for all r > 0, and the solutions are
strictly ordered with respect to the initial value a = u(0). Namely, if u1(r) and u2(r) are two
radial solutions of (1.1) with u1(0) < u2(0), then u1(r) < u2(r) and�u1(r) > �u2(r) for
r > 0.

The existence and asymptotic behavior of solutions to the fourth-order Eq. (1.1) have been
studied in the so-called conformal dimension N = 4 (see [5,11,13]) and in “supercritical
dimension” N ≥ 5 (see [1]). More recently, the stability properties of the solutions of (1.1)
were determined in [12]. The authors in [3] classified solutions of (1.1) according to their
stability outside compact sets of R

N , complementing again the results in [12] in the confor-
mal dimension N = 4 and showed different behaviors in “low dimensions” 5 ≤ N ≤ 12
and in “high dimensions” N ≥ 13. They obtained that for the first case, there exist both
unstable solutions and solutions that are stable outside compact sets, and for the second case,
any radially symmetric solution to (1.1) is fully stable. Meanwhile, the radial solutions of
the Dirichlet and Navier boundary value problems of the equation�2u = λeu in the ball are
widely studied, see [2,4,6,7].
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Entire radial solutions 189

2 Some preliminaries

We first show the following lemma.

Lemma 2.1 For any a ∈ R, (1.1) admits a unique radial solution ua(r) such that ua(0) =
a, u′

a(0) = 0, ua(r)− ln r−4 → 0 as r → ∞. Moreover,

�ua(r) < 0, u′
a(r) < 0 for r ∈ (0,∞).

Proof Existence and uniqueness of ua(r) of (1.1) satisfying ua(0) = a and ua(r)−ln r−4 →
0 as r → ∞ are known from (ii) of Theorem 2 of [1]. Moreover, it is also known from The-
orem 2 of [1] that (�ua)(0) < 0.

To show that u′
a(r) < 0 and �ua(r) < 0 for r ∈ (0,∞), we only need to show that the

second claim holds. Indeed, if �ua(r) < 0 for all r > 0, we see that (r N−1u′
a(r))

′ < 0 for
all r > 0 and thus u′

a(r) < 0 for all r > 0. Suppose that the second claim does not hold,
we see that there is r0 ∈ (0,∞) such that �ua(r) < 0 for r ∈ (0, r0),�ua(r0) = 0 and
�ua(r) > 0 for r ∈ (r0,∞) since we know from the equation of ua that (�ua)

′(r) > 0 for
all r > 0. This implies that there exist θ > 0 and R0 > 3r0 such that �ua(r) ≥ θ > 0 for
r > R0. Therefore,

(r N−1u′
a(r))

′ ≥ θr N−1 ∀r > R0 (2.1)

and thus

u′
a(r) ≥

(
R0

r

)N−1

u′
a(R0)+ θ

N
r

(
1 −

(
R0

r

)N
)

∀r > R0. (2.2)

This contradicts the fact that ua(r) → −∞ as r → ∞ since (2.2) implies that ua(r) → +∞
as r → ∞. Hence, the second claim holds, and the proof is complete. 	


In the following, we shall assume that ua is the unique entire radial solution of (1.1) with
ua(0) = a. If there is no confusion, we drop the index a.

In radial coordinates r = |x |, Eq. (1.1) reads

u(4)(r)+ 2(N − 1)

r
u′′′(r)+ (N − 1)(N − 3)

r2 u′′(r)− (N − 1)(N − 3)

r3 u′(r)

= λeu(r), r ∈ [0,∞). (2.3)

Using the transformation

w(s) := u(es)+ 4s, s = ln r (r > 0), (2.4)

we see that the Eq. (2.3) can be rewritten as

w(4)(s)+ K3w
′′′(s)+ K2w

′′(s)+ K1w
′(s)− λw(s) = λ(ew(s) − w(s)− 1) (2.5)

where

K3 = 2(N − 4), K2 = N 2 − 10N + 20, K1 = −2(N − 2)(N − 4).

The singular solution r �→ ln r−4 of the differential equation in (2.3) corresponds to the
trivial solution w(s) ≡ 0 of (2.5). The characteristic polynomial (linearized at w ≡ 0) is

ν �→ ν4 + 2(N − 4)ν3 + (N 2 − 10N + 20)ν2 − 2(N − 2)(N − 4)ν − 8(N − 2)(N − 4)
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190 Z. Guo

and, the eigenvalues are given by

ν1 = N1 +
√

N2 + 4
√

N3

2
, ν2 = N1 −

√
N2 + 4

√
N3

2
,

ν3 = N1 +
√

N2 − 4
√

N3

2
, ν4 = N1 −

√
N2 − 4

√
N3

2
,

where

N1 = −(N − 4), N2 = N 2 − 4N + 8, N3 = (9N − 34)(N − 2).

The following proposition is known from [2].

Proposition 2.2 (i) For any N ≥ 5, we have ν1, ν2 ∈ R and ν2 < 2 − N < 0 < ν1.
(i i) For any 5 ≤ N ≤ 12, we have ν3, ν4 �∈ R and Reν3 =Reν4 = − N−4

2 < 0.
(i i i) For any N ≥ 13, we have ν4 < ν3 < 0 and

ν2 < 4 − N < ν4 <
(4 − N )

2
< ν3 < 0 < ν1, ν3 + ν4 = 4 − N .

3 The case of 5 ≤ N ≤ 12

In this section, we prove that for 5 ≤ N ≤ 12, u(r) − Us(r) must have infinitely many
intersections (and hence prove the first part of Theorem 1.1).

It is known from Proposition 2.2 that ν3, ν4 �∈ R provided that 5 ≤ N ≤ 12. Let ν3 =
τ + iκ . Then, τ = − N−4

2 < 0.
Set φ(r) = u(r)− Us(r). The following theorem gives the asymptotic behavior of φ(r)

near ∞, which is of independent interest.

Theorem 3.1 Assume that u is the unique radial solution of (1.1) with 5 ≤ N ≤ 12, which
satisfies u(r) − ln r−4 → 0 as r → ∞. Then, there exist constants C,C1, κ1 with C �= 0
such that for r large:

φ(r) = Cr τ sin(κ ln r + κ1)+ C1rν2 + O(r2τ ). (3.1)

Proof Note that (3.1) implies that φ admits infinitely many zeroes in (0,∞). Using the
transformation

w(s) := u(es)+ 4s (= φ(r)), s = ln r (r > 0), (3.2)

we see that w(s) satisfies w(s) → 0 as s → ∞ and

w(4)(s)+ K3w
′′′(s)+ K2w

′′(s)+ K1w
′(s)− λw(s) = λ(ew(s) − w(s)− 1), s > 1.

(3.3)

We now write (3.3) as

(∂s − ν3)(∂s − ν4)(∂s − ν2)(∂s − ν1)w(s) = g(w(s)) (3.4)
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Entire radial solutions 191

where g(w(s)) = λ(ew(s) − w(s) − 1) = O(w2(s)). We claim that for any S � 1, there
exist some constants Ai and Bi (i = 1, 2, 3, 4) such that

w(s) = A1eτ s cos κs + A2eτ s sin κs + A3eν2s + A4eν1s

+B1

s∫
S

eτ(s−t) sin κ(s − t)g(w(t))dt + B2

s∫
S

eτ(s−t) cos κ(s − t)g(w(t))dt

+B3

s∫
S

eν2(s−t)g(w(t))dt + B4

s∫
S

eν1(s−t)g(w(t))dt.

Moreover, each Ai depends on S and νi (i = 1, 2, 3, 4), whereas each Bi depends only on
νi (i = 1, 2, 3, 4). In fact, it follows from (3.4) and the ODE theory of second order (see
[10]) that

(∂s − ν2)(∂s − ν1)w(s) = Ã1eτ s cos κs + Ã2eτ s sin κs

+ 1

κ

s∫
S

eτ(s−t) sin κ(s − t)g(w(t))dt, (3.5)

where Ã1 and Ã2 are constants depending on S, ν3 and ν4. Multiplying both the sides of
(3.5) by e−ν2s and integrating it on (S, s), we obtain that

(∂s − ν1)w(s) = Ã3eν2s +
s∫

S

eν2(s−t)
[

Ã1eτ t cos κt + Ã2eτ t sin κt
]

dt

+ 1

κ

s∫
S

eν2(s−t)

t∫
S

eτ(t−ξ) sin κ(t − ξ)g(w(ξ))dξdt.

We now switch the order of integrations to see that

(∂s − ν1)w(s) = Â1eτ s cos κs + Â2eτ s sin κs + Â3eν2s

+B̃1

s∫
S

eτ(s−t) sin κ(s − t)g(w(t))dt

+B̃2

s∫
S

eτ(s−t) cos κ(s − t)g(w(t))dt

+B̃3

s∫
S

eν2(s−t)g(w(t))dt,

where Â1, Â2 and Â3 depend on S, νi (i = 2, 3, 4), B̃i (i = 1, 2, 3) depend only on
νi (i = 2, 3, 4). Repeating the same argument once again, we obtain our claim. We can also
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192 Z. Guo

write w(s) as

w(s) = A1eτ s cos κs + A2eτ s sin κs + A3eν2s + M4eν1s

+B1

s∫
S

eτ(s−t) sin κ(s − t)g(w(t))dt + B2

s∫
S

eτ(s−t) cos κ(s − t)g(w(t))dt

+B3

s∫
S

eν2(s−t)g(w(t))dt − B4

∞∫
s

eν1(s−t)g(w(t))dt

by using the fact that
∫ s

S = ∫ ∞
S − ∫ ∞

s . Since w(s) → 0 as s → ∞, we have M4 = 0 (note
ν1 > 0). Setting

w1(s) = A1eτ s cos κs + A2eτ s sin κs + A3eν2s

and

w2(s) = B1

s∫
S

eτ(s−t) sin κ(s − t)g(w(t))dt + B2

s∫
S

eτ(s−t) cos κ(s − t)g(w(t))dt

+B3

s∫
S

eν2(s−t)g(w(t))dt − B4

∞∫
s

eν1(s−t)g(w(t))dt,

we see from the fact g(w(t)) = O(w2(t)) that

|w2(s)| ≤ C
[
w̃1(s)+ w̃2(s)

]
, (3.6)

where C > 0 is independent of S and

w̃1(s) = max

⎧⎨
⎩

s∫
S

eτ(s−t)|w1(t)|2dt,

s∫
S

eν2(s−t)|w1(t)|2dt,

∞∫
s

eν1(s−t)|w1(t)|2dt

⎫⎬
⎭ ,

w̃2(s) = max

⎧⎨
⎩

s∫
S

eτ(s−t)|w2(t)|2dt,

s∫
S

eν2(s−t)|w2(t)|2dt,

∞∫
s

eν1(s−t)|w2(t)|2dt

⎫⎬
⎭ .

We now show

|w2(s)| = o(eτ s). (3.7)

There are three cases to be considered:

(i) |w2(s)| ≤ C
[
w̃1(s)+ ∫ s

S eτ(s−t)|w2(t)|2dt
]
,

(ii) |w2(s)| ≤ C
[
w̃1(s)+ ∫ s

S eν2(s−t)|w2(t)|2dt
]
,

(iii) |w2(s)| ≤ C
[
w̃1(s)+ ∫ ∞

s eν1(s−t)|w2(t)|2dt
]
.

We only consider (i) and (iii). Case (ii) can be discussed similarly.
For case (i), we have

|w2(s)| ≤ C

⎡
⎣w̃1(s)+

s∫
S

eτ(s−t)|w2(t)|2dt

⎤
⎦ . (3.8)
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Entire radial solutions 193

Thus,

|w2(s)| ≤ C

⎡
⎣w̃1(s)+ max

s≥S
|w2(s)|

s∫
S

eτ(s−t)|w2(t)|dt

⎤
⎦ . (3.9)

Let m(s) = ∫ s
S e−τ t |w2(t)|. Then, it is seen from (3.9) that

m′(s) ≤ Cw̃1(s)e
−τ s + C max

s≥S
|w2(s)| m(s). (3.10)

For any ε > 0 sufficiently small, we can choose S sufficiently large such that 0 < dS :=
C maxs≥S |w2(s)| < ε. It follows from (3.10) that

m(s) ≤ CedSs

s∫
S

w̃1(t)e
−τ t e−dSt dt. (3.11)

Substituting m(s) in (3.11) into (3.9), we see that

|w2(s)| ≤ Cw̃1(s)+ CdSe(τ+dS)s

s∫
S

w̃1(t)e
−τ t e−dSt dt. (3.12)

Note that τ + dS < 0 for S sufficiently large. We also know that if δ =
√

N2+4
√

N3
2 , then

δ > 0. Thus, ν2 = τ − δ < τ . This implies w̃1(s) = o(eτ s). We also know from (3.12) that
|w2(s)| = o(e(τ+dS)s). Substituting this into (3.8), we eventually obtain that

|w2(s)| = o(eτ s). (3.13)

For case (iii), we have

|w2(s)| ≤ C

⎡
⎣w̃1(s)+

∞∫
s

eν1(s−t)|w2(t)|2dt

⎤
⎦ . (3.14)

Thus,

|w2(s)| ≤ Cw̃1(s)+ C max
s≥S

|w2(s)|
∞∫

s

eν1(s−t)|w2(t)|dt. (3.15)

Let k(s) = ∫ ∞
s e−ν1t |w2(t)|. Then, it is seen from (3.15) that

− k′(s) ≤ Cw̃1(s)e
−ν1s + dSk(s). (3.16)

It follows from (3.16) that

k(s) ≤ Ce−dSs

∞∫
s

w̃1(t)e
−ν1t edSt dt. (3.17)

Since w̃1(s) = o(eτ s), we obtain from (3.17) that

k(s) = o(e(τ−ν1)s). (3.18)

Substituting this into (3.15), we also have

|w2(s)| = o(eτ s). (3.19)
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194 Z. Guo

We now write w(s) as

w(s) = M1eτ s cos κs + M2eτ s sin κs + A3eν2s

−B1

∞∫
s

eτ(s−t) sin κ(s − t)g(w(t))dt − B2

∞∫
s

eτ(s−t) cos κ(s − t)g(w(t))dt

+B3

s∫
S

eν2(s−t)g(w(t))dt − B4

∞∫
s

eν1(s−t)g(w(t))dt.

Then, it follows from the facts g(w(s)) = O(w2(s)), w1(s) = O(eτ s), w2(s) = o(eτ s) and
ν2 < 2τ that

w(s) = M1eτ s cos(κs)+ M2eτ s sin(κs)+ A3eν2s + O(e2τ s). (3.20)

We now claim that M2
1 + M2

2 �= 0.
Suppose that M1 = M2 = 0. Then, it follows from (3.20) that w(s) = O(e2τ s) since

ν2 < 2τ . Substituting this into the expression of w(s) and using the fact 4τ < ν2, we obtain
that

w(s) = Ã3eν2s + o(eν2s), (3.21)

where Ã3 is a constant depending on S. We now show that Ã3 �= 0. On the contrary,
w(s) = o(eν2s). Substituting this into

w(s) = M3eν2s

−B1

∞∫
s

eτ(s−t) sin κ(s − t)g(w(t))dt − B2

∞∫
s

eτ(s−t) cos κ(s − t)g(w(t))dt

−B3

∞∫
s

eν2(s−t)g(w(t))dt − B4

∞∫
s

eν1(s−t)g(w(t))dt,

we see that M3 = 0 and w(s) = o(e2ν2s). Repeating this process, we eventually derive that
w(s) ≡ 0. This is a contradiction. Moreover, Ã3 �= 0 implies M3 �= 0. Using the expression
of w(s), we obtain by direct calculations that for s sufficiently large

w′(s) = O(eν2s), w′′(s) = O(eν2s), w′′′(s) = O(eν2s). (3.22)

These also imply that

φ(r) ∼ r2−N−η, φ′(r) ∼ r1−N−η, �φ(r) ∼ r−N−η,
(�φ)′(r) ∼ r−N−η−1 as r → ∞, (3.23)

where η = −ν2 − (N − 2) > 0 by Proposition 2.2. Furthermore, φ(r) has no zeroes for r
large. We show that this is impossible. In fact, it is easy to see that φ must change sign in
(0,∞). Otherwise, we assume that φ(r) < 0 for r ≥ 0 (note that u(r) < Us(r) for r small).
Then, using the behavior of φ near ∞ and integrating the equation �2φ = λ(eu(r) − eUs (r))

over R
N , we see that

∞∫
0

r N−1(eu(r) − eUs (r))dr = 0,
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Entire radial solutions 195

which contradicts φ = u − Us < 0. (Note that r N−1(�Us)
′(r) ∼ r N−4 for r near 0 and

hence limr→0+ r N−1(�φ)′(r) = 0 since N ≥ 5.)
Suppose that φ(r) has exactly k zeroes in (0,+∞) (recalling that φ has no zeroes when

r is large) and φ(r) ∼ r2−N−η as r → ∞, we easily see that r N−1φ′(r) has at least k
zeroes. On the other hand, since the function ξ(r) := r N−1φ′(r) satisfies ξ(0) = 0 and
ξ(r) → 0 as r → ∞, we see that ξ ′(r) has at least k + 1 zeroes. Thus, �φ(r) = 1

r N−1 ξ
′(r)

has at least k + 1 zeroes. A similar idea implies that r N−1(�φ)′(r) has at least k zeroes and
(r N−1(�φ)′(r))′ has at least k + 1 zeroes. Therefore, �2φ = 1

r N−1 (r
N−1(�φ)′(r))′ has at

least k + 1 zeroes. This contradicts our assumption that φ has k zeroes, since �2φ = λeζ φ,
where ζ(r) ∈ (min{u(r),Us(r)},max{u(r),Us(r)}) and eζ(r) > 0 for all r > 0. This proves
our claim.

Since M2
1 + M2

2 �= 0, it follows from (3.3) that

w(s) = M1eτ s cos(κs)+ M2eτ s sin(κs)+ M̃3eν2s

−B1

∞∫
s

eτ(s−t) sin κ(s − t)g(w(t))dt − B2

∞∫
s

eτ(s−t) cos κ(s − t)g(w(t))dt

+B3

s∫
S

eν2(s−t)g(w(t))dt − B4

∞∫
s

eν1(s−t)g(w(t))dt. (3.24)

Writing (3.20) as

w(s) = Ceτ s sin(κs + κ1)+ o(eτ s) (3.25)

where tan κ1 = M2/M1 and C =
√

M2
1 + M2

2 , and putting (3.25) back into (3.24), we obtain

w(s) = Ceτ s sin(κs + κ1)+ M̂3eν2s + O(e2τ s) (3.26)

and hence

φ(r) = Cr τ sin(κ ln r + κ1)+ M̂3rν2 + O(r2τ ) (3.27)

This implies (3.1) and completes the proof of this theorem. 	

Corollary 3.2 Let u1 and u2 be two different regular radial entire solutions of (1.1) satis-
fying u1(r)− ln r−4 → 0 as r → ∞ and u2(r)− ln r−4 → 0 as r → ∞. Then, the graph
of u1 intersects that of u2 infinitely many times in (0,∞).

Proof Define wi (s) = ui (es)+ 4s (i = 1, 2) and s = ln r, w(s) = w1(s)−w2(s). We see
that w satisfies the equation

w(4)(s)+K3w
′′′(s)+K2w

′′(s)+K1w
′(s)− λw(s) = λ(ew1(s) − ew2(s) − w(s)), s > 1.

(3.28)

It is clear that wi (s) → 0 as s → ∞. Therefore,

g̃(w(s)) := ew1(s) − ew2(s) − w(s) = O(eτ s)w(s)

Similar arguments to those in the proof of Theorem 3.1 imply that for r sufficiently large,

ϕ(r) := u1(r)− u2(r) = Q1r τ cos(κ ln r)+ Q2r τ sin(κ ln r)+ Q3rν2 + O(r2τ ) (3.29)

with Q2
1 + Q2

2 �= 0. This completes the proof of this corollary. 	
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196 Z. Guo

4 The case of N ≥ 13

In this section, we consider the case of N ≥ 13. We first study the following linearized
equation

�2φ = 8(N − 2)(N − 4)eu(r)φ, φ(r) → 0 as r → ∞. (4.1)

Lemma 4.1 The solution φ(r) to (4.1) is given by

φ(r) = c(4 + ru′(r)) (4.2)

for some c �= 0.

Proof The proof can be done by three steps:

(i) We show that if φ(0) = 0, then φ ≡ 0.
(ii) We show that if φ(0) = 1, then �φ(0) < 0.

(iii) We obtain (4.2).

(i) Suppose φ(0) = 0 and (�φ)(0) �= 0, we may assume that (�φ)(0) > 0. Since
φ(0) = φ′(0) = 0, we may assume that φ(r) > 0 for r ∈ (0, R) and φ(R) = 0. (R
can be +∞.) Then, in (0, R), (�φ)′ > 0, and hence �φ(r) > 0 for r ∈ (0, R). This
implies that φ′(r) > 0 and φ(r) > 0 for r ∈ (0, R] and contradicts φ(R) = 0. This
implies that �φ(0) = 0. Since φ is the unique solution of the initial value problem

{
�2φ = λeu(r)φ for r ∈ [0,∞)

φ(0) = φ′(0) = �φ(0) = (�φ)′(0) = 0,

we then have φ ≡ 0.
(ii) follows from the same arguments.

(iii) Let ρ(r) = 4 + ru′(r). Then, ρ(0) = 4. Direct calculations imply that ρ(r) is a
solution of the equation in (4.1) (we can also obtain this claim by using the equation
satisfied by w′(s) with w(s) being given in (3.2)). Moreover, we claim that

ρ(r) → 0 as r → ∞. (4.3)

To see this, we set w(s) as in (3.2) and see that w(s) → 0 and w′(s) → 0 as s → ∞.
The second limit implies that our claim (4.3) holds and this limit can be obtained from the
expression of w(s) as in or similar to (3.24). (Note that we will obtain a similar expression
of w(s) for N ≥ 13 later.) Let φ(r) be any nontrivial solution of (4.1) with φ(0) = σ �= 0.
We see that ρ̃(r) := φ(r) − σ

4 ρ(r) with ρ̃(0) = 0 is a solution of (4.1). It follows from (i)
that ρ̃ ≡ 0. Therefore, φ ≡ σ

4 ρ. This completes the proof of this lemma. 	

Theorem 4.2 For N ≥ 13, we have u(r) < Us(r),�u(r) > �Us(r) for r > 0.

Theorem 4.3 For N ≥ 13, the solution to (4.1) remains of constant sign; that is,

4 + ru′(r) > 0, �(4 + ru′(r)) < 0. (4.4)

Proof of Theorem 4.2 This theorem is just a slight improvement of Lemma 12 in [3]. Let
φ(r) = Us(r)− u(r). Then, φ satisfies

�2φ = λ(eUs (r) − eUs (r)−φ(r)) ≤ λeUs (r)φ(r), ∀r > 0. (4.5)
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(Note that 1 − e−x − x ≤ 0 for all x ∈ R. In fact, if we define h(x) = 1 − e−x − x , we see
that h(0) = 0 and h′(x) > 0 for x < 0; h′(x) < 0 for x > 0.) Now let ψ(r) = rν3 . Then, by
Proposition 2.2, ν3 >

4−N
2 . We have that

�2ψ = λeUs (r)ψ. (4.6)

Thus, for any 0 < R < 1,
∫

BR(0)
r−4|φ|ψ ≤ C

∫
BR(0)

r−4| ln r |r 4−N
2 < +∞ since N ≥ 5.

This implies that the integral λeUs (r)φψ is integrable. Multiplying (4.5) by ψ and (4.6) by φ
and integrating over Br (0), we have the following inequality:∫

∂Br (0)

[(�φ)′ψ −�φψ ′] +
∫

∂Br (0)

[�ψφ′ − (�ψ)′φ] ≤ 0. (4.7)

Note that φ(r) > 0 and �φ(r) < 0 for r small. If φ(r) > 0 and �φ(r) < 0 for r ∈ (0,∞),
we are done. Let us assume that there exist r1, r2 ∈ (0,∞] such that

φ(r) > 0, r ∈ (0, r1), φ(r1) = 0, �φ(r) < 0, r ∈ (0, r2), �φ(r2) = 0. (4.8)

Then, we have four cases here: (i) r1 = ∞ and r2 = ∞, (ii) r1, r2 ∈ (0,∞), (iii) r1 = ∞
and r2 ∈ (0,∞), (iv) r2 = ∞ and r1 ∈ (0,∞). If (i) occurs, then we are done. We only
consider case (ii) in the following, the other two cases can be discussed similarly. (Note that
case (iii) can be discussed as the case r1 > r2 in the proof of case (ii) and case (iv) can be
discussed as the case r2 > r1 in the proof of case (ii).) We will derive contradictions from
(4.7) and (4.8).

Let I1(r) = ∫
∂Br (0)

[(�φ)′ψ − �φψ ′] and I2(r) = ∫
∂Br (0)

[�ψφ′ − (�ψ)′φ]. We first
see r1 �= r2. Otherwise, we take r = r1 = r2 and obtain that I1(r) > 0, I2(r) > 0. But these
contradict with (4.7). (Note that�ψ < 0. The fact φ′(r) < 0 for r ∈ (0, r1] can be obtained
from�φ(r) < 0 for r ∈ (0, r1). The fact (�φ)′(r) > 0 for r ∈ (0, r1] can be obtained from
the equation of φ.)

We then see that r2 > r1. Otherwise, we have r2 < r1. In this case, we take r = r2. Then,
I1(r) > 0. It remains to estimate I2(r2).

To this end, we first show that�φ > 0 for r ∈ (r2, r1). In fact, since�2φ = λeξ(r)φ > 0
in (0, r1), where ξ(r) ∈ (Us(r) − φ(r),Us(r)), we see that (�φ)′(r) > 0 for r ∈ (0, r1).
(Note that if k(r) = r N−1(�φ)′(r), then k(0) = 0.) This implies that �φ must be positive
for r > r2 and near r2. Suppose that there exists r3 ≤ r1 such that �φ(r3) = 0. Then, we
have�φ > 0,�(�φ) > 0 in (r2, r3). This is impossible, since�φ must attain its maximum
in (r2, r3) where �(�φ) ≤ 0.

Now, we consider the function �(r) = r N−1(�ψφ′ − (�ψ)′φ). Its derivative is given
by

� ′(r) = (r N−1φ′(r))′�ψ(r)− (r N−1(�ψ)′(r))′φ(r)
= r1−N [�φ(r)�ψ(r)− φ(r)�2ψ(r)] < 0 for r ∈ (r2, r1).

(Here, we have used the fact that �ψ < 0.) So �(r2) > �(r1) = r N−1
1 �ψ(r1)φ

′(r1) ≥ 0.
As a consequence, we have proved that I2(r2) = r1−N

2

∫
∂Br2 (0)

�(r2) > 0. So again, we have

I1(r2) > 0, I2(r2) > 0, and this gives a contradiction to the inequality (4.7).
Finally, we show that r2 > r1 is also impossible. If we take r = r1 in (4.7), we see that

I2(r1) = ∫
∂Br1 (0)

[�ψφ′] ≥ 0. It remains to estimate I1(r1).

As before, we first show that φ(r) < 0 for r ∈ (r1, r2). In fact, since �φ < 0 in (0, r2),
we see that φ must be negative for r > r1 and near r1. Suppose that there exists r3 ≤ r2 such
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that φ(r3) = 0. Then, we have �φ < 0, φ < 0 in (r1, r3). This is impossible, since φ must
attain its minimum in (r3, r2) where �φ ≥ 0.

Now, we consider the function�(r) = r N−1((�φ)′ψ−�φψ ′). Its derivative is given by

�′(r) = (r N−1(�φ)′(r))′ψ(r)− (r N−1ψ ′(r))′�φ(r)
= r1−N [�2φ(r)ψ(r)−�φ(r)�ψ(r)] < 0 for r ∈ (r1, r2).

So, �(r1) > �(r2) = r N−1
2 (�φ)′(r2)ψ(r2) ≥ 0. So, I1(r1) = r1−N

1

∫
∂Br1 (0)

�(r1) > 0.

So again, we have I1(r1) > 0, I2(r1) ≥ 0 and a contradiction to (4.7). These contradictions
imply that φ(r) > 0,�φ(r) < 0 for r ∈ (0,∞) and this completes the proof. 	

Proof of Theorem 4.3 Let φ̃(r) be a solution of (4.1). By Lemma 4.1, we may assume that
φ̃(0) = 1,�φ̃(0) < 0. We will show that φ̃(r) > 0 and �φ̃(r) < 0 for r ≥ 0.

Let ψ̃(r) = rν4 . Then,

�2ψ̃ = λeUs (r)ψ̃ . (4.9)

By Proposition 2.2, we see that ν4 > 4 − N . This implies that
∫

Br (0)
r−4|φ̃|ψ̃ < +∞.

Multiplying (4.1) by ψ̃ and (4.9) by φ̃ and integrating over Br (0), we obtain

0 =
∫

Br (0)

λ(eUs − eu)φ̃ψ̃ +
∫

∂Br (0)

[(�φ̃)′ψ̃ −�φ̃ψ̃ ′] +
∫

∂Br (0)

[�ψ̃φ̃′ − (�ψ̃)′φ̃] (4.10)

= Ĩ1(r)+ Ĩ2(r)+ Ĩ3(r)

where Ĩi (r) are defined in the last equality.
Let us assume that there exist r1, r2 ∈ (0,∞] such that

φ̃(r) > 0, r ∈ (0, r1), φ̃(r1) = 0, (4.11)

and

�φ̃(r) < 0, r ∈ (0, r2), �φ̃(r2) = 0. (4.12)

Then, we also have the four cases as those in the proof of Theorem 4.2. As in the proof of
Theorem 4.2, we only need to consider the case r1, r2 ∈ (0,∞). By Theorem 4.2, we see that
Ĩ1(r) > 0 for r ∈ (0, r1]. We first see that r1 �= r2. On the contrary, we choose r = r1 = r2

and see that Ĩ2(r) ≥ 0, Ĩ3(r) ≥ 0. The identity (4.10) gives a contradiction.
We now show that r2 > r1. On the contrary, we see that r1 > r2. In this case, we take

r = r2 in (4.10). Then, Ĩ1(r2) > 0, Ĩ2(r2) = ∫
∂Br2 (0)

(�φ̃)′ψ̃ ≥ 0. It remains to estimate

Ĩ3(r2). By arguments similar to those in the proof of Theorem 4.2, we can see that Ĩ3(r2) ≥ 0.
So again, we have Ĩ1(r2) > 0, Ĩ2(r2) ≥ 0, Ĩ3(r2) ≥ 0, and these give a contradiction to the
identity (4.10).

Finally, we show that r2 > r1 is also impossible. In this case, we take r = r1 in (4.10).
Then, Ĩ1(r1) ≥ 0 by Theorem 4.2, Ĩ3(r1) = ∫

∂Br1 (0)
�ψ̃φ̃ ≥ 0. It remains to estimate Ĩ2(r1).

By arguments similar to those in the proof of Theorem 4.2, we obtain that Ĩ2(r1) ≥ 0. So
again, we have Ĩ1(r1) > 0, Ĩ2(r1) ≥ 0, Ĩ3(r1) ≥ 0, and these give a contradiction to the
identity (4.10). These contradictions imply that φ̃ and �φ̃ remain of constant sign, and the
proof is complete. 	


Let

f (x) = x − 4 +
√

x2 − 4x + 8 − 4
√
(9x − 34)(x − 2)

x − 4 −
√

x2 − 4x + 8 − 4
√
(9x − 34)(x − 2)

.
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Direct calculations show that f (x) is an increasing function for x ≥ 13. Moreover, 2 >

f (13) > 1. Note that f (N ) = −ν4−ν3
. Let �(k) := f −1(x). We see that �(k) is also an

increasing function for k ≥ f (13) > 1.

Theorem 4.4 Assume that N ≥ 13. Then, the set of solutions {ua(r)} to (1.1) is well ordered.
That is, if a > b, then ua(r) > ub(r) for all r > 0. Moreover, we also have the following
asymptotic expansion for u:

(i) For any positive integer k ≥ 1, if N = �(k), then near ∞,

u(r)= ln r−4+M1rν3 + M2r2ν3 + · · · + Mkrkν3 + Mkrkν3 ln r + Q1rν4 + o(rν4).

(4.13)

(i i) For any positive integer k ≥ 1, if �(k) < N < �(k + 1), then near ∞,

u(r) = ln r−4 + M1rν3 + M2r2ν3 + · · · + Mkrkν3 + T1rν4 + o(rν4). (4.14)

where M1 �= 0 and the coefficients M2,M3, . . . ,Mk are uniquely determined once, M1 is
determined.

Proof Since ua(r) = a + u0(e
a
4 r), if we define φ(r) := ∂ua(r)

∂a , then

φ(r) = 1

4
(4 + ρ(u0)ρ), (ρ = ea/4r).

It is clear that φ(0) = 1. We see that φ̂(ρ) := 1
4 (4 + ρ(u0)ρ) satisfies the equation

�2
ρφ̂ = λeu0(ρ)φ̂(ρ).

Then, Theorem 4.3 implies that

φ̂(ρ) > 0, �ρφ̂(ρ) < 0 for ρ ≥ 0.

This implies that φ(r) > 0 and�rφ(r) < 0 for r ≥ 0. That is, if a > b, then ua(r) > ub(r)
and �ua(r) < �ub(r) for all r > 0.

To see that expansions of u near ∞, we only show the second case. The first case can be
done similarly. The arguments we use here are similar to those in the proof of Theorem 2.5
of [8].

As in the proof of Theorem 3.1, we see that for s sufficiently large, in the leading order,

w(s) = M1eν3s + T1eν4s + T̂ eν2s + O(emax{2ν3,ν4}s). (4.15)

Note that ν2 < ν4 < ν3 < 0 and that if �(k) < N < �(k + 1), then −ν4 > k(−ν3).

w(s) = M̃1eν3s + T̃ eν4s + T̂ eν2s

+τ1

s∫
S

eν3(s−t)g(w(t))dt + τ2

s∫
S

eν4(s−t)g(w(t))dt (4.16)

+τ3

s∫
S

eν2(s−t)g(w(t))dt + τ4

∞∫
s

eν1(s−t)g(w(t))dt.

For each positive integer M ≥ 2, g(ω) admits the following expansion

g(ω) = d2ω
2 + d3ω

3 + · · · + dMω
M + O(ωM+1) (4.17)
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near τ = 0, where di = 1/(i !). Substituting (4.15) and (4.17) into (4.16) and iterating this
process, after (k − 1) steps we arrive at

w(s) = M1eν3s + M2e2ν3s + · · · Mkekν3s + O(eν4s) (4.18)

near s = ∞. (We use arguments similar to those in the proof of Theorem 2.5 of [8] here.
The relation between M1 and each Mi with i ∈ {2, 3, . . . , k} is also known from the proof
of Theorem 2.5 of [8].) Repeating this process once more, we obtain

w(s) = M1eν3s + M2e2ν3s + · · · Mkekν3s + T1eν4s + O(e(k+1)ν3s) (4.19)

near s = ∞. This implies (4.14).
If M1 = 0, then M2 = · · · = Mk = 0 and

u(r) = ln r−4 + O(rν4), (4.20)

which implies that φ(r) = O(rν4) for r near ∞, where φ(r) = Us(r) − u(r). Since φ
satisfies the equation

�2φ(r) = λ(eUs (r) − eu(r)) = λeξ(r)φ(r)

where ξ(r) ∈ (u(r),Us(r)), as in the proof of Theorem 4.3, we have that

∞∫
0

(eUs (r) − eξ(r))φ(r)rν4r N−1dr = 0 (4.21)

where the integral is finite because ν4 > 4 − N and 2ν4 < 4 − N . (Note that we can obtain
an identity similar to (4.10) for φ̃ = φ and ψ̃ , to derive (4.21) we only need to send r in this
identity to ∞. The behaviors of (�φ)′(r), φ′(r) for r near ∞ can be obtained by arguments
similar to those in the proof of (3.23).) This is impossible since φ(r) > 0 for r ∈ (0,∞) by
Theorem 4.2 and eUs (r) − eξ(r) > 0. Therefore, M1 �= 0. 	

Remark 4.5 If we do the same procedure as that in Theorem 4.4 between ν4 and ν2, we can
obtain more exact expansions of u(r) near ∞.
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